
I

University Library

•• Loughborough
• University

AuthorlFiling Title f.\:::c:>.3,UL.B., .. 3', .. (?).:

Class Mark T .. .
Please note that fines are charged on ALL

overdue items.

E.Q REFERENC ONLY

Quality of Service Management

in IP Networks

By

Titus Awotula

A doctoral thesis submitted in partial fulfilment of the requirements

for the award of Doctor of Philosophy of Loughborough University

September 2006

© By Titus Awotula 2006

,---._._-_._-._---,
! ,,~)l'~Jlhol'(Hlgh
~ :;\:' ':"::,;1y

- ~_ ;brary

Date

Cbss

Ace
IN~o~_______ _ ____ ~ - --------

Dedicated To The Glory of Almighty God
Through The Name of Our Lord Jesus Christ

And

In Remembrance of My Late Parents
Mr Beniah Awotula and

Mrs Luce Awotula

Abstract

Abstract

Quality of Service (QoS) in Internet Protocol (IF) Networks has been the subject of

active research over the past two decades. Integrated Services (IntServ) and

Differentiated Services (DiffServ) QoS architectures have emerged as proposed

standards for resource allocation in IF Networks. These two QoS architectures

support the need for multiple traffic queuing systems to allow for resource

partitioning for heterogeneous applications making use of the networks. There have

been a number of specifications or proposals for the number of traffic queuing

classes (Class of Service (CoS)) that will support integrated services in IF Networks,

but none has provided verification in the form of analytical or empirical investigation

to prove that its specification or proposal will be optimum.

Despite the existence of the two standard QoS architectures and the large volume of

research work that has been carried out on IF QoS, its deployment still remains

elusive in the Internet. This is not unconnected with the complexities associated with

some aspects of the standard QoS architectures.

This thesis presents as the first of two parts, work on an empirical investigation to

determine the Optimum Number of Traffic Queuing Classes (ONTQC) that will best

support multiservice in IF Networks. The results of the investigation show that a

three-queuing-classes is optimum. The result will be of great interest to the research

community and the telecommunication industries.

The second piece of work addressed by this thesis concerns the design and evaluation

of a novel IF QoS architecture referred to as Predeterministic Distributed Event

Response Resource Management (PDERRM). Simplicity, elegance and robustness

were key concepts employed in the design of PDERRM. The results from the

performance evaluation of PDERRM have been very impressive. The results of

simulation experiments carried out to compare PDERRM with best-effort service

showed that PDERRM performed far better than best-effort service on latency

(delay). Remarkably, results of experiments showed PDERRM outperformed

Resource reSerVation Protocol (RSVP) on key performance metrics such as latency

and throughput.

Aclmowledgements

Acknowledgements

I am grateful and indebted to my supervisor Professor David Parish, for his support

guidance and encouragement throughout the period of my PhD study. His support

has been instrumental to the successful completion of this research work.

I wish to express my gratitude to the committee setup in the year 2004, which serve

as support to enable me successfully complete my PhD work. The committee was

setup to ameliorate the difficulties I mighty have had in coping with my studies

during period of convalescence after a period of hospitalisation. The committee

members include - Professor Peter Smith (former Head of Dept., and now late),

Professor Goodall, Professor David Parish, Dr Brigette Vale and Mr Dan Doran. The

existence of the committee gave me a lot of encouragement and boost my morale.

I will always like to say thank you to the former Vice Chancellor of Loughborough

University, Sir Professor David Wall ace who did not ignore my initial appeal to the

University for support in pursuing my PhD program.

I will forever be very grateful and indebted to Dr Brigette Vale who has shown

sympathy right from the beginning for my desire to pursue academic goal. She

continue her support undaunted during the long period involve in my struggle to

achieve my goal. I cannot find the right words to express my gratitude to her.

Last but not the least, I wish to express my gratitude to Mrs Olanrewaju Awotula for

her financial support during the long period involved in this study, and the problems

that I had. Despite the serious problems between us, she continued to provide most of

living expenses throughout the long period of study.

ii

AAL

ACPL

AF

API

ATM

BA

BECN

BRR

BSTD

CBQ

cbqdwrr

CBQ-RR

CBR

CLP

cOPS

CoS

CPCS

CPU

CRC

CRCQBA

CR-LDP

Abbreviations & Acronyms

ATM Adaptation Layer

ATM Centric Protocol Layer

Assured Forwarding

Application, Programming Interface

Asynchronous Transfer Mode

Behaviour Aggregate

Abbreviations & Acronyms

Backward Explicit Congestion Notification

Bit-by-Bit Round Robin

Block and State Transition Diagram

Class Based Queue

Class Based Queue (with) Deficit Weighted Round Robin

Class Based Queue Round Robin

Constant Bit Rate

Cell Loss Priority

Common Open Policy Services

Class of Service

Common Part Convergence Sublayer

Centre Processing Unit

Cyclic Redundancy Checks

Classification, Resource Capacity & Quota Brokerage Agent

Constraint Routed Label Distribution Protocol

Hi

CS

CSMA/CD

DARPA

DifiServ

DS

DSBM

DSCP

DSField

DWRR

EF

FCFS

FCS

FD

FDDI

FEC

FECN

FIFO

FLM

FQ

FRBF

FSM

FSST

FTP

GFC

Abbreviations & Acronyms

Convergence Sublayer

Carrier Sense Multiple Access with Collision Detention

Defence Advanced Research Projects Agency

Differentiated Services

Differentiated Services

Designated Subnet Bandwidth Manager

Differentiated Services Codepoint

Differentiated Services Field

Deficit Weighted Round Robin

Expedited Forwarding

First-Come First-Serve

Frame Check Sequence

Forwarding Devices

Fiber Distributed Data Interface

Forwarding Equivalence Class

Forward Explicit Congestion Notification

First In First Out

Fussy Logic Management

Fair Queuing

Fission of the Rightmost Block First

Finite State Machine

Flow Session State Table

File Transfer Protocol

Generic Flow Control

iv

GPS

HSN

HTML

HTTP

ICMP

ICMP

IEEE

IETF

IGMP

IHL

IntServ

JP

IPv4

IPv6

ISSLL

ITV

LAN

LDP

LER

LID

LSP

LSR

LST

Generalised Processor Sharing

High Speed Network

Hyper Text Mark-up Language

Hyper- Text Transfer Protocol

Internet Control Message Protocol

Internet Control Message Protocol

Abbreviations & Acronyms

Institute of Electrical and Electronic Engineers

Internet Engineering Task Force

Internet Group Management Protocol

Internet Header Length

Integrated Services

Internet Protocol

JP version 4

JP version 6

Integrated Service over Specific Link Layers

International Telecommunication Union

Local Area Network

Label Distribution Protocol

Label Edge Router

Label Information Base

Label Switched Path

Label Switched Router

Label-Switching Table

v

MAC

MAN

MBS

MP3

MPEG

MPLS

MTU

NE

NNA

NNI

NS-2

NSFnet

ONTQC

OQD

OSI

PCR

PDERRM

Pdf

PDF

PDU

PHB

PSB

PSTN

PVC

Abbreviations & Acronyms

Media Access Control

Metropolitan Area Network

Maximum Burst Size

MPEG Audio Layer-3

Moving Picture Expert Group

Multi-Protocol Label Switch

Maximum Transmission Unit

Network Elements

Neural Network Algorithm

Network-to-Node Interface

Network Simulator Version 2

National Science Foundation Network

Optimum Number of Traffic Queuing Classes

Optimum Queuing Discipline

Open Systems Interconnection

Peak Cell Rate

Pre-deterministic Distributed Event Response Resource
Management
probability density function

Probability Distribution Function

Protocol Data Units

Per-Hop Behaviour

Path State Blocks

Public Switched Telephone Network

Permanent Virtual Circuit

vi

QoS

QPD

QSD

RR

RSVP

RSVP-TE

RTT

SAD

SAR

SBM

SCR

SGJW

SLA

SLS

SMTP

SNMP

SP

SQSlD

SSCS

SVC

TBP

TCA

TCP

TDM

Quality of Service

QoS Parameter Database

Queuing and Scheduling Discipline

Round Robin

Resource reSerVation Protocol

RSVP with Traffic Engineering

Round Trip Time

Simulation Actions Domain

Segmentation And Reassembly

Subnetwork Bandwidth Manager

Sustained Cell Rate

Stochastic-Gap Jumping Window

Service Level Agreement

Service Level Specification

Simple Mail Transfer Protocol

Abbreviations & Acronyms

Simple Network Management Protocol

Simple Priority

Server's Queue State Transition Diagram

Service Specific Convergence Sublayer

Switched Virtual Circuit

Token Bucket Parameter

Traffic Conditioning Agreements

Transmission Control Protocol

Time Division Multiplex

vii

Abbreviations & Acronyms

TE Traffic Engineering

ToS Type of Service

UDR Unspecified Bit Rate

UDP User Datagram Protocol

UNI User-to-Network Interface

UPRT User Priority Regeneration Table

VBR Variable Bit Rate

VCI Virtual Circuit Identifier

VoIP Voice over Internet Protocol

VPI Virtual Path Identifier

VPN Virtual Private Networks

VQS Virtual Queuing System

WAN Wide Area Network

WFQ Weighted Fair Queuing

WG Working Group

WRR Weighted Round Robin

viii

Contents

Contents

Abstract i

Acknowledgements 11

Abbreviations & Acronyms 1Il

Contents ix

CHAPTER 1 1

Introduction 1

1.1 The Internet 1

1.2 Concept of Quality of Service (QoS) in the Internet 2

1.2.1 The Meaning of Quality of Service 4

1.2.2 Quality of Service (QoS) Performance Metrics 5

1.2.3 Basic Network Resource Elements that determine QoS Parameters 6

1.2.4 Desirability ofConvergence--the IF QoS beauty 7

1.3 Overview ofInternet Technologies 9

1.3.1 Technological Nature of the Internet 10

1.3.2 Internet Protocol and Communication Mechanism 12

1.3 .2.1 The Application Layer 13

1.3.2.2 The Transport Layer 13

1.3.2.2.1 User Datagram Protocol (UDP) 13

1.3.2.2.2 Transmission Control Protocol (TCP) 13

1.3.2.3 The Network Layer 14

1.3.2.4 The Link Layer 16

1.4 QoS at each Protocol Layer in the Internet 17

1.4.1 QoS in the Application Layer 17

1.4.2 QoS in the Transport Layer 18

1.4.3 QoS in the Network Layer 18

1.4.4 QoS in the Link Layer 19

1.5 Initial Effort on Integrated Service Network (ATM technology) 20

1.5.1 ATM Adaptation Layer (AAL) 21

ix

1.5.1.1 The Convergence Sublayer (CS)

1.5.1.2 The Segmentation and Reassembly (SAR) Sublayer

1.5.2 ATM (Transfer Mode) Layer

1.5.3 ATM Cell Structural Types

1.5.4 ATM Physical layer

1.5.5 QoS Mechanism and Service Classes in ATM

1.6 QoS Provisioning beyond Best-Effort Service Paradigm

in IF Networks

1.6.1 Contributions from Standard Organisations

1.6.2 Contribution from Corporate Organisations and Equipment

Vendors

1.7 Research Problems and Objective of the Research Work

1. 7.1 Research Problems

1.7.1.1 Integrated Services (IntServ) Architecture

1. 7 .1.2 Differentiated Services (DiffServ) Architecture

1.7.1.3 IEEE 802. ID and 802.lp Standards

1.7.2 Objective of the Research Work

1.8 Organisation of Remaining Part of the Thesis

Summary

CHAPTER 2

IP QoS Architectures beyond Best Effort Service

2.1 Integrated Services Model in the Internet

2.1.1 Categories of Applications

2.1.1.1 Real-time Intolerant Applications

2.1.1.2 Real-time Tolerant Applications

2.1.1.3 Non Real-time (Elastic) Applications

2.1.2 Integrated Services Architecture

2.1.2.1 General QoS Parameters Specification

2.1.2.2 Reference Service Model

2.1.2.2.1 Control Load Service

2.1.2.2.2 Guaranteed service

2.1.2.3 Resource reSerVation Protocol (RSVP)

x

Contents

22

22

22

23

25

25

27

27

27

28

29

29

29

30

31

31

32

33

35

35

35

36

37

37

38

38

38

39

40

41

41

2.1.2.3.1 Basic Features

2.1.2.3.2 RSVP Messages

2.1.2.3.3 RSVP Basic Operation

2.1.2.3.4 Reservation Styles

2.1.2.3.5 RSVP ScaIability Problem

2.1.2.4 IntServ Reference Implementation Framework

2.2 Integrated Services over Specific Link Layers

2.2.1 RSVP over ATM

2.2.2 Subnetwork Bandwidth Manager (SBM)

2.3 Differentiated Services Architecture

2.3.1 DiflServ Architecture Overview

2.3.2 DiflServ Architecture

2.3.2.1 Traffic Classification

2.3.2.2 Per-Hop Behaviour (PHB)

2.3.2.3 Traffic Conditioner

2.3.3 Terminology

2.3.4 DS Field

2.3.5 DiflServ Service Models

2.3.5.1 Expedited Forwarding PHB

2.3.5.2 AF PHB Group

2.4 IEEE 802.10 MAC Bridges Support for User's Priority

2.4.1 Bridge Operation on the User's Priority

2.5 Multi-Protocol Label Switching (MPLS)

2.5.1 MPLS Architecture Overview

2.5.2 Data Forwarding Process

2.5.3 MPLS with QoS

2.5.4 MPLS with Traffic Engineering

Summary

CHAPTER 3

Generic Components of QoS Architectures

3.1 QoS Specification Template

3.2 QoS Signalling Mechanism

xi

Contents

42

42

43

45

46

46

47

48

48

50

50

51

51

52

53

54

54

55

56

56

57

58

59

60

61

62

63

63

65

65

65

65

Contents

3.3 Admission Control 66

3.4 Traffic Classification 66

3.5 Traffic Policing and Traffic Conditioner 67

3.5.1 Token Bucket Scheme-Tool for Policing 68

3.5.2 Leaky Bucket Scheme-Tool for Shaping 69

3.6 Queuing and Scheduling Disciplines 70

3.7 Types of Queuing and Scheduling Disciplines 71

3.7.1 Basic Requirements of Queuing-Scheduling Discipline 71

3.7.1.1 Protection among Flows 71

3.7.1.3 Support for Real-time and non-Real-time Traffics 72

3.7.1.4 Implementation Simplicity and Efficiency 72

3.7.2 First-In First-Out (FIFO) Scheduling 72

3.7.3 Priority Scheduling 73

3.7.4 Round-Robin Scheduling 74

3.7.5 Weighted Round-Robin Scheduling 76

3.7.6 Deficit Round-Robin Scheduling 77

3.7.7 Max-Min Fair Sharing 79

3.7.8 Generalised Processor Sharing 80

3.7.9 Fair Queuing and Weighted Fair Queuing 81

Summary 84

CHAPTER 4 85

Empirical Investigation to Determine the Optimum Number of

Traffic Queuing Classes for Multiservice IP Networks 85

4.1 Motivation for the Work 86

4.1.1 IEEE 802.D MAC Bridges Specifications on Traffic Queueing Classes 87

4.1.2 IETF IntServ and DiffServ Service Classes 88

4.1.3 Proposals from Organizations on Applications Service Classes 89

4.1.4 Merging of Motivation Points 89

4.2 Factors that influence the choice of Tools for the Investigation 90

4.2.1 The Choice of Simulation Modeling instead of Analytical Modeling 90

4.2.2 Software Packages used for the Simulation 92

4.2.3 The Queuing Discipline employed for the Investigation 93

xii

Contents

4.2.3.1 Reason for chosen CBQ-RR and its Variant for the Investigation 93

4.2.3.2 Reasons Why WFQ Queuing Discipline is not chosen for the

Experiment 93

4.3 Notation of Parameters of the Experiment 94

4.3.1 Notation for Quantities 96

4.3.2 Queue Quantities Notation in Summary 96

4.4 Classification of Traffic used to drive the Experiment 97

4.4.1 Traffic Types 97

4.4.2 Traffic Class Types Mapping into Queues 99

Summary 101

CHAPTER 5 102

Simulation Methodology to Determine ONTQC 102

5.1 Procedure in Brief 102

5.1.1 The Generic Topology 104

5.1.2 Application Traffic used for Simulation 105

5.1.3 Statistics for the Performance Metric 105

5.2 Simulation Methodology 105

5.2.1 Probability Systems 107

5.2.2 Definitions 108

5.2.3 Use ofMarkovian Chain to Describe Simulation Methodology 110

5.3 Simulation Work 113

5.3.1 Simulation Segment_one 113

5.3.2 Simulation Segment _two 114

5.3.3 Simulation Segment_three 114

5.3.4 Simulation Input 114

5.3.5 Decomposition of Traffic Queue Classes 115

5.3.6 Queue Disciplines Employed for Simulation 118

5.3.6.1 Use of Round Robin (RR) Scheduling 118

5.3.6.2 Use of Weighted Round Robin (WRR) Scheduling 118

5.3.6.3 Use of Weighted Deficit Round Robin (WDRR) Scheduling 118

5.4 Simulation Work in a Typical Simulation Action Domain (SAD) 119

5.4.1 Step_l ofa Typical SAD 119

xiii

Contents

5.4.2 Step_2 ofa Typical SAD 121

5.4.3 Step_3 ofa Typical SAD 122

5.4.4 Step _4 of a Typical SAD 123

5.4.5 Step_Sofa Typical SAD 124

5.4.6 Step_6 ofa Typical SAD 126

5.4.7 Step_7 ofa Typical SAD 127

5.4.8 Step_8 ofa Typical SAD 128

Sununruy 130

CHAPTER 6 131

Traffic Parameters and Simulation Results for ONTQC 131

6.1 Traffic Parameters in Summruy 131

6.2 Simulation Results 133

6.2.1 Results of One-Queue Compared with Two-Queues 134

6.2.2 Typical Results for Traffic Class 1 135

6.2.3 Typical Results for Traffic Class 2 136

6.2.4 Typical Results for Traffic Class 3 13 7

6.2.5 Typical Results for Traffic Class 4 138

6.2.6 Typical Results for Traffic Class 5 139

6.2.7 Typical Results for Traffic Class 6 140

6.2.8 Typical Results for Traffic Class 7 141

6.2.9 Typical Results for Traffic Class 8 142

6.2.10 Global End-to-End Delay for the results of each Queue 143

System that have been presented 143

6.2.11 Summruy of Results for an SAD with Internet Protocols 145

6.2.12 Typical Global Throughput Results for All Traffic Classes 146

Summruy 147

CHAPTER 7 149

Analysis of ResuIts from the Simulation on ONTQC 149

7.1 Analysis of Results for Mono Queue System 150

7.2 Analyses of Results for Multiple Queue Systems 152

7.2.1 Analysis of Result for Two-Queue System 154

xiv

Contents

7.2.2 Analysis of Results for the Three-Queue System 156

7.2.3 Analysis of Results for the Four-Queue System 158

7.2.4 Analysis of Results for the Five-Queue System 159

7.2.5 Analysis of Results for the Six-Queue System 161

7.2.6 Analysis of Results for the Seven-Queue System 162

7.2.7 Analysis of Results forthe Eight-Queue System 164

7.3 Combined Optimisation Objective 166

Summary 167

CHAPTER 8 168

Predeterministic Distributed Event Response Resource

Management (PDERRM)-- a novel IP QoS Architecture 168

8.1 Motivation for PDERRM Project 168

8.2 PDERRM Architecture and Its Components 170

8.2.1 Principle of Operation 170

8.2.2 Features of the Architecture 172

8.2.2.1 Hybrid Functionality 172

8.2.2.2 Adaptability Functions in Resource Allocation 173

8.2.2.3 Mutational or Flexible Configuration 173

8.2.2.4 Ability to Shed Processing Functions 174

8.2.2.5 Adaptive Resource Brokerage Policies 174

8.2.2.6 Implicit QoS Signalling 174

8.2.3 PDERRM Architecture 174

8.2.4 Components Description 178

8.2.4.1 Traffic Classification Resource Capacity and Quota Brokerage 178

Agent 178

8.2.4.2 Traffic Load and Session Measurement Agent 178

8.2.4.2.1 Flow Session Measurement and Control with FSST 180

8.2.4.2.2 Flow Session Measurement and Control without FSST 181

8.2.4.3 Traffic Load-limit Signalling Agent 181

8.2.4.4 QoS Parameter Database (QPD) 182

8.2.4.5 The QoS Manager 183

8.2.4.6 Admission Control Module 184

xv

Contents

8.2.4.7 Traffic Shaper 185

8.3.4.8 The Queuing and Scheduling Discipline 185

8.3 PDERRM Host Requirements 185

8.4 PDERRM Aware Router or Forwarding Device 187

Summary 189

CHAPTER 9 190

Performance Evaluation ofPDERRM QoS Architecture 190

9.1 The Procedure and Method for PDERRM Performance Evaluation 190

9.1.1 The Generic Topology (the Basic Network) 191

9.1.2 The use ofa Basic Network as Tool for Comparison of two or

more Resource Allocation Mechanisms

9.2 Simulation Action Domain (SAD) with

PDERRM First Basic Functionality (Scheme A)

9.2.1 PDERRM-Aware Host Process

9.2.2 PDERRM-Aware Router Process

9.2.3 Simulation Experiment

9.2.4 Results and Comments

9.2.5 Throughput Result

9.3 SAD with PDERRM Flow Source Control and

Moratorium on Admission Control in the Network (Scheme B)

9.3.1 Simulation Experiment

9.3.2 Results and Comments

9.4 SAD with no Standard Traffic Rate Control in the Host PDERRM

194

195

196

197

199

200

200

201

202

204

Admission Control employed at Edges of the Network (Scheme C) 204

9.4.1 Simulation Experiment 205

9.5 SAD in which PDERRM Performance was compared

with that ofIntServ-RSVP model (Scheme D) 207

9.5.1 Brief Summary of Operation of RSVP Model 207

9.5.2 Comparison ofPDERRM Operation with RSVP 209

9.5.4 Results and Comments 212

9.6 Simulation Action Domain (SAD) In Which

PDERRMWas Test For Scalability (Scheme E) 214

xvi

Contents

9.6.1 Simulation Experiment 215

9.6.2 Results and Comments 215

Summary 216

CHAPTER 10 217

Conclusion and Discussion on Future Work 217

10.1 Summary ofInternet TecImology in Relation to IP QoS 217

10.2 Summary and Conclusion on ONTQC work 218

10.3 Summary and Conclusion on the Work ofPDERRM 221

10.3.1 Problem Formulation 221

10.3.2 Brief Overview ofPDERRM Design 221

10.3.3 Brief Overview ofPDERRM Performance Evaluation 223

10.4 Future Research Work on ONTQC 225

10.4.2 Optimum Queuing Discipline (OQD) for IP Convergence 226

10.5 Future Work on PDERRM 227

10.5.1 Best method to determine resource utilisation for each of the

traffic classes 227

10.5.2 PDERRM feature for per-flow resource allocation 228

10.5.3 PDERRM interworking with other standard IP QoS

architectures 228

10.5.4 PDERRM development to Internet protocol application level 228

Summary 229

References 230

Bibliography 246

APPENDIX A

Brief Overview of Network Simulator 252

APPENDIXB

Sample Code Used in NS 260

xvii

APPENDIXC

Overview of OPNET Software Modelling Package

APPENDIXD

OPNET Proto-C Sample Code for Traffic Generator and

Sink in a Host

APPENDIXE

Sample Code for Traffic Processor and Regulator in a

PDERRM-Host

APPENDIXF

Sample Code for Traffic Forwarding Process in a

PDERRM Router

xviii

Contents

269

284

303

318

Introduction

CHAPTERl

Introduction

The notion "Quality of Service" (QoS) viewed globally is a key subject for products

and services. It is of great interest to both service providers and end-users alike. A

QoS global view can conceptually be stated as "the degree or measure of satisfaction

derived from services."

The concern of this thesis is to examine and discuss a complete set of technologies

that have been developed to enable multi service QoS ~n the Internet such that it will

become a robust global multiservice network. In this introductory chapter, we will

discuss the meaning of QoS as it relates to the Internet. We will continue the

discussion by justifying why we need a QoS level better and higher in scope than that

presently obtainable from the Internet. A shallow dissection and brief look into

Internet technologies will follow this. The discussion on Internet technologies will

include legacy QoS at each Internet protocol layer whose combinatorial package

sum-up to produce a QoS effect known as the best-effort paradigm. We will also

discuss Asynchronous Transfer Mode (ATM), a technology designed to provide

multiservice QoS in a network and highlight the argument for and against it as global

QoS technology for the Internet. In the same light, we will examine the QoS

architectures that have so far been developed for the Internet. We will round up this

chapter with a brief presentation of some research problems and the research

objective for the work we undertake and then introduce other chapters of this thesis.

1.1 The Internet

The Internet has progressively continued to have a profound impact on the way we

live our everyday life, and has become an indispensable part of the way we work and

conduct business [Peu99] [WanOl]. It has been ubiquitous and a powerful

invaluable resource in academia, industry and the economic life of most nations. Its

popularity and tremendous growth over the past few years has enlisted keen research

Introduction

interest in both academia and the industry. The flexibility and the ability of the

Internet Protocol (IP) to run across virtually any network transmission media, and

communicate between virtually any system platform, has encouraged the emergence

of new applications such as real-time multimedia applications to use the service of

the IP Networks [Mae03] [Sei03].

Researchers in academia and industry are trying to exploit the flexibility that led to

lP's phenomenal success in bringing convergence of other networks-telephone,

radio, and television-to the Internet. The new caption now will be "Everything over

lP' as against the earlier one that says "IP over everything". The exponentially

increasing traffic and the inability of the Internet infrastructure to cope with demands

has progressively shown the weaknesses in the IP Networks [Chen et al.03]. The

situation has been that, service is not denied but gracefully degraded. This is

aggravated by the fact that the new breed of applications need a different service

model that differs from the service model of traditional Internet traffic. The

traditional Internet traffic can tolerate latency (delay) and jitter (delay variations) to

some degree. On the other hand, the new breed of applications such as IP telephony

or video streaming cannot tolerate latency and jitter at those levels acceptable to

traditional Internet applications [Car et a1.02]. The intolerance of these time

sensitive applications to latency and jitter results in degradation of the received

signal, when run over the IP Networks. Degradation or corruption of signals through

a network is a situation that nobody likes. Network designers and network users alike

are concerned about the quality of service output from the network. The Quality of

Service (QoS) issue for the Internet has been a subject of great importance to global

telecommunication research communities [Sol et aI.04]. Judging from the impact

that the Internet has had in our everyday life, the subject of QoS Control is of great

importance to everybody.

1.2 Concept of Quality of Service (QoS) in the Internet

The Internet provides network service to diverse applications with diverse network

performance requirements. It has made possible new applications and ways of

communications we never thought possible. Email, e-commerce, digital video

streaming, video conferencing, distant learning and Internet telephony are only the

2

Introduction

beginning ofa profound revolution [WanOl, p.xi). Whole ranges of new applications

have been developed. Their traffic contests for network resources in rivalry with

traditional Internet application traffic. QoS is the network engine that could drive the

convergence of these applications onto Internet Protocol (IP) Networks. As

mentioned in Section 1.1 above, the new breed of applications such as voice over IP

(VoIP) and video conferencing have network characteristics that are at variance to

the network characteristics of legacy applications such as email, file transfer and

telnet. The Internet which operates as a datagram network where each packet is

transported and delivered individually and independently through the network makes

no guarantee for either timely delivery of packets or that the packet will ever be

delivered at all. Random congestion could build up in the network that could cause

high latency, jitter and packet drop. "The widespread use of World Wide Web

(WWW) has caused Internet access to become ubiquitous. However, the

exponentially increasing traffic and the inability of the Internet infrastructure to cope

with the demands have led to a phenomenon known as the "World Wide Wait"

[DurYar99, p.3). IP Networks make all possible effort to deliver their application

traffic to their destination, but no assurances are offered. This is known as a best

effort service. The best-effort service paradigm has thrived well with legacy

applications, which could tolerate some inconsistency in network services, but the

new breed of applications that are sensitive to timeliness are intolerant of the

inconsistency in network services. The new breed of applications, which are mostly

real-time applications require more predictable and guaranteed service than offered

presently by the Internet. Since the diverse applications have different network

characteristics, for the Internet to become a truly multiservice network, it must offer

differentiated services to meet the particular need of each of the heterogeneous

applications. It must offer predictable, consistent and guaranteed service for a whole

range of applications needing such service. These issues which border on poor

performance of real-time applications in the network and the general degradation of

network performance during peak periods, concern the notion known as Quality of

Service, which needs to be addressed.

3

Introduction

1.2.1 The Meaning of Quality of Service

The definition given to Quality of Service (QoS) In a multiservice network

environment can be subjective in view of its multifaceted nature [SchWin04]. In

line with this, Geoff Huston refers to QoS as an elusive elephant, in which he

narrated the three blind men story: Each of the three blind men in a journey happen

upon an elephant and touched different parts of the elephant's body and concluded

that they have come across different objects. Huston concluded that different

people interpret QoS variably because numerous and in some cases ambiguous

QoS problems exist [HusOO, p.6]. Thus different people or groups use different

shades of syntax to define the term "Quality of Service" in a network, but the

connotations, though from different perspectives are the same. ITU-T

recommendation E.800 defines QoS as "the collective effect of service

performance which determines the degree of satisfaction of a user of the service"

[HuiIgo03]. QoS refers to both the performance of a network relative to the

applications needs and the set of technologies that enable the network to make

performance assurances. In the simplest form, QoS means providing a predictable,

consistent and guaranteed data delivery service that satisfies the needs of the end

user. Concisely, David Durham [DurYav99, p.3] defines QoS as the performance

seen by the recipient (end-user) of an Internet application placed across the

network. The performance measure can be taken in a variety of ways, depending on

the type of application. For example, the time taken to download a web page, the

fidelity of an audio signal placed across the Internet, or the video quality of a real

time video presentation, to mention a few. Measurement techniques for QoS

include subjective quality assessment-the mean opinion score (MOS) and

objective quality assessment-use of physical quality parameters [Tak et aI.04].

QoS is the general ability of the network to differentiate between communication

traffic in order to provide different levels of service. QoS functions deal with

management and control of network resources in a manner that satisfies the various

needs of the diverse applications. The Internet presently treats all application traffic

equally, there is no service differentiation.

In considering a QoS real-life analogy, it will be seen that it is a rather an obvious

concept. An example of a real life situation on QoS service differentiation is the

4

Introduction

postal delivery service. Customers usually have a choice of the kind of QoS they

want. Letters mailed via first class mail receive a different QoS than the ones

mailed via second class mail. In order to get the best out of any type of resource,

prudent management is sine qua non. Take a look at the road networks in towns

and cities, if traffic lights were not put in place to control traffic on these networks

of roads, there would be terrible traffic jams, in other words, great congestion, and

the road would become a nuisance to its users.

1.2.2 Quality of Service (QoS) Performance Metrics

QoS performance metrics refers to a set of quantifiable variables or parameters that

could be controlled in a network in order to meet the QoS requirements of

applications placed across the network. They are a set of quantities that network

elements or objects would control in order for networks to make QoS guarantees to

applications in terms of providing a certain contracted level of service throughout

the application session [Sha et a1.02]. The following QoS parameters constitute the

main component objects of a Service Level Agreement (SLA) I Service Level

Specification (SLS):

• Latency

• Jitter

• Packet Loss Rate

• Packet Error Rate

• Packet Rate

• Throughput

Latency: The delay in seconds encountered by a packet as it is being transmitted

from source to destination (end-to-end). This quantity is the cumulative addition of

processing delay or queuing delay, transmission delay and propagation delay.

Jitter: This refers to variation in latency, which is as a result of randomness in

traffic intensity profile in the network. In other words variances in end-to-end

packet delay across the network.

Packet Loss Rate: The percentage of packets dropped or lost during end-to-end

transmission of application's sessions across the network.

Packet Error Rate: The percentage of packets received in error.

5

Introduction

Packet Rate: Derived from the desired bit rate (bps) or bandwidth the application

would use in order that the network could meet the application QoS requirement.

Throughput: The total amount of packets that the network can move successfully

end-to-end in a given period of time. This performance measure quantifies the

effectiveness or efficiency of the network.

Added to the above, Heidelberg [Hei97] listed other parameters affecting QoS as

follows:

• User controlled parameter settings of the application software.

• Characteristic of the application which includes coding, compression, etc.

• Hardware of the end system.

• Geographical separation of the end systems.

1.2.3 Basic Network Resource Elements that determine QoS
Parameters

Fundamental network resources elements that control and determine the value of

QoS parameters in a network as listed by Robert Malaney [MaIRog] are:

• Link capacity -the bandwidth.

• Processing speed and power of network nodes---routers, bridges and

switches.

• Set of QoS protocols and the architectures that are put in place to handle

traffic management and control.

Link capacity is a dominant network resource component that could greatly

enhance QoS offerings of a network. Without adequate bandwidth QoS

technologies would not be effective. The processing speed and power of network

nodes have parallel functions to bandwidth. They together constitute capacity

provisioning for the network. The network node's processing speed and power

must be made to synchronise with adequate link capacity for a seamless pipeline

offering.

Adequate capacity provisioning alone can't adequately address the all round QoS

need of the network [Car et aI.02] [Gio03] [Rod et aI.03l Sporadic and random

high intensity congestion (stochastic functions) could occur and jeopardise the

QoS needs of some applications even though the network is adequately

provisioned. This is where QoS technologies come in. QoS technologies are needed

6

Introduction

to control and manage the network resources in an equitable manner for all traffic

contending for network resources such that, their QoS needs would be met even if

random high congestion occurs.

1.2.4 Desirability of Convergence-the IP QoS beauty

The Internet's phenomenal success and its flexibility make it a good candidate for a

robust global multiservice network. Convergence of other telecommunication

services onto Internet Protocol (IP) Networks is an issue of using one big stone to

kill many birds in the Internet. This means turning the Internet into an integrated

service network that could effectively support a variety of application's data

transmission services, carrying real-time voice, video, and interactive data along

with non real-time bulk data transfer. Simply it means, a single cable or medium

could integrate or provide a wide range of services over a common underlying

network technology. This is the beauty of convergence. The beauty or desirability

of convergence is shown in Figure 1.1.

Internet

Single cable deliver multiple services

Home
Home

Figure 1.1 Integrated Services Network Showing Beauty of Convergence

Proliferation in development of new diverse applications for use in the Internet has

been growing at exponential rates within the last decade. Time sensitive

applications such as Voice over IP (VoIP), Internet video conferencing and

7

Introduction

distance learning are examples of emergent applications converging on the JP

Networks. Service providers, corporate organisations and enterprises used to build

and support separate networks for voice, video, mission critical and non-mission

critical applications traffic. There is a growing trend in recent time in which

organisations are now embracing the convergence of all these networks into a

single packet based IP Network [KIi et aI.02] [Mae03] [Veg03, p.5] [LinDeV99]

[Yan et a1.04]. Convergence has a great appeal to both service providers and end

users in view of its numerous advantages.

The obvious advantages for a service provider arise from building, running and

maintaining a single network rather than building, running, and maintaining three

or more networks. There will be great reduction in both human and material cost in

all work phases of the network. This could naturally lead to enhancement in

network management and control. Also convergence will guarantee better network

efficiency. Since some application traffic is time-critical while others are not, there

is always a potential application for any unused bandwidth resources. For example

the silent period of time-sensitive applications such as voice which has been a

wasted slot in synchronous Time Division Multiplex (TDM) transmission

technology could be put to use by inserting a non time-sensitive bulk data packet

into the silent slot whenever it becomes available. This will help in maximising the

use of bandwidth. Network resources can be fully utilised leaving nothing to waste.

Multiservice QoS also will enable interesting applications that can only run over an

integrated network. Imagine having a video teleconferencing with several co

workers in which participants can concurrently edit an electronic document. This

gives an insight into the power of an integrated network, which could allow for

powerful collaboration capabilities.

The advantages of convergence for end users include lower cost and the beauty of

having a single set of integrated devices that could deliver all telecommunication

services. A single interface to a network providing a variety of services offers an

attraction and convenience. For example having the Internet and an Internet phone

could allow a person to search online yellow pages for businesses or persons and

then immediately call the individual. With enough bandwidth, home users could

order and download movies directly to their TV s. The possibilities are only limited

Introduction

by the performance capabilities of the network infrastructure, [DurYav99, p.19].

End users will be able to bundle or select the services they need. Summarising the

advantages of convergence as highlighted above, Srinivas Vegesna [Veg03, p.6]

listed JP QoS benefits as follows:

• It enables networks to support the services for existing applications and

emerging multimedia applications.

• It gives the network operators capability to control network resources and

their usage.

• It provides service guarantees and service/traffic differentiation across the

networks. It provides capability to converge voice, video and data traffic to be

carried on a single JP Network.

• It enables service providers to offer premium services along with the present

best-effort Class of Service (CoS). A service provider could rate its premium

service to customers as Platinum, Gold and Silver for example and configure

the network to differentiate traffic from the various classes accordingly.

• It enables application-aware networking in which network service its packet

based on the application information contained within the packet header.

• It plays an essential role in new network offerings such as Virtual Private

Networks (VPNs)

1.3 Overview of Internet Technologies

Historically the Internet was conceived as a military and academic project, and was

born to serve the U.S. military as a data network to link its computers across multiple

bases and institutions around the world [WanOl]. Since its inception it has been

essentially designed to transport digital data in a popular message unit called packets.

The packet switched network was designed to be highly fault-tolerant and can

transport data to a varied number of destinations perhaps even under the

Armageddon-like conditions of a third world war-doom day situations where most

networked nodes and communication links would have been blasted and destroyed

[DurhYav99, p.6]. The military data network was under the Defence Advanced

Research Projects Agency (DARPA). Its power and flexibility led to the creation of

the National Science Foundation Network (NSFnet) which gave birth to today's

Internet.

9

Introduction

Standard Internet Protocol (IP) Networks provide best-effort data delivery by default.

The term "best-effort" as earlier explained in Section 1.2 is used to describe the

functionality ofIP Networks in doing a good job of transporting data from its source

to its destination, but with no commitment or guarantee. Best-effort service in IP

Networks allows complexity to stay in the end-hosts, while the core network

(network of backbone routers), is made relatively simple. This results in a simple

network that scales well, as is evident from the Internet's phenomenal growth. The

Internet has undergone great evolution since its inception. As a result of the potential

power it wields in the global telecommunication industry, its processes of

metamorphosis have been laden with intense research activities in the research

community of the telecommunication sector all round the globe. This cumulated in

its flexibility being exploited in trying to maximise the advantages that could be

derived from its ductile adaptability to various telecommunication needs. As earlier

mentioned, a wide range of applications has been developed to use the network

services of the Internet. The new emergent applications could not thrive well because

the Internet was not designed originally to support their specific network

characteristic needs. Thus the Internet service model necessarily must be extended

[IntServ94] [RFC1633].

1.3.1 Technological Nature ofthe Internet

The Internet is an acronym for inter-network. It is a packet switched network in

which data are transmitted in discrete, self-addressed datagrams of information

known as packets. The packet generally contains the header and the payload fields.

The payload is the bulk user data, and the header consists of sets of information

such as, source and destination addresses and other management and control

information that would help in safely transporting the packet from its source to its

destination. The concept of a packet switching network is similar to the postal

system, where a letter or a parcel is put in an envelope that bears the source and

destination address before being posted. At the Post Office, sorting, routing and

transportation take place, before the letter finally gets to its destination. In this case

writing the letter can be seen as one layer of the process, addressing the envelope,

posting, sorting, routing and transporting as each separate layer process of the

postal system. In an almost similar analogy the Internet, which operates on the

10

Introduction

Transmission Control ProtocollIntemet Protocol (TCPIIP) suite, operates as layered

protocol systems [ComOl] [SteOO] [Tan96]. The layer model consists of (from the

top) application layer, the transport layer, the network layer and the link layer as

shown in Figurel.2.

OSI Reference Model TCP I JP Model

Application

Layer
'~'., .''''V ",'c-_'_ .,. ,,"!i ,_,,,c ,·

Transport Layer
.

Network Layer

Link Layer

.

"
-","

"';

}

FTP, telnet,
SMTP,HTTP

} UDP,TCP

} JP

} Ethernet,
Token Ring, etc.

Figure 1.2 Protocol layer structure illustrated with OSI Reference Model and

TCPIIP Standard Model.

The link layer in the Internet model could be any of the Local Area Network

(LAN) technologies such as Ethernet or Token Ring. The Figure 1.2 shows the

layer model of two important computer networks, the OSI (Open System

Interconnection) reference layer model and the TCPIIP standard layer model. Most

networks are structured as layered models in order to reduce design complexity and

allow for modularization or segmentation of network functionality. The standard

protocol layer models are a set of universally accepted communication protocols

that allows otherwise incompatible network technologies to communicate. This is

simply possible because unrelated technologies could provide a mapping to the

standard. The standard acts as a common protocol language allowing diverse

network technologies to communicate with each other. Thus the Internet which is

made-up of a conglomeration of diverse network technologies enables computers

in different remote geographical locations to communicate effectively together

11

Introduction

even though they may be operating on different networked technologies. Starting

from the application layer, each layer depends on the one directly below it for its

network services. The message is encapsulated (i.e. put into envelopes) from top

to-bottom and then transmitted end-to-end (sender-host-to-destination-host), en

route via the routers. At the destination-host, the data climbs up the protocol ladder

from bottom-to-top shelving its envelope as it climbs up before it finally become

useful data at the top application layer.

Technical nomenclature in telecommunication differentiates between the word

internet (note the lowercase i) and Internet as will be seen shortly. The internet is

a conglomeration of interconnected autonomous network systems [SteOOJ. The

autonomous network systems may be a single or sets of Local Area Network

(LAN) interconnected to form a Metropolitan Area Network (MAN) and this in

turn interconnected to form a Wide Area Network (WAN). Regional WAN can be

interconnected to form global WAN that may be referred to here as the internet

[SteOO, p.16]. The LANs and the MANs in an interne! are made up of diverse

network technologies. The Routers, Bridges and Gateways that are used for the

interconnections generally do the necessary translation in both hardware and

software between the heterogeneous network technologies. The Internet is a

specific worldwide internet operating on the TCPIIP protocol suite. This is

generally referred to as an IP Network.

1.3.2 Internet Protocol and Communication Mechanism

The goal of a standard protocol suite is to efficiently achieve inter-networking by

providing bridging functions between a diverse set of computer network

technologies. The core protocols of the TCPIIP suite are the Internet Protocol

versions 4 and 6 (IPv4 and IPv6), the User Datagram Protocol (UDP) and the

Transmission Control Protocol (TCP). The Internet communication mechanism is

built on the four protocol-layers, the application layer, the transport layer, the

network layer, and the link layer [Tan96]. We will now briefly summarise each of

these layers in relation to protocols built into them and the part they play in the

mechanism of data communication in the Internet.

12

Introduction

1.3.2.1 The Application Layer

This layer houses the environment where applications are used. The applications

may be email (SMTP), file transfers (FTP), web browsers (HTTP), video or audio

applications or whatever the application programmer has invented or will invent.

Within this layer, each of these applications has it's own specific built-in protocol

or mechanism for effective network communication. Included in the mechanism

is the Application Programming Interface (API) which provides an interface

through which the application can communicate with the network [RFC 1122].

1.3.2.2 The Transport Layer

In the TCPIIP suite, the transport layer consists of two types of transport protocol,

which are the User Datagram Protocol (UDP) and the Transmission Control

Protocol (TCP). They provide services for the application layer. Each of these

transport protocols can encapsulate or de-encapsulate application traffic and

provides specific services such as multiplex and de-multiplex functions for

applications. Factors that would influence the choice of either UDP or TCP will

depend on the application traffic characteristics and Quality of Service (QoS)

need in the network.

1.3.2.2.1 User Datagram Protocol (UDP)

UDP is a simple transport layer protocol [RFC 768]. It is useful for transporting

data over the Internet when timely delivery out-weighs other considerations.

The UDP datagram consists of a simple header, followed by the bulk data (i.e.

the information) to be transported. The header consists of source and

destination port fields for identifying applications at the end stations, a length

field to determine the total length of a datagram, and a checksum field to detect

corruption of the datagram. UDP is a connectionless transport protocol. Unlike

its counterpart the TCP, it does not provide mechanisms for the reliable

delivery of the datagram it transports. There are no flow control or

retransmission facilities.

1.3.2.2.2 Transmission Control Protocol (TCP)

TCP is a more complex transport protocol than UDP. It provides a number of

sophisticated connection-oriented data communication services, which include

13

Introduction

end-to-end virtual connectivity, reliable transport, and flow control over the

Internet [RFC 793]. The TCP packet has an advanced header format with a lot

of built in traffic management and control functions. The header consists of

source and destination port addresses, a sequence number, acknowledgement

number, data offset value, six control bit value, window field, checksum field,

urgent pointer field and an option field.

1.3.2.3 The Network Layer

The Internet Protocol (JP) is the communication protocol that operates on the

network layer of the TCP/IP suite [RFC 791]. JP would provide services

(encapsulation and forwarding to link layer) for either UDP or TCP packets

coming from transport layer and as well provide services (de-encapsulation and

forwarding to transport layer) for traffic from the link layer. JP is the glue that

joins all the diverse and disparate network technologies together [Fod et a1.03]. It

is the network amalgamator whose function includes mediation, interpretation

and translation in hardware and software for the diverse network technologies

employed for communication within the Internet. The protocol's header consists

of information necessary to effectively transport the data portion end-to-end

across the Internet. This includes the Internet source and destination addresses as

well as control and management fields. In total, the protocol header is a minimum

of20 bytes long in JPv4. The header fiefas and functions are as follows:

• Protocol version number, field is used to identify the version of the JP header

format. It would be either 1Pv4 or 1Pv6.

• Internet header length (JHL) field represents the length of the header as a

number of32 bit chunks. This value is used to determine the offset to the data

portion of the JP packet.

• The Type of service field is used to determine precedence of the packet over

others.

• The Total length field is the overall size of the packet measured in bytes.

14

Introduction

• The next three fields, which include fragment identification, flags and

fragment offset, are used for packet fragmentation management.

• The Time to live number field is used to control the lifetime of the packet in

the network.

• The Protocol field identifies the transport layer protocol encapsulated in the

data portion of the packet.

• The Header checksum field is used to determine if the packet header has

been corrupted during transportation.

• The source and destination address fields contain the IP address of the

message originator and its intended receiver. IP address must be unique

throughout the network so that network computer can be uniquely identified.

Routing a packet towards its destination is one of the major functions of the IP in

the network layer. A number of routing protocols have been developed depending

on the network topology to give IP capability to efficiently route packets to its

destination.

An IP packet may directly transport Internet Control Message Protocol (ICMP)

in its data field. ICMP provides error-reporting capability with regard to handling

IP packet by network nodes. Node that discards packet for any of the possible

number of reasons will generate an appropriate ICMP message and send it to the

packet source.

IP with all the elaborate communication mechanism as derived from its header

fields functionality together with other communication protocols, provides best

effort data delivery by default. Best-effort in the sense that IP will try its best to

transport the data to its destination, but no guarantee that the data will ever be

delivered or delivered on time. This is so because the IP Network is made from a

conglomeration of diverse network technologies with diverse QoS. Along the

data path in the disparate network, congestion could build-up, packets could be

dropped and nodes could breakdown to mention a few of the situations that could

delay or prevent data delivery. Thus IP Networks (best-effort service) do not

provide service guarantee [HsiSiv05).

15

Introduction

1.3.2.4 The Link Layer

The link layer in the Internet architecture could employ any link layer network

protocols and technologies. This could be Ethemet, Token Ring, FDDI, ATM etc,

as long as the data link protoeols and the physical layer protoeols can

encapsulate the IP packet. The link layer protocols provide the means and

mechanism for physical connectivity between the networked nodes in the

Internet. In the physical layer (a sublayer oflink layer), a collection of raw bits in

unit called frame are transmitted from one node to another until the data gets to

its destination.

Summarily, the Internet layered communication mechanism, in structure, can be

seen to operate as a kind of unique relay system as explained here and shown in

Figure 1.4. The message or application traffic is generated at the top application

layer and passed to the transport layer. The transport layer after adding its own

functionality to the application traffic passes the data to the network layer. The IP

process at the network layer performs operation on either TCP or UDP datagram

and passes the packet to the link layer. At the link layer IP packet is called frame.

The link layer protocol process will relay the frame through its own internal

sublayer until the frame gets to the physical layer where it is transmitted hop-to

hop in the network until it gets to its destination.

