483 research outputs found

    Application of learning algorithms to traffic management in integrated services networks.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN027131 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    An intelligent approach to quality of service for MPEG-4 video transmission in IEEE 802.15.1

    Get PDF
    Nowadays, wireless connectivity is becoming ubiquitous spreading to companies and in domestic areas. IEEE 802.15.1 commonly known as Bluetooth is high-quality, high-security, high-speed and low-cost radio signal technology. This wireless technology allows a maximum access range of 100 meters yet needs power as low as 1mW. Regrettably, IEEE 802.15.1 has a very limited bandwidth. This limitation can become a real problem If the user wishes to transmit a large amount of data in a very short time. The version 1.2 which is used in this project could only carry a maximum download rate of 724Kbps and an upload rate of 54Kbps In its asynchronous mode. But video needs a very large bandwidth to be transmitted with a sufficient level of quality. Video transmission over IEEE 802.15.1 networks would therefore be difficult to achieve, due to the limited bandwidth. Hence, a solution to transmit digital video with a sufficient quality of picture to arrive at the receiving end is required. A hybrid scheme has been developed in this thesis, comprises of a fuzzy logic set of rules and an artificial neural network algorithms. MPEG-4 video compression has been used in this work to optimise the transmission. This research further utilises an ‘added-buffer’ to prevent excessive data loss of MPEG-4 video over IEEE 802.15.1transmission and subsequently increase picture quality. The neural-fuzzy scheme regulates the output rate of the added-buffer to ensure that MPEG-4 video stream conforms to the traffic conditions of the IEEE 802.15.1 channel during the transmission period, that is to send more data when the bandwidth is not fully used and keep the data in the buffers if the bandwidth is overused. Computer simulation results confirm that intelligence techniques and added-buffer do improve quality of picture, reduce data loss and communication delay, as compared with conventional MPEG video transmission over IEEE 802.15.1

    Dynamic bandwidth allocation in ATM networks

    Get PDF
    Includes bibliographical references.This thesis investigates bandwidth allocation methodologies to transport new emerging bursty traffic types in ATM networks. However, existing ATM traffic management solutions are not readily able to handle the inevitable problem of congestion as result of the bursty traffic from the new emerging services. This research basically addresses bandwidth allocation issues for bursty traffic by proposing and exploring the concept of dynamic bandwidth allocation and comparing it to the traditional static bandwidth allocation schemes

    Design of traffic shaper / scheduler for packet switches and DiffServ networks : algorithms and architectures

    Get PDF
    The convergence of communications, information, commerce and computing are creating a significant demand and opportunity for multimedia and multi-class communication services. In such environments, controlling the network behavior and guaranteeing the user\u27s quality of service is required. A flexible hierarchical sorting architecture which can function either as a traffic shaper or a scheduler according to the requirement of the traffic load is presented to meet the requirement. The core structure can be implemented as a hierarchical traffic shaper which can support a large number of connections with a wide variety of rates and burstiness without the loss of the granularity in cells\u27 conforming departure time. The hierarchical traffic shaper can implement the exact sorting scheme with a substantial reduced memory size by using two stages of timing queues, and with substantial reduction in complexity, without introducing any sorting inaccuracy. By setting a suitable threshold to the length of the departure queue and using a lookahead algorithm, the core structure can be converted to a hierarchical rateadaptive scheduler. Based on the traffic load, it can work as an exact sorting traffic shaper or a Generic Cell Rate Algorithm (GCRA) scheduler. Such a rate-adaptive scheduler can reduce the Cell Transfer Delay and the Maximum Memory Occupancy greatly while keeping the fairness in the bandwidth assignment which is the inherent characteristic of GCRA. By introducing a best-effort queue to accommodate besteffort traffic, the hierarchical sorting architecture can be changed to a near workconserving scheduler. It assigns remaining bandwidth to the best-effort traffic so that it improves the utilization, of the outlink while it guarantees the quality of service requirements of those services which require quality of service guarantees. The inherent flexibility of the hierarchical sorting architecture combined with intelligent algorithms determines its multiple functions. Its implementation not only can manage buffer and bandwidth resources effectively, but also does not require no more than off-the-shelf hardware technology. The correlation of the extra shaping delay and the rate of the connections is revealed, and an improved fair traffic shaping algorithm, Departure Event Driven plus Completing Service Time Resorting algorithm, is presented. The proposed algorithm introduces a resorting process into Departure Event Driven Traffic Shaping Algorithm to resolve the contention of multiple cells which are all eligible for transmission in the traffic shaper. By using the resorting process based on each connection\u27s rate, better fairness and flexibility in the bandwidth assignment for connections with wide range of rates can be given. A Dual Level Leaky Bucket Traffic Shaper(DLLBTS) architecture is proposed to be implemented at the edge nodes of Differentiated Services Networks in order to facilitate the quality of service management process. The proposed architecture can guarantee not only the class-based Service Level Agreement, but also the fair resource sharing among flows belonging to the same class. A simplified DLLBTS architecture is also given, which can achieve the goals of DLLBTS while maintain a very low implementation complexity so that it can be implemented with the current VLSI technology. In summary, the shaping and scheduling algorithms in the high speed packet switches and DiffServ networks are studied, and the intelligent implementation schemes are proposed for them

    Learning algorithms for the control of routing in integrated service communication networks