Application layer

Top-to-bottom Bottom-to-top

Link layer

Application traffic

Figure 1.4 Modulated V-shape relay system as illustration of application traffic
movement from top-to-bottom, end-to-end and bottom-to-top in the
layer model of TCPIIP Networks.

The frame as it travels towards its destination, will have to climb up and down the

sub layers of the link layer protocol of each node or hop along its path to its

16

Introduction

destination. When the frame-networked message gets to its intended destination,

the encapsulated message climbs the protocol ladder from bottom-to-top, de

encapsulating or shelving its envelope (i.e. its header) as it climbs up until it gets to

the application layer where it becomes useful data or a message. Thus the Internet

communication mechanism could be illustrated with a modulated U-shaped relay

system. As shown in the Figure1.4, the modulated U-shaped relay system would

have its left vertical side represented by application traffic moving from top-to

bottom of the protocol ladder. While the zigzag horizontal side (modulated side)

could be represented by transmission of application traffic end-to-end through

system of hops, and the right vertical side could be represented by the traffic

moving from bottom-to-top of the protocol ladder.

1.4 QoS at each Protocol Layer in the Internet

In view of the layered structure of the Internet architecture, QoS could be achieved in

any of the protocol layers. Various QoS protocols and mechanisms have evolved in

the past largely to satisfy the need of legacy traffic and to some extent new

applications such as multimedia traffic. The sum total of QoS offerings in each of the

protocol layers yields the value best-effort service model, which is purely egalitarian.

There is no preferential treatment, all traffic receive equal treatment. We will briefly

mention below the QoS efforts in each of the protocol layer.

1.4.1 QoS in the Application Layer

Various QoS mechanisms were developed to enhance the network performance of

the applications in the application layer enviromnent. These include various

compression techniques and a host of coding techniques to adapt application traffic

to network conditions and to economise the use of bandwidth. Others include

development of various application protocols and standards to meet specific needs

of application users. In the realm of compression and coding techniques a few

examples are:

HTML (HyperText Markup Language) for publishing information in the Internet.

The "gzip" (command used in Unix operating systems) uses Lempel-Ziv coding to

compress text based data for economic use of buffer space and bandwidth.

17

Introduction

• The Moving Picture Expert Group (MPEG) is used for video and audio

coding and compression

• MPEG Audio Layer-3 (MP3) is used for audio coding.

• The International Telecommunication Union (ITU)- H320 is used for

audio/ video coding.

In the area of application protocols and standards, the Internet has witnessed the

increasing availability of a number of application protocols and architectures that

essentially offer the same service but with different performance offerings.

Examples include:

• Internet Explorer, Netscape Navigator, etc are used for web browsing.

• Microsoft Outlook Express, Eudora, Elm and Pine are used for e-mail.

These applications are content-based applications with built-in utilities to satisfy

the various needs of various users. Application developers have also endeavoured

to cater for the QoS need of real-time multimedia applications in the application

layer environment by designing and developing playback buffer to cushion the

effect of network vagaries such as jitter.

1.4.2 QoS in the Transport Layer

The two transport layer protocols-Transmission Control Protocol (TCP) and User

Datagram Protocol (UDP) use a checksum facility in the header field of the

datagram they transport to check the integrity of the datagram. TCP is a connection

oriented transport protocol with built-in traffic management and control

mechanisms. It has both a packet rate control and a congestion control mechanism

that will reduce packet loss and build-up of packet delay. Each correctly received

TCP packet is acknowledged thereby providing guaranteed service to the sender.

TCP QoS rendering is suitable for legacy applications, however it cannot provide a

consistent level of service that will satisfy the need of real time applications.

1.4.3 QoS in the Network Layer

Although the Internet Protocol (IP~he main protocol at the network layer does

not provide guaranteed service, it has implicit QoS provision. The Type of Service

(ToS) byte field in IPv4 packet header, which has so far not been used, was

designed for QoS control. A checksum facility is also available in the packet

18

Introduction

header to check if the packet header has been corrupted. IP can use a protocol, such

as Internet Control Message Protocol (ICMP) to communicate error messages such

as packet loss. It also could be used to transmit or relay various control messages

and configuration information from receiver host to sender host. These functions,

add together to enhance QoS for packet delivery in the network layer.

1.4.4 QoS in the Link Layer

The Internet link layer is made-up of diverse network technologies with disparate

QoS offerings. These include the various types of link layer technologies as found

in the Institute of Electrical and Electronic Engineers (IEEE) Project 802 standards

for Local Area Network (LAN) technologies. The IEEE 802-style of LAN

technologies includes Token Ring, Ethernet and Fiber Distributed Data Interface

(FDDI) among others. Although they generally provide the same best-effort service

to datagrams from higher-layer protocols such as Internet Protocol (IP), each of

them traditionally has its own style of QoS built into it. Token Ring or FDDI has

priority built into their frame (unit of information at the link-layer) transmission

mechanism, to offer limited differentiated service. This allows preference to be

given to some time sensitive traffic at the expense of less time sensitive traffic.

Shared media link-layer technology such as Ethernet or Token Ring has a

contention resolution algorithm built into its medium access mechanism to limit

packet loss as a result of traffic collision. The Ethernet Carrier Sense Multiple

Access with Collision Detention (CSMAlCD) is a highly efficient and popular

media access mechanism. Sublayers of the link-layer QoS mechanism will ensure

that a bit '1' sent is received as bit '1' not as bit '0'. This is achieved by an error

control algorithm such as checksum and cyclic redundancy checks (CRC) which

the hardware or the software must calculate to ensure the frames are received

correctly. Other QoS mechanisms include detection oflost frames by ensuring that

correctly received frames are acknowledged. When an acknowledgement frame for

a received frame is lost, the Data Link layer software ensures that the frame is not

retransmitted to prevent duplication of the frame. Frame Relay is a popular wide

area network (yV AN) technology with limited QoS offering. Operating at layer 2, it

has a congestion control mechanism as signified by the Forward Explicit

Congestion Notification (FECN) bit and Backward Explicit Congestion

19

Introduction

Notification (BECN) bit in the header of the frame it transports. It also has built-in

basic prioritisation by using the Discard Eligibility (DE) indicator bit in the frame

header. Other popular link-layer technology such as Asynchronous Transfer Mode

(ATM) needs to be closely looked into in view of its QoS offering, as we will see

in the next section.

The focus on QoS offerings in each protocol layer of the Internet as highlighted

above has been essentially based on the traditional Internet architecture which

additively sum up to best-effort service. Obviously the existing QoS protocols and

architectures in the Internet are inadequate to meet the QoS requirements of

integrated services. The power and advantages of integrated service network have

been identified long ago and the first concrete effort towards producing such

network technology was the birth of ATM, which we will examine in the next

section.

1.5 Initial Effort on Integrated Service Network
(ATM technology)

Early effort on muItiservice networks was concentrated on design and development

of Asynchronous Transfer Mode (ATM) network technology that was seen as

solution for broadband integrated service delivery. The ATM fundamental concept

has been to build a network technology, which incorporates support for integrated

services. Its architecture has been designed to support various needs of application

QoS in multiservice network environment [peu99] [Tan96]. An ATM network is

composed of ATM end nodes or hosts and ATM switches. Its concept is to carry all

traffic types within the same network infrastructure with all data being transmitted in

equal size packets known as cells. It is a connection oriented and fast cell switching

protocol. In order to simplify switching and multiplexing operations, each cell has

two address fields, the Virtual Path Identifier (VPI) and Virtual Circuit Identifier

(VCI). A Virtual Path (VP) can contain a number of Virtual Circuits (VCs). A VC

must be setup across the ATM network before any user data can be transferred

between two or more ATM attached devices. Fundamentally ATM technology has

two Classes of Service (CoS), the Constant Bit Rate (CBR) service and the Variable

Bit Rate (VBR) service. The VBR service is further grouped into a range of service

20

Introduction

classes to cater for diverse application QoS needs. The A TM layer structural model,

which could be seen as the high-level view of its architecture, is shown in Figurel.5.

Higher Layer Protocol and Functions

Convergence Sub layer

Segmentation and Reassembly Sub layer (SAR)

ATMLayer

Transmission Convergence (TC) Sublayer

r l ~cal Media Dependent Sublayer

~ ATM Centric Protocol Layers
(ACPL)

Figure 1.5: Showing ATM layered architecture reference model

The Higher Layer Protocol objects, which are not unique to the ATM architecture,

are passive in relation to QoS control in the network. By this we mean the higher

layer protocol objects do not directly manipulate entities that work together to enable

message transfer with QoS features protected. The remaining layers consist of

protocol layers that are specific to ATM technology and could be referred to as ATM

Centric Protocol Layers (ACPL). The ACPL layers, as shown in Figure 1. 5 consists

of ATM Adaptation layer, ATM (transfer mode) layer and ATM Physical Dependent

layer. We will briefly discuss each of the ACPL layers in other to graphically capture

the essentials of ATM message transfer mechanism with regard to QoS capability.

1.5.1 ATM Adaptation Layer (AAL)

The AAL is the layer that provides service to the higher layer protocol. It isolates

higher layers from the specific characteristics of the ATM layers. It maps higher

layer Protocol Data Units (PDU) into information field of cells, and it reassembles

them into original PDUs. AAL provides service-specific functionality to support

21

Introduction

specific service for application traffic. It consists of two sublayers: the

Convergence Sublayer (CS) and Segmentation and Reassembly (SAR) Sublayer.

1.5.1.1 The Convergence Sublayer (CS)

The CS also consists of two sub layers, the Service Specific Convergence

Sublayer (SSCS) and the Common Part Convergence Sub layer (CPCS).

• The SSCS functions depend on actual service requirements of specific

application traffic. SSCS provides service for all traffic, both real-time and

non real-time. Different real time services require different SSCS, hence

multiple AAL services are defined through this function. The different

classes of service that have been defined are highlighted in Section 1.5.5.

• The CPCS provides common AAL operations such as multiplexing or

demultiplexing and cell-loss detection.

1.5.1.2 The Segmentation and Reassembly (SAR) Sublayer

At the sending node, SAR takes CS-PDUs from the layer above and breaks them

up such that they are 48 bytes in size after addition of SAR header and tail to

become AAL frame before sending it to ATM layer. At the receiving node it

joins cells from ATM layer together to form higher layer PDUs. Thus its

functions include fragmentation of PDUs to form payload fields of cells and re

assemble of ATM cells to form PDUs.

1.5.2 ATM (Transfer Mode) Layer

The ATM layer is the heart of ATM technology that provides the mechanism for

connection-oriented message transfer since it operates at the cell-level. It attaches a

header of 5 bytes to an AAL-SAR frame (cell payload) which should be 48 bytes

long to make a cell that is 53 bytes long. The use of equal size cell in ATM

technology will help to reduce the effect of jitter (delay variation) that arises from

queuing, scheduling and transmission of various packet sizes in other packet

switched network technologies. It embraces high speed switching capability to

reduce traffic delay. Essentially ATM has two types of connections or VCs:

Permanent Virtual Circuits (PVCs) and Switched Virtual Circuits (SVCs). PVCs

are usually static and require a manual or external configuration to set them up.

22

Introduction

SVCs are dynamic and are created based on demand. Their setup requires a

signalling protocol between the communicating ATM nodes [Veg03, p.169].

ATM layer's cell-level of operation is independent of the physical layer. Thus any

of the physical media technology could be used to carry A TM cells as long as it

will support A TM QoS features. The main functions in this layer include:

• Cell routing, multiplexing and demultiplexing.

• The use of virtual path identification (VPI) and virtual circuit identification

(VCI) for flexible connection-orientated transfer mode.

• Cell-level monitoring of access rate for connections.

• Cell buffer management and congestion control

• Passes ATM-Service Data Units (ATM-SDU) between peer AAL entities.

The key concept in ATM cell transfer mode is determinism, which arises from VCs

being setup end-to-end before data can be transfer and which consequently

minimises delay. A deterministic system, which has a variance that tends to zero

will certainly gives the best delay profile.

1.5.3 A TM Cell Structural Types

As mentioned above ATM cell is 53 byte long-5 bytes of header information and

48 bytes of user information or payload. The cell header contains information the

ATM switches used to switch cells. There are two types of ATM cell format: the

User-to-Network Interface (UN!) defines the format for cells between a user and

ATM switch; and the Network-to-Node Interface (NNI) defines the format for cells

between switching nodes. The cell structural types are shown below in Figure 1.6.

GFC is a 4-bits field used to control traffic flow from end stations to the edge of

the network. It is not used within the core network, NNI cell format thus has no

GFC. The GFC has local flow-control importance to the user for traffic flow

control. A TM end nodes shape their transmission in accordance with the value

present in the GFC field. Communication mechanisms within ATM networks have

two modes of operation: traffic that enter the network without GFC-based flow

control (NNI traffic), are referred to as uncontrolled access; and traffic with GFC

based flow control (UN! traffic) are referred to as controlled access. According to

23

Introduction

Srinivas Vegesna [Veg03, p.170] most UNI implementations do not make use of

the UNI field.

Header
(5 bytes)

Payload
(48 bytes)

GFC VPI

VPI

VCI

CLP

HEC

Payload

ATMUNICcU

GFC: Generic Flow Control
VPI: Virtnal Path Identifier
VCI: Virtual Channel Identifier
PT: Payload Type
CLP: Cell Loss Priority
HEC: Header Error Control
UNI: User-to-Network Interface
NNI: Network-to-Node Interface

VPI

VCI

HEC

Payload

ATMNNICeU

Figure 1.6: ATM cells showing UNI and NNI cell header formats

eLP

VPI is made up of an 8-bits to 12-bits field depending on its implementation. A

Virtual Path (VP) consists of a bundle of Virtual Circuits (VCs) and is assigned to a

Virtual Path Identifier (VPI). AIM switches could implement group routing

decisions by switching VPls along with all the VCs within them.

VCI is a16-bits field, used to identifY a logical path a cell takes from one node to

another. Each VC within a VP is assigned a virtual channel identifier (VCI). VPI

and VCI fields are used by ATM switches in making switching decisions.

24

Introduction

PT is assigned to a payload type identifier (PT!) which has 3-bits field. PT! is used

to identify the type of payload carried by the cell. A payload may either be user

data or operation, administration and maintenance (OAM) information.

CLP is a I-bit field used to indicate cell priority. When congestion occur in the

network and buffers overflow, a cell with CLP set (i.e. CLP = I) will be discarded

before cell whose CLP is not set (CLP = 0). Thus Cell with CLP = 0 has higher

priority.

BEC is an 8-bits field used for detecting and correcting the errors in the cell

header.

1.5.4 A TMPhysicallayer

The Physical Layer of ATM should be physical media independent. The main

requirement is that the physical media should support high-speed networking and

broad bandwidth to support multi service. The layer is viewed as consisting of two

sublayers, the Transmission Convergence (TC) sub layer and Physical Media (PM)

Dependant sub layer.

• The TC sublayer provides cell level interface to higher layers and performs

the Header Error Check (HEC) for each cell as well as cell delineation. Its

function also includes any channel coding needed by the Physical Media

Dependant sublayer.

• The PM Dependant sublayer provides functionality for interfacing with the

actual communication channel. The functionality will include both the

electrical and mechanical components required for the interfacing and also the

production and interpretation of the actual waveform representing the bits of

the cells. Issues concerning transfer of timing information between the two

ATM entities are also handled.

1.5.5 QoS Mechanism and Service Classes in ATM

QoS guarantees are achieved through a deterministic approach adopted by ATM

end systems in sending traffic to the network. ATM end nodes explicitly specify a

traffic agreement describing their intended traffic flow characteristics to the

network. The flow descriptor carries QoS parameters such as Peak Cell Rate (PCR)

Sustained Cell Rate (SCR) and Maximum Burst Size (MBS). ATM edge nodes

25

Introduction

police each user's traffic characteristics to ensure it is in accordance with the traffic

agreement offered in the network. In this mode of operation, establishment of

traffic agreement and protection of the traffic agreement offers guaranteed service.

The AIM Adaptation Layer (AAL) provides the mechanism and flexibility to

support different traffic services carried within the same format. Five AAL service

types are defined [Bon et al.03], and these are:

• AAL 1: It is a Constant Bit Rate (CBR) connection oriented traffic transfer

service with synchronised transmit and receive timing. Suitable for

applications with tight time constraint e.g. digitised voice at 64 Kbps and

video (H.320 standards).

• AAL 2: It is a real-time Variable Bit Rate (rtVBR) connection oriented

service with synchronised transmit and receive timing, in which the traffic

source may be bursty. Can find application in packetised video and some

interactive multimedia traffic.

• AAL 3: It is a non real-time Variable Bit Rate (nrtVBR) connection oriented

with no strict timing relationship between transmit and receive times. E.g.

connection-orientated interactive data transactions.

• AAL 4: This service is referred to as Available Bit Rate (ABR). It is in fact a

VBR service with no synchronised transmit and receive timing. This service

is suitable for applications that thrive well under the Transmission Control

Protocol (TCP) service in Internet Protocol suite.

• AAL 5: This service is referred to as Unspecified Bit Rate (UBR). It is a

VBR service with no congestion control. There is no bandwidth reservation

nor delay and jitter bound for this service. This is an equivalent of IP best

effort service. Suitable for massive file transfer such as system backups.

The highlight of ATM technology as discussed above shows that AIM network

technology has built-in mechanisms to support multiservice QoS. The issue is that,

AIM is just one network technology, it is not the Internet, which is made-up of a

conglomeration of diverse network technologies. While some schools of thought in

the research community believed that the Internet should be re-invented on the

basis of AIM networks, others believed that, the flexibility of the Internet Protocol

(IP) should be exploited to extend the service model of IP Networks to support

26

Introduction

multi service QoS. The pendulum is swinging in favour of the latter school of

thought. Also it has been reported that A TM has its own touch of scalability

problem [DeM et aI.OO].

1.6 QoS Provisioning beyond Best-Effort Service Paradigm
in IP Networks

In view of the importance of multi service QoS provisioning in IP Networks, various

standard organisations, forums, working groups and corporate bodies are presently

working to ensure the dream of convergence of telecommunication services on to the

IP Networks become a reality [Goz et al.03]. They are concerned with the

development and implementation of QoS protocols and architectures to turn the

Internet into robust global multiservice networks. The draft and review of standards,

and the formulation of policy guide lines for QoS provisioning in the Internet is

gathering momentum every day, and speeding towards its targeted goal. We will

briefly highlight the contributions that have been made by the various bodies below.

1.6.1 Contributions from Standard Organisations

Standard organisations that have made concrete effort to the design and

development of QoS protocols and architectures for IP Networks include, Internet

Engineering Task Force (IETF) and Institution of Electrical & Electronic Engineers

(IEEE) to mention those that readily come to mind. These organisations are

working top-down in terms of the layered protocols, and from end-to-end in terms

of network mechanism to produce QoS models that will be robust and scalable

when deployed in the Internet. Some of these standard organisations are working

on specific aspect of QoS provisioning to achieve the goal ofIntegrated Services in

the Internet. Prominent QoS protocols and architectures that have been developed

are:

• Integrated Services (IntServ) architecture, developed by IETF Working

Group on integrated services in the Internet. The IntServ architecture consists

of a number of building blocks for resource allocation in the Internet. IntServ

together with its signalling protocol-the Resource reSerVation Protocol

(RSVP) provide means for per-flow resource allocation in the Internet.

• Differentiated Service (DiffServ) architecture is developed by another IETF

Working Group, working on scalable QoS provisioning in the Internet.

27

Introduction

DiffServ architecture is designed to extend the functionality of the Type of

Service (ToS) byte field in IP version 4 (1Pv4) packet header to offer scalable

service differentiation in the Internet.

• Multi-Protocol Label Switching (MPLS) is also designed and developed by

another IETF Working Group. MPLS represents the convergence of

connection-oriented forwarding techniques as found in the use of virtual

circuit forwarding technique of ATM and IP routing protocols forwarding

paradigm. It could solve problems of QoS routing in the Internet.

• Subnetwork Bandwidth Manager (SBM)- yet again, a design and

development of IETF Working Group. SBM is an extension to RSVP

signalling, and support RSVP-based admission control over the shared

medium LAN family of IEEE 802-style networks.

• IP over ATM-A Forum of IETF has been working to take advantage of

QoS capabilities of the ATM networks in mapping IP precedence values in the

Type of Service (ToS) byte field of 1Pv4 packet header to ATM AAL service

classes.

• IEEE standard on Media Access Control (MAC) Bridges-IEEE 802. ID

has been extended with IEEE 802. I P to support the notion of expedited traffic

transmission capabilities. Time-critical traffic could be tagged with a high

priority tag such that they enjoy preferential treatment in their transmission

from source to destination in the network.

A plethora of IP QoS provisioning titles exists in telecommunication literature,

which is impossible to list here in view of time and space [Myk et a1.03]. We have

only filtered out the most prominent standard ones, and highlighted them above.

Each of the above mentioned QoS protocols and architectures will be discussed in

more detail in Chapter 2.

1.6.2 Contribution from Corporate Organisations and Equipment
Vendors

Many companies have produced network devices to implement some of the above

listed standards on QoS protocols and architectures. One example of such a

company is 3Com, which announced that it has produced high-performance

switches that support some of the QoS architecture listed above [3ComPro&Srv).

28

Introduction

Cisco Systems also announced the development of its convergence architecture

dubbed AWID (Architecture for Voice Video and Integrated Data), [eWeek99].

3Com, Cisco, and many other network device vendors have taken giant strides

towards the realisation of the convergence of Telecommunication Services unto IP

Networks.

1.7 Research Problems and Objective of the Research Work

The last two decades have witnessed high levels of research activities on

provisioning of Quality of Service (QoS) in IP Networks [Gio et aI.03]. As

mentioned earlier in the previous sections of this chapter, there has been a plethora of

publications on the topic and a number of IP QoS architectures and standards have

been developed. Despite the elaborate work that has been done and concluded on the

topic, IP QoS deployment end-to-end still remains elusive in the Internet [Gio et

aI.03] [HsiSiv05] [KrapOO] [MooSil03]. It has not been fully deployed in

commercial real life networks. What have been witnessed are ad hoc test networks

where IP QoS has been deployed to test its commercial viability. It is therefore

correct to state that, there is yet to be equilibrium between the demand and supply on

the subject. There still exist some research questions that need to be answered, and

some research issues that need to be addressed and resolved on this very popular and

very difficult topic.

1.7.1 Research Problems

It has been mentioned in Section 1.6.1 of this chapter that, IntServ and DiffServ

architectures are among the prominent QoS technologies that have so far been

developed to extend the service model of the Internet to embrace integrated

services. The IEEE 802.1 P standard can provide limited QoS in layer 2. Although

each of the architectures will be discussed to some details in Chapter 2 of this

thesis, we need to highlight their salient points in order to add fullness to the

discussion points in this section.

1.7.1.1 Integrated Services (IntServ) Architecture

The IntServ architecture is one of the standards QoS architecture developed to

transform the Internet to a robust multiservice network, as described in [RFC

1633]. It serves to support:

29

Introduction

• Real-time multimedia service in the existing Internet.

• Controlled resource sharing.

In achieving its objective the architecture proposes to extend the existing best

effort service model in the Internet to embrace multiservice QoS. One important

assumption made in the development of the IntServ model is that the network

resources can be explicitly controlled. This means that Resource Reservation and

Admission Control are the main basic blocks of the IntServ model. Although

other basic blocks such as packet schedulers and packet classifier exists in the

implementation framework for IntServ model, resource reservation and

admission control functions come first in network resource allocation mechanism

of IntServ model. Resource reSerVation Protocol (RSVP) is the resource

reservation signalling mechanism developed for implementation of the IntServ

model. RSVP has been found to be too complex and it's per flow paradigm is not

scalable in the Internet (LeoMas03] (Gio et a1.03] (Mol et al.OS] (Bak98]. This

is an example of a research problem that needs to be addressed.

1.7.1.2 Differentiated Services (DifTServ) Architecture

DifTServ architecture is designed to provide scalable service differentiation in the

Internet without the need for maintaining Per-flow State or do per hop signalling

(RFC 247S]. The architecture achieves scalability by aggregating traffic flow

into groups of traffic classes for network resource allocations and services. The

Differentiated Service Code Point (DSCP) field (RFC 2474] in the IP packet

header is used to identify each aggregated service class. The DSCP field is the

same as Type of Service (ToS) byte field in IP version 4 (IPv4) header and

Traffic Class byte field in IP version 6 (IPv6) header. The value of DSCP field in

a packet will determine the Per-Hop Behaviour (PHB) treatment its class should

receive in the network. DifTServ can provide a wide range of services through a

combination of:

• Setting bits In the DSCP field at network edges and administrative

boundaries.

• Using those bits to determine how routers inside the network treat packets.

• Conditioning and marking of packets at network boundaries in accordance

with the requirements of each service.

30

Introduction

In the DiffServ specification, traffic conditioning and marking could turn out to

be a complex process at network edges-a research problem. Also in view of

DiffServ traffic aggregation or bundling for network resource allocation, some of

the fine details of some application traffic QoS need may be omitted or

compelled to hibernate [Gio et al.03] [Mol et al.05] [ChrLie03] [Bia et al.02]

[Wel et al.03]-another research problem.

1.7.1.3 IEEE 802.ID and 802.lp Standards

IEEE 802.ID is the standard for Media Access Control (MAC) Bridges which

has been developed to transparently interconnect IEEE 802-style ofLANs. IEEE

802.ID was extended with IEEE 802.1 P to support the notion of expedited traffic

transmission capabilities through the use of user's priority traffic tagging.

Through this support, limited differentiated service could be achieved. Each

bridge port has a User Priority Regeneration Table (UPRT). The user's priority of

a received frame is regenerated using priority information contained in the frame

and UPRT. The Bridge forwarding process will use the user's priority

information encoded into the frame in deciding the type of QoS the frame should

get while forwarding it. The IEEE 802.ID & P standards in 1993 [802.lD&p

Yr.93] specified 2 Priority Classes for bridged LANs to support multi service

QoS, while the 1998 standard [802.lD&p Yr.98-05] specified 8 Priority Classes.

Their decision was based on sound heuristic consideration. A number of

publications have suggested three or four classes. What then is the optimum

number of priority classes for integrated service Internet? A good research

question.

1.7.2 Objective of the Research Work

This thesis endeavours to proffer answers to the research questions posted in

Section 1.7.1.3 as first part of the research work carried out. In line with this

objective, the thesis provides a detailed account of the actions taken, results

obtained and analysis of the results on empirical investigations into the research

question, -what is the optimum number 0/ priority queuing classes that would best

meet the need o/integrated services in the Internet? The experiment generated very

useful results, and this thesis will endeavour to present the technical details in a

31

Introduction

form that will be beneficial to the Internet research community. The second part of

the research work concerns finding solutions to the complexity and scalability

problems of the IntServ-RSVP per-flow paradigm and DiffServ complexity as

highlighted in Section 1.7.1.1 and Section 1.7.1.2 respectively above. The approach

to design a solution specifically takes into consideration the simplicity of Internet

core networks that accounts for its phenomenal success in tackling the research

problem. This approach resulted into the design of an experimental simple,

scalable, elegant and robust JP QoS architecture called Pre-deterministic

Distributed Event Response Resource Management (PDERRM). This thesis will

present the design, experimental test, and experimental result of PDERRM. The

performance ofPDERRM has been investigated through simulation and the results

of the simulation show that it is a very elegant and robust architecture. The

technical details as presented in this thesis are engineered towards formalisation of

the experimental work carried out as mentioned above. The formality process

includes presentation of the procedure adopted, the results we obtained, comments

on the results and our conclusions. All the details will be found in Chapters 8 and 9

of this thesis.

1.8 Organisation of Remaining Part of the Thesis

Chapter 2: Overview ofQoS technologies developed to extend the service model of

the Internet to become a robust global multiservice network will be presented in this

chapter. Standard QoS architecture and protocols such as IntServ, RSVP and

DiffServ are discussed and analysed with intent to grasp or highlight the salient

points of their mechanisms. Other QoS related architectures and protocols are also

examined. Included in the group are; Subnet Bandwidth Management (SBM) which

is used in shared medium LAN segments for resource allocation, and Multi-Protocol

Label Switch (MPLS) which could be employed for QoS routing.

Chapter 3: In Chapter 3 of this thesis, the focus is on generic components of QoS

architectures. The various component parts of a typical QoS architecture are

presented with emphasis on queuing and scheduling disciplines, which are the

bedrock of QoS delivery.

Chapter 4: The introductory work on simulation experiments to detennine the

Optimum Number of Traffic Queuing Classes (ONTQC) that will best meet the needs

32

Introduction

of integrated services in the Internet is presented in this chapter. The presentation and

discussion therein includes motivation for the work, the objectives of the work, the

choice of queuing discipline for the experiment and the choice of simulation tools.

Also simulation parameters and the number of traffic classes used in the experiment

are discussed.

Chapter 5: Simulation methodology and procedures on ONTQC are the subjects of

this chapter. Grouping of simulation scenarios- into Simulation Actions Domains

(SADs), and the procedur,al steps involved in each simulation group are presented.

The chain-like pattern of the series of SADs is described with Markovian chain.

Algorithm for queue decomposition and novel meta-heuristic model developed to

predict simulation outcomes are presented.

Chapter 6: The results of simulation experiments on ONTQC are presented in this

chapter. Methods for processing results are outlined. End-to-end delay charts and

throughput charts are presented and discussed. Numeric representations of the results

in terms of matrices and row vectors are also presented.

Chapter 7: Analyses of results of simulation experiments carried out on ONTQC to

support Integrated Services are presented. The presentation includes the use of

matrices and row vectors to analyse the results of ONTQS experiments on the bases

of non-work conserving operation of multiple queues and the consequent loss in their

efficiency as the number of multiple queues pass certain threshold.

Chapter 8: The discussion in this chapter concerns the design of a new simple,

elegant and robust QoS architecture for IP Networks. The new experimental QoS

architecture called PDERRM is described in line with its principle of operation and

building blocks. The framework and the main features of the architecture are

presented.

Chapter 9: Presents the experimental procedure and processes for PDERRM

performance evaluation. The simulation experiments, experimental results and

comments are presented.

Chapter 10: Conclusions and future work are the subjects of this chapter.

Summary

This introductory chapter has been a brief all-embracing discussion that covers

Quality of Service (QoS), its concept as related to the Internet, its desirability, the

JJ

Introduction

Internet technological architecture, ATM technology, introduction to already

developed QoS architectures for the Internet, identification of research problems and

research objectives.

QoS was globally defined as the degree of satisfaction derived from a service.

Internet architectural flexibility has encouraged the use of the network for new

breeds of applications such as real-time voice over IP and Internet video

conferencing. The emergent real-time applications could not thrive well in the

Internet because the service model of the Internet was not originally designed to

support real-time applications. The Internet best-effort service model needs to be

extended. QoS was defined as perfonnance seen by the recipient end-user of an

application placed across the network. The main advantage of QoS is seen to be the

notion of empowering a single network to provide mUltiple services.

Internet technology is built on the TCPIIP protocol suite, which consists of four

layers: application layer, transport layer, network layer and link layer. The Internet

communication mechanism was described as a modulated U-shaped relay system in

which application traffic moves from the top application layer to the bottom link

layer and then travels from one hop to another until it gets to its destination. At the

destination it climbs the protocol ladder from the bottom link layer to the top

application layer where it becomes useful data.

A TM technology is provisioned with capability to support multiservice QoS. The

ATM AAL services can provide services for both real time and non-real time

applications.

Prominent QoS architectures that have been developed for resource allocation in the

Internet are IntServ and DiffServ. MPLS is traffic engineering architecture developed

to support QoS routing. SBM handles RSVP based resource allocation in shared

medium LAN segments.

The research work is in two parts: (1) An experimental investigation to find the

optimum number of service classes that would meet the needs of integrated services

in the Internet. (2) The design of a simple scalable and elegant QoS architecture for

IP Networks.

34

JP QoSArchitecture Beyond Best-Effort Service

CHAPTER 2

IP QoS Architectures Beyond Best-Effort Service

We have seen in Chapter one that real-time application performance in the Internet is

below standard. In order to overcome this problem, the Internet Engineering Task

Force (IETF) has developed new technologies and standards to provide resource

guarantees and service differentiation in the Internet under the broad heading of IF

Quality of Service (QoS). In this chapter we will examine the IETF's three main

technologies that have emerged as core standards for supporting QoS in the Internet.

Integrated Services (IntServ) architecture and Differentiated Services (DiffServ)

architecture are two technologies that address the issue of resource reservation and

allocation to various types of applications in the Internet. Multiprotocol Label

Switching (MPLS) has interesting applications for QoS routing and Traffic

Engineering (TE). The Subnetwork Bandwidth Manager (SBM) enables an IntServ

RSVP service model within shared LAN segments.

We will also briefly examine the effort of the Institute of Electrical and Electronic

Engineers (IEEE) on the add-on QoS mechanism built into IEEE 802--style LANs.

IEEE MAC Bridges standards were designed with capabilities for expedited

transmission of time-critical applications.

2.1 Integrated Services Model in the Internet

The concept of Integrated Services (IntServ) originated from the notion that lots of

benefits and efficiency could be derived from having one global network

infrastructure that would support various types of telecommunication services. A

global network that would support a variety of data transmission services, carrying

real-time voice, video, and interactive data along with bulk data transfer. The

flexibility of the Internet technology coupled with its phenomenal success has

encouraged its nomination as a candidate for the convergence of all

telecommunication services. This culminated into the Internet Engineering Task

Force (IETF) creating the "Integrated Services Working Group" [IntServ94], to

develop a unified model for Integrated Services in the Internet. In order to turn the

Internet into a robust integrated service communication infrastructure, its service

35

JP QoS Architecture Beyond Best-Effort Service

model must be extended beyond the best-effort paradigm. This extension is

necessary to meet the growing need for real-time services for a variety of new

applications. The result of the multi cast backbone (MBONE) experiment that was

setup in 1993 for testing real-time applications motivated researchers in the IETF

Working Group (WG) in part to work on the requirements and mechanisms for

integrated service model for the Internet. The outcome of the experiment as

documented revealed that, it would be possible to run multimedia applications over

the Internet, but their performances with the best-effort service model were found to

be below standard [RFC1633J. The result of the MBONE experiment geared IETF

into action, and they have since engineered and developed QoS architectures and

protocols that would transition the dream of Integrated Services into practice in the

Internet environment.

Real-time applications QoS are not the only issue for next generation of traffic

management in the Internet [F1oJac95]. Network operators require the ability to

control the sharing of bandwidth on a particular link among different traffic classes.

They want to be able to divide traffic into a few administrative classes and assign to

each a minimum percentage of the link bandwidth under conditions of overload,

while allowing "unused" bandwidth to be available at other times. These classes may

represent different user groups or different protocol families. Such management

facilities are commonly called controlled link sharing. The term Integrated Services

(IS) is used for an Internet service model that includes best-effort services, real-time

services, and controlled link sharing. Thus the Integrated Services Model essentially

consists of:

• An extended service model for the Internet, which is called the IS Model.

• A reference implementation framework, which gives a set of semantics and

a generic program of actions to realise the IS Model.

2.1.1 Categories of Applications

In designing an enduring service model, the IntServ working group (WG) was

concerned with defining classes of applications. The categorisation of various

applications into generic groups was informed by taking analysis of the mechanics

of their flows in an integrated services environment. An application traffic will

36

JP QoS Architecture Beyond Best-Effort Service

generally fall into a category depending on how tolerant or intolerant the

application is to inconsistency in network behaviour. In broad terms, applications

can be categorised as being either elastic or inelastic. Elastic applications (non real

time applications), are those that can adapt to network inconsistency while inelastic

application (real-time applications) are those that cannot adjust to network

behavioural inconsistency and consequently degrade in performance. The IntServ

service model divides applications into three main categories: real-time intolerant

applications, real-time tolerant applications, and non real-time applications.

2.1.1.1 Real-time Intolerant Applications

They placed high demand on network traffic control in order for the network to

meet their QoS requirements. If their traffic is not transmitted consistently and

precisely at all times, the application will suffer degradation and will

consequently be unacceptable. Examples of such applications are, Voice over IP

(VoIP), interactive video and control systems. Two-way conversation cannot

tolerate excessive delay or jitter.

2.1.1.2 Real-time Tolerant Applications

These are less sensitive forms of real-time applications. They do expect their data

to arrive in a timely fashion but occasional missed or delayed packets will not

adversely affect their performance in the network. They tolerate some

inconsistency in network services as long as it does not typically exceed a certain

well-defined threshold.

Applications can be real-time and still be tolerant of network irregularities

through additions to their design [DurYav99]. A video application for example

may buffer a few frames ahead of time to playback. If timing of frames out of the

network is not perfectly consistent, the buffer will hide the resulting distractions

from the user by always showing the buffered frame in consistent intervals.

Video streaming and Internet games are examples of real-time tolerant

applications.

2.1.1.3 Non Real-time (Elastic) Applications

These are the most tolerant to network variation conditions. Applications in this

group do not particularly suffer if their traffic is subjected to inconsistency in

37

JP QoSArchitecture Beyond Best-Effort Service

network behaviour. The group includes traditional best-effort traffic, such as file

transfer and e-mail.

2.1.2 Integrated Services Architecture

Integrated Services (IntServ) architecture is the proposed standard for per-flow

resource allocation in the Internet. In the IntServ architecture, new service models

were developed to meet the requirements of real-time applications. The IntServ

architecture consists of a set of mechanisms and protocols used for making explicit

resource reservation and resource allocation in the Internet. The basic approach is

per-flow resource reservation and allocation in the Internet [Sol et al.04]

[RFCI633]. The architecture assumes that the main QoS about which the network

lJI.akes commitments is per packet delay. Integrated Services will include additional

flow-states in routers and an explicit set-up mechanism that will provide the

different services required by the various applications.

The main components of the architecture are:

• Specification and definition of general QoS parameters

• Applications reference service model

• Resource reSerVation Protocol (RSVP) [RFC 2210], and

• Reference implementation framework

We will briefly examine each of these components.

2.1.2.1 General QoS Parameters Specification

General QoS parameters are sets of characterisation parameters that describe

traffic flow profiles, their QoS needs, and network element ability to support

application QoS requirements. These standardised parameters have a common

and consistent interpretation and understanding that allows unified specification

and practice of QoS end-to-end over the heterogeneous network. Characterisation

parameter specifications and definitions provide the semantics which an

application can employ to inform the network of its QoS requirements and derive

information about available resources along its path of flow in the network.

A two level namespace is designed for each parameter to reflect the type of

service with which the parameter is associated-- <service_number>

<parameter_number>. As indicated, it is designed such that, each parameter ID is

38

JP QoSArchitecture Beyond Best-Effort Service

composed of two numerical fields. One identifying the service associated with the

parameter «service_number» and the other identifying the parameter value

(<parameter_number». Each of the numerical fields ranges in numerical value

between 1 and 254. The definition of each parameter used to characterise a path

through the network describes two types of values, local and composed. A local

value gives information about a single network element. Composed values reflect

the running composition of local values, specified by some composition rule.

Each parameter definition specifies the composition rule for that parameter [RFC

2215). Since characterisation parameters are used to compute the properties of a

specific path through the inter-network, all characterisation parameters are

conceptually 'per-next-hop' as opposed to 'per interface' or 'per network

element'.

The general parameters include:

• NON_IS_HOP -IntServ unaware network elements (NEs).

• NUMBER_OF _ IS _ HOPS-IntServ aware NEs.

• AVAILABLE] A TH _ BANDWIDTH-Bandwidth available along the path.

• MINIMUM_PATH_LATENCY-Cumulative minimum latency incurred by

all NEs along path of flow.

• PATH_MTU-Maximum transmission unit (MTU) for packets following the

path.

• TOKEN_BUCKET_TSPEC-very important, used to describe traffic

characteristics and QoS requirements.

Information on detailed specification and definition ofIntServ general parameters

could be found in RFC 2215 [RFC 2215).

2.1.2.2 Reference Service Model

In the IntServ architecture, two service models were proposed as standards for

integrated services (IS) Internet and these are: Control Load Service and

Guarantee Service. Although three generic classes of applications have been

specified or categorised, it has to be noted that, real time tolerant applications and

elastic applications share similar characteristics in term of jitter tolerance, thus

they both could make use of control load service, while the real time intolerant

39

JP QoSArchitecture Beyond Best-Effort &rvice

application could make use of guaranteed service. The default service model is

best-effort.

2.1.2.2.1 Control Load Service

The control load service is directed towards the need of real-time tolerant

applications and elastic applications [RFC 2211]. Bandwidth is a basic resource

and a fundamental quantity for a QoS control mechanism. Applications that use

control load service are designed to operate over a best-effort network with

sufficient available bandwidth. In order for controlled load service to support

real-time tolerant application, it simulates best-effort quality of service not

affected by excessive load. To achieve this, the controlled load service will set

. aside a specific amount of bandwidth for applications that require the service.

This subset of the network device's link capacity will always be available to

requesting applications irrespective of other traffic. The end-to-end behaviour

provided to an application by a concatenation of network elements providing

controlled-load service closely approximates the behaviour visible to

applications receiving best-effort service "under unloaded conditions" in its

path of flow end-to-end.

Assuming the network is functioning correctly, these applications may assume

that:

• Very high percentage of its transmitted packets will successfully be delivered

by the network to the receiving end-node .

• The transit delay experienced by a very high percentage of the delivered

packets will not greatly exceed the minimum transmit delay experienced by

any successfully delivered packet.

To ensure that the controlled load conditions are met, clients requesting the

service will provide the intermediate network elements with an estimation of

the data traffic they will generate i.e. the TSpec. In return, the service ensures

that adequate network element resources are provided to process traffic falling

within the descriptive envelope that is provided by the client.

40

IP QoSArchitecture Beyond Best-Effort Service

2.1.2.2.2 Guaranteed service

This is suitable for real-time intolerant applications. Guaranteed Service (GS)

provides firm (mathematically provable) bounds on end-to-end packet queuing

delays, [RFC 2212). This service makes it possible to provide a service that

guarantees both delay and bandwidth. This means packets in a flow that is

transmitted with a guaranteed QoS specification must arrive at its destination

within a defined delay bound. GS provides assurance that, packets will arrive

within the guaranteed delivery time and will not be discarded due to queue

overflows, provided the flow's traffic stays within its specified traffic

characteristics. Applications with stringent time of delivery requirements that

make use of "play-back" schemes as a means of mitigating against network

vagaries, are intolerant of any packets arriving after their "play-back point".

Such applications with hard real-time requirements should take advantage of

delay bound assurance inherent in GS. The GS does not attempt to minimise the

jitter, it merely controls the maximal queuing delay.

Applications requiring GS must describe their traffic characteristics in the form

of Sender TSpec (traffic specification) to the network, and also make resource

reservation request by specifying the Receiver RSpect (reservation

specification) to the network. The reservation request must be accepted by

concatenation of network element in the path of the application traffic flow end

to-end before traffic can start to flow. The Guaranteed QoS Synthesis (GQS)

technique proposed by Hovell et al. provide a method for providing QoS

guarantee [Bov et a1.05).

2.1.2.3 Resource reSerVation Protocol (RSVP)

Resource reSerVation Protocol (RSVP) is the signalling protocol that provides

reservation set-up and control to enable the Integrated Services (IS) in the

Internet [RFC 2205]. It is seen as part of the implementation framework for

IntServ architecture. As a result of its complex signalling, it is said to represent

the biggest departure from standard "best-effort" JP services and provides the

highest level of QoS in terms of service guarantees, granularity of resource

allocation and details of feedback to QoS-enabled applications and users.

RSVP signals per-flow requirements of data traffic to IS capable data-forwarding

network elements. It is a way to communicate the various applications divergent

41

JP QoS Architecture Beyond Best-Effort &rvice

requirements to network elements along the path of flow and to convey QoS

management information. It helps in creating and maintaining flow specific state

in the endpoint hosts and routers in the path of flow. In order to state its resource

requirements, an application must specify the desired QoS, using a list of

parameters that is called a ''jlowspec'' (flow specification). The flowspec is

carried by RSVP messages, passed to admission control to test for acceptability,

and ultimately used to parameterise the packet scheduling mechanism.

2.1.2.3.1 Basic Features

Hop-by-hop message sequence: RSVP serves as a hop-by-hop signaJling

protocol such that network elements along the path of a data flow be aware of a

flow's QoS requirements, in order to provide any special treatment for the data

flow. A path is effectively pinned down such that each hop knows its

neighbouring adjacent RSVP hops for a particular flow end-to-end. RSVP other

basic features include:

• Simplex reservation: RSVP makes a reservation in only one direction

(simplex flow).

• Receiver oriented reservation: Receiver is responsible for making resource

reservations.

• Soft-state design: Reservation state is temporary. Reservation states are

refreshed at regular time interval during its lifetime.

• Support multicast communication: RSVP is designed to support both

unicast and multicast communication.

• Routing Independent: It is not a routing protocol nor it's part of the routing

architecture of a network device.

• Act like Internet Control Protocol: RSVP does not transport application

data but is rather like an Internet control protocol such as ICMP or IGMP.

• Doesn't need transport protocol: RSVP messages are transmitted directly

over the IP protocol as opposed to being transmitted over TCP or UDP.

RSVP protocol ID is specified in IP header (RSVP = 46).

2.1.2.3.2 RSVP Messages

RSVP messages consist of seven types: the PATH and RESV Messages, the

PATH Error and RESV Error messages, the PATH Tear and RESV Tear

42

JP QoSArchiteclure Beyond Best-Effort Service

messages, and the Confirmation messages. PATH and RESV messages are

compulsory while the remaining five are optional in signalling for resource

reservation [RFC 2209]. Each of the messages is made up of an RSVP header

followed by a set of message objects. The objects contain the information

necessary for describing resource reservation requests. We will briefly examine

the two non-optional messages.

A PAm Message originates from the Sender and is sent to the Receiver. It is

used to discover and pin down the path of a data flow, identifies the data flow

and its source, describes its traffic characteristics, advertises resource

capabilities in path of flow, and installs states relevant to the data flow in

network elements along the data path. PATH message objects are; the Session

Class object, RSVP Hop Class object, Time Values Class object, Policy Data

Class object, Sender Template Class object, Sender TSpec Class object and

AdSpec Class object.

A RESV Message is generated by the Receiver and sent to the Sender. It

retraces the reverse direction of the path created by the path message hop-by

hop upstream from the destination back to the source. The RESV Messages are

addressed from the sending downstream hop to the previous upstream hop

(PHOP). The PHOP information is obtained from the corresponding path-state

installed on each network element in the path setup by the PATH message.

When PHOP receives the RESV Message, it will be interpreted by the device's

RSVP process. This process will check to see if at least one valid path-state has

been installed for the session. If valid path-state exists, the reservation will

proceed, and if admission control succeeds, a reservation state will be installed,

in other words, resources will be applied to service the corresponding flow.

RESV Message objects are similar to PATH Message objects with the

exception of; RESV Confirmation object, Style object, Flow Spec object and

Filter Spec object.

2.1.2.3.3 RSVP Basic Operation

An RSVP session consists of a simplex sender's PATH Message sent

downstream through a concatenation of forwarding devices to the receiver. A

corresponding simplex receiver's RESV (Reservation) Message will be sent

upstream tracing the path created by the PATH Message to the sender. A

43

JP QoS Architecture Beyond Best-Effort &rvice

unidirectional flow from a sender through series of RSVP-aware devices to a

receiver is regarded as downstream flow. On the other hand, a flow in the

reverse direction from receiver to the sender is referred to as upstream flow.

Since the source typically knows the characteristics of the traffic it's capable of

sending, RSVP allows the data source to describe the characteristics of the

traffic it intends to generate. This information is encoded in the parameter

within the sender's PATH Message and transmitted from the source to the

destination through the data path. Thus, the destinations as well as every RSVP

aware device along the data path are aware of the sender's traffic generating

capabilities. The PATH Message from the sender effectively installs a path state

on all RSVP-aware devices along the path of data flow.

Once the path-state has been established on all RSVP-aware devices from

source to destination, the RSVP paradigm requires the receiver to issue a

reservation request for the particular data flow. The reservation request must

then follow hop-by-hop, the path laid down by the corresponding PATH

Message. No network element will commit it's resources to service a data flow

until a reservation request has been issued for the flow and accepted by the

devices along the data path. The reservation request is carried by the receiver's

RESV Message, and contains the receiver's QoS specification for the data flow.

That is the destination actually determines what QoS the flow will actually

receive. Through the hop-by-hop reservation set-up mechanism, all RSVP

devices along the original path will become aware of the QoS reservation

request made by the receiver. Each network element along the path may then

individually decide to accept the reservation or modity appropriate parameter in

the RESV Message before sending it upstream or refuse the request altogether

due to capacity or administrative constraints.

The sender's Traffic Specification (TSpec) object in the path message describes

the characteristics of the traffic the source is able to generate, while the

Advertisement Specification (AdSpec) object also in the path message describes

the kind of services all devices along the data path can offer. Each forwarding

device on the data path updates the AdSpec object. This procedure provides

44

JP QoSArchitecture Beyond Best-Effort Service

enough information to the receiver to make a choice of its QoS reservation. On

the other hand the receiver's Reservation Specification (RSpec) in the RESV

message describes the type of QoS the receiver desires to receive. The receiver

also uses the Filter Specification (Filter Spec) object to identify the source of

the data flow.

An RSVP session is illustrated in Figure 2.1 below. PATH Messages are sent

downstream from Sender to Receiver. The corresponding RESV Message sent

upstream from receiver to sender.

,.~ '-..i

Networks

Sender Receiver

Figure 2.1 RSVP PATH and RESV messages flow

A Reservation must pass both "Admission Control" and "Policy Control" before

data can flow. Admission Control determines whether the node has sufficient

available resources to supply the requested QoS. Policy Control determines

whether the user has administrative permission to make the reservation.

2.1.2.3.4 Reservation Styles

Basically RSVP supports two resource reservation styles-distinct and shared,

to cater for both unicast and muIticast flows. The shared reservation style is also

further categorised into two, consequently three reservation styles are currently

defined. The three styles of reservation are briefly explained below and

illustrated in Table 2.1.

45

JP QoSArchitecture Beyond Best-Effort Service

• Fixed filter (FF) style. The FF style is used when distinct reservation is

required for each sender in an explicit sender selection.

• Shared explicit (SE) style. In SE style, reservations are shared for explicit

selection of sender list. SE style ensures that a single reservation is created

for each group to share.

• Wildcard filter (WF) style. With WF style reservation, all senders share a

single reservation. It implies shared reservation and wild card sender

selection. The simple algorithm is that, all senders share the largest of the

resource request from receivers.

Table 2.1 Reservation Styles

Sender Selection Scope Reservation Styles

Distinct reservation Shared reservation

Explicit sender selection Fixed filter (FF) Shared explicit (SE)

Wildcard sender selection (None defined) Wildcard filter (WF)

2.1.2.3.5 RSVP Scalability Problem

RSVP per-flow packet processing can lead to scalability problems in backbone

routers where hundreds of thousands of flows are processed within a short

interval of time [Gio et al.03] [Mol et a1.05] [Sol et al.04]. Per-flow packet

classifications, admission controls, policing, shaping and micro-differentiation

in scheduling will create serious limitations on scalability in multi-gigabit link

environment. Additionally, state information on per-flow reservations needs to

be maintained by the routers in order to satisfy the need of each flow. With very

large number of flows, routers will find it difficult to maintain such per-flow

state information. In view of the above RSVP is considered a nonscalable

solution for Internet backbone.

2.1.2.4 IntServ Reference Implementation Framework

The IntServ architecture reference implementation framework includes generic

QoS components such as the admission control, the classifier, the packet

scheduler, and the reservation set-up protocol. The component implementation

46

IP QoSArchitecture Beyond Best-Effort Service

details are not mandated to be uniform but the perceived outward behaviour must

be uniform for all implementations. We have already discussed the reservation

setup protoco~SVP, the other components of the implementation framework

share similar functions as discussed in Chapter 3 under generic components of

. QoS architectures (Section 3.1 to Section 3.5).

Admission Control: This implements the decision algorithm that a router or host

uses to determine whether a new flow can be granted the requested QoS without

impacting against earlier guarantees. Admission control is invoked at each node

to make a local accept/reject decision, at the time a host requests a real-time

service along some path through the Internet.

Classifier: In the Integrated Services (IS) model, each in coming packet must be

identified in order to be able to map it to its reservation state information. The

state information is used to parameterise the treatment the packet will receive

from the scheduler.

Packet Scheduler: For more detailed information on packet scheduler, see

Section 3.7. Packet scheduler manages the forwarding of different packet streams

using a set of queues and perhaps other mechanisms like timers.

2.2 Integrated Services over Specific Link Layers

The Integrated Services (IntServ) standard is essentially a layer 3 QoS architecture.

Its signalling protoco~SVP is designed on the basis of point-to-point link

technology. Since IF runs over different link layer technologies-Ethernet, ATM,

etc, there is the need to support the IntServ-RSVP resource allocation paradigm over

these link layer technologies. This will ensure continuity in end-to-end IntServ QoS

support across the Internet. The IETF realised this and created a working group

(WG) called Integrated Service over Specific Link Layers (ISSLL) [ISSLL-802]

WG to address the issues.

To support RSVP resource allocation over shared LANs, the concept of the

Subnetwork Bandwidth Manager (SBM) has been developed. The SBM Protocol

[RFC 2814] is an extension to RSVP signalling to support RSVP-based admission

control in IEEE 802.3 style ofLAN, (Ethernet).

Many Internet backbones are now built on ATM networking technology, it is natural

to make use of ATM built-in QoS capabilities by developing a standard way of

47

IP QoS Architecture Beyond Best-Effort Service

mapping IntServ QoS support onto A1M QoS support. This involves developing a

standard method of inter-operating the QoS functionality of the two technologies.

We will briefly discuss the SBM protocol and RSVP over A1M in this section.

2.2.1 RSVP over ATM

A1M (Asynchronous Transfer Mode) has been established as a networking

technology with a built-in mechanism for QoS support. It is therefore a natural

process to define a standard mapping for translating IntServ-RSVP QoS service

classes onto A1M QoS service classes [And et al.OO].

The proposed mapping for IntServ service classes and parameters onto A1M

service categories and descriptors are shown diagrammatically in Figure 2.2.

RSVP Flow Specification ATM Service Specification

Average Bit Rate (R) Average Bit Rate (SCR)

Peak Rate (P) Peak Rate (PCR)

BurstlBucket Size (B) Emission Burst (MBS)

IntServ Service Classes A1M Service Classes

Best-Effort UBRlABR

Control Load nrtVBR or ABR

Guaranteed CBRorrtVBR

SCR: Sustainable Cell Rate PCR: Peak Cell Rate MBS: Maximum Burst Size

UBR: Unspecified Bit Rate ABR: Available Bit Rate VBR: Variable Bit Rate

nrtVBR: non-real-time VBR CBR: Constant Bit Rate rtVBR: real-time VBR

Figure 2. 2: Mapping ofIntServ Services onto A1M Services

2.2.2 Subnetwork Bandwidth Manager (SBM)

Subnetwork Bandwidth Manager operates as a centralised resource broker in a

shared LAN environment. The Sub network Bandwidth Management protocol

allows each RSVP signalling session to transverse the shared link or networks

without overcommitting the shared link resources to service a particular host's

48

JP QoS Architecture Beyond Best-E;ffort Service

flows to the detriment of other flows in other hosts in the network. It provides a

method of managing and mapping IntServ-RSVP QoS services in the shared

resources of a shared LAN segment. For each LAN a single SBM becomes the

Designated SBM (DSBM) either through election or static configuration [Fin02].

When a new host first becomes active on the LAN, it attempts to discover whether

a DSBM exists through a fault-tolerant DSBM discovery-and-election protocol.

Once a host finds the DSBM, it becomes the DSBM client to the DSBM. The

DSBM client simply passes all its RSVP messages through the DSBM. The DSBM

is responsible for RSVP reservation and admission control for all its DSBM clients.

It co-ordinate management of resources in the LAN segment.

Managed Segment RSVP Message Processing:

A DSBM client sends its RSVP messages through the DSBM. All incoming and

outgoing RSVP messages compulsorily must pass through the DSBM for control.

Thus DSBM is inserted necessarily as an extra hop to the normal RSVP operations.

As part of processing, the DSBM build-up Path State Blocks (PSB) for each

session and update the RSVP_HOP object (PHOP) to include its own DSBM

interface address. SBM protocol introduces new RSVP objects called LAN_NHOP

object and RSV _HOP _ L2 object. The RSV _HOP _ L2 object is similar in function

to RSVP_HOP object in that it identifies the MAC address of the next hop or

previous hop nodes participating in the SBM signalling processes. This helps to

simplify processing of RSVP messages by layer 2 devices that operate strictly with

MAC addresses. For example when a layer 3 device forwards the PATH message

over a shared segment, it includes its IP address in the RSVP_HOP object and the

corresponding MAC address in the RSVP_HOP _ L2 object, consequently it

simplifies processing for layer 2 device that cannot interpret the RSVP_HOP

object. The LAN_NHOP object has similar application for RSVP messages that are

transmitted from one layer 3 device to another, but must transverse a purely layer 2

network. Another new RSVP object that is introduced is the TCLASS object.

Downstream DSBMs will insert the new traffic object (TCLASS object) in the

PATH message that specifies the appropriate service class for the flow according to

the service mapping determined at the intervening switches. The TCLASS object is

treated like the ADSPEC object in normal RSVP PATH messages. All incoming

RSVP PATH messages pass through the DSBM. It would parse both the normal

49

JP QoSArchitecture Beyond Best-Effort &n-ice

and additional RSVP objects in the message and setup PSB before sending the

message to its destination (i.e. the DSBM client).

The DSBM makes decisions on both incoming and out going RESV messages

based on the resources available in the managed segment. If a request cannot be

granted, RESVerror is sent to the requester. On the other hand if the reservation

request can be granted, the RESV massage is forwarded to the previous hop

address of the incoming PATH message based on the session's PSB.

2.3 Differentiated Services Architecture

The development of the Differentiated Services (DiffServ) architecture was the

response of IETF to the need for a relatively simple and coarse resource allocation

architecture compared with the complexity of per-flow end-to-end IntServ

architecture [SikTei] [Aky et al.03]. It is a well-known fact that the per-flow

processing, involving admission control and flow state maintenance of IntServ

RSVP paradigm could create scalability problems in backbone networks with multi

gigabit links. The limitations oflntServ-RSVP model engineered the revitalisation of

the old mechanism of providing simple priority-based QoS in the Internet [Bia99].

The IETF DiffServ Working Group (WG) [RFC 2475] was charged with the

responsibility of redesigning the priority-based Type of Service (ToS) Field in IPv4

header to support broad based resource allocation. The ToS Field was renamed as

Differentiated Services (DS) Field [VeiOO] [Ste98]. The definition of services

encoded in the DS Field along with the specification of the associated resource

allocation policies in the networks is referred to as the Differentiated Services

(DiffServ) architecture [DSFWK].

2.3.1 DiffServ Architecture Overview

The DiffServ architecture is based on a simple model where traffic entering a

network is classified and possibly conditioned at the boundaries of the network,

and assigned to Behaviour Aggregates (BA). A BA is a collection of packets that

would receive similar forwarding treatment in the networks. Each BA is identified

by a single value of DS Codepoint [RFC 2474], (the 6-bit of ToS byte field of

IPv4 header). Within the core of the network, packets are forwarded according to

the Per-Hop Behaviour (PHB) associated with the DS Codepoint. The per-hop

50

IP QoS Architecture Beyond Best-Effort Service

forwarding behaviour of packets within the interior of the network is guided by

service provisional policy adopted by the network administration. Packet

forwarding at the boundary of the network (both ingress and egress traffic) must

comply with the peer Service Level Agreement (SLA). Functionally, ingress and

egress traffic to the network must comply with the Traffic Conditioning Agreement

(TeA) which is a sub-set of SLA.

2.3.2 DiffServ Architecture

OiffServ is an architecture for implementing scalable service differentiation in the

Internet. The architecture achieves scalability by aggregating traffic into a small

number of groups known as!OIwarding classes that is conveyed to the network by

means of lP-layer packet marking using the OS Field [RFC 2474]. The OS Field is

the same as the Type of Service (ToS) byte in the IPv4 Header. Each forwarding

class, as encoded in the OS Field represents a predefined forwarding treatment in

terms of resources allocation that the class would enjoy in the network. There is no

need for resource allocation setup. Packets are classified and marked to receive a

particular per-hop forwarding treatment on nodes along their path. Per-hop

behaviours are defined to permit a reasonably granular means of allocating buffer

and bandwidth resources at each node among competing traffic streams. Per

application flow or per-customer forwarding state need not be maintained within

the core of the network. Sophisticated classification, marking, policing, and

shaping operations are restricted to network edge nodes. Network resources are

allocated to traffic streams by service provisioning policies which govern how

traffic are marked and conditioned upon entry to a differentiated services-capable

network, and how that traffic is forwarded within that network.

The architecture only provides service differentiation in one direction of traffic

flow and is therefore asymmetric. Conceptually, the architecture functional blocks

include; Traffic Classification block, Per-Hop Behaviour (PHB) block and Traffic

Conditioner block.

2.3.2.1 Traffic Classification

Traffic classification functions concern criteria employed for classifying traffic

into groups of forwarding classes to receive specific treatment in the

51

JP QoS Architecture Beyond Best-Effort Service

Differentiated Services (OS) networks. Various criteria could be employed for

allocating traffic into groups and for identifying the groups. These could be based

on categories of applications (whether elastic or non-elastic), on customer needs,

on protocol classes, on organisational requirements etc. Two types of classifiers

are defined. One classification is based on the use of Differentiated Services

Codepoint (OSCP), (6-bit of ToS byte field of IPv4 header) to mark packets as

belonging to a forwarding class, and is referred to as BA Classifier. The other

classification is based on the value of a combination of one or more packet header

fields, and referred to as MF (Multi-Field) Classifier. After traffic groups have

been defined and are allocated to forwarding classes, the packets belonging to a

forwarding class are marked for identification purposes using a classifier, usually

the BA Classifier. A service will be defined to associate with the forwarding

class.

The classification function involves two phases of operation: pre.jlow

classification and in.jlow classification. The pre-flow classification is done at the

end nodes and its criterion is dictated by customer-service-provider agreement.

Actually the in-flow classification is under Traffic Conditioning block. It is done

at the edge nodes and controlled by TCA

2.3.2.2 Per-Hop Behaviour (PHB)

Per-Hop Behaviour (PHB) is a description of the extemal1y observable

forwarding treatment a DS node applies to a particular DS BA. All packets with

the same codepoint are referred to as Behaviour Aggregate (BA), they receive the

same forwarding treatment in the network. The term "extemal1y observable

forwarding treatment" relates to queuing, queue management and scheduling

characteristics a BA receives from DS-node in the network. The DSCP value on a

packet specifies the PHB given to the packet within the DS network. The PHB

represents the building block from which a variety of services could be built on.

After a service is defined, a PHB is specified on all nodes in the network offering

the service, and a DSCP is assigned to the PHB.

The DiffServ architecture is illustrated in Figure 2.3 and it captures the main

component functions of the architecture.

52

Ingress
Boundary Node

TrJ.c Conditioning
Functions

JP QoSArchitecture Beyond Best-Effort Service

ADSDomain PHB depend on DSCP

Interior Nodes

PHB Functions

Figure 2.3: Illustration of Main Functions in DiffServ Architecture

2.3.2.3 Traffic Conditioner

Traffic conditioning operation ensures that a traffic flow's profile characteristics

stay within its contracted agreement such that excessive traffic is prevented

which could offset provisioning-utilisation balance. Traffic flow that stays within

its agreed characteristic flow-profile are said to be in-profile and traffic flow that

exceeds its agreed characteristic flow-profile are said to be out-of-profile.

Differentiated Services (OS) may span several DS domain boundaries. To ensure

smooth operations, Service Level Agreements (SLA) are established between an

upstream DS domain network and a downstream DS domain network. The SLA

will specify traffic conditioning rules that may be applied to traffic streams,

which are in-profile or out-of-profile. Traffic Conditioning Agreements (TCA)

are specified between the DS domains and are derived (explicitly or implicitly)

from the SLA.

Traffic conditioning operations include: classifying, metering, shaping, policing

andIor re- marking to ensure that, traffic entering the DS domain conforms to the

rules specified in the TCA, in accordance with the domain's service provisioning

policy. The extent of traffic conditioning required is dependent on the specific of

the service offering, and may range from simple codepoint re-marking to

complex policing and shaping operations.

53

IP QoSArchitecture Beyond Best-Effort Service

2.3.3 Terminology

DS Domain: a contiguous set of nodes or a single network capable of employing

DiffServ mechanism for network resources allocation and services.

Service Level Agreement (SLA): a service contract between a customer and a

service provider that specifies the forwarding service that customer traffic should

receive. A customer may be a user organisation (source domain) or another DS

domain (upstream domain). A SLA may include traffic conditioning rules, which

constitute a TCA in whole or in part [Cor et al.03].

Service Provisioning Policy: a policy which defines how traffic conditioners are

configured on DS boundary nodes and how traffic streams are mapped to DS

behaviour aggregates to achieve a range of services.

Traffic Conditioning Agreement (TCA): an agreement specifying classifier rules

and any corresponding traffic metering, marking, discarding and/or shaping rules

which are to apply to the traffic streams selected by the classifier [ArmOO).

2.3.4 DS Field

The current JP packet header (1Pv4) includes an 8-bit field called Type oj Service

(ToS) Field It consists of 3-bits precedence, 3-bit type of service (ToS) and 2-bits

unused that must be set to zero [RFC 1349) [GunRua99]. The precedence bits

represent the priorities of the traffic, while the ToS bits encode preference for loss,

throughput, and delay. This is illustrated in Figure 2.4a.

The IETF DiffServ Working Group (WG) redefines the existing ToS Field and

renames it DS Field. The existing 3-bits precedence and the 3-bits ToS are now

combined to form the 6-bits Differentiated Services Codepoint (DSCP), which is

also referred to as DS Codepoint as illustrated in Figure 2.4b. The remaining 2 bits

are currently unused (CU). The DSCP should be treated as an index, and the

mapping ofDSCP to PHBs must be configurable, [RFC 2474].

Class Selector Codepoint:

DiffServ WG allocated a set of Codepoint values known as Class Selector

Code points to maintain backward compatibility with known current use of the JP

precedence field. The codepoints in the range 000000 to 111000 are reserved as

54

JP QoS Architecture Beyond Best-Effort Service

class selector codepoints and have direct relationship with precedence bits 000 to

111. The codepoint value 000000 has been set as default PHB DSCP and has a

PHB forwarding behaviour equivalent to best-effort service. Other codepoints

could be mapped to the class selector PHBs, but they must meet the class selector

requirements. The requirements for class selector PHBs are detailed in RFC 2474

[RFC 2474].

ToS byte Field

Precedence D I TB I LOO
, I , , , ,
! i-~----~--------'
: : Currently unused : I ~ _________________ J
, ,

I-~------------'
: 0 = nonnalloss : , ,
: 1 = low loss , _________________ 1

.~---------------------" i 0 = ~onna1 throughput
: 1 = high throughput ,
~------------------------

,~-----------------"
: 0 = nonnal delay : , '
: 1 = low delay :
, ' ~ ___________________ J

Figure 2.4a: Type of Service (ToS) Field in lPv4 Packet Header

DS byte Field

I DSCP 5 DSCP 0 I CO I CO I
Differentiated Services Codepoint (DSCP): 6 bits (DSCP5-DSCPO)

Currently unused (CO): 2 bits

Figure 2.4b: DS Field in DiffServ Architecture showing DSCP

2.3.5 DiffServ Service Models

Besides the class selector codepoints PHBs and the default PHB codepoint, IETF

DiffServ WG has defined two PHBs as DiffServ standard service models. The two

are Expedited Forwarding (EF) PHB and Assured Forwarding (AF) PHBs. The

two European funded project, AQUILA and SEQUIN deal with DiffServ-based

service models [Bak et al.03] [Eng et al.03] [Bouras et aI.03].

55

IP QoS Architecture Beyond Best-Effort Service

2.3.5.1 Expedited Forwarding PHB

EF PHB was proposed as a low latency, low jitter and low loss PHB forwarding

behaviour aggregate [RFC 2598] [ArmOO). EF PHB is defined as the forwarding

treatment for a traffic aggregate, in which the departure rates of the packets in the

aggregate from any DS node must exceed or equal the arrival rates. The EF

traffic must receive this rate independent of the intensity of other traffic

requesting transmission service from the node. The specification doesn't mandate

a specific implementation approach, but from its low jitter requirement, priority

based queuing and scheduling with appropriate control may be more suitable. The

codepoint recommended for EF PHB is <101110>.

2.3.5.2 AF PHB Group

The AF standard is a PHB group that is structured into four forwarding classes

and within each forwarding class, three drops precedence are defined [RFC

2597]. Each forwarding class is associated with a minimum amount of buffer and

bandwidth allocation. Three drop priorities within each forwarding class are used

to select which packets to drop during congestion. While EF supports services

with hard bandwidth and jitter characteristics, the AF group allows more flexible

and dynamic sharing of network resources---supporting the "soft" bandwidth and

loss guarantees appropriate for bursty traffic.

Table 2.2 AF PHB Codepoints

Low drop precedence

Medium drop precedence

High drop precedence

Class 1

001010

001100

001110

Class 2 Class 3 Class 4

010010 011010 100010

010100 011100 100100

010110 011110 100110

Two distinct classification contexts are encoded within the DSCP--a packet

service class and its drop precedence. The first 3 bits of the DSCP encode the

class and 2 bits encode the drop priorities and this is illustrated in Table 2.2.

56

IP QoS Architecture Beyond Best-Effort Service

2.4 IEEE 802.1D MAC Bridges Support for User's
Priority

The IEEE 802. ID is the standard for Media Access Control (MAC) Bridges that

specifies a state-of-the-art architecture that can be used to interconnect the various

IEEE 802 style ofLAN technologies. The IEEE 802 standards for LAN technologies

include: IEEE 802.3 style- Ethernet, 802.4-Token Bus, 802.5-Token Ring, Fibre

Distributed Data Interface (FDDI), and 802.12-Demand Priority. Some of these

LAN technologies, such as FDDI, Token Ring, Token Bus and Demand Priority,

support the mechanism of user priority as legacy built-in mechanism to provide

minimal service differentiation in the networks.

IEEE 802.1 P standard is a supplement to the IEEE 802. ID standard, which defines

additional capabilities in Bridged LAN s environment, aimed at:

1. The provision of expedited traffic capabilities, to support the transmission of

time- critical information in a LAN environment.

2. The provision of filtering services that support the dynamic use of Group

MAC addresses in LAN environment.

Since our concern here is on QoS, we will only examine the capabilities specified in

1 above. MAC Bridges are designed to support and maintain Quality of Service

(QoS). It is expected that the QoS supported in the Bridged LAN environment should

not be significantly inferior to that supported by individual LAN.

IEEE 802.1 P specification on expedited traffic capability enables MAC Bridges to

support priority based differentiated services in all the Bridged LAN [HaI98). Thus

MAC Bridges could signal user priority information over a LAN such as an IEEE

style Ethemet which has no inherent capability to signal such priority information.

IEEE 802.1 P standard covers the concept of Traffic Classes and their effect on the

operation of Forwarding Process of MAC Bridges. MAC Bridges interconnect the

separate LANs that comprise a Bridged LAN by relaying and filtering frames

between the separate MACs of the Bridged LAN. QoS functions of MAC Bridges in

relaying or transmitting frames between LANs include:

• Prevention of frame misordering for frames transmitted with the same user

priority and the same combination of destination and source addresses.

57

JP QoSArchilecture Beyond Best-Effort Service

• Regeneration of user pnonty based upon a combination of signalled

information and configuration information held in the Bridge.

• Filtering services which increase the overall throughput of the network

• Minimise transit delay

• Use of priority for expedited transmission of time-critical traffic.

• Prevention of frame duplication

• Use of frame check sequence (FCS) to prevent undetected frame error rate.

2.4.1 Bridge Operation on the User's Priority

A Bridge classifies frames into traffic classes in order to expedite transmission of

frames generated by critical or time-sensitive applications. The Forwarding Process

of the Bridge may provide more than one transmission queue for a given Bridge

Port.

Table 2.3 User Priority to Traffic Classes Mappings with Default Mapping

User
Numbers of Available Traffic Classes

2 3 4 5 6 7 8
Priority

0 0 0 0 0 0 0 0
(default for
unspecified)

1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 2

3 1 1 1 2 2 2 3

4 1. 1 2 2 2 3 4

5 1 1 2 3 3 4 5

6 1 1 2 3 4 5 6

7 1 2 3 4 5 6 7

Frames are assigned to queues on the basis of received or regenerated user-priority,

using the Traffic Class Table that is part of the state information associated with

each Port. The table indicates, for each possible value of user-priority, the

corresponding value of traffic class that shall be assigned. Queues correspond one

to-one with traffic classes.

58

JP QoSArchitecture Beyond Best-Effort Service

Up to eight traffic classes are supported in a Traffic Class Table which will allow

for up to eight level of queue classes in a Port. The traffic classes are numbered

from 0 through n-l, where n is the number of traffic classes associated with a given

Port. This is illustrated in Table 2.3. Management of traffic class information is

optional. In a given Bridge, it is permissible to implement different numbers of

traffic classes for each Port.

Where a Bridge Forwarding Process does not support expedited classes of traffic

for a given Port, all values of user-priority are mapped to the default traffic class O.

Support for expedited traffic class should include support for default mapping of

user-priority to traffic class 0 as shown in Table 2.3.

For a given supported value of traffic class, frames are selected from the

corresponding queue for transmission only if any queue corresponding to

numerically higher values of traffic class supported by the port are empty at the

time of selection. This implies strict priority scheduling which has been criticised

for its pre-emptive oflower priority traffic classes [ArmOO].

Originally two traffic classes were recommended. The arguments put forward to

support this include the claim that, LAN traffic mainly falls into two categories:

time-critical and non-time-critical traffic. And that there will be no great advantage

to be gained by further categorisation and provisioning for additional expedited

classes [802.ID&p93].

2.5 Multi-Protocol Label Switching (MPLS)

MPLS is a networking technology that represents the convergence of two

fundamentally different approaches to packet forwarding paradigm: connection

oriented and connectionless. It combines the high-performance capabilities of layer 2

switching with the scalability of layer 3 based forwarding [ArmOO-art] [VeiOO]

[Cisco02] [Ste98]. MPLS is expected to improve the performance of network layer

routing, provide support for QoS routing, and provide greater flexibility in the

delivery of new routing services. The initial MPLS effort as reported by IETF MPLS

working group, was focused on IPv4, however the core technology was said to be

extendible to multiple network layer protocols (e.g., 1Pv6, IPx, Appletalk, DECnet,

CLNP). MPLS provides connection-oriented label based switching, based on IP

routing and the control protocoIs [MPLSfrwk] [MPLSarch].

59

JP QoSArchitecture Beyond Best-Effort Service

The core effort includes, using fixed length of labels to label packets and using the

labels to route packets to their destination. Label swapping takes place at MPLS

capable routers along the path a packet takes to its destination. The purpose of label

switching is not to replace IP routing but rather to enhance the service provided by IP

Networks by offering scope for Traffic Engineering (TE), guaranteed QoS and

Virtual Private Networks (VPN).

2.5.1 MPLS Architecture Overview

MPLS is based on a simplified and faster layer 3 forwarding architecture that

employs packet labelling as the basis for expedited forwarding. The architecture

ensures that, the assignment of a particular packet to a particular Forwarding

Equivalence Class (FEC) is done once, as the packet enters the network. An FEC

defines a group of IP packets that could share a similar forwarding routing

treatment and are forwarded over the same Label Switched Path (LSP). The FEC to

which the packet is assigned is encoded as a short fixed length value known as a

"label". The label is attached to the packet header before the packet is forwarded to

its next hop. This ensured that, packets are "labelled" before they are forwarded.

Basically the MPLS architecture consists of two principal components: control and

data forwarding. The control component is responsible for providing fixed-length

labels entries into the Label-Switching Table (LST). It consists of process threads

that use a Label Distribution Protocol (LOP) to obtain, distribute and maintain

label-forwarding information for all destinations in the MPLS network. The data

forwarding component is the executive branch, which switches packets by

swapping labels using the label information carried in the packet and the label

information maintained in the LST.

In conventional IP packet forwarding, each router makes independent forwarding

decisions based on the layer-3 destination address in the IP packet header and its

longest prefix match in the router-forwarding table. In some cases (especially in

multicast or source routing) the layer-3 source address in conjunction with

destination address may be used in processing forwarding decision. These

processes are repeated at every hop in the networks. With MPLS forwarding

paradigm, the header addresses lookup is done just once as the packet enters the

60

JP QoSArchitecture Beyond Best-Effort Service

network. The packet is then assigned to a particular FEe. Once a packet is assigned

to an FEe, no further JP header analysis is done by subsequent routers, all

forwarding decision are driven by the labels. Intennediate routers may only

perfonn label swapping on the packets.

In the MPLS architecture the decision to bind a particular label to a particular FEC

is always made by the downstream LSR with respect to the flow of the data traffic.

The downstream LSR then infonns the upstream LSR of the binding. There are two

modes of downstream label distribution: dawnstream on demand and unsolicited

downstream. In the downstream-on-demand mode, an LSR explicitly requests a

neighbour for a label binding for a particular FEC. Whereas the unsolicited

downstream mode allows an LSR to distribute label bindings to its neighbours that

have not explicitly requested for them.

2.5.2 Data Forwarding Process

Once the control component has converged or has carried out its functions and

adequately populated the label-switching table, the data forwarding process

becomes simple. The Ingress Label Edge Router (LER) to the MPLS network will

perfonn the initial packet classification by looking into the JP header address

infonnation and allocating the packet to a FEe and then adding the appropriate

label using infonnation from the Label Information Base (LID). The LER will then

forward the packet. Subsequent Label Switched Routers (LSRs) simply forward the

packets by using label-swapping technique. When a packet carrying a label arrives

at a LSR, the LSR uses the label on the packet as the index into the entries in its

LID. For an incoming label, the LID contains a matching entry for the

corresponding outgoing label, interface, and link-level encapsulation information to

forward the packet.

Using the infonnation in the LID, the LSR swaps the incoming label with the

outgoing label and transmits the packet on the outgoing interface with the

appropriate link-layer encapsulation. The data forwarding action perfonned by an

egress LER will depend on whether it forwards the packet to an MPLS-capable

node in another MPLS cloud or it forwards the packet to its destination or to a node

in non MPLS-capable network. If the egress LER is sending the packet to another

61

JP QoS Architecture Beyond Best-Effort &rvice

MPLS cloud, it employs the label swapping technique and transmits the packet. In

all other cases, it removes the label and uses the IP header destination address

information to transmit the packet as in conventional IP router. MPLS architecture

as described above is illustrated with Figure 2.5. The figure graphically describes

MPLS network operation.

2

1

ATM_T.<m

1. Existing routing protocols (e.g. OSPF, BGP, ISIS) establish reachability-route to destination networks.

2. Label distribution protocol (LPD) creates entries to switching-table to provide labels mappings to label

switched paths (LSPs) to reach destination networks.

3. On receiving a packet, ingress label edge router (LER) performs nonna! IF header lookup and

classifies the packet to a forward equivalent class (FEe) and adds MPLS label, then forward the

packet

4. Interior label switched router (LSR) simply looks at switching-table to swap incoming label on the

packet with outgoing label and then transmits the packet.

Figure 2.5: MPLS Network Functional Components

2.5.3 MPLS with QoS

Explicit Label Switched Path (LSP) could be setup based on resource availability

in the paths within a network. Traffic flows requesting for such adequate resources

that are available in the LSP would be allocated to a FEC, which would carry a

label for the relevant LSP. This will ensure that the packets of the traffic flows are

routed along the LSP that have the resources the flows requested.

The experimental 3 bits in MPLS label could be setup just like IP precedence

values to provide up to eight-levels of per-hop differentiated QoS routing. Thus the

62

JP QoS Architecture Beyond Best-Effort &rvice

class selector field values in DSCP of DiffServ architecture or the IP precedence

values in IPv4 could be mapped to experimental bit values of MPLS label for per

hop behaviour specification and treatment.

2.5.4 MPLS with Traffic Engineering

Traffic Engineering (TE) concerns the optimum distribution of traffic loads within

networks to achieve efficient utilisation of network resources. With the tools for

TE, an explicit path can be specified for certain traffic flows to take based on their

resource requirements rather than being based on the shortest hop-by-hop distance

vector or link-state to flow's destination metric employed by IP routers in

conventional IP packet forwarding.

MPLS application provides capability for TE [Aky et al.03] [Bos et a1.04]. The

path the conventional IP traffic takes may not be optimal, since it depends on static

link metric information without any knowledge of the available network resources

along the path end-to-end. MPLS supports the explicit LSP path setup mechanism

for network resources reservation for some classes of traffic and for load

distribution within the networks. IETF MPLS working group has specified two

protocols for such functions: Constraint Routed Label Distribution Protocol (CR

LDP) and RSVP with Traffic Engineering (RSVP-TE). The features for CR-LDP

include: explicit routing, resource reservation for classes, route pinning, path pre

emption, handling failure, and LSP ID. RSVP-TE share similar features as CR

LDP with some minor differences, which include: the concept of nodal abstraction,

re-routing ofLSPs after failures, and tracking of the actual route of an LSP.

Augmented work on TE in relation to MPLS and DiffServ are treated In,

[AutKir02]. [Yen et aI.OI]. [Zha05].

Summary

The Integrated Services architecture is composed of a framework for a new service

model, which includes RSVP as the QoS signalling protocol and a set of

implementation mechanisms for per-flow resource reservation and allocation in the

Internet. Routers in the path of a flow must maintain Flow States for packet

classifiers to identity packets and schedulers to parameterise the treatment flows will

receive from the networks.

63

I

JP QoSArchitecture Beyond Best-Effort Service

Differentiated Services architecture adopts a simplified model in which packets are

aggregated and classified into groups called Forwarding Classes (FCs). Packets in

each FC are marked with a DS Codepoint value to produce a Behaviour Aggregate

(BA) that will determine the Per-Hop Behaviour (PHB) the group receives in the

network. Per-flow states need not be maintained in the network. Packets are

conditioned at the edges of the network and marked to receive PHB relevant to its

QoS need within the network.

MPLS represents the convergence of connectionless and connection oriented packet

switching technologies. It simplifies layer 3 forwarding and improves its

performance. It supports both QoS routing and Traffic Engineering (TE). It is simply

based on label swapping in which a packet on entering into the network is assigned

to a Forward Equivalent Class (FEe) and given a label. At each hop, the incoming

label on the packet will be used as an index to entries in the Label-Switching Table

(LST) maintained by the hop (a Label Switched Router (LSR». The incoming label

on the packet will be swapped with the corresponding outgoing label found in the

LST and the packet will be forwarded onto a Label Switched Path (LSP) towards its

destination.

64

Generic Components of Qos Architectures

CHAPTER 3

Generic Components of QoS Architectures

QoS architectures may differ in protocol structure or algorithmic mechanism, but

they have the same generic building blocks. Our concern in this chapter is to examine

the generic building blocks of QoS architectures and to highlight their importance.

The coverage will include: QoS Specification Template, QoS Signalling Mechanism,

Admission Control, Traffic Classification, Traffic Policing and Conditioner, and

Queuing and Scheduling Disciplines. We will briefly examine each of these building

blocks and place more emphasis on queuing and scheduling disciplines in view of

their strategic functions as QoS implementers.

3.1 QoS Specification Template

A QoS specification template concerns the specific format a Quality of Service

(QoS) architecture adopts in characterising the resource requirements of an

application in the network. A standard way to specify the desired QoS characteristics

a flow would need in the network is crucial for the necessary information

dissemination on which QoS support depends. The ability to describe the

characteristics of a traffic flow is necessary to properly provision resources in the

network's infrastructure. This function will include standard semantics to specify and

define resource parameters and QoS parameters in the network. Examples of this

function could be found in QoS Specification Parameters [RFC 2215] of Integrated

Services (IntServ) architecture, the interpretation of encoding of DS Code point [RFC

2474] of Differentiated Services (DiffServ) architecture, and the Generic Service

Specification (GSS) framework proposed by Sotiris I. Maniatis et al. [Man et al.04].

3.2 QoS Signalling Mechanism

QoS architectures would have a means by which applications can signal their QoS

requirements to the network. QoS signalling mechanisms or protocols fulfil this

purpose. They are used to describe and carry the characteristics of traffic flows to the

network and are also used to reserve resources for the flows from network devices

65

Generic Components ofQoS Architectures

along the paths of data flow end-to-end. This function is very important in the sense

that the network must be aware of application traffic requirements to be able to meet

its QoS needs. Resource reSerVation Protocol (RSVP) ofIntServ is a good example

of a QoS signalling protocol (RFC 2205). Also IETF draft on improved signalling

protocol is another example [SignaIPro).

3.3 Admission Control

Physical resources are finite in the network. QoS can only be achieved if network

resources are available. In order to offer guaranteed and predictable services to

reserved flows, a network must monitor its resource usage. It should deny network

access to new traffic flows when insufficient resources are available. The resources

. available in the network must be carefully managed in order for QoS to be

effectively achieved. This is the function of admission control. For a flow's

requirement to be provisioned, there must be adequate resources available that are

not already committed to servicing other flows. An admission control agent makes

sure that, there are sufficient resources available in the network to meet the needs of

both existing flows and new flows before new flows are allowed into the network. It

is straightforward reasoning that if there were no admission control to the limited

resources available in the network, the resultant contention between flows would

yield nothing better than the classical best-effort service. There are basically two

functions of admission control: the first is to determine if a new flow can be setup

based on the admission control policies and the second is to monitor and measure

available resources, (Myk et aI.03) [WanOl,p.25).

3.4 Traffic Classification

A muItiservice network would employ some kind of differentiated services in order

to meet the divergent requirements of the various applications that use the service of

the network. In a differentiated services environment, the nodes in the network must

have a means of identifying a traffic flow in order to appropriately provisioned

discriminatorily for the service of the flow. The process of identifying traffic flows

would involve classification of flows into groups and marking each flow to belong to

a particular group. This is the role of the flow classification module, thus it identifies

and distinguishes packets belonging to one flow from other packets belonging to

66

Generic Components of QoS Architectures

another flow in order to allow differentiated services for the packets. The classifier

uniquely identifies and marks packets based on some predefined rules. One of the

rules usually adopted is based on the source and destination addresses, protocol ID,

source and destination ports of the packet. These five fields of the packet header are

together usually referred to as afive-tuple. Packets can also be identified and marked

on the basis of Type of Service (ToS) byte field of Internet Protocol (JP) version 4

(1Pv4) header, the Traffic Class field of JP version 6 (1Pv6) header, and the DS Field

(RFC 2474] of DiffServ architecture-the three are same object in different

specification environments.

3.5 Traffic Policing and Traffic Conditioner

It is important to ensure that a traffic flow stays within its traffic specification and

does not send excess traffic into the network. A completely free and unmonitored

access of traffic flows into the network can encourage misbehaving sources to flood

the network with traffic flows that will grievously consume network resources and

consequently pre-empty resources availability for well-behaved traffic flows. Apart

from not sending excessive traffic to the network, it is also necessary that a flow

maintains its traffic characteristics as it travels through the network. These are the

functions of traffic policing and traffic conditioner modules of network elements

(GuiDup02].

Policing is the term used to describe the enforcement function, for example, of

Service Level Agreement (SLA) between the customer and service provider. It is

typically implemented at the edges of the network where a traffic flow is first

introduced into the network. It carries out its functions to determine if a traffic flow is

in-profile or out-oJ-profile. The token bucket scheme, which will be described in

Section 3.5.1, is usually used as tool for policing. The token bucket scheme is a

variation of the leaky bucket scheme initially proposed by Turner (Tur86]. The

policing function will measure the traffic flow to determine if the flow is in-profile or

out-of-profile, if the flow is in-profile, its packet is allowed into the network, but ifit

is out-of-profile the policer can take one of two actions. It can be intolerant and drop

the packet or adopt a degree of tolerance and pass the packet to the traffic conditioner

who will mark the packet for wait-and-see-action such as dropping the packet if

congestion deteriorate in the network.

67

Generic Components ofQoSArchitectures

The Traffic Conditioner performs such actions as shaping and marking of the traffic

flows. Any customer traffic that is out-of-profile of the agreed temporal properties of

its traffic stream, is either rate-limited, that is shaped, or marked for subsequent

event determinant action in the network. The shaping function can employ either the

token bucket or leaky bucket algorithm which involves buffering of the packets of the

flow and then sending at a rate conformant to agreed traffic characteristics. The

relevant leaky bucket scheme is briefly described in Section 3.5.2. The marker can

set some fields of the packet header for example to indicate drop probability in the

network.

3.5.1 Token Bucket Scheme-Tool for Policing

A token bucket scheme is used as a means of measuring traffic flow to ensure it

conforms to its agreed traffic temporal characteristics [Abe et al.06). Basically it

consists of a fixed rate r token generator, a bucket of finite depth b, and a meter

scheduler. As shown in Figure 3.1, tokens are generated and placed in the bucket at

a constant rate of r tokens per second and the rate r should be equivalent in value to

the long-term average rate-limit allowed for the flow.

Constant rate tokens {§

Packets
Arriving

A
(----~ "---~,

11t4fd •.. fJ ! .. : 11111 ~..x,......-
biput Medium

Non-conform Packets {Q
(Dropped or Marked) 8

Figure 3.1 Token Bucket Scheme.

68

Finite Size Bucket

IIIIIII
\~---., ,...--~) - y

Confonn Packets
into the Network

Generic Components ofQoSArchitectures

The bucket has a fixed capacity of depth b. Assume each token corresponds to one

byte of data, and tokens are added into the bucket at the rate of r bytes/sec, if the

bucket fills up, newly arriving tokens are discarded. When a packet arrives, and

equivalent tokens are available in the bucket, the equivalent tokens are removed

from the bucket, and the packet of the flow is considered in-profile. The meter

scheduler will allow the packet into the network. When a packet arrives and there

are not enough tokens in the bucket, the packet is considered out-of-profile. The

meter-scheduler will either drop the packet or send it to a traffic conditioner for

marking and consequent action.

The token replenishment rate r, represents the long-term average rate-limit

allowed for the flow, which can allow some bounded burstiness in the flow. If the

bucket is full and a burst of packets arrives, the meter-scheduler will immediately

transmit packets equal to b bytes (the bucket capacity) with no gaps in between and

remove the same amount of token from the bucket. In a time interval t, the burst of

packets that can be allowed is bounded by (r x t + b) bytes.

3.5.2 Leaky Bucket Scheme-Tool for Shaping

Shaping is an act of rate limiting the traffic flow to the desired packet rate profile.

It will prevent very bursty sources from over-stretching network resource

capacities. The leaky bucket scheme provides the easiest method of shaping traffic

flows, in that, it can convert a variable rate packet input into a uniform rate packet

output. The leaky bucket model as illustrated with Figure 3.2, consists of a fixed

size bucket with capacity 13 bytes, and a constant rate packet scheduler for each

flow.

As traffic flow arrives, the packets are placed in the bucket. At any instance of

time, the bucket can only take a maximum of 13 bytes. If a packet of size k bytes

arrives (k < 13), it can only be placed in the bucket if the bucket has k bytes space

left, if not, the packet is discarded. The constant rate scheduler at the bottom of the

bucket (head of queue) sends the output traffic into the network at an allowed

constant rate a bytes/sec. The depth of the bucket is computed based on the queue

delay allowed for the flow, and the uniform speed of the scheduler. Thus a packet

of size k bytes at the tail of the bucket would be held for a period of time equals to

J3/a before being transmitted.

69

Generic Components ofQoSArchitectures

The leaky bucket can also be used for traffic policing with little orientation in its

operation as described above, [GanMcK99] [Mer et a1.91] [Cha et aI.OO].

Variable Rate Input Packets

Fixed Size Bucket

Constant Rate
Packet Scheduler~-..... ,

Figure 3.2: Leaky Bucket Scheme

3.6 Queuing and Scheduling Disciplines

Regularly Spaced Packets
into the Network

I I I I I I I I I I I I I I

Queuing and scheduling mechanisms are the most important component of QoS

architectures since they are responsible for implementation of QoS resource

allocation policies. All QoS architectures assume deployment of an associated

queuing-scheduling discipline that implements the architecture's functionality. The

queuing-scheduling mechanism plays a key role in ensuring that traffic flows receive

the network resources allocated to them through the allocation mechanisms of the

QoS architectures. As traffic flow travels from its source to its destination, it requires

instantaneous waiting room offered by the queuing method adopted in the network,

in order for the flow to receive resource allocations from network elements along its

path end-to-end. The scheduler ensures that, the queued traffic-flow, while being

serviced, receives the appropriate network resources allocated to it from each

network element in its path from source to destination. Thus queuing and scheduling

mechanisms provide the important function of transforming QoS objectives of QoS

architectures into reality. In view of their importance we will examine various types

of queuing and scheduling disciplines in the next section.

70

Generic Components ofQoS Architectures

3.7 Types of Queuing and Scheduling Discipliues

Various queuing and scheduling disciplines are available to meet the service

requirements of applications traffic in networks. Each is tailored to meet the service

objective of the network concern. In practice, queuing systems could either be a

mono queuing systems in which all traffic shares a single buffer space in the network

elements, or multiple queuing systems for which each flow or class of flows have

different buffer space allocated to it in network elements to simplify differentiated

services. In addition to the functionality of providing buffer space for transit traffic,

each of the queuing system could have appropriate sorting mechanism to provide

priority service for flows deserving it. The most prominent among the queuing and

scheduling disciplines are: First In First Out (FIFO), Simple Priority (SP), Round

Robin (RR), Weighted Round Robin (WRR), Deficit Weighted Round Robin

(DWRR), Weighted Fair Queuing (WFQ). Before we examine the various types of

queuing-scheduling disciplines, it is helpful to look at the basic requirements needed

to achieve their objectives.

3.7.1 Basic Requirements of Queuing-Scheduling Discipline

Queuing-scheduling disciplines are required to meet some basic requirements in

order to fulfil their objectives in multi service network environment. The basic

requirements are necessary to meet the need of both integrated and differentiated

services. The basic requirements are examined next.

3.7.1.1 Protection among Flows

In a multi service network environment, queuing-scheduling disciplines are

required to resolve contention for network resources among flows. They must try

to ensure that misbehaving flows do not affect the performance of well-behaved

flows that stay within their contracted traffic characteristics. If queuing

scheduling disciplines do not differentiate between flows, a rogue flow can send

traffic at a very high rate into the network and capture a large portion of the link

bandwidth. This will prevent other flows from getting their due share.

71

Generic Components of Qos Architectures

3.7.1.2 Flexibility in Resource Allocation

Queuing-scheduling actions must be flexible in allocation of resources so that

they cart separately control per-packet delay through the network for each flow.

The buffer space and bandwidth resource allocation for each flow must reflect its

required delay bound through the network.

3.7.1.3 Support for Real-time and non-Real-time Traffic

The queuing-scheduling algorithm must be tuned to meet the needs of both real

time and best-effort traffic. It must ensure that meeting the needs of real-time

traffic will not adversely starve best-effort traffic.

3.7.1.4 Implementation Simplicity and Efficiency

The queuing-scheduling algorithm must be amenable to easy implementation. It

must be devoid of implementation complexities that will hinder scalability.

Should support simple implementation schemes that will be elegant for its

purpose.

3.7.2 First-In First-Out (FIFO) Scheduling

In FIFO, also koown as First-Come First-Serve (FCFS) scheduling, packets are

queued in the order in which they arrived in the input queue and then serviced or

transmitted in the output queue in the same order. As illustrated in Figure 3.3,

packets 1, 2, 3 and 4 arrived in that order (i. e. 1 arrives before 2, etc) in the input

queue of FIFO queuing and scheduling system, and are transmitted in the same

order 1, 2, 3 and 4 (i.e. 1 serviced before 2, etc) at the output queue.

4 3 2 1

DODO
Arriving Packets

FIFOInput
Queue

Figure 3.3: FIFO Scheduling Discipline.

72

FIFO Output
Queue

Server

432 1

DODO
FIFO Serviced
Packets

Generic Components ofQoSArchitectures

FIFO is the traditional packet queuing and scheduling mechanism most commonly

employed jn Internet networks. It is simple, easy to implement and scalable.

However it has no mechanism to differentiate between flows, hence it cannot

prioritise among them. Besides not being able to prioritise one flow over others,

FIFO also c!lllnot offer either protection or fairness to well-behaving traffic flows

because badly behaving or rogue flows can consume most of the network resources

thereby denying service to other flows that stay within the conservative rate.