    Get PDF
    There is a high degree of uncertainty regarding the nature of traffic on future integrated service networks. This uncertainty motivates the use of adaptive resource allocation policies that can take advantage of the statistical fluctuations in the traffic demands. The adaptive control mechanisms must be 'lightweight', in terms of their overheads, and scale to potentially large networks with many traffic flows. Adaptive routing is one form of adaptive resource allocation, and this thesis considers the application of Stochastic Learning Automata (SLA) for distributed, lightweight adaptive routing in future integrated service communication networks. The thesis begins with a broad critical review of the use of Artificial Intelligence (AI) techniques applied to the control of communication networks. Detailed simulation models of integrated service networks are then constructed, and learning automata based routing is compared with traditional techniques on large scale networks. Learning automata are examined for the 'Quality-of-Service' (QoS) routing problem in realistic network topologies, where flows may be routed in the network subject to multiple QoS metrics, such as bandwidth and delay. It is found that learning automata based routing gives considerable blocking probability improvements over shortest path routing, despite only using local connectivity information and a simple probabilistic updating strategy. Furthermore, automata are considered for routing in more complex environments spanning issues such as multi-rate traffic, trunk reservation, routing over multiple domains, routing in high bandwidth-delay product networks and the use of learning automata as a background learning process. Automata are also examined for routing of both 'real-time' and 'non-real-time' traffics in an integrated traffic environment, where the non-real-time traffic has access to the bandwidth 'left over' by the real-time traffic. It is found that adopting learning automata for the routing of the real-time traffic may improve the performance to both real and non-real-time traffics under certain conditions. In addition, it is found that one set of learning automata may route both traffic types satisfactorily. Automata are considered for the routing of multicast connections in receiver-oriented, dynamic environments, where receivers may join and leave the multicast sessions dynamically. Automata are shown to be able to minimise the average delay or the total cost of the resulting trees using the appropriate feedback from the environment. Automata provide a distributed solution to the dynamic multicast problem, requiring purely local connectivity information and a simple updating strategy. Finally, automata are considered for the routing of multicast connections that require QoS guarantees, again in receiver-oriented dynamic environments. It is found that the distributed application of learning automata leads to considerably lower blocking probabilities than a shortest path tree approach, due to a combination of load balancing and minimum cost behaviour

    Quality-of-service management in IP networks

    Get PDF
    Quality of Service (QoS) in Internet Protocol (IF) Networks has been the subject of active research over the past two decades. Integrated Services (IntServ) and Differentiated Services (DiffServ) QoS architectures have emerged as proposed standards for resource allocation in IF Networks. These two QoS architectures support the need for multiple traffic queuing systems to allow for resource partitioning for heterogeneous applications making use of the networks. There have been a number of specifications or proposals for the number of traffic queuing classes (Class of Service (CoS)) that will support integrated services in IF Networks, but none has provided verification in the form of analytical or empirical investigation to prove that its specification or proposal will be optimum. Despite the existence of the two standard QoS architectures and the large volume of research work that has been carried out on IF QoS, its deployment still remains elusive in the Internet. This is not unconnected with the complexities associated with some aspects of the standard QoS architectures. [Continues.

    Resource dimensioning in a mixed traffic environment

    Get PDF
    An important goal of modern data networks is to support multiple applications over a single network infrastructure. The combination of data, voice, video and conference traffic, each requiring a unique Quality of Service (QoS), makes resource dimensioning a very challenging task. To guarantee QoS by mere over-provisioning of bandwidth is not viable in the long run, as network resources are expensive. The aim of proper resource dimensioning is to provide the required QoS while making optimal use of the allocated bandwidth. Dimensioning parameters used by service providers today are based on best practice recommendations, and are not necessarily optimal. This dissertation focuses on resource dimensioning for the DiffServ network architecture. Four predefined traffic classes, i.e. Real Time (RT), Interactive Business (IB), Bulk Business (BB) and General Data (GD), needed to be dimensioned in terms of bandwidth allocation and traffic regulation. To perform this task, a study was made of the DiffServ mechanism and the QoS requirements of each class. Traffic generators were required for each class to perform simulations. Our investigations show that the dominating Transport Layer protocol for the RT class is UDP, while TCP is mostly used by the other classes. This led to a separate analysis and requirement for traffic models for UDP and TCP traffic. Analysis of real-world data shows that modern network traffic is characterized by long-range dependency, self-similarity and a very bursty nature. Our evaluation of various traffic models indicates that the Multi-fractal Wavelet Model (MWM) is best for TCP due to its ability to capture long-range dependency and self-similarity. The Markov Modulated Poisson Process (MMPP) is able to model occasional long OFF-periods and burstiness present in UDP traffic. Hence, these two models were used in simulations. A test bed was implemented to evaluate performance of the four traffic classes defined in DiffServ. Traffic was sent through the test bed, while delay and loss was measured. For single class simulations, dimensioning values were obtained while conforming to the QoS specifications. Multi-class simulations investigated the effects of statistical multiplexing on the obtained values. Simulation results for various numerical provisioning factors (PF) were obtained. These factors are used to determine the link data rate as a function of the required average bandwidth and QoS. The use of class-based differentiation for QoS showed that strict delay and loss bounds can be guaranteed, even in the presence of very high (up to 90%) bandwidth utilization. Simulation results showed small deviations from best practice recommendation PF values: A value of 4 is currently used for both RT and IB classes, while 2 is used for the BB class. This dissertation indicates that 3.89 for RT, 3.81 for IB and 2.48 for BB achieve the prescribed QoS more accurately. It was concluded that either the bandwidth distribution among classes, or quality guarantees for the BB class should be adjusted since the RT and IB classes over-performed while BB under-performed. The results contribute to the process of resource dimensioning by adding value to dimensioning parameters through simulation rather than mere intuition or educated guessing.Dissertation (MEng (Electronic Engineering))--University of Pretoria, 2007.Electrical, Electronic and Computer Engineeringunrestricte
    corecore