Adaptive flow-control mechanism in the Internet, such as the Transmission Control

Protocol (TCP) cannot offer protection for well-behaved flows against rogue flows,

if such a situation exists with FIFO, since FIFO flows receive service

approximately in proportion to the rate at which they send data to the network.

3.7.3 Priority Scheduling

In priority scheduling systems, packets arriving from multiple interfaces or ports

are identified and classified into a number of output queues. Theoretically many

levels of priority queues can be maintained in the mUltiple output queuing system,

but for manageable practical purposes three or four output queues have been

proposed [HusOO,p.203], [Veg03,p.91). The proposed four output priority

queues-high, medium, normal and low, accordingly are in decreasing order of

priority. Figure 3.4 is used in illustration of priority queuing and its scheduling

discipline.

P

-:!' 1111111111

(~

~ 1111111111

P Pre.1.assifiCatiOn
FIFO buffers Output Queues

Figure 3.4: Priority Queuing and Scheduling Scheme.

73

I~M~

Priority Scheduler

Generic Components ofQoS Architectures

In the arrangement here, the priority-4 queue has the highest priority and priority-l

queue the lowest priority. For example network control traffic could be placed in

the highest priority queue while voice packets are placed in the next priority queue

and then followed by the video packets. Best-effort packets could be placed in the

lowest priority queue. Service within each output priority queue is based on the

FIFO scheduling discipline. Non empty high priority queues are serviced before

any lower priority queues could be serviced. Any lower-priority packets are held in

the queue until no further higher-priority packets are awaiting transmission. Thus a

packet is scheduled from the head of the priority-n output queue as long as all

queues of higher priority are empty. Priority scheduling provides a simple form of

differentiated service. It could be used to give preference to some classes of traffic,

which would then be placed on high-priority queues and will consequently enjoy

lower delay and adequate bandwidth resources. Combined with admission control

to limit the input rate of high-priority traffic, low-priority traffic may still get

enough network resources to perform marginally well.

However strict priority scheduling has a number of disadvantages, which are

intuitively inherent in the nature of the scheme. High priority traffic enjoys network

resources to the detriment of lower priority traffic. While high priority traffic is

serviced, low priority traffic are backlogged in queues and continue to have

increased queue delay. If high priority traffic arbitrarily increases, the priority

scheduler will devote almost the whole of the network resources to the service of

the high priority traffic and the low priority traffic will be starved of network

resources. The pre-empting of network resources by high priority traffic to low

priority traffic could degenerate to very serious performance degradation of low

priority traffic. Thus strict priority scheduling is not suitable in multiservice

environment where each flow or class of flows require a predictive share of

network resources.

3.7.4 Round-Robin Scheduling

To mitigate against pre-empting of network resources by high priority traffic to low

priority traffic, an alternative form of scheduling uses a Round-Robin (RR) scheme

in which the scheduler visits each nonempty queue in turn, and services one packet

on each visit. This enforces some degree of sharing bandwidth resources among

74

Generic Components of Qos Architectures

contending flow and prevents one class of traffic from starving others of network

resources. Figure 3.5 illustrate RR scheduler with four output queues.

Queue-l"'_>~II~III~1
Queue-2"'_>-=I=I=I~' .

Figure 3.5 Round Robin scheduling.

As shown in Figure 3.5, the scheduler services one packet from queue-I then

moves to queue-2 and services one packet, and because queue-3 has no packet, the

scheduler moves to queue-4 and service one packet. The cycle continues again

from queue-I, any queue that has a packet will have one packet transmitted in

every cycle. RR scheduling prevents stagnation of any backlogged queue of traffic

flow. The scheduling decision is simple and efficient, it only needs to look at the

next nonempty queue to select the next packet for transmission. Also RR will

ensure that each flow get some percentage of the link bandwidth.

Nonetheless RR scheduling has some drawbacks. First, it does not allocate

bandwidth proportional to the requirements of individual flow. Second, it does not

take into account the variable packet sizes of the Internet Protocol (IP) datagram,

which could result in unequal sharing of bandwidth resources. For example,

consider Figure 3.5 in which the scheduler transmits one packet at the head of each

of the three nonempty queues in one cycle. If the packet sizes in queue-I, queue-2

and queue-4 are 64 bytes, 192 bytes and 384 bytes respectively. This will result in a

ratio of 1:3:6 for bandwidth allocation, which certainly is an unequal and unfair

allocation. The third setback concerns the delay and jitter introduced as a result of

cycle interval and its variation, which is a function of variable packet sizes in the

queues and the link bandwidth. This problem will be exasperated if many of the

packet sizes in the queues are very large and tend to the maximum size of IP

datagram-65535 bytes, and the link bandwidth speed is low. For illustration,

consider an interface with n number of queues, link speed of R bytes/sec and

75

Generic Components ofQoSArchitectures

Maximum Transmission Unit (MTU) of B bytes. The time it takes to transmit one

MTU-size packet is (B/R) seconds. Thus in the worst case scenario, a packet that

arrives in an empty queue that has just been skipped will have to wait (n - 1) x

(BIR) seconds until the scheduler comes back in its round to service the packet. The

parameters of the variables in this computation are random, and causes the packets

involve to incur high queue delay and jitter.

3.7.5 Weighted Round-Robin Scheduling

The Weighted Round-Robin (WRR) scheduler is a variation of the RR scheduler in

which each queue is assigned a weight corresponding to a proportional share of the

bandwidth allocated to it. WRR is also known as Custom Queuing [Veg03]. For a

hypothetical case, assume each queue-i is assigned a weight Wi in bytes. In WRR

scheduling, the scheduler services a number of packets proportional to Wi from

queue-i every time it visits the queue [BhaCroOO]. The weights are assigned to

take into account the different packet sizes and the required bandwidth allocation

for the flows in each queue. This is based on the assumption that the average

packet size of each flow is known in advance, which may not be the case for many

flows. The algorithm works in the following way: the weights are allocated in byte

counts. When the scheduler visits a queue and starts to transmit packets, the

number of bytes transmitted is deducted from the byte-count. As long as the byte

count is not reduced to zero the scheduler will continue to transmit packets from

the queue. If the scheduler has started to transmit a packet and the byte-count

reduce to zero before completing transmitting the packet, the scheduler must

complete transmission of the packet before moving to another queue. WRR

scheduling can be a useful tool for link bandwidth sharing. It will ensure that each

flow or class of flow gets a minimum of the bandwidth allocated to it. However, it

does not take into account the delay requirements of individual flows. The delay

and jitter incurred from cycle intervals, which is inherent in the RR model may not

be suitable for time sensitive applications such as voice over JP which must have

its small size packets interleave or interspersed with larger packets from all other

queues. Also WRR scheduling may not provide accurate link bandwidth sharing.

For example, consider Figure 3.5 again, in which queue-I, 2, 3 and 4 have

allocated weights of 100, 200, 400 and 300 byte-counts respectively. The sizes of

76

Generic Components ofQoSArchitectures

queued packets in queue-I, 2, 3 and 4 are 64, 192, 0 and 384 bytes respectively.

When the scheduler completes transmission of the first packet on its visit to queue-

1, the queue will still have (100 - 64), 36 byte-counts left, so the scheduler will

transmit the second packet. Thus a total of 128 bytes are transmitted in queue-I. In

a similar manner queue-2, 3 and 4, will have 384, 0 and 384 bytes transmitted

respectively. The ratio of bandwidth allocation for nonempty queues is 1 :2:3 but

the actual ratio of bandwidth utilisation is 1:3:3. This proves that WRR scheduling

may not be accurate in sharing link bandwidth. In order to improve its accuracy in

link bandwidth sharing, the weighted byte-counts and the largest average packet

size may need tuning for synchronisation, such that, more packets will be

transmitted at each queue visit, and the total bytes transmitted will not overly

exceed the allocated byte-count. This again will increase the cycle interval time and

increase the introduced jitter.

3.7.6 Deficit Round-Robin Scheduling

Another adaptive scheduler similar to Weighted Round-Robin (WRR) scheduler is

called the Deficit Round-Robin (DRR) scheduler [SbaVar95). Unlike WRR, DRR

does not require that average packet sizes of flows be known in advance. With

proper configuration it can provide both accurate and fair sharing of system

resources and bandwidth among contending flows. In a DRR scheduler, each flow

or class of flow has a usage regulating parameter which is a variable called deficit

counter that is initially set to O. In addition, the scheduler uses another parameter

called quantum size to decide how many bytes of data to service from each flow

during each visit. Let us denote the deficit counter for flow-queue i as Di. In a DRR

that is strictly fair, the quantum size in bytes is uniform for all flow-queues and is

here denoted as Q. The algorithm works as follows:

• Before the start of flow, the Dj is initialised to O.

• During the first round that the scheduler visits each active flow-queue, the Di is

set in value to the Q bytes, and the scheduler tries to service a number of packets

whose total size is not more than Di ---the current operative deficit counter

value.

• If the size of the packet at the head of a flow-queue is not larger than operative

Di bytes, the scheduler services the packet. But if the packet size is larger than

77

Generic Components ofQoSArchitectures

operative Di bytes, the scheduler postpones servicing it to the next round and

retains the current value of operative Di as the next round Di. Or if the

aggregate size of a number n of consecutive packets at the head of a flow-queue

are not larger than operative Di bytes, the scheduler service all the n packets and

subtract the total size of the n packets serviced from the flow's operative Di to

produce the next Di.

• During the subsequent visit to each of the flow-queues, the scheduler adds Q to

Di to produce operative Di, and then service a number of packets whose

aggregate size is equal to, or less than (Q + Di)-the operative Di. The

scheduler will then compute the difference, (operative Di - aggregate size of

packets serviced during the visit) as the next Di.

• On any visit, if a flow-queue is empty, the flow's Di is re-initialised to O.

In brief, for each active flow-queue, the scheduler transmits as many packets as the

operative deficit counter value allows on a flow-queue visit The operative deficit

counter value is given as (Q + Di), that is the sum of the quantum size Q and the

variable deficit counter value Di obtained from previous visit. When a packet is

transmitted, the current operative deficit counter value is reduced by the packet

size. The aggregate size of total packets transmitted on a visit to any active flow

queue should be less than or equal to current operative deficit counter value. The

aggregate size of transmitted packets is deducted from the current defiCit counter

value. The unused part of current deficit counter value is recorded as the next

deficit counter value Di, and represents the amount of quantum that the scheduler

owes to the flow during the visit. At the next round of visiting, the scheduler will

add the Q to Di to produce the new operative deficit counter on which the number

of packets to be transmitted will depend.

DRR main advantages are its simplicity and ease of implementation which made it

attractive for both software and hardware implementation [DurYav99]. Its

disadvantage is that, by itself, it could not provide a strong latency bound because

of the round intervals, especially if the quantum size is large, it will introduce

variable delay to small packet size flow at each node along the path of flow end-to

end.

Weighted Deficit Round Robin (WDRR) is the weighted version ofDRR It allows

for preferential bandwidth allocation. Link bandwidth could be shared in any

78

Generic Components ofQoSArchilectures

desirable percentage. It operates on three parameters: the weight for each flow or

class of flows, the nonnal quantum size, and the deficit counter for each flow

queue. Unlike DRR, which has one quantum size for all flows, WDRR assigns

each flow-queue a quantum size based on the product of the flow's weight and

unifonn quantum size in operation. WDRR operates like DRR and they both share

the same properties of predictable system resource and bandwidth usage by

contending flows.

3.7.7 Max-Min Fair Sharing

The problem of how to evenly or fairly divide a resource among competing

unequal requests has been the subject of careful studies among network

researchers. One fonn of fair-sharing scheme that has been widely considered in

the literature is called max-minfair sharing. The max-min fair sharing approach set

out to meet the requirements of small requests and fairly distribute the remaining

resources among larger requests. The algorithm is as follows:

• Flow-requests are sorted in the order of increasing resource requests.

• Resources are aIlocated in the order of the increasing resource requests

(smallest request first)

• No flow-request is allocated resources more than its demand.

• All Flow-requests with unsatisfied demand get an equal share of the resource

The algorithm can be implemented in four steps [WanOl.p. 61):

1. Calculate the initial fair share = (total resource capacity / total number of

requests).

2. For all flow-requests that have a demand equal to or less than the initial fair

share, aIlocate the flow's actual demands.

3. Remove the satisfied flow and subtract the already allocated resource sizes

from the total available resource capacity.

4. Repeat step 2 and 3 for remaining flows, with the current fair share =

(remaining resource capacity / remaining number of flows) until each of the

remaining demands are larger than the current fair share. All the remaining

demands with larger request than the current fair share will all have equal

share.

79

Generic Components ofQoSArchitectures

It is useful to illustrate this with numbers in order to precisely understand the

algorithm Let us imagine that a resource has capacity of 16 and will service the

needs of 4 users--Ul, V2, V3 and V4 with resource request sizes 3, 4, 6 and 8

respectively. Vsing the max-min fair sharing algorithm, VI is entitled to resource

allocation (16 / 4) = 4 which is more than its requirement. Its request will be met

and the unused excess of 1 returned to the resource capacity pool. V 2 the next

smaller demand is allocated with resource size, «16-3) / 3) = 4.33, its request will

be met and the excess 0.3 3 will be returned to the resource capacity pool.

Repeating the same procedure, V3 gets «13-4) / 2) = 4.5 resource allocation size.

The resource allocated to V3 is less than its demand, it is serviced but its demand is

unsatisfied. In the same manner, V4 gets 4.5 resource allocation, it is serviced but

its request is unsatisfied. Thus V3 and V 4 got an equal share of resource allocations

but their demands are not satisfied because their requests are higher than the fair

sharing of resources. The scheme is referred to as max-min fair sharing because it

maximises the minimum share of a user whose demand is not satisfied

The max-min fair sharing algorithm as described above does not differentiate

between requests, all requests are treated equally. An extension to the scheme that

will take differentiated services into consideration will be to associate a weight to

each request. The evolved scheme will be referred to as max-min weighted fair

sharing in which each user's share is proportional to its assigned weight.

3.7.8 Generalised Processor Sharing

The Generalised Processor Sharing (GPS) is an ideal queuing-scheduling model

based on the approach of the max-min fair sharing of resource allocation. GPS

implements max-min fair sharing resource allocations using an infinitely small

service quota. GPS puts each flow in its own logical queue and services an

infinitesimally small amount of data from each nonempty queue in a round-robin

fashion [Par92] [Pao04]. It services only an infinitesimally small amount of data at

each turn so that it visits all the nonempty queues at any finite time interval, thus

being fair at any moment of time.

If a weight is assigned per-flow, GPS services an amount of data proportional to

the assigned weights at each round of service. This GPS extension is equivalent to

the max-min weighted fair sharing resource allocation.

80

Generic Components ofQoSArchitectures

GPS is an idealised algorithm, which is not possible to implement since it does not

take into account the fact that a packet is a discrete unit that must be transmitted as

such. The GPS' s utility is that, it defines a metric of effectiveness, to measure

implemented queuing-scheduling disciplines, in relation to how close the queuing

scheduling discipline is to the ideal GPS.

3.7.9 Fair Queuing and Weighted Fair Queuing

In the preceding sections we have examined scheduling algorithms that are

increasingly effective in providing resource partitioning among multiple flows and

also provide fair or proportional sharing of bandwidth among contending flows.

Fair Queuing (FQ) and Weighted Fair Queuing (WFQ) offer scheduling

algorithms, which exhibit accurate fair-resource sharing or proportional-resource

sharing among contending flows with the property that the allocated resources are

guaranteed and latency can be bounded. The basic concept ofFQ or WFQ is that of

bit-wise round robin scheduling. The ideal algorithm, which has the property off air

sharing, was proposed by Demers et al, IDem et al.89J named, Bit-by-bit Round

Robin (BRR), in which the scheduler sends one bit at a time from each flow in a

round robin fashion. The idealised scheme simulates a Time Division Multiplexing

(TDM) model over a number of flows. In the ideal model, each flow is assigned to

each TDM channel and a bit from a flow will be transmitted in its corresponding

time slot. As shown in Figure 3.6(a) for illustration, when Packet I arrives in its

flow, a single bit from the packet will be transmitted and a bit each from the other

two flows will be transmitted before a bit will be transmitted again from Packet 1.

Consequently, at any point in time, each flow gets an equal share of the bandwidth.

In the Figure 3.6(a), the order in which the packet assembler fully assemble each

packet will be determined by the order in which the last bit of each packet is

transmitted. The idealised bit-by-bit round robin (BRR) described so far shares the

same modus operandi with the Generalised Processor Sharing (GPS) discussed in

Section 3.7.8. They both present the same concept in a different constructional

language. They both lay the foundation for algorithm on which fairness in resource

allocation can be built.

81

Packet 1

Packet 2

Packet 3

(a)

IlIII
1111111111111111111

Packet I

Packet 2

Packet 3
mm

111111111111111110

Generic Components ofQoSArchitectures

Last bit of packet 3

I Last M of .. eket 2 J,;'l hn ofnaeke! 1

cl Unlillllllilrhl:·Plil<lil:'1 Jun.-v

t i I it \3 2
BRR S!;heduler : . Y \
or Multiplexer p~. cket Demultiplexer

, and Assembler , , , ,
: TDM :
: : Receiver Queue
: t2 tt , ,

L.. ·lmllilll el

r
······ 11I1II11II111111II!11!lllllllllil]u~ul

T
.. 3 2 I

nsmlSSIOD
Channel \'------, ~-~) Y

(b)
FQ or WFQ Scheduler Packet I

Receiver Queue

Figure 3.6: Comparison ofFQ / WFQ with Idealised BRR Scheduling

(a) BRR Scheduling Model

(b) FQ or WFQ Scheduling Model

Both the BRR and GPS scheme described above are impossible to implement in

practice, since packets are discrete units that should be transmitted as a whole unit.

An approximation to BRR called fair queuing (FQ) was also proposed by Demers

et al., and it simulates BRR scheduling model. FQ packet management algorithm

ensures that, the time interval it will take to transmit a number of packets from a

number of flows will be the same as the time interval the idealised BRR scheduling

model will expend in transmitting the same packets. As illustrated in Figure 3.6(b),

the time interval between tl-the instant the first bit of packet 1 is transmitted and

t2-the instant the last bit of packet 3 is transmitted will be the same in both the

idealised BRR scheduling model and the FQ scheduling model.

Under the FQ model, when a packet arrives in a queue, the scheduler computes the

time when the packet's last bit would have been transmitted using the BRR

scheme. Based on this departure time, the packet is then inserted into a queue

82

Generic Components ofQoS Architectures

sorted by packets departure times, and the packet is transmitted or serviced

according to its position in the ordered queue. This guarantees that every active

flow gets a fair share of the bandwidth, and it is serviced at a fine granular

resolution of time interval not larger than the time to transmit the largest packet in

the network at the relevant link speed. A variation ofFQ is weightedfair queuing

(WFQ), in which flows are assigned different weights to reflect their bandwidth

requirements. The service discipline of WFQ is the same as that of FQ except that,

in each round the number of packets transmitted in a flow is proportional to its

weight rather than single packet as assumed under FQ model.

WFQ offers a way for a network operator to guarantee the minimum level of

resource that will be allocated to each defined service class. This guarantee holds

regardless of flow intensities of other service classes. WFQ also provides great

flexibility in resource allocation to meet a variety of resource objectives such as

link sharing or providing guaranteed delay bounds. If a flow rate is uniform, since

each hop in the path of the flow end-to-end can guarantee the flow's share of

bandwidth based on the flow's assigned weight, WFQ can be used to provide end

to-end guarantee on both bandwidth and worst-case delay bound. This is of course

an intuitive result--if a bounded load is processed by a committed resource, then

the throughput and delay incurred should be predictable. Besides the intuitive

rationale, Parekh and Gallager [ParGal94] have proved an important bound on

worst-case end-to-end delay suffered by each packet in a flow traversing a series of

WFQ schedulers. Their result is based on the service rate R assigned to a flow at

each WFQ scheduler. The higher the service rates, the faster the packets in the flow

are serviced at each hop, resulting in lower end-to-end delay.

The main setback of WFQ (or FQ) is the implementation complexity. The

maintenance of sorted queues and insertion into sorted queues would be expensive

especially when a large number of flows are involved [Veg03]. Also WFQ requires

the maintenance of per-flow Scheduler State which increases the memory space

required in WFQ router implementation. Another setback is that, WFQ does not

intrinsically bound jitter below any useful value less than delay bound it offers. If

smaller jitter bound is required for some service classes, then some element of

83

Generic Components of Qos Architectures

priority queuing must be re-introduced into the queuing discipline coupled with

admission control.

Summary

. The generic components of QoS architectures have been fairly closely examined in

this chapter. A QoS Specification Template is the semantics used to describe

application traffic characteristics. A QoS Signalling Protocol is used to inform the

network of application traffic characteristics and resource requirements. Admission

control is used to balance network loading with resource availability. Traffic

Conditioner performs traffic shaping functions and Traffic Policer performs

enforcement actions.

There are various Queuing-scheduling disciplines. They together implement QoS

resources allocation policies.

84

Empirical Investigation to Determine the Optimum Number of Traffic Queuing Classes for
Multiservice IP Networks

CHAPTER 4

Empirical Investigation to Determine the Optimum
Number of Traffic Queuing Classes for Multiservice

IP Networks

There exists a dualism in the nature of queuing--a pleasant attribute on one part of

its functions and an unpleasant attribute on the other part. The pleasant aspect of

queuing concerns it's civilized organizational structure from which fairness in

service could be derived. The "First-Come First-Served' (FCFS) service discipline

could be optimized for fairness in the absence of any other constraint, such as the

characteristic nature of queue occupants and their unique service requirements. On

the other hand the unpleasant nature of queuing concerns the "waiting time" wasted

in the queue. This may have far reaching effects such as, negatively impacting on the

economy (man-hours wasted) and the quality of service received by the queue

occupants. The latter case is more prominent in telecommunication services,

especially in communication networks where the waiting time suffered by queued

packets may seriously affect the quality of the messages received at the destination.

Thus queuing study and analysis (queuing theory) is desirable in order to truly

understand the nature of queues. Queuing management (application of queuing

theory) is equally desirable in order to be able to proffer solutions to queuing

problems.

In chapter three, we highlighted the importance of an appropriate queuing discipline

as the engine that drives Quality of Service (QoS) architectures in a multiservice

network environment. We noted that, the effectiveness of a QoS architecture depends

on its queuing discipline and queue management, which jointly serves as

implementers of the QoS architecture's resource allocation policies. Integrated

Services (IntServ) and Differentiated Services (DiffServ) architectures, which are the

proposed standards for QoS architecture in the Internet, support the need for

segregation of application traffic flows in order to discriminatorily meet the various

QoS requirements of the traffic flows. A natural implementation strategy for each of

these architectures resides in multiple queuing systems, which will allow easy

resource partitioning for each of the flows. The central parameter to judge the

85

Empirical Il1Vestigation to Determine the Optimum Number of Traffic Queuing Classes for
Multiservice IP Networks

performance of any QoS paradigm is its ability to control packet delay and its

variation to meet the QoS needs of application traffic. The process of packet delay

minimization as a function of queue discipline adopted by a QoS architecture, is the

central yardstick for measuring the effectiveness of any IP QoS paradigm. While it

has been recognized that a multiple queuing system is necessary for multi service IP

Networks, the Optimum Number of Traffic Queuing Classes (ONTQC) that will meet

the need of integrated services in the IP Networks is yet to be determined through

analytical or empirical investigation.

In this chapter, we present the introduction of work on empirical investigation to

determine the optimum number of traffic queuing classes (ONTQC) that will meet

the QoS requirements of integrated services in IP Networks. In Section 4.1, we

present the case for motivation for the work, which includes input for IntServ and

DiffServ architectures and the lack of experimental proof and consensus on the

subject. In Section 4.2, we highlight the factors that influenced our choice of tools for

the investigation. The description of input quantity and output quantity to our

experimental queuing systems is the theme of brief discussion in Section 4.3. We

proceed to present classification of applications in relation to their priority and QoS

need in Section 4.4.

4.1 Motivation for the Work

It has been recognized that multiple queuing systems are inevitable for multi service

QoS in IP Networks, the issue is how many traffic queuing classes would be

optimum. While a number of Standards Organizations, proprietary bodies, and others

in the research community have specified or proposed different numbers of traffic

queuing classes to support integrated services in the Internet, none has supported its

proposal or specification in the form of analytical or empirical investigation. In view

of the varied numbers of traffic queuing classes that have been specified or proposed

(Le. class of service (CoS», it can be said that, there is lack of a consensus on the

issue. Some organizations have proposed or specified two, some three, some four,

some five, and some eight traffic queueing classes to support QoS in multi service

Internet. As far as we know, none of the proposals or the specifications have been

supported with standard verification in the form of analytical or simulation

investigation.

86

Empirical Investigation to Detennine the Optimum Number of Traffic Queuing Classes for
Multise",ice IP Networks

The main thrust for this work then includes:

The need for verification of what should be the optimum number among the

different proposals or specifications for the number of traffic queuing classes that

would meet the QoS needs of multi service IF Networks.

To resolve the issue oflack of consensus on the subject among those concerned.

To provide a proven point of reference for QoS architectures that adopts multiple

queuing systems in their implementation strategy.

To provide input to the effort of standard organizations on specifications of QoS

deployment that involves multiple queuing systems for resource partitioning.

The issue of variation in CoS as highlighted above provides the impetus for action

and will be discussed in more detail in this section. The discussion will focus on

IEEE 802.D 1993 standard and subsequent standards on number of priority queuing

classes, lTEF IntServ and DiffServ QoS architecture specifications on the subject

and the proposals of other organizations on the subject.

4.1.1 IEEE 802.n MAC Bridges Specifications on Traffic
Queueing Classes

The 1993 IEEE 802.ID MAC Bridges standard, specified two traffic queuing

classes to support integrated services in a LAN environment [802.1D&pYr.93).

This was based on the heuristic consideration that application traffic flows are

broadly dichotomous in grouping, with regard to their QoS requirements in the

network. They are either elastic (non real-time) or non-elastic (real-time)

applications. Within these broad groupings, there are ranges of sub-groupings,

which command respect from the research community. The argument that was put

forward to justify a two-class multiple queuing system was that, there would be no

appreciable gain by increasing the number of queuing classes, when weighed

against the complexities of the multiple queuing systems which by assumption

might increase linearly with the number of queues in the multiple queuing systems.

The later version of IEEE 802.1D and p standards specified eight traffic classes (0

to 7) for which mapping could be one to one with regard to traffic classes mappings

to queues in the multiple queuing systems [802.1D&pYr.98-05). Here again, the

87

Empirical Investigation to Determine the Optimum Number o/Traffic Queuing Classes/or
Multiservice IP Networks

specification is based on heuristic considerations that traffic may benefit from the

assumed finer granular allocation of resources when eight traffic queuing classes

are supported compared with the coarse granular allocation of resources when only

two traffic classes are supported. While the current specification broadens the

scope of actions of would be implementers, it does not state that the current

specification has a performance advantage over the earlier specification on the

subject. Thus an empirical investigation or analytical modelling to determine the

optimum, in a range of two to eight traffic queuing classes is worthwhile.

4.1.2 IETF IntServ and DiffServ Service Classes

IntServ Service Classes: In the earlier stages of Integrated Services QoS

architecture's design, there were proposals that besides best-effort services, there

would be three additional service classes, which were; Controlled Load, Predictive

Service, and Guaranteed QoS [RFC 2211] [PREDV-SRVq [RFC 2212]. This in

effect proposed four service classes, which would imply four-priority level,

multiple queuing systems. This categorization would find justification in the fact

that, within the best-effort service group of applications there are some applications

that require some level of timeliness and could be categorized to use the controlled

load services. An example is interactive email. Also the real-time group of

applications could be sub-classified into real-time tolerant and real-time intolerant

applications which could be mapped into predictive service and guaranteed QoS

respectively. At some intermediate point in time, the idea of four classes traffic

grouping, was short lived by the proposal for three classes traffic grouping, and

these are best-effort, controlled load and guaranteed QoS services. This was based

on the view that the controlled load and the predictive service could be merged

together without impacting serious performance problems on the affected

applications. The current specification prescribes two service classes, the controlled

load and guaranteed QoS services. This means that best-effort and controlled load

could be combined into one service class. The justification for reduction in traffic

classes grouping from four to two is well-grounded in heuristic considerations. The

need for experimental investigation to support the heuristic explanation is well

founded on the issue under discussion.

88

Empirical Investigation to Determine the Optimum Number of Traffic Queuing Classes for
Multiservice IP Networks

DitTServ Service Classes are, Expedited Forwarding (EF) PHB {RFC 2598] and

Assured Forwarding (AF) PHB Group {RFC 2597]. AF is a service class with

built-in embedded service classes. Beside the two standard service classes, the

DitTServ architecture defines the Class Selector Code point, (see Section 2.3.4) for

backward compatibility with IP precedence field. In effect, the service classes in

DitTServ architecture ranges from 2 to s.

4.1.3 Proposals from Organizations on Applications Service Classes

The European Research Agency QoS architecture known as Adaptive Resource

Control for QoS Using an lP-Based Layered Architecture (AQUILA) proposed a

set of four trqffic classes beyond the standard best-effort service. The traffic

classes are, premium constant bit rate, premium variable bit rate, premium

multimedia and premium mission critical [Eng et al.03]. Thus AQUILA proposed

five service classes including best-effort service. This yet again was based on

heuristic considerations that was not founded on either analytical or empirical

investigation.

Both the Third-Generation Partnership Project (3GPP) for cdma2000 and the

Universal Mobile Telecommunications System (UMTS) proposed four QoS

classes which are, Conversational, Streaming, Interactive and Background service

classes [Che et al.OS) [Cho et al.OS). There is no information that indicates the

proposals are based on either theoretical or practical investigation work.

4.1.4 Merging of Motivation Points

The IEEE S02.1D standard specifications through a period of time, increases the

number traffic classes from two to eight. That is decomposed from two traffic

classes into eight traffic classes. We refer to the decomposition process as

divergent or convex process. This is illustrated in the Figure 4.1(a). On the other

hand, IETF IntServ working group specifications through period of time

systematically reduces the number of service classes from four to two. The

composition process is described as convergent or concave process. This is also

illustrated in Figure 4.1(b). The two standard organizations share opposing view on

the subject, which could be resolved through either analytical or empirical

investigation.

89

Empirical Investigation to Determine the Optimum Number a/Traffic Queuing Classes/or
Mu/tiservice IP Networks

(a) Divergent Process (b) Convergent Process

Figure 4.1: Processes of decomposition and composition of traffic queuing classes.
(a) Decomposition Process (b) Composition Process

4.2 Factors that influence the choice of Tools for
the Investigation

In every engineering situation, where there are problems to be solved or questions to

be answered, the natural approach to the solution is either through analytical

modelling, using mathematical tools or computer simulation employing some

software packages. Here in this section, we will discuss why we have opted for

computer simulation in the investigation work, and also discuss which software

package we have utilized. We will also provide insight as to which multiple queuing

algorithms we use as queuing disciplines for the investigation.

4.2.1 The Choice of Simulation Modelling instead of
Analytical Modelling

The great advancement in processing power of computers coupled with the great

advancement in the development of powerful software packages has enabled

almost a one-to-one relationship in the representation of real-life situation with

computer simulation modelling. Powerful software packages employed in

simulation have tremendously expanded the scope of engineering simulation

modelling to embrace almost every engineering situation. The accuracy in

equivalency between simulation modelling effort and the real·life situation it is

meant to represent has been tremendously leveraged. Communication networks and

distributed systems typically encompass a wide range of technologies ranging from

90

Empirical Investigation to Determine the Optimum Number of Traffic Queuing Classesfor
Multiservice IP Networks

low-level communications hardware to high-level decision-making software. A

successful system modelling effort must represent each of these subsystems and

their interactions at a level of detail that is sufficient to obtain valid predictions of

performance and behaviour. The complexities involved in such a modelling effort

could be appreciated if a communication network is summarily decomposed into its

component parts. A communication network will typically consist of the topology,

which is a system of nodes interconnected by links. The nodes typically consist of a

system of hardware modules, which are controlled, by a system of software

modules. Network dynamic objects such as packets would make use of the services

provided by these infrastructural resources (i.e. the topology, the links and the

nodes--its hardware and software modules). It should be noted that it would be

difficult to represent the behaviour and structure of each of the subsystems and

their interactions in a single model framework. The flexibility of simulation

software packages enables us to partition the modelling effort into a number of

modelling domain with defined interface between them. That is breaking down of

the big problem into smaller problems, which are now easy to manage. This is the

beauty of computer simulation. Another advantage of simulation is reusability. A

single network model could be made to answer a number of network questions by

creating different scenarios.

On the other hand, analytical modelling using mathematical tools for real-life

engineering situations has a lot of limitations especially when modelling large

complex systems. For example, it will be difficult to represent the behaviour,

structure and interactions of all component objects (both hardware and software) of

a communication network with analytical mathematical modelling without loosing

great detail. Analytic modelling would mainly be useful in a situation meant to

conceptualize the behaviour and performance of a particular generic object and this

will entail loss of information on other aspect of the system. For example when

using analytical modelling to model communication systems and using queuing

systems in other to determine the performance of the telecommunication systems,

the details of the topology, the links, other hardware and software in the nodes

beside the buffers and servers are not always represented. This is not the case with

computer simulation. The impact of the limitation of mathematical analytic

91

Empirical Investigation to Determine the Optimum Number of Traffic Queuing Classes for
Multiservice IP Networks

modelling can be captured from a statement by Leonard Kleinrock. I quote

verbatim, "The mathematical structures we have created in attempting to describe

these real situations are merely idealized fictions, and one must not become

enamoured with them for their own sake if one is really interested in practical

answers" [KJe!,76]. There are so many assumptions made in mathematical

analytic modelling such that, the solutions obtained are mere approximations of the

solutions to the real-life system they represent. The fact that a single modelling

effort in analytical modelling could not be used to represent other component parts

of the system makes it not flexible and not simple to extend it to cover the whole

system under modelling effort.

Thus computer simulation modelling has a lot of advantages over its counterpart,

the analytic mathematical modelling. Summarily these advantages include better

accuracy in representing real-life systems, and better flexibility and re-usability.

4.2.2 Software Packages used for the Simulation

Two software packages were used for the simulation:

The Network Simulator Version 2 (NS-2), a freeware software package.

Released originally by University of California, under the VINT Project.

• The OPNET Modeler a commercial simulation package released by OPNET

Technology Inc. USA.

Both were found to be invaluable, flexible, accurate and powerful in modelling

communication networks. The commercial simulator (OPNET) was found to have

some edge over the freeware (NS-2) simulator. The advantages of OPNET over

NS-2 could mainly be found in the hundreds of well-defined, well-organized,

powerful communication utilities and functions, which OPNET provides to make

communication modelling very easy. OPNET also provides ready-made standard

models of many network protocols, network architectures and vendor network

devices that one could use as plug and play to model for any specific

communication performance and behaviour.

92

Empirical Investigation to Determine the Optimum Number of Traffic Queuing Classes for
Multiservice IP Networks

4.2.3 The Queuing Discipline employed for the Investigation

Since we are investigating the optimum number of traffic queuing classes In

multiple queuing system, a natural choice of queuing discipline would be either the

Class Based Queue (CBQ) with Round Robin (RR) scheduling and its variants or

Weighted Fair Queueing (WFQ) and its variants. We have chosen to use CBQ-RR

scheduling and its variants for the empirical work. We will now briefly discuss the

factors that influence our choice.

4.2.3.1 Reason for chosen CBQ-RR and its Variant for the Investigation

We have seen in Chapter 3 the performance of Class Based Queues with Round

Robin (CBQ-RR) scheduling and its variants in providing resource partitioning to

classes of application traffic. We need to recall that the variants include; CBQ

Weighted Round Robin (CBQ-WRR) scheduling, CBQ Deficit Round Robin

(CBQ-DRR) scheduling, and CBQ Weighted Deficit Round Robin (CBQ

WDRR) scheduling. We noted that, the accuracy in providing fairness in terms of

allocated resources start with CBQ-RR and increases until CBQ-WDRR, which is

the highest in this category of queueing discipline. Since our aim is to determine

how many traffic queuing classes (optimum number of queuing classes) that

would best satisfy the need of integrated services QoS in the Internet; a natural

choice for such an investigation is the CBQ generic queuing discipline. This is

because the effect of the number of queues in relation to which class to service

next will be more pronounced in view of CBQ round robin scheduling discipline.

In support of this natural choice, we noted that there has been a simulation result

that showed that CBQ might be more advantageous to meet the needs of real-time

multimedia applications than WFQ [Call et al.OO].

4.2.3.2 Reasons Why WFQ Queuing Discipline is not chosen for the
Experiment

We have seen in Chapter 3 how Weighted Fair Queueing (WFQ) could perform

excellently in terms of fairness in allocation of resources. We noted that, WFQ

employed sorted algorithms in queuing and scheduling traffic flows. The very

sorted algorithm used by WFQ could mask the effect of number of queue in the

multiple queue system, which is our objective for this experiment. This could be

seen from the fact that, whatever number of traffic queuing classes that has been

93

Empirical Irrvestigation to Determine the Optimum Number of Traffic Queuing Classes for
Multiservice IP Networks

established for service, the sorted algorithm will select packets from any queue

class and prioritise its service only on the resource partitioning policy built into

the sorting algorithm. This is unlike the round robin scheduling of CBQ where

the scheduler as a rule must visit each service class every circle. The effect of the

sorting algorithm is such that, the number of queuing classes plays less role in

determining which class to service next. The number of established queues will

not control the functionality of the sorted algorithm. What would control the

function of the sorted algorithm would be the class to which the packet belonged

which would be encoded in the packet header Another limitation of the sorted

algorithm employed by WFQ concerns its scalability problems in very high-speed

network environment. The sorting of the queue will require keeping states of

queued packets. Obviously this will cause scalability problems at gigabytes rates

in the heart of the Internet. These reasons with the points highlighted in Section

4.2.1 above led us to favour simulation and disfavour the WFQ discipline for the

experiment.

4.3 Notation of Parameters of the Experiment

In order to adequately understand experimental actions and its results, the processes

must be described quantitatively. In view of this, we will describe in this section the

quantities employed in the experimental investigation, and provide a summary of

notation for the quantities. The notations that are used to describe the parameters of

our systems of multiple queues can be described in terms of the following component

processes.

• The arrival process: This is a quasi-random process describing how packets

arrive into the multiple queuing system.

• The waiting room: This refers to the queue capacity, which is the limit to the

number of packets that can be accommodated to wait for service, including those

currently being served. The queue capacity can be finite or infinite.

• The service process: This is a stochastic process describing the length of time the

server is busy serving a packet.

• The waiting time: This is another stochastic process describing the length oftime

the packet spends in the system. It has two components; the length of time the

94

Empirical Investigation to Determine the Optimum Number of Traffic Queuing Classes for
Muitisen>ice IP Networks

packet spends in the queue before it starts to receive service, and the length of

time its service takes.

• The number of queues: A deterministic process controlled by certain sequence of

procedure in the experiment.

• The number of servers: Another deterministic process dictated by the

conditioning policy of the experiment.

• The service discipline: The rule for deciding which packet or packets, within the

queuing systems to serve.

Please note that, we deliberately omit the customer or packet population in
defining quantities employed in our experimental multiple queuing systems,
because we see it as being embedded in the arrival process in this case. This will
not be the case if we are treating the queuing theory of the systems, since finite or
infinite customer population will come into formulation of equations, which could
yield analytic solution to the systems.

A useful shorthand notation for specifying five of the above statistical quantities is

the Kendall's notation, which consists of series of letters and numbers separated into

fields by a forward slash. The five field descriptor notation can be represented as

AIB/C/nlp, where A and B describe the arrival and the service processes, respectively,

c gives the number of servers, n the waiting room, and p the customer population

[W 0093]. The final two fields are optional and if omitted are assumed by default to

be infinite. The letters, which represent the arrival and service processes, can be

chosen from a small set of descriptors, which are :

D: This stands for deterministic, which implies constant inter-arrival and service

times.

M: Stands for Markovian or memoryless. In continuous time systems, interarrival

time or service time will be exponentially distributed. In discrete time systems the

interarrival and service time will be geometrically distributed

G: Stands for Generally distributed. Any distribution or combination of

distribution is allowed.

95

EmpiricaiInvestigation to Determine the Optimum Number ofTrajJic Queuing Classes for
Muitiservice IP Networks

4.3.1 Notation for Quantities

Standard quantities employed in the modelling of queue systems have been adopted

in the work on empirical investigation under discussion. The definitions for

notations of such quantities are found in most standard texts on queue theory.

Particularly, reference could be made to the book "Queueing Systems" by Leonard

Kleinrock [KIeU,76]. The definitions for notation of quantities employed in queue

systems are detailed in Chapter I and 2 of the textbook. The notations for quantities

as related to our empirical investigation are summarily presented in the next

section.

4.3.2 Queue Quantities Notation in Summary

The interarrival times for packets to the queues have the following shorthand

notation:

to = interarrival time between P n and P 0.1

(po = nth packet to arrive into the queue facility)

An(t) =

a,,(t) =

P[tn ::; t] (the probability distribution function (PDF) oftn)

8AD (t) (probability density function (pdf) of to)
8(t)

For asymptotic condition,

tn -> f as n ~ 00 , An (t) -> A (t) as n ~ 00, an (t) -> a (t) as n ~ 00 .

A. = average arrival rate

In a similar approach to above, we specify the notation associated with service time

Xo, waiting time Wo, total delay Sn, their PDF, and pdf as follows:

Xn = service time for Po

Bn(X) = P[Xn::; x] (PDF ofxo); bo = OBn(x) (Pdfofx)
8(x) 0

-
Xo -> X as n ~ 00, BD (x) -> B (x) as n ~ 00, bo (x) -> b (x) as n ~ 00.

- 1 -
xn->X = -, X/->X2

f.l

!1 = average service rate

96

Empirical Investigation to Determine the Optimum Number of Traffic Queuing Classes for
Multiservice IP Networks

Wn = waiting time for Pn

Wn(W) = P[wn~w] (pDFofwn); Cln(W) = 8Wn (w) (pdfofwn)
o(w)

Wn -.. W as n ~ 00, Wn (w) -.. W (w) as n ~ 00, aIn (w) -.. a;(w) as n ~ 00.

W -..w =W -2~W2
n , wn

W = average waiting time

Sn = total delay in the system for P n

So(s) = P[Sn ~ s] (PDF ofSn); lln(S) =
as" (s)
o(s)

(pdfofSn)

sn -.. S as n ~ 00, So (s) -.. S (s) as n ~ 00, :In (s) -.. :J (s) as n ~ 00.

Sn -.. S = T, - 2 -2
Sn ~ S

T = average total delay

The quantities, A. (average arrival rate), I.l (average service rate), W (average

waiting time), and T (average total delay) were the quantities employed in the

simulation processes. A and I.l were the input to the process of the empirical

investigation. They were combined and manipulated to produce values for Wand T

which constitute output results either in part or whole.

4.4 Classification of Traffic used to drive the Experiment

Considering the taxonomy of applications in a network environment of integrated

services, applications can be broadly categorized into dichotomous groups; real-time

applications and non real-time applications. Within these two broad categories of

applications, further classification will produce a wide range of generic groups with

diverse traffic characteristics and QoS needs. A full description of possible network

traffic that could be generated together with their characteristics and QoS

requirements could be very complex, we will only consider simple traffic

classification that have commanded widespread support. The traffic grouping that we

will consider and adopt for our experiment is based on the IEEE traffic classification,

[802.ID&pYr.05]. which will be discussed briefly in the next section.

97

Empirical Investigation to Determine the Optimum Number of Traffic Queuing Classes for
Multiservice JP Networks

4.4.1 Traffic Types

The IEEE 802.1D Standard on MAC Bridges specified eight traffic classes, in the

range I through 8 that could be supported on a Bridge Port. The Standard actually

defined seven classes of application traffic leaving one class undefined. We have

emulated the IEEE 802.ID standard specification on a number of traffic classes but

extended it by adding one traffic class to the specification. The resulting traffic

types with their acronyms are defined as follows:

• Background (BK); Bulk data transfer and other activities that are permitted in

the network which will not pose any limitation to other users.

• Best-effort (BE); Traditional Internet traffic.

• Excellent Effort (EE); "Premium best-effort", the best-effort type of service

that an information services organization would deliver to its most important

customers.

• Controlled Load (CL); Important business applications subject to some form

of "admission control".

• Audio I Video Streaming (A VS); Streaming audio or video such as mp3 or

video on demand.

• Video Interactive (VI); Interactive video applications such as video

conferencing whose QoS needs would be characterized by less than 100-

millisecond delay.

• Voice (VO); Voice traffic applications such as voice over IP (VoIP) whose

QoS requirement would be characterized by less than lO-millisecond delay.

• Network Control (NC); Traffic critical to network maintenance and control.

The IEEE 802.ID Standard specification on class of traffic is shown in Table 4.1.

The standard associated the undefined traffic class to class 2 in the traffic classes

range 1 to 8, with Background traffic as class 1 and Network Control as class 8.

We extend the IEEE traffic types by categorizing AudioNideo Streaming as a class

of traffic and allocated it to traffic class number 5. Although we consider Voice and

Interactive Video as the most time critical applications in terms of their temporal

reconstruction at the destination, Network Control takes precedence, since it is the

network initial-engine that drives and coordinate networking functionality. If we

assume traffic class number 1 has the least priority and traffic class number 8 has

the highest priority, then in our arrangement here, Network Control is given class

98

Empirical Investigation to Determine the Optimum Number of Traffic Queuing Classes for
Muitiservice IP Networks

number 8, Background traffic is given class number 1 and AudioNideo Streaming

is given class number 5. Thus with this extension, Controlled Load, Excellent

Effort and Best-effort are shifted 1 class below their usual class number in IEEE

802. ID standard specification. After modification, the resulting traffic types are

shown in the Table 4.2.

Table 4.1: IEEE Traffic Types

Traffic
Class Traffic Types Acronym
Number

1 Background BK
2 Spare -
3 Best-effort BE
4 Excellent Effort EE
5 Controlled Load CL
6 Video VI
7 Voice VD
8 Network Control NC

Table 4.2: Modified IEEE Traffic Types

Traffic
Class Traffic Types Acronym
Number

1 Background BK
2 Best-effort BE
3 Excellent Effort EE
4 Control Load CL
5 AudioNideo Streaming AVS
6 Video Interactive VI
7 Voice VD
8 Network Control NC

4.4.2 Traffic Class Types Mapping into Queues

Table 4.3 is used to illustrate traffic class types mapping into relevant queues. The

numbers under the column named 'Number of Queues' indicate the number of

queues that may be implemented in an output inteiface of a network node. The

number under the column named 'Subqueue Number' gives the convention of

naming multiple queues under a buffer. When multiple queues are implemented in

99

~piJ"ical Investigation to Determine the Optimum Number of Traffic Queuing Classes for
Multiservice IP Networks

an interface, each queue in the set is referred to as subqueue and the subqueues, in

some cases may be virtual. The sub queues are numbered from 0, and increase as

the number of subqueue increases. Thus an output interface with 2 queues will have

the two queues named as subqueue ° and subqueue 1. This is shown in Table 4.3

under the Subqueue Number heading. The third column in Table 4.3 shows the

traffic types mapping into relevant queues.

Table 4.3: Traffic Class Types mapping into relevant Queues

Number of Subqueue
Queues Number Traffic Types Mapping

I [Background, Best -effort, Excellent Effort, Controlled Load,
AudioNideo Streaming, Video Interactive, Voice Network Control]

2 0 [Background, Best -effort, Excellent Effort, Controlled Load]
I r AudioNideo Streaming, Video Interactive Voice, Network Control]

3 0 [Background, Best -effort, Excellent Effort)
1 [Controlled Load, Audiol Video Streaming,)
2 [Video Interactive Voice, Network Controll

4 0 [Background, Best-effort, Excellent Effort]
I [Controlled Load, AudiolVideo Streaming]
2 [Video, Interactive, Voice)
3 [Network Control]

5 0 [Background, Best-effort]
1 [Excellent Effort, Controlled Load]
2 [AudioNideo Streaming]
3 [Video Interactive, Voice)
4 !Network control]

6 0 [Background, Best-effort]
1 [Excellent Effort, Control Load]
2 [AudiolVideo Streaming]
3 [Video Interactive]
4 [Voice)
5 rnetwork Control]

7 0 [Background, Best-effort]
1 [Excellent Effort)
2 [Control Load]
3 [AudioMdeo Streaming]
4 [Video Interactive)
5 [Voice)
6 [Network Control)

8 0 [Background)
I [Best-effort]
2 [Excellent Effort]
3 [ContrOlled Load)
4 [Audio I Video Streaming)
5 [Video Interactive)
6 [Voice]
7 [Network Controll

The IEEE 802.1D standard specified strict priority in implementation of the

multiple queuing system. Strict priority is widely suspected of its preventive

100

Empirical Investigation to Determine the Optimum Number of Traffic Queuing Classes for
Multiservice IP Networks

service discipline. That is the starvation of lower priority traffic by high priority

traffic. We believe that, strict priority implementation of multiple queuing system

is not suitable in multi service network environment. Thus for the multiple queue

discipline, we propose that, CBQ algorithm, with the variants of round robin (RR)

scheduling will be more appropriate. With RR scheduling, the issue of starvation of

lower priority traffic by high priority traffic will be absent.

Our traffic types mapping shown in Table 4.3 is almost in-line with the IEEE

802.ID standard specification on mappings of traffic types to priority queues,

except for our introduction of AudiolVideo Streaming as a class of traffic.

Summary

This chapter has provided the introductory information for the work on experimental

investigation to determine the Optimum Number of Traffic Queuing Classes

(ONTQC) that will best support integrated services in IP Networks. The motivation

for the work includes the lack of consensus on the issue of ONTQC.

The notation for input and output quantities to our simulation processes are; A.

(average arrival rate), I! (average service rate), W (average waiting time), and T

(average total delay). Traffic used in the simulation are classified into eight groups

in line with IEEE 802.1D standard.

101

Simulation Methodology to Determine ONTQC

CHAPTER 5

Simulation Methodology to Determine ONTQC

In this chapter, the procedure for the experimental work, and the actual simulation work

carried out on Optimum Number of Traffic Queuing Classes (ONTQC) to support

integrated services will be presented. It should be recalled that, in Chapter 4, which

serves as a precursor to this chapter, the discussion was focused on the simulation input

and output quantities. This chapter builds on Chapter 4 in providing a detailed summary

of the actual simulation work carried out. A summary of the simulation work and

procedures is presented in Section 5.1. This is followed by the detailed simulation

methodology in Section 5.2 where we found the concept of Markovian chains very

helpful in illustrating the sequence of actions taken. In Section 5.3 we discuss the

simulation work, while in Section 5.4 the focus is on the actual simulation work carried

out in a typical Simulation Action Domain (SAD).

5.1 Procedure in Brief

In setting up a simulation to model the Optimum Number of Traffic Queuing Classes

(ONTQC) for integrated services, we need to identify and specify all objects and

processes that would be employed in the simulation. We also need to specify and define

the behaviours of the objects and the way they combine and interact with one another.

The logic of the processes that manipulate the objects should be adequately specified

and defined.

The objects and their behaviours together with the processes that manipulate them was

organised to produce systems of behaviours, which in totality would be equivalent to the

characteristic behaviour of the multiple queuing systems we were modelling. The steps

involved in these actions will include the following:

• IdentifYing, specifying and defining static objects associated with the network to

be modeled. This will include, specifYing both the hardware and software of the

102

Simulation Methodology to Determine ONTQC

communication node, specifying the link or communication channel and their

pipeline processes, and defining the topology.

• IdentifYing, specifying and defining dynamic objects of the communication

network. This will include specifying and defining application traffic (packets)

and the processes that generate, store, process, send, manipulate, control, and

receive the traffic.

• IdentifYing, specifying, and defining statistics of interest to measure the

performance of the system. This will include defining processes to extract

statistics and prepare them for display when needed.

The organization of this system follows a highly structural trend, starting from the low

level hardware processes to the high level service oriented application software

programs. Summarily, the hierarchy in this trend of organization is as follows:

• The processes are combined to form modules, (may be either software stack or

hardware module).

• The modules are combined to form nodes

• The nodes are interconnected by links or communication channels to form

network topology, (type of topology may be point-to-point, ring, star, tree, etc).

The topology we constructed for the simulation allowed for resource contention among

traffic flows that were transmitted through the network. The logic built into the

processes oftraffic flow mechanism was such that the resolution of resource contention

among traffic flows reflect our objective for the simulation modelling. Thus after the

appropriate topology had been setup, traffic classes were defined. Each traffic class was

parameterised to generate its characteristic flow profile, for which the combined effect

for all the traffic classes produced the appropriate traffic intensities suitable for our

modelling effort in the network. The simulation actions and processes as briefly

highlighted above were combinations of sequences of deterministic and embedded

stochastic processes, which will be discussed in more detail in this chapter. The brief

discussion here covers the generic topology employed for the investigation, the traffic

used and statistics collected.

103

Simulation Methodology to Determine ONTQC

5.1.1 The Generic Topology

The topology consisted of two point-to-point (P-t-P) star-like LANs (LAN_A and

LAN_B) which were connected by a single bottleneck duplex link. As shown in

Figure.5.l, each host in each LAN was connected by a P-t-P duplex link to a centre

Internet router, which served as gateway to each LAN. Each of the hub-like Internet

routers (router-A or router-B, Fig. 5.1) was capable of routing traffic within its own

LAN and also capable of directing traffic meant for the other LAN to that LAN's

router. For the purpose of this simulation, traffic generated by hosts in one LAN were

destined for hosts in the other LAN. The topology is generic for modelling QoS

control algorithms and its performances. It is generic in the sense that the bottleneck

link together with the two routers to which the ends of the link are terminated could be

conditioned in various ways to model various QoS control mechanisms. Such a

topology, is found to be widely used for QoS control performance modelling in the

literature [FIoJac95]. [Cal et aLOO].

Router A RouterB

Workstations in LAN A Workstations in LAN

Figure 5.1: Generic Topology Used for Simulation

104

Simulation Methodology to Determine ONTQC

5.1.2 Application Traffic used for Simulation

We adopted eight traffic classes for the simulation in emulation of IEEE 802.lD

standards on number of traffic classes for integrated services. In each simulation run,

traffic combination in the network consisted of eight traffic classes, which were

configured to generate the appropriate traffic intensity. Traffic intensity in the network

varies from one simulation run to another. For each traffic class, we use a wide range

of parameters for characterisation of its flow. Traffic characterization parameters were

derived from the heterogeneous lists whose elements include packet size, packet

interarrival time, packet rate, packet start time, packet stop time, etc. The traffic

parameters have various distributions such as, exponential (poisson distribution),

uniform, normal and Pareto distributions. We included in the definition of the

processes that generate the traffic, the element of randomness in the values of

parameters of the traffic. This instituted stochastic processes in the traffic generation

processes of the hosts.

5.1.3 Statistics for the Performance Metric

The main statistics of interest were end-to-end delay (sojourn time) and throughput.

We noted that, other statistics of interest could be derived from the main two statistics

of interest (end-to-end delay and throughput). For example, jitter could be derived

from end-to-end delay, while packet losses could be inferred from throughput. Thus

we defined or specified processes to extract end-to-end delay and throughput statistics

for each of the simulation run.

5.2 Simulation Methodology

The method adopted for the simulation consisted of sequences of simulation actions that

had the pattern of a connected action-chain. Each simulation action in the chain had an

embedded set of simulation steps and each step also had embedded sub-steps of actions

to complete a particular simulation action. In other words the simulation actions

consisted of embedded hierarchical simulation actions. Let us denote each main

simulation action with a streamline term- Simulation Action Domain (SAD). We noted

that the whole system of simulation actions assumed a chain-like pattern with similar

105

Simulation Methodology to Determine ONTQC

steps repeated at each SAD, but with each SAD differently parameterised. Itemizing the

points highlighted above will give the following format:

1. The action train consisted of sets of simulation actions called Simulation Action

Domains (SADs)

2. Each SAD was made up of simulation steps numbered from 1 to 8.

3. Each step had a number of sub-steps centred on configuration actions to build

the behaviour of simulation model that was intended for our modelling effort.

Ifwe denote SAD _n as the nth action domain (n = 1, 2, 3, -----------) and stepj as the ith

step (i = 1,2, -------,8), then a particular step in an SAD can be represented by SAD_n;

step J Let us assume that the topology of the network has been setup and all the

underlining processes are working correctly, the sequences of action in SAD _ n; step j

can typically be represented as follows:

1. Specify traffic characterization flow parameters for each of the eight traffic classes

to be used to load the network. (Values of parameters were fixed for the eight steps

in an SAD).

2. Define resource allocation policy for each of the traffic classes.

3. Specify statistic probes and statistics to be collected at the end of the simulation

(fixed for all steps in an SAD).

4. Specify the number of queue classes in each of the routers (see Fig. 5.1) and define

the appropriate queue discipline to be adopted in serving the queues.

5. Specify simulation attributes for the simulation.

6. Run the simulation.

7. Extract statistics and display the statistics.

8. Analyse statistics and store to combine with other statistics in the SAD.

9. Move to the next step if the current step is less than 8.

10. If step is 8, analyse the combine statistics in the current SAD in order to determine

the traffic parameters for the next SAD.

The simulation actions as described above can be said to be quasi-deterministic. The

term quasi-deterministic would be relevant when one considers that, some of our

simulation actions were deterministic while others depended on outcome of simulation

106

Simulation Methodology to Determine ONTQC

runs, which were unpredictable before the run. The point was that, at the initial stages or

current stage, we had a determined set of simulation actions to take, but the next stage of

the experiment (in terms of configuration parameters) would be a random action

dependent on the outcome of the current experiment. Even if our simulation actions

were deterministic all through, the processes they invoked were stochastic. In view of

this and for its esoteric beauty, we will like to describe our simulation methodology with

classical terms. A number of definitions will enhance the clarity of our descriptions in its

classical form.

5.2.1 Probability Systems

The discussion under this section is optional for readers. The inclusion is for

background knowledge necessary to understand the description of our simulation

methodology, which is presented in relation to Markov chain. Understanding of

Markov chain requires knowledge of probability functions. Readers who have basic

knowledge of theory of probability functions can omit this section.

The importance of probability theory as a mathematical tool for modelling and

analysing communication networks cannot be over-emphansised. We introduce the

notion of the triplet of probability systems here, (S. E, P), [KIe1,76]. The triple (S. E,

P) stands for the probability system, which is defined as follows:

S denote the sample space. That is the set of all possible (mutually exclusive

exhaustive) outcomes in chanced experiments, such as tossing coins several

times. Each possible outcome p, (p E S) in the set S. is referred to as sample point.

S denote a family of events {A, B, C, } in which each event is a set of sample

points {p}

P denote or represent the probability measure of the outcome of chance events

defined on the sample space S in terms of real numbers. In other words P is an

assignment (mapping) of events defined on S into a set of real value numbers.

107

Simulation Methodology to Determine ONTQC

5.2.2 Definitions

The definitions presented in this section are optional for readers. The definitions are

presented as background knowledge to aid understanding of terminology used in

description of our simulation methodology. Reader with basic knowledge of theory of

stochastic processes can omit this section.

Definition: A random variable X(p) is a variable whose value depends upon the

outcome of a random experiment. E.g. tossing a coin six times, the number of times a

head showed up is a random variable. To clarify the concept, let us represent the

outcome of the random experiment with sample point PES, then to each such

outcome p we associate a real number X(p) which is the value the random variable

takes on when the experimental outcome is p. Thus the random variable X(p) is a

function defined on the sample space S that assign a real number X to every p.

Definition: A stochastic process or random process X(t, p) is a family of random

variables in which each sample point PES of each random variable is assigned a time

function, which taken together form a family of functions. In other words a stochastic

process is a family of random variables X(t, p) whose sample points are associated

with time functions. For example the atmospheric pressure in a lecture theater as a

function of time is a stochastic process.

Stochastic process can be specified and characterized by their Probability Distribution

Function (PDF) and probability density function (pdf). If we denote the PDF of the

stochastic process by Fx(x; t), then the pdfis defined by:

Ix (x; t) =D OFj~; t) (5.1)

The mean value of the stochastic process is given by:

X(t) = E [X(t)] = J x Ix (x; t)o x (5.2)

The autocorrelation function ofX(t) is given by:

Rx x (tl, t2) = E[X(h) X(tz)]

= If x x Ixx (Xl x,; tl t,) 0 Xl 0 x, (5.3)

* =D To be read as defined by

108

Simulation Methodology to Determine ONTQC

Definition: A stationary stochastic process is one whose characteristics remain

invariant over all time. This implies its PDF Fx (x: t) is invariant to shift in time for all

value of its argument. That is given any constant r, the following relation hold:

Fx (x; t + r) = Fx (x, t) (5.4)

(Where the notation t + r is defined as a vector (t1 + r, h + r, t3 + r, ----------to + r»

Other characteristics of stationarity include:

1. The mean value must be independent of time: i.e. X(t) = X

2. The autocorrelation function must depend only on time difference t1 - t2:

i.e. Rx x (t1 t2) = E[X(tJ) X(h)] = Rx x (t1 - t2)

If these two conditions hold then the process is said to be wide-sense stationary.

Definition: An ensemble, denoted by X(t, s) is a collection of time functions that are

generated as a result of stochastic processes. In order words it is a family or collection

of stochastic processes. Each member of the stochastic processes is called a sample

function.

Concerning an ensemble, we now define a related term in terms of deterministic

process rather than stochastic process.

Definition: A deterministic ensemble denoted as X(n; s) is a collection of n (n = 1, 2, -

--) sequenced related actions or processes carried out, whose priori probability of

selecting the set of actions equals 1 and the outcome of such processes determine a

decision.

Definition: Ergodic process is a stationary process in which all ensemble averages

equal the corresponding time averages. Ergodicity imposes additional condition to

stationarity that a single sample function is a representation of the entire processes.

Definition: A set of random variables {Xn} form a Markov chain if the probability

that the next value (state) Xn + 1 depends only upon the current value (state) Xo and not

upon any previous values. That is the way in which entire past history affects the

future of the process is completely summarised in the current value (state) of the

process. Information on the above definitions can he obtained from [Car86] and

[Kre93].

The purpose of the definitions we made above will become clear if we adopt classical

terms and graphics in the description of our simulation methodology. The definitions

109

Simulation Methodology to Determine ONTQC

will help in suppressing the strangeness that arises from the esoteric effect of using

some of the terminology defined above.

Simulation Methodology Continues

To recapture our description, we must recall that our simulation method consisted of sets

of simulation actions, each of which was called SAD. Each SAD consisted of eight

simulation steps numbered from 1 to 8. The traffic characterisation parameters and

traffic intensities for all steps in each SAD were invariant or ergodic. While traffic

characterisation parameter and traffic intensity differs from one SAD to another, the

processes of statistic specification, definition and collection methods for all SADs were

ergodic. The main difference in actions taken as we move from one step to another in a

SAD was that, the number of queues implemented at each step in the routers A and B

(Figure 5.1) was at parity with the step. This means, in step _1, one queue was

implemented, in step_2, two queues was implemented, ---------------, in step_8, eight

queues was implemented.

5.2.3 Use of Markovian Chain to Describe Simulation Methodology

The author leans on earlier work in employing a Markov chain to describe the

simulation methodology. Leonard Kleinrock used a Markov chain to describe the

action of a hippie who hitchhiked from city to city, (K1el,76 p26]. A.J. Bayes used a

Markov chain to analyse sampling of the output from a simulation process (Bay72].

A close analysis of our simulation methodology as described above reveals that it

could be modelled (descriptively and graphically) with a Markovian chain. Each SAD

constitutes each state of the Markovian chain. The action we took in SADn (n = 1, 2, 3,

----) depends only on the immediate previous action in SAD._1 and not on any previous

actions in all other previous SAD. This is the characteristic of the Markov chain.

Another definition will make the point clearer.

Definition: The sequence of random actions Al. A2• ---------An, form a discrete-time

Markov chain if for all n (n = 1, 2, --------) and all possible values associated with the

random actions, we have the posteriori probability (for il < i2 ------ in-l < in) which

state that;

110

Simulation Methodology to Determine ONTQC

= P[An = j I An-i = in-i] (5.5)

In relating Markov chain definition to our simulation methodology, the definition simply

states that, the action to be taken at the next SAD, i.e. SAD. + 1 depends only upon the

action taken at the current SAD, i.e. SAD. and not on all previous actions taken on all

previous SADs. In this sense the memory of our random simulation action or Markov

chain goes back to the most recent SAD. The conditional probability relation in Eqn. 5.5

is merely emphasizing that, all the actions in SAD!, -----------, SAD._l are summarized

Figure 5.2: Abstraction of Simulation Methodology with Markovian Chain

HI

Simulation Methodology to Determine ONTQC

in SADn - I and that it is the action in SADn "I that will affect the action in SADn.

Another way of conveying the same message is to say that the way the entire past

history will affect future action is completely summarized in the current action. This is

the key characteristic of the Markov chain. The main difference between pure Markov

chain and the Markovian chain that could effectively model our simulation

methodology is that our type of Markovian chain has embedded multi states within

each state. The unique Markovian chain is shown in Figure. 5.2.

Each main state (i.e. SAD) has embedded state transition which loop back to the main

state after the last embedded state. Let us denote main state as parent-state and

embedded state as child- state. Each parent-state (SAD) consisted of eight embedded

child-states (i.e. steps numbered from 1 to 8) and each child-state (step) consisted of an

embedded set of simulation actions. Using the derived terminology for this description,

we say each parent-state (SAD) is made-up of a two-level embedded (or stack of)

detenninistic ensemble. The number of child-states that could exist was bounded, fixed

and invariant. Bounded in the sense that a child state could only take value i if 1 :;; i :;;

8, fixed because there would always be 8 child states in each parent-state, and invariant

in the sense that child states were the same from one parent-state to another. Transition

from one child state to another were constrained. The constraint is in the fact that

transition between the child- states were one-way. Transition started from the parent

state and moved to child-state 1 (step 1) and from there moved to child-state 2 and

continued progressively until child- state 8 was reached. At the end of child-state 8, the

transition moved directly back to parent-state. The transition back to the parent state

from the highest number child state was necessary because the next parameter for

simulation at the next parent-state would be fashioned on the simulation parameter of

the current parent-state. Thus we say embedded state transitions starts from the parent

state and form a unique loop unto the parent-state. And that inter child-state transitions

were deterministic, monotonically increasing and non reversible. The foregoing

explanation simply means that, within any simulation action domain (SAD),

simulation actions will move from step 1 to step 2 and from step 2 to step 3, etc until

we get to step 8 where at its end we move back to the parent-state. Transition will not

112

Simulation Methodology to Determine ONTQC

be from step 8 to step 7, or step 7 to step 6, etc. By this we mean, a simulation action

that has been carried out with certain parameter will not be repeated. Simulation

actions in each child-state were deterministically ergodic except for queue discipline

configuration parameter in each child-state.

The modes of actions in all parent-states were deterministically ergodic. That is the

patterns of actions were uniform from one parent-state to another. Traffic

characterisation parameters used in parent-states were at variance from one state to

another. The values of traffic parameters that would be used in the next parent-state

would depend on the values used in current parent-state, but the values would be

different for the two parent-states. Transitions from one parent state to another were

also one-way, increasing monotonicaIly as the parent state number increased. The

parent state transitions were none reversible and non-periodic. This implied that

transitions took place from SADo to SAD! and from SAD! to SAD2 progressively in

that order. Not from SAD2 to SAD! or from SAD! to SADo. In reality this meant we

did not repeat the exact same traffic parameter for two SADs or repeat an SAD that

had been concluded.

5.3 Simulation Work

The simulation work will be described in terms of SADs. The sets of all SADs were

partitioned into three groups. We name the groups; simulation segment_one, simulation

segment_two and simulation segment_three. Brief description of each now follows.

5.3.1 Simulation Segment one

The simulation work in this segment consisted of a large number of SADs. In each

SAD we employed the User Datagram Protocol (UDP) as transport protocol for

inelastic (real-time) application traffic, while we used the Transmission Control

Protocol (Tep) as transport protocol for elastic (non real-time) application traffic. The

intention of using Internet protocols was to increase the equivalency of our simulation

modelling effort to the real-life communication mechanisms of the Internet. The use of

Internet protocols helped us to measure the effect of Tep traffic control mechanism on

the simulation experiment.

113

Simulation Methodology to Determine ONTQC

Under this segment, we ran several simulations under the headings of SADs, using

various values of traffic characterisation parameters. The sets of all simulation actions

in each SAD made use of a fixed set of traffic input parameters that were constant for

all simulation within the SAD. Other simulation work description relating to this

segment will follow in sections under simulation input, queues decomposition

algorithm and queuing discipline.

5.3.2 Simulation Segment _two

The same processes that were followed in segment_one were repeated in this segment.

The only difference was that TCP was not used for any of the traffic, all the traffic

made use ofUDP as the transport protocol.

As in segment_one, we ran several simulations with several traffic parameters

maintaining the same procedure as in segment_one. More detail will follow in the

related sections.

5.3.3 Simulation Segment_three

The same procedure that was adopted in segment_two was repeated here, but here we

did not use any Internet protocol for any of the traffic. We neither used UDP or TCP as

transport protocol for any of the traffic. We simply generated traffic and used the

traffic packet sizes to identify which class they belong to. The intention here was to

find out if applications performance in an environment of multiple queues system were

independent of the Internet protocol or any protocol whatsoever. The simulations in

this segment help to make the situation clear.

As in other segments, the simulation in this segment consisted of several simulation

runs with various traffic parameters. Each simulation was constituted to answer

specific questions of our simulation modelling effort. More details follow in

subsequent sections.

5.3.4 Simulation Input

The three simulation segments highlighted above consisted of the same number of

SADs. Corresponding SADs in each segment used the same traffic parameters and had

114

Simulation Methodology to Determine ONTQC

the same processes. As stated in previous sections, each SAD had 8 simulation steps

and each step used 8 traffic classes, and the set of traffic parameters used in each of the

steps within a SAD were constant. This implied that, in step _1 we used one queue with

8 traffic classes, in step _2 we used two queues with 8 traffic classes, etc. Traffic

characterisation parameter specifications include:

1. Specification of packet sizes.

2. Specification of interarrival time or packet generation rate.

3. Specification of distribution for packet sizes and interarrival times.

4. Start time and stop time of flow sessions.

The parameter of one traffic class was different from the parameter of another traffic

class, but the parameters used for one traffic class in a step (e.g. step _1) would be the

same as would be used in another step (e.g. step_2), etc. This means, for each traffic

class, parameters remain constant as we move from one step to another within a SAD.

Each traffic class used different parameters as we move from one SAD to another.

5.3.5 Decomposition of Traffic Queue Classes

In the three simulation segments highlighted above, eight traffic classes were used.

The eight traffic classes will form a single queue in step_l of each SAD, employing a

FIFO queuing discipline. We needed to decompose the single queue that consisted of

the eight traffic classes into smal1er queues in a sequence of steps that would reflect

our set objectives. We must develop a particular algorithm for splitting the queues in a

manner that would enable us to achieve our goal. We have developed an algorithm,

which we found useful in this case. The algorithm is referred to as fission of rightmost

branch or group block first (FRBF). The algorithm is applicable in a situation where a

job to be done or a problem to be solved consists of many component parts. And there

is the need to successively split the job or problem into two halves for easier actions or

solutions, and priority attached to one-half in the splitting process. FRBF could be

applicable in the work presented in [Coh et al.82].

Consider a job or problem to consist of elements, which are al1 packaged into a block

(set) known as a root-block, then applying the algorithm (fission of the rightmost

branch or blockfirst) win produce the decomposition format shown in Figure. 5.3.

115

Simulation Methodology to Determine ONTQC

The algorithm is as follows:

1. Start from the root block, re-arrange the elements into two sets, and move higher

priority elements into one set and lower priority elements into the other set.

2. Split the root-block into two-halves to form two child-blocks, one block with

higher priority elements and the other block with lower priority elements.

3. Move the higher priority block to the right and the lower priority block to the left

as branches under the root-block in the hierarchical tree.

4. Split the higher priority block in the right into two-halves again, in such a way that

the priority of the elements placed in one of the two resulting child blocks is higher

than the other. The left block (or blocks) will remain constant (i.e. not split) until

all the right blocks are each reduced to one element.

5. Move the higher priority block in the last split to the rightmost side in the current

hierarchical level of the tree branch and split the block into two halves again,

reflecting priority.

6. Arrange the blocks in each hierarchical level of the tree in such a way that priority

of the blocks start from the lowest in the left side of the tree and increases towards

the right with highest priority at the rightmost side. Repeat the rightmost block

splitting and arranging until there is a single element in the lowest block in the

rightmost branch of the hierarchical tree.

7. Move inward towards the left to the next block that contain more than one element

and continue the rightmost splitting of the block and child-blocks until the

rightmost and lowest block in the current branch that is acted on, contains only one

element.

8. Repeat the steps 4 to 7 until the last block in each last branch of the hierarchical

tree has only one element.

The algorithm was applied in our experiment on queue decomposition into subqueues.

This is shown in Figure. 5.3. After the initial splitting of the root queue into real-time

traffic (priority) and non real-time traffic (less priority) queues, the subsequent

splitting processes concentrate on splitting of priority queues until the highest priority

queue contains only one class of traffic. After that, the splitting process moves to the

next lower priority queue that has more than one-traffic class and repeats the splitting

116

Simulation Methodology to Determine ONTQC

pattern. Figure. 5.3 represents typical levels of activity in an SAD. The number of

blocks in each level represents the number of queues that was worked upon on that

level. At each hierarchical level, we run the simulation using eight traffic classes. This

was the case in each of the three simulation segments highlighted above.

2_ Queue Classes

3 _Queue Classes

4_ Queue Classes

5_ Queue Classes

6_ Queue Classes

7_ Queue Classes

8 _Queue Classes

Figure 5.3: Decomposition of queues using algorithm known as Fission oj Rightmost
Block First.

5.3.6 Queue Disciplines Employed for Simulation

In each SAD of each of the three simulation segments highlighted above, we employed

a FIFO queue discipline for step_I in router A and B (see Figure. 5.1). Please recall

that step_I means, simulation with one queue for all the eight traffic classes. When we

117

Simulation Methodology to Determine ONTQC

move to step _2 (employing two queues) and above, we employed a mixture of three

queue disciplines, which are variants of the Class Based Queue (CBQ) algorithm. The

variant of CBQ discipline used are; the native round robin (RR) scheduling, the

weighted round robin (WRR) scheduling and the weighted deficit round robin

(WDRR) scheduling. The reason we used the mixture of these CBQ disciplines will be

highlighted next.

5.3.6.1 Use of Round Robin (RR) Scheduling

Details of the mechanism of the RR scheduling will be found in Chapter 3, Section

3.7.4. The reason we used RR scheduling was to observe the pure effect of number of

queues without the modulating effect of preferences such as weight which could shift

the performance of application traffic towards the weight of resources allocated to

them rather than the pure number of queues. With RR scheduling there is no weight,

the queues are visited on a round robin basis. We envisaged that effect of queue

numbers would be pronounced in such a situation. The results we obtained will be

discussed in Chapter 6, which deals with results.

5.3.6.2 Use of Weighted Round Robin (WRR) Scheduling

The mechanism ofWRR can be found in Chapter 3, Section 3.7.5. We made use of

WRR scheduling to determine the effect of differential or discriminatory allocation

of resources to application traffic on the performance of the application traffic. We

seek to find out the extent to which differential allocation of resources affects

optimum number of queue classes. Our finding will be discussed in Chapter 6.

5.3.6.3 Use of Weighted Deficit Round Robin (WDRR) Scheduling

The WDRR was discussed in Chapter 3, Section 3.7.6. We observed that the WDRR

scheduling was accurate in delivering the share of resources allocated to each

application traffic. We used WDRR to determine the extent to which fairness in

resource allocation will influence the optimum number of queues. We will discuss

our findings in Chapter 6.

118

Simulation Methodology to Determine ONTQC

5.4 Simulation Work in a Typical Simulation Action Domain
(SAD)

We now focus on the simulation work in each step of a typical SAD. We will now

discuss each step of a typical SAD in more detail.

5.4.1 Step_l ofa Typical SAD

All the eight traffic classes were concentrated on a single queue in each of router A

and B of Figure. 5.1. The layout of the queue mechanism is shown in Figure. 5.4. The

queue employs the FIFO queuing discipline. We simulated with both infinite queue

capacity and finite queue capacity to determine effect of queue length on delay and

throughput. We experimented on various values of combinations of traffic intensities

and capacities of the bottleneck link. Statistics were specified before simulation runs,

and collected after each run.

Server

Pipeline &Arriving Packets

Figure 5.4: The Root_Queue (single queue) with FIFO Queue Discipline

[[]]] lIIIID [[]]]

Transmitted Packets

Let the 8 traffic classes be Network Control, Voice, Interactive Video, Audio & Video,

Control Load, Excellent Effort, Best-effort, Background or Bulk traffic. The shorthand

notation for each of the traffic classes follows:

Network Control ~ NC

Voice ~ VO

Interactive Video ~ VI

119

Audio & Video

Control Load

Excellent Effort

Best-effort

~ AV

~ CL

~ EE

~ BE

Background Traffic ~ BT

Simulation Methodology to Determine ONTQC

The single queue, which is denoted as the Root _Queue, is represented as a set with 8

different elements and given as;

Root_Queue = {NC, VO, VI, AV, CL, EE, BE, BT}

To support the notion we are about to develop, we make the following assumption:

Assumption: We assume that, the elements are arranged in the queue in such a way

that no same element takes two positions that are directly next to each other. In other

words queue positions are taken alternately by packets of different traffic classes.

The different ways in which the packets of the different traffic classes can be arranged

in the queue according to permutation and combination law equals 8! (8 factorial).

We now consider the state of the queue at the smallest possible time to when all the

traffic classes are present in the queue. According to our assumption, the priori

probability that anyone of the traffic classes will be selected for service by the server

at time to = 118 = 0.125. We call this Expedited Factor. Low expedited factor becomes

a serious limitation for time sensitive application such as Voice in a Iow capacity link.

We now develop a new notion for making similar assessments for timely service. We

introduce the notion of queue quantum molecular length, which is defined as the

number of different traffic classes or packets present in a queue at time to. In our case,

the Root_Queue has a quantum molecular length of 8. According to the permutation

and combination laws, the position any of the 8 traffic classes can take ranges from I

to 8 at time to. In this case, position I is nearest to the server while position 8 is the

least near to the server. We also introduce the new notion of proximity number of a

packet to server. This is defined as the number of packets to be served before the

packet under consideration is served. If the packet at the head of the queue takes

position 0 and the packet position is n, then its proximity number will simply be n.

120

Simulation Methodology to Determine ONTQC

This led us to introduce a related notion of limiting proximity number of a packet to

server. And it is defined as the worst case scenario of the number of packets to be

served before the packet when the queue size equals its quantum molecular length at

time to. This is simply saying the limiting proximity number of a packet inside a queue

equals its worst case scenario proximity number, when the queue size equals the

queue's quantum molecular length. If we denote the limiting proximity number of a

packet inside a queue by LP and the quantum molecular length of the queue by ML,

then a packet LP = ML - 1. LP = 0 gives the best value for occupants of a queue.

Higher values of LP for queue occupants indicate disadvantages, which increases as

LP values increases. Thus for the Root_Queue, a time sensitive application such as

Voice will have its LP = 7 and its theoretical Expedited Factor = 0.125.

5.4.2 Step _ 2 of a Typical SAD

In the simulation under step _2 of a typical SAD, the eight traffic classes were divided

into two groups on the criterion of real-time and none real-time traffic. Each group had

four traffic classes. Two queues were implemented in each of the two routers, and each

queue served four traffic classes. One of the two queues served real-time traffic while

the other served non real-time traffic. The layout of the queue mechanism is shown in

Figure 5.5. We used the same traffic parameters as used in step_I for each of the

traffic classes. The values for capacity of the bottleneck link remained the same as

used in step _1. Processes of statistics collection and implementation remained the

same as in step_I.

We noted that the theoretical Expedited Factor for traffic in each of the queues has

improved and the Limiting Proximity Number has also reduced (an advantage over

step_I). Thus for step_2 queues, traffic has theoretical Expedited Factor = 0.25 and

Limiting Proximity Number = 3.

121

Simulation Methodology to Determine ONTQC

Pipelines & Arriving Packets

TC = Traffic Class

Figure 5.5: Format of the two Queues Implementation. Queue_1 served real-time
traffic (i.e. VO, VI, NC & AV), while Queue_2 served non real-time
traffic (i.e. CL, EE, BE & BT).

5.4.3 Step_3 of a Typical SAD

In step_3, we applied the algorithm, fission ofrightmost blockfirst (see Section 5.3.5).

Thus we kept the state of the elastic application queue constant and split the inelastic

application queue into two halves. We then have three queues in which Queue_1 had

two traffic classes (NC & VO), Queue_2 had two traffic classes (VI &AV) and

Queue_3 had four traffic classes (CL, EE, BE & BT). Queue_3 was the same as

Queue _ 2 in step _2. Every other action remained the same as in step _2. All traffic

parameters remained the same. The same statistics were specified as did in step _I and

step_2. Figure 5.6 serves as illustration of the format of the three queues.

With the three-queue implementation, Expedited Factor for Queue_1 and Queue_2

occupants increased to 0.5 and their Limiting Proximity Number reduced to 1.

Showing theoretical performance improvement. Queue_3 is the same as Queue_2 in

step_2, thus Queue_3's Expedited Factor and Limiting Proximity Number remain the

same as in step_2. That is Queue_3 occupants Expedited Factor = 0.25 and their

Limiting Proximity Number = 3.

122

Simulation Methodology to Determine ONTQC

Queue 1

I
IIIIII 00 IIIIII IIIlIJ
-----~~

Queue 2

c:::::r::: IT!] : .. c:::::I IIIIII .. IIIIII 00 IIIIII 00: j((~/; rrmrn IT!] IT!]

§
Queue 3 Transmitted Packets

, IT!] --_~ 1.1f Server

' ... ' '.". IIIIII ---» 00 rrmrn mm rrmrn /'
TC_S'" =:~ ______ --11

Pipelines & Arriving Packets

TC = Traffic Class

Figure 5.6: Three Queues Implementation. Queue_I served two classes of traffic
(NC & VO), Queue_ 2 served two classes of traffic (VI & AV),
Queue_3 served four classes of traffic (CL, EE, BE & BT).

5.4.4 Step_ 4 of a Typical SAD

In step_ 4, we also applied the fission of the rightmost blockfirst algorithm, and we got

four queues to manage. We split Queue_l of step_3 into two-halves, and kept the

remaining two queues in step _3 the same, resulting in four queues in step _4. Then in

step _ 4, Queue_I had one class of traffic (NC), Queue _ 2 also had one class of traffic

(VO), Queue_3 had two classes of traffic (VI & AV) and Queue_4 had four classes of

traffic (CL, EE, BE & BT). Ail traffic parameters remained the same as in all previous

steps, and so also all statistics. As in step_2 and Step_3, we also experimented with

various values of the combination of traffic intensities in relation to capacities of the

bottleneck link. Figure 5.7 provides illustrations of the four-queue implementation.

With the four-queue implementation, Queue_l served only one class of traffic (NC).

Queue_2 also served only one class of traffic (VO). The Expedited Factor for

occupants of Queue_I and Queue_2 equals 1 and the Limiting Proximity Number

equals O. These values are the best that could be obtained. Queue_3 was the same as

123

Simulation Methodology to Determine ONTQC

Queue_2 in step_3, and Queue_4 was the same as Queue_3 in step_3. Thus Queue_3

served two classes of traffic (VI & AV), and Queue _4 served four classes of traffic

(CL, EE, BE & BT). The Expedited Factor for occupants ofQueue_3 = 0.5 and their

Limiting Proximity Number = 1. The Expedited Factor for occupants of Queue_ 4 =
0.25 and their Limiting Proximity Number = 3. These values show that the traffic in

Queue_ 4 theoretically do not have performance improvement as we change from

three-queue implementation to four-queue implementation.

Queue 1

TC_IC:::X IIDl _~ IIDl IIDl IIDl IIIlII
____ ----J1 ~

c=:::::::::r: IIIlI ~
~ IIIIID ::>

Queue 2

TC 8 E~~~~ ,::r IIIlI IIIIIIID !IIII1I IIIIIIID :

Pipelines & Arriving Packets

TC = Traffic Class

Figure 5.7: Four Queues Implementation. Queue_l served one class of traffic (NC),
Queue_2 served one class of traffic (VO), Queue_3 served two classes
of traffic (VI & AV) and Queue _ 4 served four classes of traffic
(CL, EE,BE & BT).

5.4.5 Step_5 of a Typical SAD

In applying the fission of the rightmost blockfirst (FRBF) algorithm in this step_5, we

noted that, each of queues I and 2 in step _4 had only one traffic class to serve. Thus

the application of the FRBF algorithm was not applied to them. The algorithm

124

Simulation Methodology to Determine ONTQC

compelled us to focus on queue 3 of step _4. The queue was split into two, which gave

us five queues to manage in step _5. This is illustrated with Figure 5.8.

Queue 1

Queue 2

C:;,.... (mm __ > IIDID IIDID mm mm' ~
I

Queue 3

Queue 4

C:;:.:;;;.::C mm --> mm IIIII] mm mm I /f
I

Pipelines & Arriving Packets

TC = Traffic Class

Figure 5.8: Five Queues Implementation. Queue_l served one class of traffic (NC),
Queue_2 served one class of traffic (VD), Queue_3 served one class
of traffic (VI), Queue_ 4 served one class of traffic (AV) and Queue_5
served four classes of traffic (CL, EE, BE & BT).

The arrangement then in step_5 was: Queue_I had one class of traffic (NC) to serve,

Queue_2 had one class of traffic (VD) to serve, Queue_3 had one class of traffic (VI)

to serve, Queue_4 also had one class of traffic (AV) to serve, and Queue_5 had four

classes of traffic (CL, EE, BE & BT) to serve. All traffic parameters remained the

same as in previous steps, and also the types of statistics collected were the same as in

previous steps. Queue disciplines implemented were the same as in step _4. The

Expedited Factor for Queue_I, Queue_2, Queue_3, and Queue_4 equals 1 and their

Limiting Proximity Number equals O. In this case, the theoretical service condition for

125

Simulation Methodology to Determine ONTQC

Voice and Interactive Video remain the same as in step_ 4 (four-queue

implementation). While the theoretical service conditions of Network Control and

AudioNideo have improved compared to step_4. Queue_5 was the same as queue_4

in step_4. Thus the theoretical service conditions of occupants of Queue_5 remain the

same as in step_ 4. Their Expedited Factor remain as 0.25 and their Limiting Proximity

Number remain as 3.

5.4.6 Step_6 of a Typical SAD

Queue]

TC 1 CL;;::, . .c!lID __ >!lID !lID !lID
1

!lID1~
Queue 2

C::::::'.:::,,I mm __ ~ IIIIID IIIIID mm mm
1

I~
Queue 3

C;;;,;.,:::C:!lID __ > !lID !lID !lID !lID 11 ~
C::.:.;'::C mm __ >mm ---mm-.....;Qumm-

eu
_
e
_
4

-mm-'" ~'~:""~~~~it~ P~kets
_______J1 Server

Queue 5

!lID mm !lID

Pipelines & Arriving Packets

TC = Traffic Class

Figure 5.9: Six-Queue Implementation. Queue 1, Queue 2, Queue 3, and Queue 4, - - - -
each served one class of traffic, which were NC VO, VI, & AV
respectively. While Queue_5 served two classes of traffic (CL, & EE),
and Queue_6 also served two classes of traffic (BE & BT).

126

Simulation Methodology to Determine ONTQC

In considering the processes of action in step_6, we noted that, in step_5, queue 1, 2, 3

and 4 respectively had one class of traffic to serve. Thus in applying the FRBF

algorithm, these queues were skipped. This brought us to queue_5 of step_5, which

had four classes of traffic to serve. We then split it into two-halves. Thus in step_6 we

had a six-queue implementation in which Queue_I, Queue_2, Queue_3 and Queue_ 4

had one class of traffic to serve respectively. Queue_5 and Queue_6 had two classes of

traffic to serve respectively. This is illustrated with Figure 5.9. All traffic parameters

and types of statistics collected were the same as in previous steps. The Expedited

Factor for occupants of Queue_I, Queue_2, Queue_3 and Queue_ 4 remain the same as

in step _5 and is equal to 1 and their Limiting Proximity Number equals O. The

Expedited Factor for occupants ofQueue_5 and Queue_6 equals 0.5 and their Limiting

Proximity Number equals 1. These values show improvement for the occupants of the

two queues compare with their values in step _5.

5.4.7 Step_7 ofa Typical SAD

In applying the FRBF algorithm, we noted that in step _6, queue 1, 2, 3 and 4

respectively had only one class of traffic to serve. These queues were therefore skipped

as we applied the FRBF algorithm. The next queue to split according to the algorithm

was queue 5 of step _6, and the queue was split into two queues, each having one class

of traffic to serve. This resulted into seven-queue implementation in this step. The

queue arrangement is illustrated with Figure 5.10.

All traffic parameters and types of statistics collected were the same as in previous

sections. Queue_I, Queue_2, Queue_3, Queue_4, Queue_5 and Queue_6 respectively

had one class of traffic to serve. Their occupant's Expedited Factor equals 1 and the

occupant's Limiting Proximity Number equals O. With these values, Queue_5 and

Queue _ 6 occupants theoretically had improvement in their service conditions

compared with their service condition in step_6. Queue_7 had two classes of traffic to

serve and the occupants of the queue Expedited Factor equals 0.5 and their Limiting

Proximity Number equals I. These values were the same for the occupants of the

queue as they were in step _6.

127

Simulation Methodology to Determine ONTQC

Queue]

Oueue 2

C;:::.. C !ITD __ >!ITD !ITD !ITD
Queue 3

c;: ;;,1 rrmn _-> nnm nnm mm mm

Queue 4

C;;,,:;,::1!ITD __ > !ITD!ITD!ITD!ITD : ~

(;:1:":",'::(rrmn --> mm __ I_II_1 ~_" !e_I!_~'_~'_'II_mm_.Ji t2.!3:;::;~itt': P"!.'
Queue 6

Pipelines & Arriving Packets

TC = Traffic Class

Figure 5.10: Seven-Queue Implementation. Queue_I, Queue_2, Queue_3, Queue_ 4,
Queue _Sand Queue _6, each served one class of traffic which are
NC, VO, VI, AV, CL and EE respectively. While Queue_7
served two classes of traffic (BE & BT).

5.4.8 Step_8 ofa Typical SAD

As usual we applied the FRBF algorithm and noted that queue 1, 2, 3, 4, 5 and 6, of

step_7, each had one class of traffic to serve and thus they were skipped. The next

queue to be acted upon was queue 7 of step _7 and the queue was split into two queues.

Thus we have eight queues to manage in this step.

128

Simulation Methodology to Determine ONTQC

Oueue 1

I TC _1 c::;::~:;r mu -> mu mu mu mul~
Oueue2

I c: ::':: :::;;;,: ".' (mu mu mu -~ mu mul~
Quelle 3

I C:;;;,!,{ mu mu mu mu -> mul~
Oueue4

C:::;.::LC rrmn_>
mnu mnu mm ~ '" <::1"'-nmm mn mn

Queue 5 I ;1('U;'/:';;' Transmitted Packets
mu mu am am Server

I c:: ::::1 am _>
Quelle 6 ;1(

C:::::,;::C mnn _> _mm __ mm __ mnn __ rrmn---,:

Queue? J
C::::.:.::::C mm _> am mm am mm I

Queue 8 I t
I

TC 8 C;:: ::,:C mum _> mm IID1IIlI mm !IIlJII] I
Pipelines & Arriving Packets

TC = Traffic Class

Figure 5.11: Eight-Queue Implementation. Each queue served one class of traffic

All traffic parameters and types of statistics collected were the same as in previous

step. The queue arrangement is illustrated with Figure 5.11.

Each of the eight queues served only one class of traffic. The Expedited Factor of

occupants of each of the eight queues equals 1 and their Limiting Proximity Number

equals O. Occupants of Queue_7 and Queue_8 have theoretical improvement in their

Expedited Factor and their Limiting Proximity Number if compared with Step_7.

129

Simulation Methodology to Determine ONTQC

Summary

The simulation methodology for the empirical investigation to determine the Optimum

Number of Traffic Queuing Classes (ONTQC) that will best support integrated services

has been presented in this chapter. The similarity in our simulation methodology with

the classical Markovian chain has been expounded. Simulation operations were

partitioned into sections known as Simulation Action Domains (SAD). The simulation

consisted of several SADs and each SAD was made up of eight simulation steps

(numbered from 1 to 8). Detailed actions on a typical SAD are described with illustrative

diagrams.

130

Traffic Parameters and Simulation Results for ONTQC

CHAPTER 6

Traffic Parameters and Simulation Results
for ONTQC

The simulation work on the empirical investigation to determine the optimum

number of traffic queuing classes to support integrated services was very extensive.

As stated in the previous chapter, it consisted of several simulation scenarios which

were grouped or partitioned into Simulation Action Domains (SADs) with wide

ranges of traffic input parameters. It should be recalled that, there were eight

simulation iterative steps in each SAD, and each step employs eight different traffic

classes. Each traffic class in the eight simulation steps of an SAD utilises identical

traffic input parameters to generate identical traffic profile. Each SAD generated 64

output results for end-to-end delay and 64 output results for throughput. Due to the

large number of SADs we cannot present all the results of every SAD in this thesis.

Fortunately, there will not be lots of information lost by not presenting all the results

since results from all the SADs follow a similar trend or pattern.

As this chapter title has indicated, the chapter will contain traffic parameters and the

simulation results. In Section 1, we will summarise the wide range of traffic

parameters employed for the simulation. Although there are four broad groupings of

simulation scenarios-- (1) simulation with TCP and UDP, (2) simulation with only

UDP to remove the effect of TCP traffic management, (3) simulation with equal

packet sizes to emulate ATM and (4) simulation without the Internet protocol, we

cannot present all the details of the simulation results in this thesis. Since the results

have some similarities, we consider it reasonable to present a typical SAD results to

represent the simulation results. Thus in Section 2, we will present the results from a

SAD augmented with very short summary results from one other SAD to represent

the whole simulation results.

6.1 Traffic Parameters in Summary

Here in this section we present an abridgement of traffic input parameters that

generate the wide range of traffic profile for the simulation experiment. The input

131

Traffic Parameters and Simulation Results for ONTQC

parameters for each of the eight traffic classes is presented in a table (a table each for

each class) as illustrated in Table 6.1a to Table 6.1g. Since we cannot represent all

the various numerous values of the traffic parameters used in the simulation in a

table, an abstraction technique is adopted. The technique consists of presenting the

lowest few values of a particular parameter followed by ellipses as an embedded

compression notation, which is then followed, by the largest value and then the range

in a table row. This idea can be captured graphically from Table 6.1a to Table 6.1g.

This represents the wide range of traffic parameter values for a typical broad-group

simulation scenario.

Table 6.1

(a) Traffic Class 1
Low values I High value Range

Packet sizes in bytes 32, '" 48, , 256 224
Packet rate in kb/s 56, '" 64, , 2048 1992
Burst time in seconds 0.25,,,, 0.35, , 2.0 1.75
Idle time in seconds 0.45, ",0.65, ,3.0 2.55
Inter-packet-arrival
distribution Constant and Exponential

(b) Traffic Class 2
Low values I High value Range

Packet sizes in bytes 210, .. , 1024 814
Pkt Inter-arrival time 0.016~ ,0.05 0.0335
Packet Inter-arrival
distribution Constant and Exponential

(c) Traffic Class 3
Low values I High value Range

Packet sizes in bytes 105, .. ,640 535
Packet rate in Kb/s 32, .. ,448 416
Packet Inter-arrival
distribution Constant

(d) Traffic Class 4
Low values I High value Range

Packet sizes in bytes 200,,,,512 , 1024 824
Packet rate in kb/s 200, , 300 100
Burst time in seconds 1.0, .. , 2.0, , 5.0 4.0
Idle time in seconds 0.45, '" 0.65, ,3.0 2.55
Inter -packet-arrival
distribution Pareto

132

Traffic Parameters and Simulation Results for ONTQC

(e) Traffic Class 5
Low values LHi~hvalue Ran~e

Packet sizes in bytes 128, '" '" .. , ,625 814
Pkt Inter-arrival time 0.005, , 30.0 29.995
Packet Inter-arrival
distribution Nonna1

(0 Traffic Class 6
Low values I High value Range

Packet sizes in bytes 400, '" ,800 400
Pkt Inter-arrival time 0.005, , 1.0 0.995
Packet Inter-arrival
distribution Nonnal and Constant

(g) Traffic Class 7
Low values I High value Range

Packet sizes in bytes 700, '" ,800 400
Pkt Inter -arrival time 1.0, , 6.0 5.0
Packet Inter-arrival
distribution Exponential

(h) Traffic Class 8
Low values I High value Range

Packet sizes in b}'tes 1000, '" , 1500 400
Pkt Inter-arrival time 1.0, , 6.0 5.0
Packet Inter-arrival
distribution Exponential

6.2 Simulation Results

The approach adopted in extracting the main useful results from the extensive

simulation results involves a selective extraction approach that will produce the

essential results that are needed to make our decision. As described earlier, this

consists of choosing a typical SAD and using its results as an approximation of the

generality of simulation results and where necessary, we supplement the results with

results from other SADs.

The locus of the simulation effort is to compare results' of the various simulation

scenarios, which employ a set of different queuing systems, with each member of the

set having a different number of traffic-queuing-c1asses. Thus the results will be

combined and presented graphically in composite comparison charts instead of

individual result charts. The objects under consideration in extracting and selecting

133

Traffic Parameters and Simulation Results for ONTQC

results are eight traffic classes, a set of eight queuing systems, and a set of eight

iterative simulation scenarios. The objective functions in our decision making

process then would consist of a set of relational functions that define a mapping or

assignment of these objects onto one another. The statements of such relational

functions are as follows.

• Eight traffic classes => map into one-queue => produce 2 x (eight instances of
output results).

• Eight traffic classes => map into two-queues => produce 2 x (eight instances
of output results).

• Eight traffic classes => map into three-queues => produce 2 x (eight
instances of output results).

• Eight traffic classes => map into four-queues => produce 2 x (eight instances
of output results).

• Eight traffic classes => map into five-queues => produce 2 x (eight instances
of output results).

• Eight traffic classes => map into six-queues => produce 2 x (eight instances
of output results).

• Eight traffic classes => map into seven-queues => produce 2 x (eight
instances of output results).

• Eight traffic classes => map into eight-queues => produce 2 x (eight instances
of output results).

6.2.1 Results of One-Queue Compared with Two-Queues

The first step in our iterative simulation actions was to determine if the lowest

number in the multiple queuing system (two-queues CBQ) offered better services

than the mono-queuing system (FIFO) in Integrated Services environment. The

result of the first step in our simulation actions, which consisted of two simulation

scenarios - (1), FIFO queuing system and (2), two-queues CBQ system with both

having identical traffic input parameters to generate identical traffic profile is

shown in Figure 6.1. This result shows a tremendous improvement in service

quality when the multiple queuing system is employed in multiservice-network

compared with the use of mono queuing system. The result served as motivation to

continue with the empirical investigation to determine the optimum number of

traffic queuing classes that will best support Integrated Services. It was observed

from the simulation results that, the end-to-end delay results for all the eight traffic

classes were similar in the single (FIFO) queue system. In the results of the two

queue multiple queue system, it was also noted that, both the four high-priority

traffic classes and the four low-priority traffic classes had lower end-to-end delay

134

Traffic Parameters and Simulation Results f or ONTQC

compared with the single queue system. Thus in order to economise on reading

pages, we present here the results of a traffic class in both the single (HFO) queue

system and the two-queue (CBQ) queue system, since the results shown in the

composite chart capture the trend of the whole results under consideration. The

results shown in Figure 6. J are the end-to-end delay composite chart for traffic

class I (Voice) in both the one-queue system and the two-queue system.

In the subsequent result presentation, we will eliminate the mono queuing system

(FIFO queuing system) in the comparison of results, siru:e it has been established

that multiple queuing system offers better services than the mono queuing system.

Tramc Class 1 (Voice) End~o-End Delay (in l-<jueue and 2-<jueue)

•
~ ,

/
/

~
/

~
o ./

o 200 ... '000 ' 200 ' 400 , ...
Time in Seconds

Figure 6.1: Showing end-to-end delay for J -queue (FIFO) system and
2-queue (CBQ) system.

6.2.2 Typical Results for Traffic Class 1

' 600 2000

The results consist of two parts - a graphical part, which consists of an X-Y chart

and a statistical numerical part, which consists of a row-vector. The graphical part

presents the display of a composite comparison charts for simulation using 2-

queues, 3-queues, . . . , up to 8-queues, in this case, for traffic class I. The end-to

end delay results for traffic class I is shown in Figure 6.2. In the statistical

numerical part, we present end-to-end mean delay row-vector for the traffic class I .

135

1.queue 1
2=queue

Traffic Parameters and Simulation Results for ONTQC

As shown in the Figure 6.2, the results for simulation with 4-queues and 5-queues

have the lowest end-to-end delay for traffic class 1. The performance of the

multiple queues in terms of end-to-end delay decreases as we increase the number

of queues above 5-queues for traffic class 1.

Traffic Class 1 (Voice) Average End-to-End Delay (In 2 to 8 queue)

'1~---------=-----==-==--~----------~~---------------'

•
r--

~.

.-

!!!.

P ~
~

~ 3 V
" '" c
'I'

--.

Si
-g 2
W

----.... •• ••••••••• • •••• eo_. •••••• • ••••• ' ••••••••••••••••••••••. _,_

o+---__ ----__ ----__ ----__ ----__ --__ ----__ ----__ ----__ --~
o 200 600 IlOO 1000 1200 1400 1600 1Il00 2000

Time in Seconds

Figure 6_2: Showing end-to-end delay for traffic class 1, in 7 simulation scenarios,
with each scenario employing different numbers of queues varying
from 2-queues up to 8-queues. Identical input traffic parameters
used in all the seven scenarios.

2.
- 30 4.

5q
•. •• . 6q

-7.
--Bo

The results for the mean end-to-end delay for the set of simulation scenanos

employing multiple queues ranging from 2-queues up to 8-queues for traffic class 1

are shown in the row-vector mean delay that follows :

Traffic-class
Class-I

Q2
4.846

Q3
3.744

Q4
1.259

Q5
1.253

6.2.3 Typical Results for Traffic Class 2

Q6
1.326

Q7
2.597

Q8
2.995

The results also consist of two parts -a graphical part and a statistical numerical

part, which is in the same format as in the previous section. The graphical result for

traffic class 2 is shown in Figure 6.3 for end-to-end delay. The figure is a

composite chart, which shows the relationship between the multiple queuing

systems for traffic class 2. The chart results show that the lowest end-to-end delay

136

Traffic Parameters and Simulation Results f or ONTQC

has been recorded for traffic class 2 with simulation scenario employing 3-queues.

The results also show that, end-to-end delay performance continues to deteriorate

as we increase the number of traffic queuing classes above 3 for traffic class 2.

The mean end-to-end delay row-vector for traffic class 2 is as follows:

Traffic-class
Class-2

Q2
4.880

Q3
3.723

Q4
7.390

Q5
7.232

Q6
7.628

Q7
15.402

Traffic Class 2 (Video) Average End-to-End Delay (in 2 to 8 queue)

"
10

14 r-~ -.,--
L ~.------

~~ ~

._.-_ -~--
., .' .. , . , .. -. - -" " ."

. .'
i

2

o
o 200 ' 00 ... 800 '000 '200 1400 1000 , ...

Time In Seconds

2000

Q8
12.588

- 2,
3q 4,
50
6q

- 7,

Figure 6.3: Showing end-to-end delay for traffic class 2, in 7 simulation scenarios
with each scenario employi ng a different number of queues varying
from 2-queues up to 8-queues. Identical input traffic parameters
used in all the seven scenarios.

6.2.4 Typical Results for Traffic CI.ass 3

The results, just as in previous sections consist of two parts --a graphical part and

a statistical numerical part . The graphical result for traffic class 3 is shown in

Figure 6.4 for end-ta-end delay . The composite display as shown in the chart, made

it easy to compare the performance of one multiple queuing system with another

for traffic class 3. The chart results showed that, the best performance for end-to

end delay has been recorded with the simulation scenario employing 3-queues in

1]7

Traffic Parameters and Simulatian Results/or ONTQC

the experiment. As revealed in the chart, the end-to-end delay performances

continue to deteriorate as the number of queues employed in the simulation

scenario increases above 3 for the traffic class 3.

The mean end-to-end delay row vector for traffic class 3 is as follows:

Traffic-class
Class-3

Q2
4.886

Q3
2.387

Q4
3.399

QS
8.092

Q6
8.769

Q7
17.387

Traffic Class 3 (Audio) Avera ge End-to-End Delay (in 2 to 8 queue)

U r--

rlL~----
~ 10 +---~ ~ ..••.. ~, •......... cc,-.•..• cc••.....
w

~ .
.... . ,~ ~

....
.. b=~-=--~

,+---~ , 200 40' 600 600 ' 000 ' 200 '400 '600 ' 800 2000

Time In Seconds

Q8
14.071

- 2q
- 3q

4q

5q
6q

- 7q

Figure 6.4: Showing end-to-end delay for traffic class 3, in 7 simulation scenarios
with each scenario employing different numbers of queues varying
from 2-queues up to 8-queues. Identical input traffic parameters
used in all the seven scenarios.

6.2.5 Typical Results for Traffic Class 4

The results are in the same format as in previous sections and consist of two parts

--a graphical part and a statistical numerical part. The graphical results are shown

in Figure 6.5. The composite chart provides an easy means for performance

comparison between the elements in the sel of multiple queuing systems employed

in the simulation experiment.

138

Traffic Parameters and Simulation Results for ONTQC

The chart results showed that, the best performance for end-to-end delay has been

recorded with simulation scenario employing 5-queues for the traffic class 4 . The

results revealed poorer end-to-end delay performance when the number of multiple

queues employed in the simulation scenarios are higher than 5 for class 4 traffic.

The mean end-to-end delay row vector for traffic class 4 is as follows :

Traffic-class
Class-4

Q2
4.882

Q3
2.390

Q4
3.405

Q5
1.966

Q6
2. 121

Q7
5.009

Q8
4.878

Traffic Class 4 (DB) Average End-to-End Delay (in 2 to 8 queue)

8 r-------------~--------------------------------_,

7~--~

,~--~

~ 5 \ ..r-..

~ •
Q 4 ~--~ ~
~
~ 3t---~
w

2 <L' .r-.-~."'".--~.-~-=."'"-."'. ~.;;.:.-::.:.- " ~" :.:.:" =~__.:: -... :
1,"-

-._- " -" - --j

o ~--__ ----__ --__ ----__ --__ ----__ --__ ----__ --__ --~
o 200 600 800 "'" 1200 1<00 1600 "'Xl 2000

Time In Seconds

~
3q

4 •

5q
• 6q =7q

Figure 6.5: Showing end-to-end delay for traffic class 4, in 7 simulation scenarios
with each scenario employing different number of queues varying
from 2-queues up to 8-queues. Identical input traffic parameters
used in all the seven scenarios.

6.2.6 Typical Results for Traffic Class 5

The results consist of two parts as in the previous sections --a graphical part and a

statistical numerical part. The graphical result for traffic class 5 is shown in Figure

6.6. The composite chart provides an on-the-sport graphical result performance

comparison, between the elements in the set of multiple queuing systems employed

in the simulation.

B9

Traffic Parameters and Simulation Results f or ONTQC

The chart results revealed that, the best performance for end-to-end delay has been

recorded with the simulation scenario employing 6-queues for traffic class 5. The

result showed very poor end-to-end delay performance and a drastic degradation

change when the number of queues in the multiple queuing systems is above 6 for

the traffic class 5.

The mean end-to-end delay row vector for the traffic class 5 is as follows:

Traffic-class
Class-5

Q2
5.875

Q3
8.252

Q4
14.032

Q5
12.943

Q6
2.128

Q7
145.252

Traffic Class 5 (Em ail) Average End-Io-End Oelay (in 2 to 8 queue)

Q8
141.014

~' r---------------------------------~----------------~

'80r=====~~~ ,., --,.,L--7?~~-----J
~ '2' /'
i 10' /

~ 8' I
~ /

.,~~--~

" /
2' /

o --.-~"'.--"''''- --.-.,,- .•• - .•.•.•. ---- .••.•. . ..•••..•.•.••.•. --. -'-'._---_._'-',,- •. ,_,-, 20' ' 00 600 80' ' 000 ' 200 10400 '50' ' 800 200'
Tlm. In Seconds

Figure 6.6: Showing end-to-end delay for traffic class 5, in 7 simulation scenarios
with each scenario employing different number of queues varying
from 2- queues up to 8-queues. Identical input traffic parameters
used in all the seven scenarios.

6.2.7 Typical Results for Traffic Class 6

- " - 3,
" "

- 7, - .,

The end-to-end delay results for traffic class 6 as in previous sections, consists of

two parts--a graphical part and a statistical numerical part. The graphical results

are shown in Figure 6.7.

The chart results revealed that, the best performance for end-to-end delay has been

recorded with the simulation scenario employing 7-queues for traffic class 6. The

140

Traffic Parameters and Simulation Results jor ONTQC

results showed that, changing the number of queues from 7 to 8 in the multiple

queuing systems did not improve performance for traffic class 6. The results show

slight performance degradation in end-to-end delay as we change from 7-queue to

8-queue system.

The mean end-te-end delay row vector for the traffic class 6 is as follows :

Traffic-class
Class-6

Q2
5.845

Q3
8.169

Q4
13.960

Q5
12.869

Q6
2.143

TraffIC Class S (Telnet) Average End-to-End Delay (in 2 to 8 queue)

Q7
1.380

" r-------~-=----~----------------------------~__,
"r---1

,,'---------------------~-~.~--.--.- ------------------~ r .'

.~ ..
i 12r------------. ~~----------------------------------~
~
~ 10 /'
~ ./

~ t~~--~==~==~============================~--~ .. ,
~ !f
.if-~~==~----------------_i
.I(

.. ~ , ,. -...................... -.......... -

, 200 '" 600 800 1000 1200 " 00 1600 1800 2000

Time In S-conds

Q8
1.390

- 2_
- 3_

'-5q
- 7_
- 8_

Figure 6.7: Showing end-to-end delay for traffic class 6, in 7 simulation scenarios
with each scenario employing different number of queues varying
from 2-queues up to 8-queues. Identical input traffic parameters
used in all the seven scenarios.

6.2.8 Typical Results for Traffic Class 7

The end-to-end delay results for traffic class 7 as in previous sections, are made-up

of two parts--a graphical part and a statistical numerical part. The graphical results

are shown in Figure 6.8.

The chart results revealed that, the best performance for end-to-end delay has been

recorded with the simulation scenario employing 2-queues for traffic class 7. The

141

Traffic Parameters and Simulation Results Jor ONTQC

results showed that, as the number of queues in the multiple queuing systems is

increased above 2, wide range of very poor performances are recorded for end-to

end delay for traffic class 7.

The mean end-to-end delay row vector for the traffic class 7 is as follows:

Traffic-class
Class-7

Q2
5.870

Q3
8.241

Q4
14.045

Q5
12.955

Q6
11.814

Traffic Class 7 (Http) Average End-to-End Delay (in 2 to 8 queue)

Q7
20.997

"'1---===========----1
~ _ Mt-------------~L-------------------------------~

~ ~ !!l.
i:'
;!i ., ----= i ~ ,,<,:' ... ,., ,.........

w 10 · .7~--~

to··
,L=~==============~

Time in Seconds

Q8
13 .897

- 2.
- 3.

" ..
. ... 6q

- 7.
- 8.

Figure 6.8: Showing end-to-end delay for traffic class 7, in the 7 simulation scenarios
with each scenario employing different numbers of queues varying ITom
2-queues up to 8-queues. Identical input traffic parameters used in all
the seven scenarios.

6.2.9 Typical Results for Traffic Class 8

The end-to-end delay results for traffic class 8 as in previous sections, are made-up

of two partr--a graphical part and a statistical numerical part. The graphical results

are shown in Figure 6.9.

The chart results revealed that, the best performance for end-to-end delay has been

recorded with the simulation scenario employing 2-queues for traffic class 8. The

results are similar to that of traffic class 7 and showed that, as the number of

142

Traffic Parameters and Simulation Results Jor ONTQC

queues in the multiple queuing systems is increased above 2-queues, wide range of

very poor performances are recorded for end-to-end delay for the traffic class 8 .

The mean end-to-end delay row vector for the traffic class 8 is as follows:

Traffic-class
Class-8

Q2
5.931

Q3
8.307

Q4
14.106

Q5
13 .014

Q6
11.868

Q7
21.104

Traffic Class 8 (Ftp) Average End-to-End Delay (in 2 to 8 queue)

~ c-~---,

_ i 20 ____ ~ . -
I /~---- - ----
~ 15 f'/
(,) V _ ,.4 .-.
;;; , .. " .'
~ 10+---.~~--~ ..

/".-'-,

0

0 200 . 00 800 1000 1200 1400 1600 1800

Tlme In Seconds

Q8
19.530

:Iq
- 3q

<Iq

5q

' 60
- 7q
- - 8q

Figure 6.9: Showing end-to-end delay for traffic class 8 in the 7 simulation scenarios
with each scenario employing different number of queues varying from
2-queues up to 8-queues. Identical input Traffic Parameters used in all
the seven scenarios.

6.2.10 Global End-to-End Delay for the results of each Queue
System that have been presented

As a means of abstraction and concise result presentation, the combined average

delay for all traffic classes in each of the queuing systems are displayed in a

composite global chart. The chart is referred to as All Traffic Class Average Global

End-to-End Delay, and is shown in Figure 6. 10.

The concise chart provides a means to capture graphically at a glance, the essential

details of the whole results of the simulation experiment. As can be seen from the

143

Trafjic Parameters and Simulation Results /or ONTQC

chart, the best performance in terms of global emL-to-end delay was recorded with

the use of 3-queues in the se! of multiple queuing systems employed in the

experiment. Analysis of the results will be carried out in Chapter 7 where more

details from the chart will be discussed.

All Traffic Class Average Global End-to-End Delay (in 2 to 8 queue)

12

~ --
~ -------

10

V
.............. -' .'"

. -.. -'
?-,/

,~:: "

2

o
o 200 400 600 . 00 ' 000 ' 200 1400 1600 1800 2000

Time in Seconds

Figure 6,10: Showing Global end-to-end delay in the 7 simulation scenarios
with each scenario employing different numbers of queues
varying from 2-queues up to 8-queues. Identical input
traffic parameters used in all the seven scenarios.

- 2,
- 3, 4,

5q

... " - 7,
- 8,

Higher abstractions are obtained through the processes of numerical compression

and manipulation, which involves carrying out arithmetic operations on the data of

the global average end-to-end delay to produce a statistic parameter matrix (Table

6.2.) This provides a high level summary, which enables the trend in delay

performances of each multiple queue system to be captured as we change from one

multiple queuing system to another in the simulation experiment. The mean,

variance alld standard deviation (S.D) of end-to-end delay computed from the

global data for each i-queue, (2 ~ i ~ 8) simulations, are shown in the matrix of

144

2

Traffic Parameters and Simulation Resultsfor ONTQC

Table 6.2. This is a combination of the global mean delay rolV vector, the global

variance row vector, and the global standard deviation (S . D) row vector .

Table 6.2

Q2 Q3 Q4 Q5 Q6 Q7 Q8
Mean 5.384 4.399 6.818 6.417 5.616 11.308 9.712

Variance 0.090 0.071 0.823 0.801 0.451 1.804 0.926

S. D 0.299 0.267 0.907 0.895 0.672 1.343 0.962

The results for end-to-end delay (sojourn time) presented so far, are from one SAD

in which no Internet protocol is directly utilised. The resu lts from SADs in which

Internet protocols are utilised are also si milar to the ones presented above. The

summary of results from an SAD in which Internet protocols was utili sed in the

simulations will be presented next to capture the trend in the results.

6.2.11 Summary of Results for an SA D with Internet Protocols

In view of limitation of space, the results presented here will be a very concise

abstraction that can capture the essentials of the simulation results under the SAD

with Internet protocols. The results presented will be the numerica l values rather

than graphical values that wi ll consume space. Thus the results will consist of a

mean end-to-end delay matrix and a global mean-mean delay row vector. These are

shown in Table 6.3 and Table 6.4 respectively.

Table 6.3

Traffic-class Q2 Q3 Q4 Q5 Q6 Q7 Q8
cls I 0.0247 0.0242 0.0237 0.0231 0.0231 0.0240 0.0243
cis 2 0.0280 0.0291 0.0265 0.0263 0.0263 0.0262 0.0262
cis 3 0.0258 0.0267 0.0260 0.0262 0.0262 0.0266 0.0264
cis 4 0.0276 0.0284 0.0276 00278 0.0280 0.0281 0.0274
cls 5 0.6607 0.6586 0.6600 0.3 179 0.3188 01589 0.1574
cls 6 0.6644 0.6626 0.6636 0.3 186 0.3196 1.0138 0.9795
cls 7 0.6868 0.6849 0.6879 4.4770 4.0524 3.2582 3.1363
cls 8 0.6907 0.6899 0.6908 4.576 1 4.2542 3.2452 3.2175

145

Traffic Parameters and Simulation Results / or ONTQC

Table 6.4
Q2

Global D 0.35 11
Q3

0.3506

Note: Globa l_D to rc.1d Global Delay

Q4
0.3508

Q5
1.224 1

Q6
I. 13 1 1

Q7
0.9726

Q8
0.9494

The results are to some extent, similar to those presented earlier, especially in the

trend of the global mean-mean delay. It can be seen from the global mean-mean

delay row vector that, the best performance for end-to-end global delay (i.e. the

lowest) for all traffic classes is recorded with the use of 3-queues In the

investigation of the optimllm number in the mult iple queuing systems.

6.2.12 Typical Global Throughput Results for All Traffic Classes

The results for throughputs presented here are based on the SAD without Internet

protocol whose end-to-end delay results have been presented earlier. The results

consist of two parts-- a graphical part and numerical stati stical part. The graphical

part consists of a compressed composite chart in which each trace of the chart

represents the combined average throughput for all traffic classes in each multiple

queuing system simulated. The global throughput composite chart is shown in

Figure 6.11 . The numerical statistical part consists of mean throllghpllt values

presented in a matrix form for quick reading, and a global mean-mean Ihroughplll

row vector also for quick reading. These are shown in Table 6.5 and Table 6.6.

The matrix of Table 6.5 shows the values of the mean throughput for each of the

traffic classes in each multiple queuing implementation, arranged in a row vector.

This allows compari son of the results of one multiple queue system against

another.

The average throughput matri x is as follows:

Table 6.5

Traffic
Class Q2 Q3 Q4 Q5 Q6 Q7 Q8
Cls-l 1240 2860 2933 293 1 2932 2833 2830
Cls-2 39 146 69530 48610 4858 1 456 13 22 181 22348
Cls-3 25688 42596 393 10 40093 37662 183 17 18457
Cls-4 22 145 43975 40670 39993 37625 18279 1841 7
Cls-5 25365 19790 18030 18279 32390 3390 34 16
Cls-6 755 704 692 677 776 778 778
Cls-7 11 2973 84910 78381 78686 6 1686 30638 33950
Cls-8 168823 131903 12223 1 122 192 11 0213 53428 508 15

146

Traffic Parameters and Simulation Results Jor ONTQC

The g lobal mean average-throughput row-vector is as follows :

Table 6.6
Q2

GlobMnThrput 495 17
Q3

49534
Q4

43857
Q5

43929
Q6

41112
Q7
18731

Q8
18876

It should be noted that the highest throughput is recorded globall y by the use of the
3-queue system.

All Traffic Ctass Average Global Throughput (In 2 to 8 queue)

.=OO ~ ____________ ~ ______ ~~ ______ ~ ____________________ ,

~~~========--------------------------------~ 
350000 1I--1{_.-

iXXKlYJ 

. ~~----------------------------------------------------~ E 

• ~ 
~ ~~----------------------------------------------------, e • 
~ I~tr~~-=------~~~------------------==~=====-----1 

I 
I~ ~----------------------------------------------------~ 

~t-----------------------------------------------------~ 

o~--__ ----__ ----__ ----__ --__ ----__ ----__ --____ --__ ----~ 
, 200 '" ... 1000 1200 '''' '''' 18'" 2000 

Tlme In Second. 

Figure 6.11: Showing Global Throughput for the 7 simulation scenarios employing 
different numbers of queuing classes ranging from 2-queuing classes 
to 8-queuing classes. Identical input traffic parameters used in 
all the seven scenarios. 

The chart results showed that, the hig hest global throughput is recorded when 

3-queue is adopted for the multiple queuing systems. 

Summary 

w 
- 3q 

..... E 
- 7, 
- Oq 

The parameters used to parameterise the vanous applications traffic for the 

simulation and the simulation results have been presented in this chapter. 

The parameters are presented in a concise manner, in the format of a set of tables for 

quick reading . 

147 



Traffic Parameters and Simulation Results/or ONTQC 

The results from the large number of Simulation Action Domains (SADs) have some 

similarities and as such, results ITom one SAD are used to represent the whole 

simulation results. The results of each simulation step (step 1 to 8 exist) of a typical 

SAD are presented and illustrated with composite charts. Numerical statistics results 

such as mean, variance and standard deviation are presented in form of row vectors 

and matrices as summaries, to enhance quick capture of the important points of the 

results. 

148 



Analysis of Results from the Simulation on ONTQC 

CHAPTER 7 

Analysis of Results from the Sim ulation on ONTQC 

The results of the simulation were presented in Chapter 6. Analysis of those results 

will be the focus of this chapter. As noted in the previous chapter, the results for the 

extensive simulation fo llow a similar trend, which consequently removed the 

necessity for presenting and analys ing the whole simulation results. Thus the results 

analysed here in thi s chapter are for the typical Simulation Action Domain (SAD) as 

presented in Chapter 6. The results anal ysis will be two-dimensional in perspective. 

One viewpoint will be based on the true or native results while the other viewpoint 

will be based on the deri ved meta-heuristic analysis that was presented in Chapter 5 

to predict the results of the simulation experiments. 

The thrust of the result analysis is based on compari son of one queuing system with 

another to deduce the most suitable among all the queuing systems investigated for 

support of Integrated Services. The typical result analysis is based on eight 

simulation scenarios, each for each of the eight queuing systems. The ground for 

comparison is found in the fact that each of the eight queuing systems ( I-queue 

system, 2-queue system, ..... , 8-queue system) receive equal load and the server 

capacities are constant. Although traffi c loads in each of the of the eight steps of a 

SAD are identical, the traffic interarrival time distribution of each of the traffic 

classes differs from one to another. Thus we could not apply the central limit 

theorem' on the sum of the arrival distributions of the eight traffic classes SN. This is 

because the asymptotic condition (i.e. N ~ 00) of N, the number of independent 

random interarrival times, and the need that, all the N random variables should have 

identical distributions, do not hold in our case. In our case, N = 8 and the arrival 

distributions of the eight traffi c classes were not identical. 

*The central /imU theorem slale thai, if SN represents the sum DJ N independent 
identically distributed random components, and if each component makes only a small 
contriblllion to the S IllI1, then the cumulative distribution function (CDF) of SN 
approaches a Gaussian CDF as N becomes very large rKrc93). 

149 



A na(ysisofResullsJrOm rhe Simulation on ON TQC 

The sum of the traffic input load to our set of queuing systems has arbitrary 

interarrival time distributions. In which case we assume the mono-queuing system 

(HFO) is of the type GIM/I , while the remaining seven queuing systems are of the 

type G/G/I . 

This chapter consists of three main sections, the first section is for analysis of the 

results for mono-queuing system, while the second section is for analysis of the 

results for multiple queuing systems and the third section for combining the results to 

produce a single criterion for decision making. In Section 7.1, the analysis of the 

results of the simulation of the FIFO mono-queuing system is presented. The results 

obtained from the queuing discipline are analysed and related to the heuristic 

analysis covered in Chapter 5. Analyses of results for the multiple queuing systems 

are covered in Section 7.2, which consists of seven subsections. The results are 

analysed in relation to the heuristic approach. Comparative analyses of the results of 

each of the queuing systems with one another are also carried out in the subsections. 

In Section 7.3, we briefly present a method for combining the results of the 

simulation to form a single point criterion on which we can base our decision. 

7.1 Analysis of Results for Mono Queue System 

The end-to-end delay (sojourn time) results for each of the eight traffic classes were 

similar with very little variation in the results recorded for each of the traffic classes. 

The results shown in Figure 6.1 chart, are an approximate representation of the 

results for all the traffic classes. As shown in the chart, the end-to-end delay 

increases with time almost monotonically (quasi-linear). The results reflect the true 

performances of applications in an overloaded network with saturated queue 

capacities. The similarity in delay profile for each of the traffic classes shows that the 

FIFO queue discipline in the mono-queuing system is truly egalitarian, no 

preferential treatment is given to any of the traffic classes. The throughput for each 

of the traffic classes is a function of its packet arrival rate. 

A close study of the queue structure and its service discipline shows that the results 

follow intuitively that which is expected from such a queue structure. Since the FIFO 

mono-queue system accepts and services packets indiscriminately, the probability of 

each of the eight traffic classes being served at any instant in time is the same for all. 

The probability for each traffic class to be served at any point in time then equals 

0.125. Since all the traffic classes have equally likelihood of being served and are all 

150 



Analysis of Results from the Simulation on ONTQC 

given equal treatment by the FIFO queue, the output profile of services will be the 

same for all. This is exactly what the simulation results show. 

Relating the results to the heuristic analysis given in Chapter 5 to predict the 

simulation results revealed that, the prediction of the results with our heuristic 

analysis was quite accurate. FIFO mono-queue has the highest limiting quantum 

molecular length in all the sets of queuing systems employed in this investigation. 

The queue limiting quantum molecular length equals 8 (the number of different 

traffic classes that the queue accepts). The queue size increases with time in relative 

multiples of the of the queue' s quantum molecular length. The distribution of the 

queue size is a function of the combined arrival distribution of each of the eight 

traffic classes. The elongated queue size, which is a consequence of the high 

quantum molecular length of the queue, accounts for the high end-to-end delay seen 

in the results. 

The queue is a work-conserving system, by this we mean work is neither created nor 

destroyed at the point of service. All server effort is concentrated on serving the 

queue. This is illustrated in the Figure 7.1 in which the server has a single fixed state, 

which is in continual transition or looping back to itself as long as the queue is 

backlogged and service continues. This is not the case with multiple queuing 

systems, as we will see in the next section, the server has to make transitions from 

one queue to another. Intuitively, throughput ought to be maximum for this queue in 

view of its work conserving nature. But the simulation result did not reflect better 

performance of this queue on throughput than the multiple queuing system. 

Throughput output was lower for this queue compared with the multiple queuing 

systems, as we will see in the next section. 

1 

8 

Traffic 
Line 

Single Fixed 

.11 1:::::..1 ::1 ::::..1 ::1 ::::..1 J-I-~Cd~ ,"H..,'. = 
L.. Serviced 

FIFO Server Packet 

Figure 7.1: Showing Mono-Queue FIFO Discipline with Work-Conserving Server. 
(No server queue state transition) 

151 



Analysis of Results fro m I he Simulation on ONTQC 

7.2 Analyses of Results for Multiple Queue Systems 

Beside analysing results for each of the multiple queue systems in this section, we 

will compare the results of the queuing systems with one another in order to isolate 

superior performance. This in essence is the thrust of our simulation objective. In 

order to bring home the analysis and comparison of the results, we will re-present the 

global delays chart and global throughput chart for closer examination. The charts 

are shown in Figure 7.2 and Figure 7.3 respectively. These results are augmented 

with the corresponding statistical parameter row-vectors as presented below. 

14 

~12 o 
GI 

~10 
;., 
<'Cl 
Qj 6 
C 
'g 
C 6 
W , 
o 
~ 4 
'g 
C 
W 2 

o 

;; 
V 

I~/ 
rr 

o 

----.. 

!nJ 1a:n 12ll 14D 16Xl 1!nJ am 
Trrein Suus 

- 2:l 
- 3:1 

4q 

- !XI 
- EX! 
- 7q 

-~ 

Figure 7.2: Showing Global end-to-end delay in 7 simulation scenarios with each 
scenario employing a different number of queues varying from 2-queues 
up to 8-queues. Identical input traffic parameters used in all the seven 
scenarios. The composite chart shows the simulation with deficit 
weighted round robin scheduling queuing discipline. 

The global mean end-to-end delay, the variance Gitter) and sIandard deviation (S. D) 

are as follows: 

Q2 Q3 Q4 Q5 Q6 Q7 Q8 

Mean 5.384 4.399 6.818 6.417 5.616 11.308 9.712 

Variance 0.090 0.071 0.823 0.801 0.451 1.804 0.926 

S. D 0.299 0.267 0.907 0.895 0.672 1.343 0.962 

152 



Analysis a/Results/ram the Simulation on ONTQC 

o <mn 
Q) 

f!! mm 
.!!l 
iii mD> 
.=mm -:l mm 
Q. 
s:. 
Cl """ :l 

emm 
.r:. 
1- .... 

o 

~ 

If 

o 

Tr3Iic GdJaI (All Tr3Iic) 3W_1lTnVlU (Q:ret ctxpNr sin1 

--

lilre in S:nA lis 

,m "'" 

-~ 
- 3q 

4q 

- 5:1 
- &I 
- 7q 

-~ 

Figure 7.3: Global throughput for 7 simulation scenarios employing different number 
of queuing classes ranging from 2-queuing classes to 8-queuing classes. 
Identical input traffic parameters used in all the seven scenarios. 

The average throughput matrix is as follows : 

Table 7. 1 

Traffic 
Class Q2 Q3 Q4 Q5 Q6 Q7 Q8 
Cls-1 1240 2860 2933 2931 2932 2833 2830 
Cls-2 39146 69530 48610 48581 45613 22181 22348 
Cls-3 25688 42596 39310 40093 37662 18317 18457 
Cls-4 22145 43975 40670 39993 37625 18279 18417 
Cls-5 25365 19790 18030 18279 32390 3390 3416 
Cls-6 755 704 692 677 776 778 778 
Cls-7 112973 84910 78381 78686 61686 30638 33950 
Cls-8 168823 131903 122231 122192 110213 53428 50815 

The global mean-mean throughput row vector shown below is derived from the 

average throughput matrix and is a numerical statistical summary of the global 

throughput. 

The global mean average-throughput row-vector as shown in Chapter 6 is as follows: 

Q2 Q3 Q4 Q5 

GlobMnThrput 49517 49534 43857 43929 

Q6 Q7 

41112 18731 

Q8 

18876 

Each of the seven subsections under this section covers the analyses and comparison 

of results for each of the multiple queuing systems. 

153 



Analysis 0/ Results jrom the Simulation on ONTQC 

7.2. 1 Analysis of Result fo r Two-Queue System 

In the two-queue system, one queue was dedicated for inelastic applications and the 

other queue for elastic appl ications. Thus we have a dichotomous queuing system. 

The results of the simulation showed a tremendous improvement in the end-to-end 

delay results for all the traffic classes when compared with the mono-queuing 

system. Whil e in the mono-queuing system, the end-to-end delay increased almost 

linearly with time, the resu lts of the two-queuing system showed that, the end-to

end delay converges to a very low lim iting value (Figure 6.1). Delay variation 

Gitter) for the traffic was very high in the mono-queuing system, whereas in the 

two-queue system, jitter for the traffic was very low due to the almost constant 

equilibrium value of the end-to-end delay value. In relating the results to our 

heuristic analysis, we noted that, in changing ITom the mono-queuing system to the 

two-queue (multiple-queue) system, the limiting quantum molecular length of the 

queue was reduced by fifty-percent. This in effect is a change ITom the series 

arrangement to the parallel arrangement, which consequently reduces the limiting 

proximity nllmber (see Section 5.4. I) of all the traffic classes to the service point. 

(Note that high limiting proximity number is a disadvantage) . Some of the arriving 

packets into the two-queue system will now have to wait approximately half the 

period ohime they would have to wait ifthey were to arrive into the mono-queuing 

system before reaching the server. From the results, we noted that, this has the 

effect of transforming the packets quasi-linear increasing waiting time distribution 

in the mono-queuing arrangement to a uniform waiting time distribution in the two

queue arrangement. The heuristic analysis predicted that all the traffic will have an 

improvement in delay performance compared with the mono-queuing system, and 

this is exactly what the resu lts show. 

Although we have recorded a great performance improvement as we change from 

the mono queuing system to the two-queue multiple queuing system, such great 

performance improvement is not manifested as we change from the two-queue 

multiple queuing system to higher-queue multiple queuing systems. Looldng 

closely at the results, classes 7 and 8 traffic have their lowest mean delay with the 

two-queue system and thus perform best on this queuing system. The global mean

mean delay row-vector shows that, the two-queue system takes second position 

behind the three-queue system as the global optimum for multiple queue systems in 

154 



Analysis of Results from the Simulation on ON TQC 

this experiment. Also, a very close examination of the global throughput chart and 

global mean-mean throughput row-vector shows that, the two-queue system and 

the three-queue system have the highest throughput and thus perform best. This 

makes them eligible as candidates for our choice of optimum number of traffic 

queuing classes that best support Integrated Services. 

The multiple-queue systems (Class Based Queue (CBQ» are non-work conserving 

systems in that the server has to make state transitions in moving from one queue to 

another in rendering services. We noted that extra work was created in the server' s 

queue state transitions, which were not solely for serving packets. The wasted work 

can be quantified by normalising each server' s transition from one queue to another 

to have an absolute magnitude value of 1. The total wasted work can be derived 

from the server' s state transition matrix or from the transition diagram . The 

structure of the two-queuing system and its server' s transition matrix are illustrated 

in Figure 7.4 (a) and (b) . The convention adopted for numbering the multiple

queue systems here is that, the queue number starts from o. Thus in the two-queue 

system, we have queue-O and queue-I . 

The server' s state transition matrix is formed by allocating I when there is a direct 

transition of server from one queue to the other, and where there is no direct 

transition, 0 is allocated. Thus the server' s transition matrix for the two-queuing 

system is as follows : 

From qO 
From q\ 

To qO 
o 
1 

To q\ 
\ 
o 

If we denote theserver queue state transition matrix by A, thus 

A = [ ~ ~J 
The EuC/idean or Frobenills Norm of matrix A is given by the following relation: 

n n 

IIAII = L L Cjk
2 

= 1414 
J- l k= l 

155 



Analysis of Re sui cs from Che Simulation on ONTQC 

The work wasted has a hypothetical nominal absolute value of 1.414. This is highly 

negligible based on the simulation results, which show impressive performance 

leverage compared with the mono-queuing system. 

~ . I C::::][:=:1 c::J ~ •• Traffic 

:: c:::::::J Lines I c::J c::J c::J ~ Serviced 
Packet 

8 Two-Queue 
System Server 

( a ) 

( b) 
Q : ~ 

Figure 7.4: (a) Two-Queue system servicing structure 
(b) Server Queue State Transition Diagram (SQSTD) 

7.2.2 Analysis of Results for the Three-Queue System 

The results of the three-queue system show that there is no great difference 

between its performance and the two-queue system for both end-to-end delay and 

throughput. The results show slight improvements in the end-to-end delay and 

throughput for traffic classes 1 to 4, but lower performance in the end-to-end delay 

and throughput for traffic classes 5 to 8. Global throughput for the three-queue 

system and the two-queue system are almost the same as recorded by the results of 

the simulation. The results of the global end-to-end delay and global throughput 

show that, the three-queue system has the best overall performance and hence is 

the candidate for the optimum number of traffic queuing classes to support 

integrated Services. 

The heuristic analysis predicted that, there would be improvement in the delay of 

traffic classes I to 4, but for others, the delay would remain constant. The 

prediction is quite correct up to the limitation of the heuristic analysis as the 

simulation results revealed above. The limitation of the prediction concerns the 

inability of the heuristic analysis to define degraded performances. 

156 



Analysis a/Results fro m the Simulation on ONTQC 

The non-work conserving nature of the three-queue system is illustrated in Figure 

7.5 Ca) and Cb), which show the queue servicing arrangement and the server' s state 

transition diagram. 

•• I c:::J C::][::=:J ~ 

Traffic •• I c:::J c:::J c:::J ~ Lines 

•• • • I c:::J c:::J c:::J ~ 
8 Three-Queue 

Server System 
( a) 

( b ) 

Figure 7.5: Ca) Three-Queue System Servicing Arrangement 
Cb) Server's Queue State Transition Diagram 

The server queue state transition matrix is defined as: 

B 
1 
o 
o 1] 

c:::::: 
Scn'iced 
Packet 

The Euclidean Norm of matrix B is given by the relationship that follows: 

n n 

IIB II = I: I: Cjk
2 

= 1.732 
j "" l k= l 

The work wasted as a result of non-conservtng nature of the queue has a 

hypothetical nominal absolute-value of 1.732, which shows some increase in 

wasted work by the server, compared with the two-queue system. 

157 



Analysis o/Results/rom the Simulation on ONTQC 

7.2.3 Analysis of Results for the Four-Queue System 

The simulat ion results for this queuing system as shown in the global delay and 

throughput charts of Figure 6.2 and Table 7.1 reveal that there is little improvement 

in the end-to-end delay for traffic class I when compared with the three-queue 

system. The results revealed that other traffic classes yield lower performance 

compared with the three-queue system. Throughput for traffic class I is the same 

for the four-queue and the three-queue systems, while for the other traffic classes, 

the results showed that throughputs are lower in the four-queue system compared 

with the three-queue system. The four-queue system performs better than higher

queue systems for traffic classes 1 to 4 with a few exceptions as shown in the 

global delay charts in Section 6.2 and global throughput matrix in table 7.1. Traffic 

classes 5 to 8 perform better in some of the higher-queue systems than in the four

queue system. The trends in changes in performances of applications in relation to 

the queue systems are summarised in the global delay and throughput row vectors. 

From the heuristic analysis, we noted that it was only traffic classes I and 2 that 

have their limiting quantulII queue molecular lengths reduced by changing from the 

three-queue system to the four-queue system. The heuristic analysis prediction is in 

line with the results of the simulation except that the heuristic analysis could not 

predict the degrading performance of some of the traffic classes as commented 

earlier. Figures 7.6 (a) and (b) are used to illustrate the service arrangement of the 

four-queue system and the server's queue transition diagram. 

The server queue state transition matrix is defined as: 

c = 
o 
o 
o 

I 
o 
o 
o 

o 
I 
o 
o 

o 
o 
I 
o 

The Euc/idean Norm of matrix C is given by the relationship that follows : 

n " 

Il c ll = L:: L:: c/ = 2 

The work wasted as a result of non-conserving nature of the queue has a 

hypothetical nominal absolute-value of 2 . The pattern of the results is beginning to 

15R 



Analysis of Results from the Simulation on ONTQC 

show the larger this value the less efficient the related multiple queuing system 

becomes. 

Traffic 
Lines 

(a) 

(b) 

8 

1 -. 
~ 

•• 
~. 
• 

I c:J c:::::J c:::::J ~ 

1 c:::::J c:::::J c:::::J I ... 
I c:::::J c:::::J c:::::J ~ 

I c:::::J c:::::J c:::::J ~ 
Four-Queue 
System Server 

Figure 7_6: (a) Service Arrangement of Four-Queue System 
(b) Server Queue State Transition Diagram 

7.2.4 Analysis of Results for the Five-Queue System 

c::::::J 

Seniced 
Packet 

Simulation results (see Sections 6.2.2 to 6.2.9 and Table 7.1) for this queuing 

system showed there are improvements in the end-to-end delay performances for 

traffic classes 4 to 8 when compared with the four-queue system. The results 

revealed slight improvements in the performances of traffic classes 1 and 2 and a 

degraded performance of traffic class 3 when compared with the four-queue 

system. Comparing performances of the five-queue system with higher-queue 

systems, the results revealed end-to-end delay degraded performances for all traffic 

classes on all higher-queue systems, except traffic class 6 in all higher-queue 

systems and traffic class 5, 7 and 8 on the six-queue system. Throughput for traffic 

classes 3, 5 and 7 also show some improvement in the five-queue system compared 

with the four-queue system. Throughput results for the five-queue system are 

generaIJy better or almost the same for all traffic classes when compared with 

higher-queue systems except traffic class 6 in all higher-queue systems and traffic 

159 



Analysis of Results from the Simulation on ONTQC 

class 5 on the six-queue system where the throughput results show better 

performances than the five-queue system. 

From the heuristic analysis, we noted that, traffic classes 3 and 4 have their limiting 

quantum queue molecular length reduced by changing from the four-queue system 

to the five-queue system. The results as highlighted above are close to the 

anticipated results from heuristic analysis. 

Figure 7.7 (a) and (b) are used to illustrate the service arrangement of the five

queue system and the server's queue state transition diagram. 

Traffic 
Lines 

c:::J E:J c:::J I-,. 
c:::J c:::J c:::J h,. 
c:::J c:::J c:::J h,.,," 
c:::J c:::J c:::J I , 

~'''''':'.'' 

c:::J c:::J r::::J h,. 
Five-Queue '----'>./ 

System Server 

Figure 7.7: (a) Service Arrangement of Five-Queue System 
(b) Server Queue State Transition Diagram 

The server queue state transition matrix is defined as; 

0 1 0 0 0 
0 0 1 0 0 

D = 0 0 0 1 0 
0 0 0 0 1 
1 0 0 "0 0 

160 

Serviced 
Packet 



Analysis of Results from the Simulation on ONTQC 

The Euclidean Norm of matrix D is given by the following relation: 

IIDII = 

n n 

I:: I:: Cjk
2 

= 2.236 
J~1 k~1 

The work wasted as a result of non-conserving nature of the queue has a 

hypothetical nominal absolute value of2.236. The pattern of the results shows that, 

the efficiency of the multiple queuing system reduces as this value increases. 

7.2.5 Analysis of Results for the Six-Queue System 

Simulation results (see Sections 6.2.2 to 6.2.9 and Table 7.1) for the six-queue 

system showed that, there are improvements in the end-to-end delay for traffic 

classes 5 to 8, and degraded performances for traffic classes I to 4 when compared 

with the five-queue system. Comparing the six-queue system with higher-queue 

system on end-to-end delay, the results showed degraded performances for higher

queue systems on all traffic classes except traffic class 6. The results also revealed 

that the six-queue system has improvement in throughput performances for traffic 

classes 5 and 6 and almost equal performances in throughput for traffic class I, but 

degraded performances in others for throughput when compared with the five

queue system. Compared with higher-queue systems, the six-queue system shows 

better performance in throughput results in all traffic classes except traffic class 6. 

From the heuristic analysis, it can be seen that, traffic classes 5, 6 7 and 8 have 

their limiting quantum queue molecular length reduced by changing from the five

queue system to the six-queue system. Thus the results as highlighted above are in 

line with the anticipated results from the heuristic analysis. 

Figure 7.8 (a) and (b) are used to illustrate the service arrangement of the six-queue 

system and the server's queue state transition diagram. 

The server queue state transition matrix is defined as: 

0 I 0 0 0 0 
0 0 I 0 0 0 
0 0 0 I 0 0 

E = 0 0 0 0 I 0 
0 0 0 0 0 1 
1 0 0 0 0 0 

161 



Analysis of Results from the Simulation on ONTQC 

The Euclidean Norm of matrix E is given by the following relationship: 

n n 

IIEII = L L Cjk
2 

= 2.449 
SE\ kE\ 

The work wasted as a result of the non-conserving nature of the queue has a 

hypothetical nominal absolute value of 2.449. The inefficiency in the multiple 

queuing system with this value is shown in the degrading performances of the 

inelastic applications. 

1 
c:::J [:=H:=:J r --+ 

~ r:::::J c=J r:::::J J. 
~ r:::::J c=J r:::::J J. 

Traffic 
~ r:::::J c=J r:::::J J. 

Lines 

= 
r:::::J c=J c=J J. 

= 
r:::::J c=J r:::::J ~ 

8 
(a) Six-Queue 

System 

(b )------~~_----

Figure 7.8: (a) Service Arrangement of the Six-Queue System 
(b) Server Queue State Transition Diagram 

7.2.6 Analysis of Results for the Seven-Queue System 

c=J 
Seniced 
Packet 

Simulation results for the seven-queue system showed that, there are improvements 

in both the end-to-end delay and throughput for only traffic class 6 when changing 

from the six-queue system to the seven-queue system. Other traffic classes 

recorded degradation of performance in the seven-queue system compared with the 

six-queue system in both end-to-end delay and throughput. The seven-queue 

162 



Analysis o/Results from the Simulation on ONTQC 

system performs poorly compared with the eight-queue system for all traffic 

classes on end-to-end delay, except traffic classes I and 6. Results for the seven

queue system show little improvement in throughput for traffic classes I and 8, 

equal performance in traffic class 6 and degraded performances in others when 

compared with the eight-queue system. 

The results as shown above are very close to the anticipated results from the 

heuristic analysis. 

Figure 7.9 (a) and (b) are used to illustrate the service arrangement of the seven

queue system and the server's queue state transition diagram. 

1 
~ 

.. 

Traffic 
Lines ~ 

8 

C:J[:::J c:::J J. 
c:::J c:::J c:::J I-. ,", 
c:::J c:::J c:::J l.. 
c:::J c:::J c:::J I-. 
C:::::H:J:J c:::J l.. 
c:::J c:::J c:::J I-. 

(a) 

(b) 

Figure 7.9: (a) Service Arrangement of Seven-Queuing System 
(b) Server Queue State Transition Diagram 

163 

c:::::::I 
Serviced 
Packet 



Analysis of Results from the Simulation on ONTQC 

The server queue state transition matrix is defined as: 

0 1 0 0 0 0 0 
0 0 1 0 0 0 0 
0 0 0 1 0 0 0 

F = 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 
1 0 0 0 0 0 0 

The Euclidean Norm of matrix F is given by the relationship that follows: 

n n 

IIFII = L L Cjk
2 

= 2.645 
J~l k~l 

The work wasted as a result of the non-conserving nature of the queue has a 

hypothetical nominal absolute value of 2.645. The inefficiency in the seven-queue 

system, having this value as the server's wasted work, is manifested in the degrading 

performances of most all the traffic classes. 

7.2.7 Analysis of Results for the Eight-Queue System 

Simulation results for the eight-queue system showed there are improvements in 

the end-to-end delay performances for traffic classes 2, 3, 4, 5, 7 and 8, when 

compared with the seven-queue system. Throughput improvement performances in 

the eight-queue system are also recorded in traffic classes 2, 3, 4, 5 and 7, equal 

performance in traffic class 6, but slightly lower performances in traffic classes 1 

and 8 when compared with seven-queue system. 

The results are not far from the anticipated result from the heuristic analysis. The 

difference is that, the heuristic analysis did not define degraded performances. 

Figure 7.10 (a) and (b) are used to illustrate the server's queue state transition 

diagram and the service arrangement of the eight-queue system. 

164 



Analysis o/Results from the Simulation on ONTQC 

[:::][::::1 c::::J r 1 --. 
~ c:::J c:::J c::::J 1+ 
• c:::J c:::J c:::J 1+ 

"-'.7/" 

Traffic --. c:::J c:::J c:::J 1+ 
Lines 

c:::J c:::J c:::J 1+ c::::::J • Serviced 

c:::J c:::J c::::J 1+ Packet 

• 
• c:::J c:::J c:::J ~ 

8 • c:::J c:::J c:::J ~ 
(a) Eight-Queue 

Server System 

(b) 

Figure 7.10: (a) Service Arrangement of the Eight-Queue System 
(b) Server Queue State Transition Diagram 

The serve queue state transition matrix is defined as: 

0 I 0 0 0 0 0 0 
0 0 I 0 0 0 0 0 
0 0 0 I 0 0 0 0 

0 = 0 0 0 0 I 0 0 0 
0 0 0 o· 0 I 0 0 
0 0 0 0 0 0 I 0 
0 0 0 0 0 0 0 I 
I 0 0 0 0 0 0 0 

The Euclidean Norm of matrix 0 is given by the relationship that follows: 

n n 

11011 = I:: I:: Cjk
2 

= 2.828 
1·1 k·1 

165 



Analysis of Results from the Simulation on ONTQC 

The work wasted as a result of the non-work conserving nature of the queue has a 

hypothetical nominal absolute value of 2.828. The inefficiency in the eight-queue 

system having this value as the server's wasted effort is revealed in the degrading 

performances of most of the traffic classes. 

7.3 Combined Optimisation Objective 

The optimisation objectives for this empirical investigation are: 
• Minimise end-to-end delay (Globally) 
• Maximise throughput 

We now derive a method for combining the optimisation objective functions into one 
objective criterion to select the optimum number of the multiple queue system. 

Let X represent a functional system to be minimised. 

The following are true mathematically. 

Maximise -X = Minimise X 
Maximise Xl = Minimise X 

If our optimisation objective functions are: 
Minimise X and 
Maximise Y then, 
The optimisation objective functions could be combined into one objective function 
as follows: 
(a) Xl + Y or Y I X for single maximisation criterion. 
(b) X + yl or X I Y for single minimisation criterion 

We now apply the optimisation procedure of (a) to the global mean-mean delay row 

vector and the global mean-mean throughput row vector to obtain a single criterion 

for selecting the optimum number of multiple queue system to support Integrated 

Services. 

Q2 Q3 Q4 Q5 Q6 Q7 
Mean 5.384 4.399 6.818 6.417 5.616 11.308 

Q2 Q3 Q4 Q5 Q6 Q7 
GlobMnThrput 49517 49534 43857 43929 41112 18731 

Single criterion maximisation row-vector is as follows: 

Q2 
9197.07 

Q3 
11260.29 

Q4 
6432.53 

Q5 Q6 
6845.72 7320.51 

166 

Q7 
1656.44 

Q8 
9.712 

Q8 
18876 

Q8 
1943.57 



Analysis of Results from the Simulation on ONTQC 

From the single criterion maximisation row-vector, the highest value in the vector's 

component (the vector norm) indicates the optimum number of the traffic queuing 

classes. The three-queuing system has this value, and thus it is our candidate for 

the optimum number of traffic queuing classes to support Integrated Services. 

Summary 

Analysis of the results of the simulation experiment, to determine the optimum 

number of traffic priority queuing classes that will best support Integrated Services 

has been presented in this chapter. The presentation includes comparing the results of 

the various queuing systems with one another to ascertain superior performances 

among them. The results show that, the three-queue multiple queuing system, has the 

best global performances in terms of both end-to-end delay and throughput. Thus it is 

our candidate for the optimum number of traffic priority queuing classes to support 

JP convergence. 

167 



PDERRM-a novel IP QoSArchitecture 

CHAPTER 8 

Predeterministic Distributed Event Response Resource 
Management (PDERRM)- a novel JP QoS Architecture 

The need for a new simple, elegant and robust IP QoS architecture was highlighted in 

Chapter 1 Section 1.7.2. Having discussed "Generic Components of QoS 

Architecture" in Chapter 3, and work on its prime member- "Queuing and 

Scheduling Discipline, which was presented in Chapters 4 through Chapter 7, we 

now focus on the new IP QoS architecture in this chapter. Thus this chapter is 

concerned with the discussion and presentation of the novel IP QoS architecture

Predeterministic Distributed Event Response Resource Management (PDERRM) 

which is an improved QoS architecture for QoS delivery in multiservice IP 

Networks. The motivation for its work, the design and its framework will be 

presented in this chapter. 

The discussion in Section 8.1 will be focused on the motivation for the novel IP QoS 

architecture in relation to the complexities of the emergent standard IP QoS 

architectures which are Integrated Services (IntServ) and Differentiated Services 

(DiffServ) architectures. The PDERRM architecture and its components will be 

presented in Section 8.2. The requirements of a sending and receiving host are 

briefly presented in Section 8.3, and the requirements of a forwarding node are 

covered in Section 8.4. 

8.1 Motivation for PDERRM Project 

Although most of the discussions in this section are covered in Chapter 1, it is 

necessary to emphasise the points here for the sake of completeness. 

Internet Protocol (IP) Quality of Service (QoS) has been a subject of active research 

and standardization during the past two decades. IP convergence- the convergence 

of circuit-switched, packet-switched and other multimedia networks has very great 

appeal. The advantages are numerous. It offers cost savings through technological 

exploitation and consolidation and cost savings in industrial growth through creation 

of new services. An effective and functional IP QoS architecture has been identified 

as the key driving force for IP convergence. Despite the existence of the two 

168 



PDERRM-a novel IP QoSArchitecture 

standard QoS architectures and the large volume ofIP QoS mechanisms that abounds 

in Communication Engineering literature, end-to-end deployment of QoS is still 

elusive in the Internet [Gio et a1.03]. 

IntServ [RFC 1633] and DiffServ [RFC 2475] are the two IETF developed IP QoS 

architectures that have emerged as standards. IntServ with its signalling protocol-

RSVP [RFC 2205, RFC 2210], support per-flow explicit signalling of applications 

QoS requirements to the network, and per-flow resource allocation on Network 

Elements (NE) along the path of flow end-to-end. It has been widely reported that the 

per-flow resource-allocation paradigm of IntServ-RSVP architecture could create 

scalability problems in core Internet routers with gigabit traffic flows. The problem is 

associated with the complexities involved in maintaining per-j1ow states for very 

large number of flows in the routers concerned. Beside the scalability problems in 

core Internet routers, recent experiments carried out at Loughborough University 

showed that forwarding nodes in edge (domain) network degrade in performance for 

all round traffic classes as the number of resource partitioned classes increased, and 

resource allocations increasingly tend towards per-flow. Thus the complexities and 

scalability problems of IntServ-RSVP per-flow paradigm do not reside only in core 

routers but also in leave nodes that handle medium large number of per-flow 

resource allocation. 

The DiffServ architecture was designed to serve as amelioration to the complexities 

and scalability problems of IntServ-RSVP paradigm. Thus DiffServ has 

simplification built into its flow aggregation resource allocation mechanism 

compared with the per-flow end-to-end resource allocation of the IntServ-RSVP 

paradigm. Despite the heralded simplicity and flexibility of the DiffServ paradigm, it 

still has its own touch of complexity. Complex traffic conditioning processes have to 

take place at the edges of each network domain before packets are forwarded. The 

complex traffic classifications, metering, policing and traffic rate limiting processes 

required of the DiffServ architecture may not be seamlessly practicable in reality 

throughout the diverse network nodes processing capabilities of the diverse 

conglomeration of networks that make up ofIP Networks. 

The phenomenal success of the Internet has been attributed to it technological 

structure in which complexities reside in the end-nodes and the network is relatively 

simpler. This is in contrast to the traditional public switched telephone network 

169 



PDERRM-a novelIP QoSArchifecture 

(pSTN) in which complexities reside in the network while end-sets are relatively 

simpler. Any extension to the service model of the Internet in the form of QoS 

architecture and protocols must take the factor of simplicity into consideration for 

reasons of scalability and ease of deployment. We observed that many aspects of the 

generic components of QoS architectures discussed in Chapter 3 could be 

manipulated and exploited in order to evolve an IP QoS architecture that will be 

simple, elegant and flexible for wide spread implementation and deployment. 

PDERRM has been designed with simplicity, elegance and flexibility in mind. 

8.2 PDERRM Architecture and Its Components 

In this section, the following will be discussed: 

• Principle of Operation 

• Features of the Architecture 

• The Architecture 

• Components of the Architecture 

8.2.1 Principle of Operation 

PDERRM QoS architecture is simply a mechanism in which every host (end node) 

in the network has a Traffic Controller and every forwarding node has a QoS 

Manger that dynamically reacts to network loading based on pre-deterministic 

sharing of resources in the network. The network resource sharing parameters will 

have values with local and global significance that are consistently understood by 

all grades of nodes in the network. The nature of the reaction to network loading by 

a QoS Manager (or Traffic Controller) in a node would be determined by events 

relating to traffic flows utilisation of resources within the node and traffic loading 

in the network. Traffic sources rate-limit traffic injected into the network in 

accordance to the traffic classes resource share or quota. Forwarding Devices (FD) 

employ a novel Stochastic-Gap Jumping Window (SGJW) algorithm whose 

distribution is a reflection of traffic bursts in the network, in scanning traffic in 

transit for admission and policing purposes. This process ensures traffic flows 

comply with either local or global resource sharing parameters adopted in the 

network and enhance throughput plus ensure scalability. PDERRM has flexible 

network resource federation management, which allows for dynamic shifting of 

resource allocation quota of traffic classes, based on realities of real-time network 

170 



PDERRM-a novelIP QoS Architecture 

loading. The simple basic concept of the QoS architecture resides in the 

functionality of the QoS Managers in each FD that ensures an equilibrium between 

network resource capacity of the node and traffic resource utilisation within the 

node never tilts toward a deficit. The simple diction of the architecture is "cut your 

coat according to your size". The resource federation management in the nodes has 

agents that dynamically investigate the actual resource requirements of each class 

of applications. Resources are then allocated equitably among the various classes 

of applications contending for network resources in accordance with their QoS 

requirements, and within the resource capacity of the node and the network. Nodes 

periodically probe the network to determine if a congestion spot exists with 

minimal overhead before injecting traffic to the network or admitting and 

forwarding traffic. Each network-forwarding device has a maximum fixed number 

of concurrent flaws in each measuring window that can be admitted for each class 

of application traffic based on its resource capacity. When the QoS Manager in a 

node discovers that the maximum fixed number of concurrent flows for a class of 

application traffic has been reached, it will cause the node to multi cast a traffic 

control message to neighbouring nodes informing them of its current state of 

resource utilisation. As long as the maximum resource utilisation state of the traffic 

class exists in the node, neighbouring nodes will not admit traffic that belongs to 

that class which must be routed through the node that generated the traffic control 

message. As soon as the situation changes and the number of concurrent flows for 

the traffic class is less than the maximum allowed for the window, the node 

concerned will generate a multicast message to neighbouring nodes to provide an 

update of the situation. It must be understood here that the control functionality of 

the QoS Manager operates on quantitative bounded control of traffic flow, it does 

not bring flow down or push it up. It ensures an equilibrate between traffic flow 

and its assigned flow quota. 

Resources are generally allocated on a per-class basis, employing a value of 

DiffServ Codepoint (DSCP) for implicit signalling of the resource requirements. 

When there is the need for per-flow resource allocation, a DSCP value is still used 

for implicit signalling of the resource requirements, but in this case, the DSCP 

value is mapped or hashed into the corresponding value in the node's QoS 

Parameter Database (QPD) or Repository. The Queuing and Scheduling Discipline 

(QSD) of the node queries the QPD in allocating resources for the traffic flows. 

171 



PDERRM-a novel JP QoSArchileclure 

8.2.2 Features of the Architecture 

PDERRM has good features, which make it elegant and robust for multi service 

QoS in IP Networks, in view of diverse processing capabilities of IP network 

elements (NEs). The various features include the followings: 

• Hybrid functionality in terms of aggregate flow and per-flow resource 

allocations. 

• Adaptation functions regarding meeting the dynamic QoS requirements of 

flows. 

• Mutational or flexible configuration designed to adapt to diverse processing 

capability of network elements. 

• Ability to shed processing functions to the simplest level of QoS requirements 

of applications. 

• Through administrative control, a node can elect to operate on either local or 

global resource brokerage. 

• Use of implicit signalling for per-flow resource allocation. 

We now briefly discuss each of these features. 

S.2.2.1 Hybrid Functionality 

PDERRM could function as a DiffServ architecture, in view of its support for 

aggregate flow resource allocations. But unlike the DiffServ architecture where 

there is the need for complex traffic conditioning processes at the edges of the 

network, PDERRM adopts a simpler approach where the QoS Managers of nodes 

at the network edges simply ensure that there is a balance or surplus budget 

between resource capacity and resource utilisation. 

PDERRM also could function as an IntServ architecture, but unlike IntServ 

where RSVP generates explicit signa/ling for per-flow resource reservation for 

application QoS needs to the network, PDERRM adopts implicit signalling using 

a value of DSCP to signal application's QoS needs to the network. The DSCP 

value is then mapped into the corresponding value in the QPD in the node 

concerned for resource allocation. There is no need for routers to keep large 

amounts of flaw-state information. That functionality is taken over by QPD, 

which contains a wide range of token bucket parameters, which can meet the 

diverse QoS requirements of applications. 

172 



PDERRM-a navel IP QoSArchitecture 

8.2.2.2 Adaptability Functions in Resource Allocation 

On initialisation, each node's QoS manager allocates resources to each class of 

traffic based on static resource brokerage, which may be derived from several 

factors including administrative policy. During flows, the QoS Manager's 

background processes monitor traffic loading for each traffic class and also 

estimate resource utilisation for each of the traffic classes. The QoS Manager 

could be configured to shift the static resource percentage share of each traffic 

class to reflect the dynamic network loading of the traffic class if it will not be 

detrimental to the QoS needs of other traffic classes. Thus the resource federation 

management of each node in the network has built-in functionality to 

dynamically adapt the resource quota of each traffic class to ensure equitable 

resource allocation that will meet the needs of the various classes of application 

contending for network resources. 

8.2.2.3 Mutational or Flexible Configuration 

In view of the fact that IP Networks are made from a global conglomeration of 

networks with diverse network elements (NE), the network nodes will have 

various degrees of processing power and diverse abilities to cope with complex 

processing. Resource availability in terms of buffer space and bandwidth will 

vary from one network domain to another. In some geographical regions, many of 

the network domains may still be operating on legacy devices. In order to meet 

the diverse needs of the conglomeration of networks that comprise IP Networks, 

PDERRM is designed to be independently operative at different degrees of 

processing power ranging from simple low level processing power to high level 

sophisticated processing power. A node with PDERRM-aware for example, could 

be configured for coarse grarmlar resource allocation as found in DiffServ 

aggregate flow resource allocations, when the QoS needs of generality of all 

traffic classes are concerned. On the other hand, a PDERRM-aware node could 

be configuredJor fine grarmlar resource allocation as found in IntServ per-flow 

resource allocation when the QoS needs of a particular flow is of interest. 

8.2.2.4 Ability to Shed Processing Functions 

In both aggregate flow resource allocation mode and per-flow resource allocation 

mode, the PDERRM processing level can be reduced to a minimum based on the 

173 



PDERRM-a navelIP QaS Architecture 

capacity of the node and the QoS level required. The QoS level required might be 

a little-better-than-best-effort and the node involved may be a legacy node with 

very little processing power, in either case, PDERRM can be configured for 

reduced resource processing and operate independently of other available modes. 

8.2.2.5 Adaptive Resource Brokerage Policies 

The resource quota brokerage parameters for each class of traffic may have local 

significance or global significance. PDERRM has characteristics that made it 

amenable for easy shift between the two contexts of resource share brokerage 

parameters. 

8.2.2.6 Implicit QoS Signalling 

One of the heralded problems of the IntServ-RSVP paradigm lies with the 

message overhead of the explicit per-flow QoS signalling of the applications 

needs in the network. The message overhead is removed by PDERRM with the 

use ofa value ofDSCP, which is then mapped to a set of token bucket parameters 

in the node's QPD to indicate the resource reservation, which the application 

needs. The admission of a flow by all NEs along the flow-path indicates the 

reservations are accepted. 

8.2.3 PDERRM Architecture 

The PDERRM architecture, just as in other IP QoS architectures consists of 

component building blocks, which are partitioned into two groups--- the control 

plane and data path plane. The control plane consists of background processes or 

daemons which co-ordinate resource allocation and utilisation in the node, while 

the data path plane form the executive wing which translate QoS resource policies 

into outwardly perceived QoS performance behaviour of applications. Basically, 

the QoS Manager and the Traffic Controller are considered equivalent, thus the 

term traffic controller will be left out in further consideration of the architecture. 

The component building blocks include the following: 

• QoS Manager } 

• Classification, Resource Capacity & Quota Brokerage 

• Traffic Load and Session Measurement 

Control Plane 

174 



PDERRM-a novel IP QoS Architecture 

• Traffic Load Signalling 

• QoS Parameter Database 

} Control Plane Conts. 

• Traffic Classifier and Admission Control 

• Traffic Shaper 

• Queuing and Scheduling Discipline 
} Data Path Plane 

The PDERRM architecture is illustrated with Figure 8.1. The structure shown in 

Figure 8.1 is typical, some components may be absent or vary in their level of 

processing, depending whether the node is a host or forwarding device. The 

components of the control plane are made of background processes, which control 

the functionality of the objects of the data path plane. QoS policies of the architecture 

are formulated within the control plane and used to parameterise the functionality of 

the data path plane. 

Class+" Resource C+" 
Quota Brokerage Traffic Load 

/' 
Signalling 

i ~ 

Traffic Load QoS Manager 
& Session JI 

V 
QoS Parameter 

Measurement ,~D'''''~ ,.. 
/' Control Plane 

/ \. 
Traffic Classifier & 

Queuing & Admission Control Traffic Shaper ... f-. Scheduling Discipline 

Data Path Plane 

Figure 8.1: Pre-deterministic Distributed Impulse Responce Resource 
Management (PDERRM) architecture. 

"" ·In the Figure, Class+ to be read as Classification and C+ to be read as Capacity"" 

175 



PDERRM-a novel JP QoS Architecture 

The data path plane serves as the executive branch of the QoS architecture where 

QoS policies are translated into feasibly observed behaviour of application QoS 

performances. 

Upon initialisation of a node, the Classification Resource Capacity and Quota 

Brokerage module of the background processes will pass on information on pre

determined resources quota values of application classes to the QoS Manager. The 

information will include the value of static percentage share of resources for each 

class of application, the priority of the application class, and policies on conditions 

for allowed dynamic shift on static percentage share of resources for each class of 

application. The QoS Manager in turn will cause the indication'primitives of the 

initial static quotaJesource_brokerage of each of the application classes to be 

generated and sent to the Queuing and Scheduling module in the data path plane. The 

initial operation of the Queuing and Scheduling module will be based on the pre

determined percentage share of resources for each class of applications. While this 

mode of operation is on, and traffic flows are in progress, the Traffic Load and 

Session Measurement module, which is a daemon process, will perform two related 

functions. First, it will continue to scan traffic input to the node to determine traffic 

loading, intensities and bursts. Secondly, the module monitors the flow sessions by 

recording the start and end of each flow session, and taking the cumulative number 

of flows of each flow class in each active window. The active window is the length of 

time in which intensities of flows for each of the traffic classes are computed or 

measured. The active window is spatially distributed in time and the measurement 

therein forms the basis on which the admission control decision is made. The 

information on traffic loading, intensities and bursts are sent to the QoS Manager on 

a regular basis. 

Depending on the intensities of traffic loading of each class of application in the 

node, and the policies guiding the condition for shift in resource quota of each class 

of application, the QoS Manager could dynamically pass instructions to the Queuing 

and Scheduling module to vary the resource quota for each class of application. This 

would be the case if such a shift will support equitable resource allocation to each of 

the application classes and also support acceptable QoS performances of all the 

application classes. The Session Measurement processes are very simple. They will 

be described in a later section. 

176 



PDERRM-a navel IP QoS Architecture 

When a particular class of traffic has exceeded its own resource quota, the QoS 

Manager would cause the Signalling module to multicast the message, class_i_ 

exceed_quota (0 ::; i ::; N = number of classes) to neighbouring nodes. This will 

prevent the neighbouring nodes from sending traffic in that class to the node that 

generated the message during the time the message is valid. As soon as the situation 

is reversed, the node will generate a counter message, class _i_within _quota to the 

neighbouring nodes. 

Applications are classified into groups--- the inelastic (real-time applications), 

inelastic tolerant and elastic (non-real-time applications). A DSCP value will then be 

assigned to each group of applications. Thus application traffic classification and 

identification will be based on DSCP values. Since DSCP values could be grouped 

for effective management, we propose a DSCP group value with hierarchical section 

values that can be used to classify and identify application traffic for various 

PDERRM adaptations QoS processing needs. Each member of a class of application 

traffic may require coarse granular (aggregate flow) resource allocations or fine 

. granular (per-flow) resource allocations as the case may be. A DSCP value with 

hierarchical value context could be used to determine which class to which the 

application traffic belongs and whether the application traffic requires aggregate flow 

resource allocation or per-flow resource allocation. 

Admission Control performs the normal function of limiting traffic flows within the 

resource capacity of the network. In the design of the admission control, we have 

adopted a novel strategy in order to achieve scalability. This will be discussed in a 

later section. 

The Traffic Shaper ensures the flows temporal profiles will not temporally over

flood or over-stretch the buffer and bandwidth resource capacities. 

Currently PDERRM can make use of any of the available Queuing and Scheduling 

disciplines that are suitable for multi service operation such as the variants of Class 

Based Queueing (CBQ) and Weighted Fair Queuing (WFQ) disciplines. The main 

experiments made use of Weighted Round Robin (WRR) and Deficit Weighted 

Round Robin (WDRR) queuing-scheduling disciplines, which are variants of CBQ. 

Research could continue on finding optimum queuing discipline that will best support 

IP convergence. 

177 



PDERRM-a novelIP QoSArchiteclure 

8.2.4 Components Description 

As shown in the architecture, the main components of PDERRM are; Traffic 

Classification Resource Capacity and Quota Brokerage Agent, Traffic Load and 

Session Measurement, QoS Parameter Database, Traffic Load-limit Signalling, 

QoS Manager, Flow Identification and Admission Control, Traffic Shaper and 

Queuing / Scheduling Discipline. Some of these components are optional in some 

nodes, and some have functional mechanisms that are well known. Those whose 

functional mechanisms are new, and their interface with other components also are 

new, will now be discussed. 

8.2.4.1 Traffic Classification Resource Capacity and Quota Brokerage 
Agent 

The processes of defining and specifying the Flow Classification section of this 

module. will have similarity with such processes as in the DiffServ architecture. It 

will be based on allocation of DSCP values to each class of traffic and the 

process of marking packets with the corresponding DSCP values. It will take 

input mainly from administrative policy control and its output will be forwarded 

to the QoS Manager. 

The Resource Capacity and Sharing Agent will contain object's parameter 

values, such as the node resource capacity parameters (CPU speed, buffer space, 

link bandwidth etc) and load intensities of each traffic class. Relational operations 

will be performed on the two sets of parameters. It will take inputs from the 

Traffic Load and Session Measurement module in determining traffic intensities 

and the resource utilisation of each class of traffic. It will relate the traffic loading 

with node resource capacity, and based on policy guidelines will specify the 

percentage share of resources for each of the classes of applications. The 

percentage share of resources for each class of flow will be passed to the QoS 

Manager as an initial static resource quota for each class of application. The 

processes of this module are scheduled or repeated at an interval dictated by 

administrative policy control. 

8.2.4.2 Traffic Load and Session Measurement Agent 

The Traffic Load Measurement section of this module is responsible for 

measuring traffic intensities of each class of flows going through the node. By 

measuring the rate at which each traffic class arrived at the node or by measuring 

178 



PDERRM-a novel JP QoSArchitecture 

the quantum of cumulative flow of each traffic class in a window, it would be 

possible to detect if any class of flows exceed their resource quota. Also through 

this measurement, we can compute the value of resources consumed by each 

class of traffic in a predefined time interval. The traffic load monitoring module 

could be achieved in a number of ways. These include: (1) The use of the Traffic 

Network Analyser which could provide values for traffic loading of the node for 

each class of traffic, at predetermined interval of times. (2) Adaptation of 

Loughborough University Network Monitoring Systems. The High Speed 

Network (HSN) research group of the Department. of Electronic and Electrical 

Engineering of Loughborough University has extensive experience in network 

monitoring systems. Some of their packages could be adapted for traffic load 

measuring tools for the PDERRM architecture. (3) The use of Neural Network 

Algorithm (NNA) and Fuzzy Logic Management (FLM) have found extensive 

application in many network functional mechanisms. We hope it could find 

application in our present purpose. The later and the formers would need 

empirical investigation to verify their applicability or suitability for the present 

purpose. (4) Direct Computation, which involves scanning the input to the node, 

and measuring the values of cumulating flows for each class of traffic in each 

window. This was the method used in the experiment to be presented. 

The Flow Session Measurement section of this module has a number of novel 

mechanisms and it is optional in a node. It has been designed with adaptation 

features, which make it suitable for wide ranges of nodes with diverse flow 

processing power. Its functionality is mainly suitable for real-time classes of 

traffic, but could be used for non real-time traffic as well. It has been structurally 

designed with self-contained modular processes to meet the diverse needs of 

nodes. A node will only need to implement one of the two available options. The 

options are: 

• Flow Session Measurement and Control with Flow Session State Table 

(FSST). 

• Flow Session Measurement and Control without FSST. 

The main function of the module is to measure the arrival rate of each flow 

session in each traffic class and to determine if the flows conform to their agreed 

179 



PDERRM-a novel IP QoSArchitecture 

temporal characteristics and are within their resource quota. We will now discuss 

the new optional mechanisms. 

8.2.4.2.1 Flow Session Measurement and Control with FSST 

This sub-module has a defined interface with the QoS Manager that is used to 

obtain the values of three sets of parameters, and also to obtain instruction on 

the interval of time to suspend operation. The three sets of parameters are, the 

number of traffic classes available, the maximum number of concurrent flows 

allowed for each traffic class in each widow (the predetermined interval of time 

for measurement), and the maximum allowed traffic rate for each flow. 

Through the same interface, the sub-module will send the measured value of 

arrival rate of each flow session in each of the traffic classes to the QoS 

Manager. Other functions include, identitying the class and flow session a 

packet belongs to, computing the cumulative value of concurrent flows for each 

class of traffic in a window and maintaining a Flow Session State Table (FSST). 

If per-flow resource allocation is required for a flow, this sub-module also 

interacts with the QoS Parameter Database (QPD) to identity the flow session 

with its corresponding token bucket parameters. It also interacts with the 

routing module to determine the next hop for the flow, the address of the next 

hop is then entered against the flow entry in the column provided in the FSST. 

The functional procedure is as follows: 

Upon initialisation, the sub-module establishes connection with the QoS 

Manager and obtains the necessary parameters for its operations. The source of 

a flow session tagged the first packet of the flow session with a value 

"flow_session _start' before it is released to the network. At the input of each 

Forwarding Device (FD) that accepts the packet, a copy of the packet is made 

and the copy forwarded to this module. On receipt of the packet, this module 

increments the value of cumulative concurrent flows for the class of traffic the 

flow belong to in the current window by 1, and enters the source address, 

destination address and the port number (the triple) of the packet in its flow 

session state table. This module will then start with the measurement of arrival 

rate for the flow with the first packet. Other packets of the same flow session 

will not carry the "flow _session _start' tag, but will be copied and the copy 

forwarded to this module for the purpose of computing the cumulative arrival 

180 



PDERRM-a novel JP QoSArchitecture 

rate for the flow in the current window. This process will continue until the end 

of the flow. When a window ends, the numbers of concurrent flow for each 

class of traffic are carried over to the next window. Measurements relating to 

rate of arrival of each flow are reset to zero when a window ends, and 

measurement starts afresh at the new window. The last packet of the flow will 

carry the tag with value "flow_session_entl' from its source. Every forwarding 

device that has an entry for the flow which the packet belongs to will decrement 

the cumulative concurrent flow value of the flow class in the current window by 

I, and delete its entry from the FSST. The flow arrival rate measurement simply 

involves taking either the cumulative bit or byte count as the packets arrived 

instantaneously and compare with allowed value in the current window. When 

any flow exceed its allowed rate a flag is sent to the QoS Manager, which then 

take corrective measure. 

8.2.4.2.2 Flow Session Measurement and Control without FSST 

The operation of this sub-module is similar to the previously described sub

module except that it does not keep FSST and may not operate on a flow 

session basis. It also receives three sets of parameters from the QoS Manager, 

which are the number of available traffic classes, the maximum number of 

concurrent flows for each traffic class in each window and the maximum value 

oftraffic rate intensities allowed for each traffic class in each window. 

It receives copies of flows from the node-input driver and increments the 

number of concurrent flow for each traffic class by I when a new flow is 

detected for each traffic class. It sets a flag signal to the QoS Manager when a 

traffic class exceeds it concurrent flow number. It computes cumulative arrival 

rates for each class of traffic in each window and compares it with the allowed 

value to determine if traffic stayed within quota. It signals violation flags to the 

QoS Manager for any traffic class that does not stay within its traffic rate limit. 

8.2.4.3 Traffic Load-limit Signalling Agent 

The Traffic Load-limit Signalling Agent takes input from the QoS Manager to 

generate traffic rate-limit control messages. Depending on the indication received 

from the QoS Manager, the message could be: 

181 



PDERRM-a navel JP QoS Architecture 

• The muIticast message--class_iJimitJeached or class_iJimi_exceed, (0 ~ i ~ 

N = number of traffic classes) that would be sent to neighbouring nodes when 

any of the traffic classes reached or exceed their allowed maximum input flow 

rate to the node. Neighbouring nodes will not forward flows in the traffic-class 

concern to the node that generate the message, during the period the message 

remain valid. 

• The multicast message-- class _i_within _limit would be sent to neighbouring 

nodes when the situation above is reversed. That is the input flow rate of the 

traffic class that caused the message above to be generated is now within 

allowed value and neighbouring nodes could now forward traffic in that class to 

the node. 

• The unicast message--src_IimitJlow"'port_i (i = source port number) 

generated and sent to the source of flow that exceed its allowed flow rate limit to 

the network. 

The Traffic Load-limit Signalling Agent also receives messages from the network 

in line with the messages highlighted above when generated by other nodes. The 

messages are forwarded to the QoS Manager which instructs the relevant 

modules to take necessary action. For example when the message 

class _i_limit Jeached is received from a node, the QoS Manager instructs the 

admission control not to admit packet of the class concerned if they must be 

routed through the node that generated the message. 

8.2.4.4 QoS Parameter Database (QPD) 

The QPD is the repository for a wide range of IntServ Token Bucket Parameters 

(TBP) that are designed to meet the QoS needs of diverse applications. Its entries 

must be globally standardised and its index and corresponding contents must be 

consistent for all grades of nodes. When a particular application requires per-flow 

resource allocation, the DSCP value of the application has a section that indicates 

value index to the QPD. On receipt of such application, the scheduler maps its 

DSCP value index to the corresponding location in the QPD and uses the TBP in 

that location to parameterise the scheduling process of the application flow. This 

mechanism is meant to remove RSVP message overheads and reduce scalability 

problems when keeping large flow state informations in routers that are inherent 

in the IntServ-RSVP resource allocation paradigm. It has to be noted that this 

182 



PDERRM-a novel JP QoSArchitecture 

approach has an advantage over the Stateless Core, which proposed to achieve 

per-flow resource allocation scalability by putting states in the packet header 

[StoiOO]. This will increase traffic flow overhead, since header to payload ratio 

will be increased, thereby reducing the efficiency of the network. 

8.2.4.5 The QoS Manager 

The QoS Manager is the intelligence of the node in terms of QoS resource 

management. It co-ordinates the activities of other QoS related modules in 

ensuring traffic loading and resource utilisation in the node are within the node 

resource capacity. 

It receives value indications of the static percentage resource share of each traffic 

class from the Resource Quota Brokerage Agent and passes this on to the 

Scheduler. The Scheduler uses the value to compute and parameterise the buffer 

space and bandwidth allocation for each class of traffic. 

It also receives dynamic traffic input loading information from the Traffic Load 

Measurement module to determine the operational rate at which traffic in each 

class is loading the node. Based on policy guidelines and operational flow 

intensities of each class of traffic, the QoS Manager could shift the basic 

percentage share of resources for each class of traffic to reflect the QoS needs of 

the traffic classes. The policy input to the QoS Manager could be achieved 

through some management tools; [SNMP] [COPS] [Dim et a1.03] [Mai et a1.03] 

[Kri04]. The QoS Manager also uses the information from the Traffic Load 

Measurement module in determining when to instruct the Admission Control to 

resume or suspend its operation. It receives information when any of the queue

class sizes reaches its red flag threshold. This will cause the QoS Manager to 

instruct the Admission Control to limit flow-input rate. The traffic control 

functionality of the QoS Manager ensures that: 

[(~t(PI XS1)" +(p, xs2)" +·····.)+(~t(PI XS1)F, +(p, XS2)F, + ..... .)+ 
.......... +[i:±(PI XS1)Fx +(P2 XS')Fx + ..... )) ~ Ctot 

1=0 n=ol 

Where W is the measuring window size in seconds, N is the number of concurrent 

flow allowed for a flow class F, • (1 ::; i ::; K), K is the number of flow classes 

available, P is the packets that arrived for each flow class and S is the packet 

UIJ 



PDERRM-a novel IP QoS Architecture 

sizes. The number of packets that arrived in a measuring window for a flow class 

is not known in advance, thus we use ellipses to represent the unknown terms in 

the cumulative packet summation. Ctot is the node's total resource capacity 

threshold mark-point for traffic limit control action. 

The QoS Manager also controls the functionality of the Signalling mechanism 

module in generating traffic load control messages to the network, and receives 

load control messages from the network through the Signalling mechanism. Also 

the QoS Manager may cause the signalling mechanism to generate traffic rate 

limits to affected nodes. 

The QoS manager will normally run as a Finite State Machine (FSM), making 

transitions from one state to another depending on process threading. 

8.2.4.6 Admission Control Module 

The Admission Control mechanism is novel and simple. It has a random scattered 

operational time interval, which accounts for its name--- Stochastic-Gap Jumping 

Window (SGJW) algorithm. The window width and position (spatial 

displacements) in time seek the distribution of the traffic bursts or high intensities 

in the network. Its operation is different from that of Triggered Jumping Window 

(TJW) algorithm used in ATM networks for policing functions. TJW action is 

triggered when the first cell (ATM packet) arrived, [Woo96] (DouSin99]. In the 

case of SGJW, it periodically seeks information on flows interarrival distribution 

from the Traffic Load Measuring agent, based on the burst distribution of traffic 

flows and instruction from the QoS Manager, SGJW could implement simple 

window policing algorithm or a hybrid of the leaky bucket and windowing 

algorithm. The mechanism of windowing algorithm involves instantaneously 

taking cumulative bit or byte count of flows within a measuring window and 

comparing this with allowed values to determine if flows are in or out of profile. 

This could be combined with leaky bucket to take care of very bursty traffic. If a 

flow is out of profile, a number of actions could follow. The flow may be 

dropped, or marked for eventual action, or shaped. Flow control messages are 

sent to the source of the flow to limit rate through co-ordination of the QoS 

Manager, which will direct the traffic rate-limit-signalling agent to take action 

when necessary. 

184 



PDERRM-a novel JP QoS Architecture 

The operation of the admission control could be denoted as: 

True, Traffic load;,: c... 

False, Traffic load ~ c.. 

Where K is number of flow classes, W is the window size, N is number of concurrent 

flows allowed in flow class Fi (1 ::;; i ::; K), p and s are packet and its size, Got is 

node's total resource capacity threshold for traffic control action. 

8.2.4.7 Traffic Shaper 

The Traffic Shaper is conventional and could make use of the leaky bucket 

algorithm. See Section 3.5.2 for information on leaky bucket algorithm. 

8.3.4.8 The Queuing and Scheduling Discipline 

Currently any of the queuing disciplines suitable for multiservice operation could 

be used with minor modifications. These include CBQ with its variants and WFQ 

with its variants. The present system made use of the former. The modification 

required involves the need for the Scheduler to interface with the QPD. Further 

research needs to be carried out on designing or determining optimum Scheduler 

forIP QoS. 

8.3 PDERRM Host Requirements 

PDERRM End Host component requirements will now briefly be described. The 

layer structure is illustrated with Figure 8.2 (a). As shown in the figure, the only 

addition to normal typical Host is the PDERRM process block at the Network Layer 

and the need to incorporate QoS aware mechanism into the API at the Application 

Layer. The function of the added PDERRM module at the Network Layer is to make 

sure that the rates at which traffic-flows are received do not over-flood the node. And 

also to ensure that traffic flows are injected to the network in accordance with the 

traffic rate limit allowed for each class of traffic. 

Figure 8.2(b) is the process flow chart that provides illustration of the process flow 

for QoS related traffic control in an End Host. As depicted in the figure, the Flow 

Identifier identifies which application has the flow and then passes the flow to 

Acceptance Control, which receives input from the Flow Controller. 

185 



PDERRAJ-a novelIP QoSArchitecture 

\ , , , 

Temp. 
Input 
Active 

Flow 
Identifier 

\ ~_L-_~ 

i~f 
(b) 

Input 
Driver 

1--___ --l 

Application Layer with 
QoS Aware API 

1+ Transport Layer 

Network Layer + 
PDERRM Interface 
Domain Domain 

1+ (a) Link Layer 

Higher Layers 
Input Output 

Yes 

App. Port 
Ready? 

Yes 

No 

Error 
Message 
Sender 

Flow Controller 

Generator 

Output 
Driver 

Figure 8.2: PDERRM-Aware Host (a) Layer Structure 
(b) Process Flow Chart 

186 

Signalling 
Agent 

----, 

Temp. 
Output 
Active 
Buffer 

Info 
App. 
Port 

r---------------------



PDERRM-a novel IP QoS Architecture 

When a flow cannot be accepted or its flow rate is out of profile, an error message 

will be sent to the sender. The Flow Controller is aware of the node's input traffic 

processing capability and also has information on which application port is busy and 

which is ready. An accepted flow that found its destination application port busy, 

would be sent temporarily to Input Active Buffer. The Input Active Buffer seeks 

when the busy ports will be free and then send the buffered flows to their 

corresponding ports. 

Application traffic flowing out of the node will pass through the Flow Controller. 

The Flow Controller interacts with Signalling generator to determine if the generator 

has received the message---:tlow limit reached or exceed, for any of the traffic 

classes. In the case that the message has been received, the traffic class concerned 

will not be released to the network until a counter message---:tlow limit within, is 

received. The Traffic Rate-limit Generator ensures that traffic is released to the 

network in accordance with the allowed flow rate. When an application generates 

traffic at the time the traffic cannot be released to the network or the rate at which it 

generates traffic is higher than allowed, its flows are temporarily stored in the output 
c 

active buffer. The output active buffer will then notify the application to limit its rate 

of traffic generation. 

8.4 PDERRM Aware Router or Forwarding Device 

The functionality of a Router or any Forwarding Device (FD) differs from that of an 

End Host. Figure 8.3(a) and (b) provides graphical abstraction of the main layer 

block and the process flow block for a PDERRM-aware router or any FD. The subtle 

differences between an End Host and a Forwarding Device could be found by 

comparing Figure 8.2(a) and (b) with Figure 8.3(a) and (b). 

Figure 8.3(a) provides illustration for a high level abstraction of the layer block 

structure of a PDERRM-aware router in which PDERRM section is shown as 

additional process modules in the network layer of a typical router. 

The process flow chart is illustrated with Figure 8.3(b). The QoS Manager serves as 

the brain of the node in terms of QoS performance of application flow. It co

ordinates the activities of all other flow QoS related process block in the node. 

Essentially it ensures flows are admitted and processed through the node only if there 

are resources within the node to support their acceptable QoS performances. 

187 



PDERRM-a novel JP QoS Architecture 

~============lli=.g=h=~=L=a=ye=r=s============~lt 
Network Layer .. 

PDERRM Process Module Routing Process Module 

I '--___ Link_L_ayer __ -----Il

t 
(a) 

Flow Control 
Signalling 
Mechanism 

: 

1 1--
QoSManager QoS Parameter 

CRCQBA* Database 

t '" '" : t 
Traffic Load 

Queuing & 

Monitoring 
Scheduler 

Agent Ir 
, 

Admit Yes 

Flow Flow 
Yes 

Flow in-
Identifier OK? Profile? 

No No J Ir , 
l.......... 

Input Error Flow Output i I--
Driver Message to Shaper Driver 

Sender 

(b) 
Figure 8.3: PDERRM-Aware Router (a) lligh Level Abstraction Layer Structure 

(b) Process Flow Chart 

"" om the Figure, CRCQBA to be read as Classification, Resource Capacity and Quota 
Brokerage Agent"" 

IRR 



PDERRM-a novelIP QoS Architecture 

Thus it enforces the loading situations in which the highest resource utilisation can 

only occur when there is equilibrium or a balance between resource utilisation and 

resource capacity within the node. It refrains from deficit budgeting between 

resource utilisation and resource capacity. Compared with the End Host, the object 

that perfonns similar functions is called the Flow Controller, (see Section 8.3 for its 

functionality). 

The QoS Manager receives status information on the node resource capacities and 

policy guide lines on percentage share of resources for each class of traffic from the 

Classification Resource Capacity & Quota Brokerage Agent (CRCQBA). The 

CRCQBA takes input from the system kernel and administrative guidelines. The 

infonnation on each of the traffic classes resource quota are passed to the Scheduler, 

and the Scheduler uses the infonnation to parameterise its scheduling functions. The 

Scheduler also interacts with QPD to obtain parameters for per-flow resource 

allocation when the need arise. The Traffic Load Measuring Agent provides 

information on the values of traffic load intensities in the node to the QoS Manager, 

which then correlates the values to the resource capacity values in the node. If traffic 

load resource utilisation gets to the red-alert threshold, the QoS Manager invokes the 

Admission Control to limit input traffic to the node. The QoS Manager ensures 

traffic class resource quota allocations are flexible and reflect dynamic traffic loading 

in the node and their QoS requirements. 

Summary 

The PDERRM QoS architecture has been discussed and presented in this chapter. 

The motivation for the work on PDERRM concerns RSVP complexity and complex 

traffic conditioning operations required for the DiffServ architecture, and for the fact 

that QoS deployment at commercial scales is still elusive in the Internet. PDERRM 

has been presented as a hybrid QoS architecture with mutational (adaptability) 

features. The principle of operation is very simple- the PDERRM process model 

simply ensures that there is equilibrium between traffic load resource utilisation and 

resource capacity in a node. A host makes use of the Traffic Controller for co

ordinations of transmit and receive traffic. A router makes use of the QoS Manager 

for co-ordination of the node resources in admitting and forwarding traffic. 

189 



Performance Evaluation ofPDFRRM QoS Architecture 

CHAPTER 9 

Performance Evaluation ofPDERRM 
QoS Architecture 

The presentation in this chapter concerns the various approaches adopted to 

investigate the performance of the PDERRM QoS architecture. This includes, the 

experimental procedures employed to determine the effectiveness and strength of its 

support for QoS provisioning in JP Networks, the results of simulation experiments, 

and the analysis of the results. Developmental work on PDERRM is on going 

process, the work described in this chapter is focused on its basic functionality. 

In Section 9.1, we present the procedure and method adopted for the simulation 

investigation of the PDERRM performance evaluation. This includes the technical 

description of the network topology that we believe is generic with regard to 

investigation of QoS architecture performance in a network. Section 9.2 deals with 

the simulation scenario to test PDERRM fundamental functionality- that is 

ensuring equilibrium between traffic load and resource capacity. The next simulation 

scenario which is the focus of Section 9.3 examined another functionality of 

PDERRM, which is based on source-control of traffic injected to the network, and 

the network adopt admission control moratorium at interval of times depending on 

situations in the network. In Section 9.4, we discuss the simulation experiment based 

on allowing sources to inject traffic freely to the network, and the network 

employing PDERRM admission control at the edges to limit traffic load within it's 

resource capacity. The simulation experiment used to compare PDERRM with a 

standard QoS architecture in order to determine the extent of its strength is described 

in Section 9.5. The focus in Section 9.6 is on discussion of simulation experiments 

used to test PDERRM scalability. 

9.1 The Procedure and Method for PDERRM Performance 
Evaluation 

The objective of the simulation experiments was to discover PDERRM strengths and 

weaknesses from its early primitive design stages and to allow the architecture to 

evolve in line with the necessary corrections that were needed to meet its design 

190 



Performance Evaluation of PDERRM QoS Architecture 

objectives. Thus we have adopted an incremental simulation approach, which sets 

out to test its features, and where weaknesses were detected, action would be taken 

on making amendments that would ensure the architecture meets its performance 

target. The OPNET simulation package was used for the experiment. 

In designing the simulation experiments, the main principle of operation of the 

architecture was of key importance. Thus the notion that the cumulative highest 

intensities of flows allowed through a traffic-forwarding node should adhere to the 

operational rule that states there should be "equilibrium between in-load resource 

utilisation and resource capacitY". This was the focus in the initial simulation design 

strategy. Simulations were run with this basic structural functionality of the 

architecture and the results noted. Other features and components of the architecture 

were added to the basic architecture in incremental stages for other simulation 

scenarios of the experiments. The improvements or weaknesses they add to the 

strength of the architecture were noted. The simulation work carried out so far is 

grouped into five Simulations Action Domain (SAD), each of which will be 

discussed in the subsequent sections. For the moment we will technically discuss the 

generic network topology used in four of the five SAD experiments. 

9.1.1 The Generic Topology (the Basic Network) 

The topology of the basic network used to investigate the performance evaluation 

ofPDERRM as shown in Figure 9.3 is similar to Figure 5.1 used in Section 5.1.1. 

It has equivalence in structural orientation with the Figure 5.1, but the number of 

component nodes and links are at variance. 

In order to extract the facts of relevance in using the simple basic network shown in 

Figure 9.3 for modelling the performance evaluation of PDERRM, the description 

of the network in terms of its technicalities and structural orientation require 

attention. To describe the basic network technically, we need to make some formal 

definitions and also to define some new terms. These include definition for graphs, 

digraphs, networks, etc and few of the related terms used with them when they are 

employed for modelling practical problems. Graphs and digraphs are used in a 

wide variety of contexts in Engineering, Sciences, Economics, etc to model 

operations and to model problem solutions. Our concern here is for communication 

networks. 

191 



Performance Evaluation ofPDERRM QoS Architecture 

In general, a graph consists of points called vertices and lines connecting the 

vertices called edges. Graph models usually represent the entities of a problem as 

vertices, and the relationships or connections between the entities are represented 

by connecting edges. 

Formal definition : A graph G consists of two finite sets (sets having finitely many 

elements), a set V(G) of points called vertices and a set E(G) of connecting lines 

called eliges such that each edge connects two vertices called the endpoints of the 

edge. Graph G is denoted by 

G = (V, E) 

Vertices are denoted by letters or by numbers (u, v, ------, or I, 2, ------). Edges 

also can be denoted by letters (el , e2 -------), or by their two end points, el = (i, j) 
where i and j are the notation for the end points vertices. [f an edge links a vertex to 

itself, then the edge is termed a loop . A path is a succession of edges, which 

connect one vertex to another. A cycle or circuit is a closed path where the origin 

and destination are coincident. The number of edges in a path is referred to as the 

path cllrdinlllity [MoI891 . 

A graph G with 
Vertex set V(G) = {I , 2, 3, 4} and 
Edge set E(G) = {1 ,2 1,3 2,3 3,4, 4, 4} 
A loop edge = 4, 4 
Apatbp = I, 3, 4 
p cardinal ity = 2 
A cyclec = 1, 2, 3, I 

.Figure 9.1 A graph G with n = 4 vertices and n = 5 edges 

Formal definition: A digraph or directed graph Dc = (V, E) is a graph in which 

each edge e = (i, j), has a direction from its initial endpoint i to its terminal 

end point j . Two edges connecting the same two endpoints i, j will have opposite 

directions, i.e. they are, (i, j) and G, i), e.g. (1 , 2) and (2, 1). 

Formal definition: A tree T is a graph that is connected and has no cycle. 

"Connected" means that, there is a path from any vertex in T to any other vertex in 

T (figure 9.2(a» . 

192 



Performance Evaluation ofPDERRM QoSArchitecture 

New definition : A ditree or directel/ tree d T is a digraph tbat is connected and has 

no cycle (figure 9.2(b» . 

New definition : A bipartite digraph dDG = (V, E) is a digraph in which the vertex 

set V(iPo) is a union of two subsets V(S) and V(D). Each of the two subsets form a 

ditree and an edge connect the two ditrees together such that the edge has one of its 

endpoint incident on a vertex in V(S) ditree and the other endpoint incident on a 

vertex in V(D) ditree. See Figure 9.2(b). 

(a) Tree T 

'--------D-itr-ee~ Ditree 

t-
Cb) Bipartite Digraph 

Figure 9.2 (a) A Tree T and (b) A Bipartite digraph with two ditrees having 
opposing directed edge orientation, and connected root to TOOt. 

Formal definition : A network is a digraph DG = (V, E) in which each edge e = (i, 

j) called a link has an assigned capacity C;j > 0 [ = maximum possible flow along (i, 

j)], and the vertices are commonly called nodes. At one node S, called the source, a 

flow is produced that flows along the links to another node, D, called the 

destination or target or sink where the flow become useful or disappear [Kre93) . 

193 



Performance Evaluation of PDERRM QoSArchitecture 

9.1.2 The use of a Basic Network as Tool for Comparison of two or 
more Resource Allocation Mechanisms 

The basic network shown in Figure 9.3 is a bipartite digraph in which each flow 

has a path cardinality of3. This is described as a three legged relay flow systems. 

The first ditree (subdigraph) as illustrated in Figure 9.3 represents the source 

domain. It has a concave (convergent) flow orientation that has its focal point at the 

convergent node Sc (Figure 9.3). Flows emerging from node Se towards node Dc, 

on the connecting bottleneck link (Se. Dc) were subjected to the constraint of 

maximum link capacity utilisation as against low link capacity utilisation that exist 

in other links of the network The other ditree, which is the destination domain, has 

convex (divergent) flow orientation. The convex focal-point node Dc distributes 

the flows divergently to their respective links towards their destination nodes Di. 

0.,.sl .. · •.. ;;: 
~ 

Subdigraph 

Source Domain 

Figure 9.3: The basic network, technically referred to as bipartite 
digraph. 

Destination Domain 

A flow emerges from its source in the source domain node Si and is transmitted 

through the three legged relay flow system to its destination node Di in the 

destination domain. The flow would suffer flow-constraint at the bottleneck link, 

which would be overloaded, since it would be the convergent link for all other links. 

At the flow convergent node Se heavy resource contention would take place between 

different flow classes. The environment of high resource contention in node Se or 

node Dc provides a suitable condition for comparing the performance of various 

resource allocation mechanisms. Thus two or more flow service paradigms could be 

194 



Performance Evaluation ofPDERRM QoSArchitecture 

compared in terms of their effectiveness on resource contention resolution among 

different traffic classes when each of the simulation scenarios used in the comparison 

has identical flow profiles. This forms the basis of our performance evaluation of 

PDERRM. A best-effort service model (no multiservice QoS) was compared with 

PDERRM on a number of the later basic features to see if it supports multi service 

QoS using the basic network. Also a standard QoS architecture-- IntServ-RSVP was 

similarly compared with PDERRM in order to identify PDERRM strengths. The 

experimental investigation will be covered in subsequent sections. 

9.2 Simulation Action Domain (SAD) with 
PDERRM First Basic Functionality (Scheme A) 

The first simulation experiment on PDERRM performance evaluation was focused 

on its basic functionality- the process model that ensures the equilibrium between 

input traffic load resource utilisation and resource capacity in a node does not shift 

towards a negative imbalance with respect to the node's resource capacity. 

QoS performance metrics on each of the application classes are deduced on the 

following relational formula in connection with the basic network of the Figure 9.4. 

QoS Performance Metric: 

(1) Latency and jitters condition 

n 

Average ~ (Tlfj - T2 fi ~ -

i = 1 
{ 

rnin (Iow latency & jitters ) 

max (high latency & jitters ) 

Where Tl was the time flow f; (1 ::;; i ::;; n = number of traffic classes) got to node 
Se (figure 9.4) and T 2 was the time same flow f t emerged from node De ; 

(2) Obeying KirchhoWs law on throughput 

L [SiSc 

~ 

" {O (maximum throughput) 
- L..J [DiDc = 

~ f (flow loss recorded) 

Inflow to node Sr. 
Outflow from node Dc 

Where S c f was the cumulative sum of flows that entered node Sc(f SiSc means flow 
Source i into node Se ), and D c f was the cumulative flows that emerged from node 
Dc (f DiDc means flow i towards destination D emerging from node Dc) (~~~ Fig.9.4). 

195 



Performance Evaluation ofPDERRM QoSArchitecture 

9.2.1 PDERRM-Aware Host Process 

Each of the hosts (traffic source node and traffic sink node) has four main process 

modules- the traffic or application generator module, traffic sink module, the 

traffic rate control module and the link layer module. The OPNET simulation 

package, together with its enhanced utilities provides the platform, facilities and 

necessary environment for specification and definition of the behavioural logic of 

the modules. The traffic generator module included processes that determined the 

packet format, packet size and initial rate of generation. It also included processes 

for traffic generation statistics. The generator module also included a QoS 

enhanced API sub-module which applications used to indicate the traffic class to 

which they belonged, their QoS needs in the network, and the node destination 

address of the application. The sink module contained processes that received the 

traffic, took statistics of received traffic and destroyed the traffic. 

Figure 9.4: Basic Network 

The traffic control module main functionality was to control the rate at which 

traffic was injected into the network in accordance with either local or global 

parameters. The module also included the signalling mechanism which received 

information on traffic loading in the network and passed the information to the 

traffic control section which used it to control its functionality. Some of its 

processes or functionality might be operated in an off and on basis depending on 

events in the network. Its functionality will be described in more detail in the next 

section where it will be seen that its functionality is the main determinant of the 

outcome of the experiment in that SAD. The link layer module included the 

196 



Performance Evaluation ofPDERRM QoSArchitecture 

transmitter and receiver sub-modules together with the pipeline processes 

responsible for transmitting and receiving packets. 

9.2.2 PDERRM-Aware Router Process 

The router or the forwarding device in its basic form was made up of three main 

modules--- the input driver module, the QoS enhanced forwarding module and the 

output driver module. The input driver module was basically the receiver module 

with its pipeline stages. The forwarding module was made up of the QoS parameter 

specification sub-module, packet identifier together with PDERRM admission sub

module and queue-scheduler sub-module. The output driver module was basically 

made up of the transmitter and its pipeline stages. 

The functionality of the forwarding module served as the determinant of the QoS 

outcome of the experiment in this SAD. The Block and State Transition Diagram 

(BSTD) of the service model of basic PDERRM-aware router is shown in Figure 

9.S(a). The figure shows the process flow of the forwarding module and its Finite 

State Machine (FSM). Figure 9.5(b) illustrates best-effort service model BSTD as 

companson. 

The QoS parameter specification sub-module contained information about traffic 

classes and their resource quota This information was used by the admission 

control module in limiting traffic input to the node to fit within the resource quota 

of the traffic class concerned, and for inserting traffic classes to their appropriate 

queues. The admission control operated on a flow-measurement moving window 

mechanism. The operation simply took cumulative bit or byte count of flows as 

they arrived over the lifetime of a measuring window and correlated the value of 

the measurement with a computed allowed value. Mathematically, this was a 

discrete integration or summation, which could be represented notationally as: 

W N 

Admit the packet ofFlow-c1assJ if, L L (P(Lk X SiLk) :s; M_i 
t= 0 ;= 1 

Where M _i is the computed maximum limit of quantum packets allowed for Flow
c1assJ, (1 :s; i :s; n = number of traffic classes) in the current window with size W. 
P(Lk is the kth, packet for flow j that arrive in the current window for Flow-c1ass_i, 
(k = 1, 2, ... ). SiLk is its packer size in bits or bytes, and N is the number of 
concurrent flows allowed for Flow class i. 

197 



Performance Evaluation of PDERRM QoSArchitecture 

Input Driver 

(a) 

PDERRM Forwarding Module FSM 

I, 
",-----------------------" ',-----------------------... , , , 

1. QoS Parameter Initialisation State 
2. Idle State 
3. Flow Arrival State 
4. Packet Identifier & Admission State 
5. Queue-scheduler State (WRR) 

Best-Effort Forwarding Module FSM 
I, , , 

,"----------------' ... _---------------'\ 

1. Node Initialisation State 
2. Idle State 
3. Arrival State 
4. Queue-scheduler State (FIFa) 

Output Driver 

Input Driver 
Output Driver 

(b) 

Figure 9.5 (a) Block and State Transition Diagram of basic PDERRM
aware router. (b) Block and State Transition Diagram of 
normal router 

At the end of every window, all measurements were reset to zero. The functionality 

of the admission control was configured to be a continuous process in the 

forwarding nodes during all simulation time in this experiment. 

The schedulers serviced each traffic class according to information implicitly built 

into the DSCP value in the packet header. The scheduler has knowledge of the 

interpretation of DSCP values in terms of resource allocation. The scheduler 

serviced each flow according to the resource allocation encoded in the DSCP value 

and assigned the flow to its corresponding output interface, while the output driver 

module transmitted the flow on its link. The queue-scheduler contained processes 

198 



Performance Evaluation ofPDERRM QoS Architecture 

that generated different types of queue statistics such as queue sizes and packet 

queue delays. 

9.2.3 Simulation Experiment 

For the purpose of this experiment, three broad classes of traffic were defined. 

These represent inelastic (real-time) type of applications, inelastic tolerant type of 

applications and elastic (non real-time) type of applications. They are simply 

represented here as class 1, class 2 and class 3 respectively. A wide range of traffic 

parameters for each of the traffic classes was used in generating various traffic 

profiles for the experiment. Table 9.1 represents the various parameters of traffic 

used in the experiment. 

Table 9.1 

(a) Traffic Class 1 
Low values I High value Range 

Packet sizes in bytes 32, .. , 48, .................................... , 128 96 
Packet rate in kb/s 56, .. , 64, .................................. , 128 62 
Burst time in seconds 0.25, .. , 0.35, ............................... , 2.0 1.75 
Idle time in seconds 0.45, .. ,0.65, ............................... ,3.0 2.55 
Inter-packet-arrival 
distribution Constant and Exponential 

(b) Traffic Class 2 
Low values I High value Range 

Packet sizes in bytes 64, ........................................ , 512 448 
Pkt Inter-arrival time 0.03, ..................................... , 0.9 0.87 
Packet Inter-arrival 
distribution Constant and Exponential 

(c) Traffic Class 3 
Low values I High value Range 

Packet sizes in bytes 105, ........................................ , 1024 919 
Packet rate in Kb/s 32, ., ........................................ ,448 416 
Packet Inter-arrival 
distribution Constant and Exponential 

The network topology used for the simulation experiment is illustrated in Figure 

9.4. After the node process models of the modules had been specified and defined, 

the modules programme logic were then constructed. The traffic and the statistics 

199 



Performance Evaluation of PDERRM QoSArchitecture 

were configured for the simulation run. The bottleneck link was driven at 

maximum capacity. The first simulation scenario was for baseline in which the 

forwarding device operated on the basis of best-effort service model. In this case 

the scheduler would operate the FIFO queuing discipline. The simulation was run 

and statistics collected. The forward ing device was then reconfigured to operate on 

the PDERRM service model. Identical traffic input profiles that were used for the 

baseline were repeated for the PDERRM simulation. 

9.2.4 Latency Results and Comments 

The emphasis in the results is based on latency and }iller. The comparison results, 

which show the first performance evaluation of PDERRM, are shown in Figure 9.6. 

The performance of PDERRM in terms of end-to-end delay and jitter was highly 

impressive. This is illustrated in the figure, which shows very low latency 

compared with best-effort services. Whilst the results fo r the best-effort service 

model shows comparatively higher delay with its associated higher jitter, results fo r 

PDERRM service model reveal low delay and corresponding low jitter. 

Global End-to-End Delay (PDERRM basic with Best-errort) For the 3 Traffic 
Classes 

1.8 r------------~~~-------___. 
1.6 11 

1.4 hJV~"W.I=:-------:;::~~====;;;~=====i _ 12P 
~ 1 +----------------------l 
'" j 0.8 +------------------------l 

0.6~~~~~~~ O.4~ 

02t--------------------------l 
O~-_-_-~-~--_-_-_-_-~-~ 

o 200 400 600 800 1 000 1200 1 400 1600 1800 2000 

TIme In Seconds 

Figure 9.6: Chart Showing average Global End-to-End Delay for the three 
Traffic Classes used in the Simulation Scenario. 

9.2.5 Throughput Results and Comments 

As shown in Figure 9.7, the results ofthe experiment showed better performance of 

the best-effort service model on throughput than PDERRM basic service model. 

We have discovered that this was the case with most QoS architectures that involve 

continuous admission control processing. Low throughput is a price that has to be 

paid for very good latency and jitter performance. This was revealed in the 

200 



Performance Evaluation ofPDERRM QoS Architecture 

performance of RSVP compared with best-effort that would be shown in Section 

9.5.4. However PDERRM have a scheme to improve throughput performance. 

Global Throughput for 3 Traffic Classes 

1000 r------------------------'""'"I 
JOOO 1---11~--+-----------------___'j 

100 0 i---t+I----t\------------,\--n---....,.-----:j 

n' ... ... ... ' OGO uu 1400 '''' u oo 
T lm e in Second s 

Figure 9.7: Chart showing Global throughput for PDERRM basic compared with 
Best-effort for the 3 Traffic classes used in the Simulation Scenario. 

9.3 SAD with PDERRM Flow Source Control and 
Moratorium on Admission Control in the 
Network (Scheme B) 

The simulation experiment on PDERRM performance evaluation in this SAD was 

based on shifting most of the flow rate control from the network to the sources of 

flows. The underlying functionality specified a necessary condition that all sources 

of flows should adhere to global parameters on flow rates, in injecting flows to the 

network. Thus sources of flows compute flow rates for each traffic class employing 

global parameters specified for such class of application in releasing the flows to the 

network. The network on the other hand adopts an admission control moratorium on 

traffic flows, for unequal periodic time intervals depending on the traffic load 

situation in the network. Each source of flows (host) had well defined global 

parameters used for regulating flow rates to the network. 

Application traffic was generated by the application process module in the host, and 

the resulting traffic-flows forwarded to the traffic control module, which ensured that 

the flows were released to the network in accordance with the global parameters. The 

201 



Performance Evaluation of PDERRM QoS Architecture 

network nodes would simply allocate resources to each traffic class on the basis of 

the resource quota for each traffic class without continuous admission control and 

believing that the sources of flows stayed with in their agreed flow rates. The network 

nodes would monitor resource utilisation and if a threshold was reached, send control 

signals to source of flows. The strategy here was to ensure that the network was 

relatively simple IInd complexities resided in the eml nodes. This was the basic 

factor that was responsible for the phenomenal success of the Internet. 

The underlying function of the resource management has its thrust in the 

functionality that ensured the cumulative traffic flows released to the network stayed 

within the resource capacity of the network. Here, that functionality resided in the 

end host and could be achieved practically through global standardi sation of flow 

rate parameters and inventory of the global parameters made available to network 

operators. 

The functionality of the traffic control module in the end host served as the 

determinant for the outcome of QoS management in this experiment. 

The Block and State Transition Diagram (BSTD) of traffic process flow in 

PDERRM-aware host is shown in Figure 9.8(a). The figure illustrates the process 

flow of traffic as it emerged from the application process module, through 

intervening modules to the transmitter, where it would be released to the network. 

Input traffic wou ld retrace the path in the opposite direction from the receiver 

process module to the application process module. Figure 9.8(b) illustrates the best

effort service traffic process flow 's BSTD as a comparison. 

The traffic control module regulates flow rate into the network using si mply either a 

leaky or token bucket algorithm and employing global parameters to parameterise the 

algorithm. 

9.3.1 Simulation Experiment 

As in the previous simulation experiment, three broad classes of traffic were 

defined and used in the simulation. These were simply termed as class I , class 2 

and class 3 flows. The same network topology (Figure 9.4) as used in the previous 

section was also used in this simulation. In running this simulation, the bottleneck 

link was also driven at maximum capacity. The first simulation scenario, which 

was for the baseline, was configured on the basis of the traditional Internet service 

202 



Perjormance Evaluation oj PDERRM QoS Architecture 

model. The simulation was run and stati sti cs coll ected. The PDE RRM simulation 

scenario was reconfigured such that the end host rate limited traffic flow to the 

network in accordance with g lobal parameters. 

Application 
Process Module 

PDERRM Host Traffic Control Module STD 
, 
-' , , ------------- ------ '------------------, " , , , , 

QoS Aware API Process State 
2 Interface Process State 
3 Traffic Control Module Process State 
4 Signall ing Process State 

(a) 

Best-Effort Host Traffic Process Flow STD 
I, 

,,/ , .... ,----------------- ----------------, , ' , , 

1-
I -, 2 

I API Process State 
2 Interface Process State 

Link Layer together 
with Transmitter and 
Receiver module 

~ 

Application Process 
M()nlll p. (b) 

Lmk Layer together with 
Transmitter and Receiver 
Module 

Figure 9.8 (a) Block and State Transition Diagram of basic PDERRM-aware host 
(b) Block and State Transition Diagram of basic normal Host. 

The network on the other hand allocated resources, monitored resource util isation 

and took necessary action depending on events in the network. The results were 

displayed in comparison with the baseline resu lts. 

203 



Performance Evaluation ofPDERRM QoS Architecture 

9.3.2 Results and Comments 

The comparison results are shown in the graph of Figure 9.9. As illustrated in the 

figure, the results are very impressive for PDERRM. The global end-to-end delay 

and jitter for PDERRM was remarkably very low compared with best-effort 

services. The PDERRM source traffic control scheme is an attractive scheme to 

achieve QoS resource management. 

Global End4o-End Delay (PDERRM Source Control with Best-effort) 
For the 3 Traffic Classes 

25 

20 

u ., 
15 !!!. - Best-effort 

>-., 
10 

Qj 
- POERRM 

0 

0 

0 500 1000 1500 2000 

Time in Seconds 

Figure 9.9: Chart Showing End-to-End Delay; The blue-trace for best-effort services 
and the pink-trace for PDERRM services. 

9.4 SAD with no Standard Traffic Rate Control in the Host 
PDERRM Admission Control employed at Edges of the 
Network (Scheme C) 

The simulation experiment for PDERRM performance evaluation in this SAD was 

based on the strategy of limiting the over-all process time and resources used for the 

processes of traffic control in order to enhance QoS performance of applications. 

Here sources of flows were initially allowed to freely inject traffic into the network. 

In this case, the host traffic control Signal-reception mechanism listened to the 

network, in order to receive information on network loading conditions. Any 

forwarding device or router that received flows at a rate higher than the permitted 

range will send a signal to the offending source to limit its traffic rate. The source of 

204 



Performance Evaluation ofPDERRM QoSA rchitecfllre 

a flow causing concern will then reduce its flow rate at a percentage based on the 

standard in operation. (The rate reduction would be a stepwise or piecewise function 

that would be formulated on percentage of flow rate to be reduced at each step in a 

sequence of steps that cou ld be standardised (simi lar to CSMAlCD standard)). 

Flow control in the network was based on edge contro/. At the first hop where the 

packet of a flow entered the network, PDERRM admission control would be appl ied 

on the packet to determine if its temporal characteristics complied with specified 

values. If the packet was in-profile, it would be given a label to indicate this and no 

further admission control action would be applied in other intermediate hops until it 

got to its destination. Interior nodes in the network simply allocate the packet to their 

appropriate queues and service the packet according to its bandwidth requirement . 

The thrust of the resource management operation here places the main functionality 

of traffic control at the edges of the network, a little traffic control at the host and the 

interior of the network relatively simple. The objective of this experiment was to find 

out if the latency performance would remain the same as in previous simulations and 

to determine if there would be an improvement on throughput. 

9.4.1 Simulation Experiment 

For the experiment in this SAD, four broad classes of traffic were used. These 

represented inelastic (real-time) types of application, inelastic tolerant types of 

application, mission critical types of application and traditional best-effort types of 

application. They are simply represented here as class I, class 2, class 3 and class 4 

applications respectively. As in the previous experiments, a wide range of traffic 

parameters for each of the traffic classes was used in generating various traffic 

profiles as input to the network used in the simulation. The structure of the 

network topology used in this experiment was similar to that of Figure 9.4, but the 

number of host used was eight instead of six. 

in running this simulation, the bottleneck link was also driven at maximum 

capacity as in previous sections. The first simulation scenario, which was for 

baseline, was con figured on the basis of the traditional Internet service model. The 

simulation was run and statistics collected. The PDERRM simulation scenario was 

reconfigured such that edge nodes applied PDERRM admission control on flows as 

they passed through the first hop into the network. Subsequent QoS processes 

205 



Performance Evaluation of PDERRM QoS Architecture 

simply concentrated on allocating buffer and bandwidth resources to the flow as it 

passed through the network. 

Global End -to-End Delays 

4 5 

4 

35 

3 

¥ 25 
>-• 2 
0; 
0 , 5 

fI 
/ I 

{'J / " 
\ 

IV ,JV VI 1\ 
I r IV 

It' .J\/U V LA fI. 

05 
yv V, " -Y,!,.""" '\.v --"" • '-

b-4\7'~;'~7"i"~ ,-6 , "'-J - '". .......;....,.... '\.- ~ ~/ ... ---~- J 

0 
0 200 400 600 800 1000 1200 1400 1600 1800 2000 

( a ) Time In Second 

Global Throughput 

&OOO r-----________ ----------------=-~--~~--~ 

-0 a «OOO ~~~~~--~--~~~~----~~--~------------~ 
l!l 
~ XOOO ~--_.--~~r_~~----,,_.~-~--~--._--~------~ .. 
"-
!! 
a; 

,~ +-----------------------------------------------~ 

o 200 400 600 600 ' 000 , 200 '400 1600 1600 2000 

( b ) Time In Seconds 

Key: BE = best-effort, P-b = PDERRM-basic, P-e-c = PDERRM-edge-control 

Figure 9.10: (a) Showing End-to-End Delay for best-effort, PDERRM-basic 
and PDERRM-edge-control (b) Showing Throughput for 
PDERRM-basic and PDERRM-edge-control 

9.4.2 Results and Comments 

~
E 

- P·b 

p..,.. 

r===P-bJ 
~-P-e-c 

The results are shown in the graphs of Figure 9.10 (a) and (b). As shown in Figure 

9.10 (a), the result of end-to-end delay is good and compared favourably with the 

results of the previous sections in terms of low delay, low jitter. Throughput results 

show tremendous improvement for PDERRM services with edge traffi c control only, 

when compared with the continuous admission control found in PDERRM basic 

services. 

206 



Peiformance Evaluation ofPDERRM QoS Architecture 

The throughput results are shown in Figure 9.10 (b), and clearly show that, edge only 

traffic control has better performance than continuous traffic control on throughput. 

The results as shown in Figure 9.10 (a) and (b) revealed that, edge only policing is a 

better scheme than continuous policing in the network. The improvement with edge 

only traffic policing would be attributed to the lower process threads percentage 

allocated for traffic control in the network. 

9.5 SAD in which PDERRM Performance was compared 
with that of IntServ-RSVP model (Scheme D) 

In this SAD, the experimental focus was to compare the performance of PDERRM 

with that of a standard IF QoS architecture-- the IntServ-RSVP paradigm. OPNET 

(OPNET Technology Inc, USA) software simulation package has a plug and play 

experimental implementation of the RSVP process model, which was used for the 

experiment. The procedure for the performance comparison was as follows: 

• A simple network of identical topology as shown in Figure 9.12 was used for 

both RSVP and PDERRM simulation scenarios. 

• Identical traffic profiles were used for both simulation scenarios. 

• Identical simulation time were used for both simulation scenarios. 

• Identical statistics were defined and collected for both simulation scenarios. 

• The result of the PDERRM simulation scenario was compared with that of 

RSVP simulation scenario to make conclusions about performances. 

9.5.1 Brief Summary of Operation of RSVP Model 

Resource reSerVation Protocol (RSVP)- [RFC 2205] is a network layer signalling 

protocol that allows applications to reserve network resources for their flows. The 

key functionalities of the RSVP model are: 

• Transmitting applications describe their data-flow characteristics to nodes 

along the path of flows using the Path Message [RFC 2209]. 

• Receiving applications describe their Quality of service (QoS) requirements 

using Resv Messages [RFC 2209] and retrace the path created by the Path 

Message in opposite direction. 

207 



Performance Evaluation ofPDERRM QoS Architecture 

• Routers deliver the specified QoS request to application traffic along the path 

of flow. 

RS VP treats data flows from receiver to sender as logically independent from the 

flows from sender to receiver. Accordingly, a reservation for data from sender to 

receiver is independent from a reservation from receiver to sender. Thus RSVP 

establishes a reservation for simplex flows. 

The following steps show the event sequence for RSVP resource reservation 

operation: 

I The transmitting sender host typically knows the characteristics of the traffic it 

generates (described as token bucket parameters) which will be packaged into 

the Path Message, then will be transmitted hop-by-hop from the sender to the 

receiver. 

2 The Path Message creates a Path State in each router that is traversed from 

sender to receiver. Through the path setup mechanism, all devices along the 

path become aware of their adjacent RSVP nodes for data flow. 

3 When the Path Message gets to the receiver, the local RSVP module notifies the 

receiver's host application and the receiver's host application makes the 

decision whether or not to reserve the resource. 

4 Once it is decided to request network resource reservation, the host application 

sends a request to the local RSVP module to assist in the reservation setup. 

S The local RSVP module in the receiver uses the RSVP protocol to carry the 

request as Resv Messages to all nodes, hop-by-hop along the data path created 

by the Path Message and moving in the reverse direction to the sender's data 

direction up to the sender. Each intermediate node checks if it has sufficient 

resources when deciding to either grant or reject the reservation request. If the 

reservation is granted, Resv State is created, and the reservation request is 

forwarded to the upstream previous hop in the data path. 

6 The receiver may request a notification about the reservation status. In such a 

case, once the sender receives the Resv Message originating from the receiver, 

it sends a Resv Confirmation message back to the receiver. 

7 If the receiver sends any data, it will start sending Path Message to the sender. In 

this case, steps I to 6 are repeated with the receiver acting as the sender and the 

sender acting as the receiver. 

208 



Performance Evaluation ofPDFRRM QoSArchitecture 

8 Once reservation is established, data will continue to flow and use the reserved 

resources. 

RSVP adopts the "soft state" approach in managing Path State and Resv State in 

routers and hosts. An RSVP soft state is created and periodically refreshed by Path 

and Resv Messages. 

9.5.2 Comparison of PDERRM Operation with RSVP 

We will briefly compare and contrast PDERRM basic operation with that of RSVP 

as highlighted above. 

• Unlike RSVP which describes it data-flow characteristics explicitly to the 

network on a per-flow basis, PDERRM uses DSCP hierarchical encodement to 

implicitly describe its data-flow characteristics to the network. Each set of 

application class will have standard set of global parameters consistently 

understood by all grades of nodes that describe the temporal characteristics of 

their flow as they are being transmitted through the network. Each sender host 

simply indicates which class its application traffic belongs by using a DSCP 

value and the network will understand the application traffic characteristics by 

decoding the DSCP value. 

• PDERRM unlike RSVP has no Path Message. PDERRM's similar operation to 

RSVP Path Message involves labelling the first packet of a flow with 

"flow_session _starf'. When the packet gets to each router along the path of 

flow, and a per-flow resource allocation is required, the packet DSCP value is 

mapped to relevant index in the QoS Parameter Database (QPD) of the node. 

The destination address and the next hop IP address are entered against its index 

in the column provided in the QPD. When subsequent packets of the same flow 

get to each router the destination address will be mapped to its value in the QPD 

where the next hop IP address for the packet is discovered. The current packet 

will then be routed such that it follows the same path as the previous packets. 

• PDERRM also unlike RSVP has no Resv Message. Each router has a maximum 

number of independent flows for each class of traffic that it can accommodate 

based on its resource capacity. Thus the resource allocation mechanism here 

operates on provisioning unlike the reservation method used in the RSVP 

paradigm. When a new flow arrives, the router simply checks if the maximum 

209 



Performance Evaluation ofPDFRRM QoS Architecture 

number of independent flow for the class of the flow has been reached or not in 

making its decision on the flow admission. The flow can only be accepted if the 

maximum number of independent flow for its class has not been reached. Thus 

PDERRM does not incur Resv State overhead. 

RSVP 
Process 

PDERRM 
Process 

SENDER 

........ 
Path 

+- Resv 

Resv 
State 

l ~Ter Data flow direction 

.... Path - Path 
State -.. Path 

State Path 

RECEIVER 

.... Path 
..... f-- Resv -- ~ Resv - State 

Resv 
State Resv 

State 

Confirm --. Confirm 
• optional 

Confirm 
• optional 

Data flow l Data flow ~ I Data flow ~ 

SIart.-pkt ~ SIart'-pkt ~ SIart'-pkt Flow ~ 

Lo~·in Flow 
Log·in 

Flow 
Accepted 

No flow 
Rejection 
message 

l Dataflow ~ l Dataflow ~ I Dataflow ~ 

Figure 9.11: Comparison of RSVP processes with that ofPDERRM 

• The sender waits for a period of time equal to Round Trip Time (RTT) after 

sending the first packet before the next packet is sent. This is to determine if the 

210 



Performance Evaluation ofPDERRM QoSArchitecture 

flow is rejected in which case, the sender gets a rejection message and the flow 

suspended or re-entered later. 

• The sender labels the last packet of a flow with the label "flow_session _end'. 

Each router on receiving a packet with the label "flow _session _end' checks its 

flow entry in the QPD and when found deletes it. 

As shown in Figure 9.11, the overhead flow processing of RSVP is far higher than 

that of PDERRM and also the resource allocation processes are simpler in 

PDERRM than in RSVP. 

As highlighted in Chapter 2, there are two types of services defined for IntServ

RSVP model- Controlled Load and Guaranteed Qualify of Services. At the time 

of this experiment, the OPNET RSVP implementation was the Controlled Load 

Service, and it was the one used for this experiment. PDERRM implementation 

used in comparison was the basic service model ofPDERRM. 

OPNET Documentation was consulted on the work presented in this section. Some 

of the ideals used-the RSVP part, were borrowed from OPNET Documentation 

[OpnetDoc03]. 

9.5.3 Simulation Experiment 

The simulation experiment made use of two sources of application traffic-flows as 

shown in Figure 9.12. In the RSVP scenario, two applications were competing for 

the same resources. Each of the two sender hosts initiated and carried out one 

application flow session with its receiver host. One of the sender hosts made use of 

RSVP resource reservation and allocation for its traffic-flows while the other 

source made use of best-effort services. In the PDERRM scenario, the same 

topology and traffic setup as in RSVP were used. One of the sender hosts made use 

of the PDERRM resource allocation while the other sender host made use of best

effort. The simulations were run and statistics collected. The results of the 

experiments were displayed for comparison with RSVP, best-effort and PDERRM 

servIces. 

211 



Senderwitb 
QoS 

Senderwitb 
Best-Effort 

Router J 

Performance Evaluation of PDERRM QoS Architecture 

Router 2 

QoS 

Receiver with 
Best-Effort 

Figure 9.12: Showing network topology for comparing RSVP with Best-effort and 
comparing RSVP with PDERRM. 

9.5.4 Results and Comments 

The results are shown in Figures 9.13 (a) to (d). Figure 9.13(a) shows the results of 

the experiment to compare RSVP services with best-effort services. As shown in 

the graph, the flow that made use of RSVP performed better than the flow that 

made use of best-effort services for end-to-end delay. Figure 9. l3(b) shows the 

results for comparing throughput for application using RSVP with application 

using best-effort . The results reveal that throughput is higher with best-effort than 

with RSVP. We believe this would be due to the RSVP overhead and high process 

threads involved in the resource allocation with RSVP. Figure 9. 13 (c) is used to 

compare end-to-end delay for application that made use of RSVP with application 

that made use PDERRM. As shown in the graph, flows that made use of PDERRM 

performed far better than flows that made use of RSVP. 

End-to-End Delay For Applications WHh and Without RSVP 

2.5 

2 

~ 15 
~ • 
~ 1 

I-:~:;-R I 
0.5 

0 
0 200 400 600 800 1 CXXI 1200 1400 1600 1800 2000 

(a) Time In Seconds 

Key: A-no-R = Application-no-RSVP, A-with-R = Application-with-RSVP 

212 



Performance Evaluation of PDERRM Qos Archilecture 

Throughput For Application Without and With RSVP 

1<10 

120 

g 100 

u 
80 • '" 8- 80 

; 40 ~ 
u • .. 20 

7- { 1\ f\ • • 
I If V illf\ M, \ I1 1\ A IIII( VI IIMF 

V V \/\! 'V !VU' V 

I •• fI ~ IIJ'I iAA.. • ",/I A , ft • 
IF I~i \" h \1 V'" I 11 1\1\ \IvWTil.fVV v VI; 
"Tl 1JV'T 

I-A-OO-R I 
-A-w~h-R 

° 
-20 

200 400 800 800 1000 1200 1400 1800 1800 2< ~ 

(b) Time In Seconds 

End-to·End Delay for RSVP and PDERRM Comparison 

1_2 

• ~ • 
~AII A /lfL 1.1 

f'I /\ ,A }' ft A JV1 ,J\ f\1 
TV VV \JV lJV'JV !V1j TJ V lJ 

0,8 
~ 
'" ;: 0.6 
• 0; 

a 0.4 

0_2 

o 
o 200 400 600 800 1000 1200 1400 1600 1800 2000 

(c) Time in Seconds 

Throughput RSVP and PDERRM Compared 

100 ·~------------------__________________________ ~ 

: +-IM-,,\-~-,-1\\fV',- , (\- '/\- \-1\ ""7' A, -~ --I\ --11 . -Ai.-"",-~ (,\~, -Al ,.1\.--.-,.----1 

g m .~-I~~W--~~~V~~V ~·V~v-'VV--v+'~V -~--v~\I4_~ 
~ oo ·~~~~----~----------_+----~------~~----~ 

o 200 400 000 800 1000 1200 1400 1000 1000 2000 

(d) Time in Seconds 

Key: A = Application, R = RSVP, P = PDERRM, thrpt = throughput 

Figure 9.13: (a) RSVP compared with Best-effort on Delay_ (b) RSVP compared 
with Best-effort on Throughput. (c) RSVP compared with PDERRM 
on Delay_ (d) RSVP compared with PDERRM on Throughput. 

213 



Performance Evaluation ofPDERRM QoS Architecture 

Figure 9. I3(d) is used to compare flow that made use of PDERRM with flow that 

made use of RSVP on throughput. The results show PDERRM out performs RSVP 

also on throughput. This is simply due to the fact that, PDERRM incurs very low 

overhead . 

9.6 Simulation Action Domain (SAD) In Which 
PDERRM Was Test For Scalability (Scheme E) 

PDERRM performance evaluation under this SAD was focused on simulation 

experiments to test the PDERRM basic service model for scalability. The objective 

was to test if the PDERRM basic algorithm would be elastic and thus scale for large 

network use. 

~ 

Domain Network A 

Domain Network B 
Domain Network D 

Figure 9.14: Large Network used to test PDERRM for Scalability. 

2 14 



Performance Evaluation of PDERRM QoSArchilecture 

9.6.1 Simulation Experiment 

As in the experiment on Section 9.4.1, four classes of traffic were used. Also as in 

previous experiments, wide range of traffic parameters for each of the traffic classes 

were used in generating various traffic profiles as input to the network in the 

experiment. The network topology used for the experiment is shown in Figure 9. 14. 

In the figure, the edges of the network are made up of a number of hosts in either a 

point-to-point centralised switched topology or Ethemet centralised switched 

topology. Each edge network is labelled as Domain Network X, where A ~ X ~ D, 

and are connected through the core network as ill ustrated in the Figure 9.14. In the 

experiment, each host in each of the Domain Network would send or receive traffic 

such that traffic-flows were evenly distributed in the network. There were two basic 

simulation scenarios. The first simulation scenario, which served as the baseline, was 

designed and configured such that the network was operated on the best -effort 

service mode. The second simulation scenario was designed and configured such that 

the network was operated on PDERRM basic service mode. 

9.6.2 Results and Comments 

The resu lts of the simulations are shown in Figure 9.15. The end-to-end global 

delay results are the resu lts shown in Figure 9.15. The delay resu lts show that 

PDERRM maintains its performance as a very good QoS architecture in large 

network, and thus scales very well. 

Large Topology Global End-to-End Delay 

4.5 .. 4 

~ 3.5 
!!!. 

3 
'" ~ 
~ 25 
." 2 
0:: 

~ 1.5 .., 
1 ." 

0:: 

W 0.5 

(1 
f'I / ~ 

r' 

IY tfV V' 1\ 
IU rv 

11" A IV 1/ VUI A 
V vvv 

v ' . 
v 

~ 

·V 'V v ~ 

1 _:001 
- FIJ3'<ff,1 

0 
0 !DJ 1000 1200 1400 1Wl 1!DJ 2000 

TIme In Seoond 

Figure 9.15: Showing End-to-End Delay for Best-effort and PDERRM. 

2 15 



Performance Evaluation ofPDERRM QoS Architecture 

The good scalability results as shown in the Figure 9.15 is a consequence of the 

fact that PDERRM is a distributive QoS architecture. Unlike the centralised 

resource brokerage systems in which each node must communicate with a 

centralised server before making its resource allocation decision, PDERRM-aware 

nodes make independent decisions on resource allocation based on information 

available in PDERRM agents within the nodes. In the centralised systems, QoS 

related communication in the network increases as the topology increases. The 

servers in the network will have to cope with large volume of QoS related 

messages. The reverse is the case in the PDERRM architecture, the number of QoS 

related messages in relation to each node is fixed no matter the increase in the 

network topology, 

Summary 

The simulation experiments for performance evaluation of PDERRM has been 

carried out in this chapter. Five main simulation experiments have been performed to 

determine PDERRM strengths for support of multiservice QoS. The first-three of the 

five main experiments were schemes designed to test some basic features of the 

PDERRM QoS architecture. The results of the three experiments were very 

impressive and show the PDERRM QoS architecture as a promising candidate for JP 

convergence. The fourth main experiment was used to compare RSVP with 

PDERRM, and PDERRM was found to outperform RSVP in both end-to-end delay 

and throughput. The last experiment was used to test PDERRM for scalability, and 

PDERRM found to be scalable. 

216 



Conclusion and Discussion on Fuiure Work 

CHAPTER 10 

Conclusion and Discussion on Future Work 

In this last chapter, the work covered in this thesis in relation to conclusive 

viewpoints and concepts will be summarised. In addition, future research work on 

the main empirical investigation work presented in this thesis will be highlighted. 

The chapter will focus on conclusions drawn from the various results of the 

investigations and the body of knowledge that the work has added to the engineering 

and technological environment. 

In Section 10.1, we will briefly summarise Internet Technology in relation to JP QoS 

architecture as presented in this thesis. A concise abstraction of the work on 

Optimum Number of Traffic Queuing Classes (ONTQC) to support JP convergence 

will be presented in Section 10.2. The presentation will include conclusions drawn 

from the results of the experiments and the addition to knowledge, which the work 

has provided. The coverage in Section 10.3 will be on the novel JP QoS 

architecture--- Pre-deterministic Distributed Event Response Resource Management 

(PDERRM). The discussion in the Section 10.3 will include summary of the features 

of the architecture, conclusion from the experimental results on performance 

evaluation of the architecture, and the novelty in its features. In Section 10.4, the 

discussion will be based on future work on ONTQC, and in Section 10.5 the focus 

and coverage will be on future work on PDERRM. 

10.1 Summary ofInternet Technology in Relation to IP QoS 

The evolution of the Internet, its Ubiquity and success has been phenomenal in the 

last two decades. These have been attributed to the flexibility of its technology and 

simplicity of its network. The power of the Internet cannot be overemphasised. Its 

ubiquity cuts across every aspect of our daily life. The nomination of JP Networks 

for convergence of all other telecommunication services is as a result of the 

flexibility of its technology. The Internet's traditional best-effort service model 

becomes inadequate as the ever-growing end-users increased exponentially and 

217 



Conclusion and Discussion on Future Work 

various new applications emerged. The inadequacy of the best-effort service model 

resulted into application performance degradation that manifested as network 

vulgaries such as packet delivery high latency, jitter and loss. QoS architectures were 

designed to improve applications performance with support for integrated and 

differentiated services in the heterogeneous application environment found in the 

Internet. The QoS architectures will normally consist of different service models for 

different classes of application and should include service models that support 

predictability and assurance in packet delivery time as against variability and 

uncertainty in packet delivery time under best-effort service model. Predictability in 

packet delivery time is especially important for time sensitive applications. 

Conclusively, the Internet is one of the greatest inventions in the last century. 

10.2 Summary and Conclusion on ONTQC work 

It has been widely accepted within the Internet research community that multiple 

queuing systems are required in an environment of multiservice networks to provide 

partitioning of resources that are necessary for differentiated services. There have 

been various proposals / specifications on the number of traffic queuing classes that 

will support JP convergence, but none has supported the suggestions with 

verification in the form of analytical or empirical investigation. The work on the 

empirical investigation to determine the Optimum Number of Traffic Queuing 

Classes (ONTQC) to support JP convergence and its results has helped to fill the 

knowledge vacuum on this engineering quest. 

The work on ONTQC provides a number of novel ideas. These include: 

• The simple algorithm known as Fission of the Rightmost Block First (FRBF) 

that was used to decompose the root queues to its component queue classes 

based on priority of the queue components (see Section 5.3.5). The algorithm 

can be implemented either manually or automatically. It will find useful 

application in a situation where a job is required to be broken down to its 

component parts and attention given to the component parts in a sequential 

manner that reflect priority attached to the component parts. 

• The meta·heuristic analysis method used to predict simulation outcome. The 

operation involved the introduction of new techniques to analyse queue contents 

and queue operations in packet switched network (see Section 5.4.1). 

218 



Conclusion and Discussion on Future Work 

• The use of matrices and vectors to analyse work wasted in a non-work 

conserving queue (see Section 7.2.1 to Section 7.2.7). 

It has been generally assumed that fine granular resource allocation increases as the 

number of traffic queuing classes increases, and that, the finer the granularity of 

resource allocation, the better the QoS performances of the applications concerned. 

This is based on the intuitive consideration that the more you break a broad class of 

applications down to their individual classes in terms of a mono queuing system to a 

multiple queuing system, the more you provide for individual application class 

segregation which will allow individual application class QoS requirements to be 

met. 

Contrary to the general assumption as mentioned above, the results of the ONTQC 

simulation provide a better insight to the operation of queue disciplines in packet 

switched networks. It is now clear that, as the number-of-queues in a mUltiple queue 

system exceeds a certain threshold, the multiple queue system becomes less efficient. 

This is due to the fact that the multiple queue system is a non-work conserving 

system. Work is wasted by the server making transitions from one queue to another. 

Summary of the results 

As we increase from a one-queue simulation implementation to an eight-queue 

simulation implementation the results are summarised in Table 10.1 

Table 10.1 

Traffic Class Performance Metrics Queue Systems for 
Best Performance 

Class-1 Traffic End-to-end Delay Four-queue & Five-queue 

Throughput Four-queue & Five-queue 

Class-2 Traffic End-to-end Delay Three-queue 

Throughput Three-queue 

Class-3 Traffic End-to-end Delay Three-queue 

Throughput Three-queue 

Class-4 Traffic End-to-end Delay Five-queue 

Throughput Three-queue 

219 



Conclusion and Discussion on Future Work 

Table 10.1 continues 

Traffic Class Perfonnance Metrics Queue Systems for 
Best Performance 

Class-S Traffic End-to-end Delay Six-queue 

Throughput Six-queue 

Class-6 Traffic End-to-end Delay Seven-queue & Eight-queue 

Throughput Seven-queue & Eight-queue 

Class-7 Traffic End-to-end Delay Two-queue 

Throughput Two-queue 

Class-8 Traffic End-to-end Delay Two-queue 

Throughput Two-queue 

The combined overall global results revealed that a three-queue simulation 

implementation gives the best overall performance for both end-to-end delay and 

throughput. Thus three-queue system is the best candidate for ONTQC to support 

integrated services. For the global overall performance, the results showed that a 

two-queue implementation takes the second position as the second best overall 

performances in both end-to-end delay and throughput. 

The results as shown above reveal that, contrary to general assumptions, the QoS 

metrics performance of applications do not improve linearly as the number of 

multiple queue increases. The results will be useful to the Internet engineering 

community and will serve as a reference point for would be implementers of 

multiple queue system in packet switching networks. 

In view of the interesting results obtained, the work on ONTQC presented in this 

thesis has proffered very good answer to the research question posed on ONTQC 

to support IP convergence. 

10.3 Summary and Conclusion on the Work ofPDERRM 

The Predeterministic Distributed Event Response Resource Management (PDERRM) 

QoS architecture has interesting features, which could support and enhance wide 

220 



Cone/usion and Discussion on Future Work 

spread. deployment of QoS in the Internet. It is a QoS architecture designed with 

simplicity, elegance and robustness in mind. 

The development of PDERRM followed three main work phases-- problem 

formulation phase, experimental design phase and performance evaluation phase. 

We will now briefly summarise each of these phases and then make our conclusion. 

10.3.1 Problem Formulation 

The problem formulation phase concerns the motivation and drive for the 

PDERRM work. Despite many years of research work by IETF that resulted in the 

development of two standard IP QoS architectures-- IntServ and DiffServ, and the 

contribution of many IP QoS mechanisms made by others in the research 

community, end-to-end deployment of IP QoS still remains elusive in the Internet. 

The problems are multifarious. One aspect of the problem may not be unconnected 

with the need for simplicity in IP QoS architectures since the Internet's 

phenomenal success has its root in its simple network concept, which has scaled 

very well. By simple network we mean the Internet technological framework in 

which complexities lies at the end nodes while the network nodes are relatively 

simple. A simple IP QoS architecture that has built-in simple and flexible 

deployment processes will enhance wide spread deployment of QoS in the Internet. 

Thus the problem formulation that resulted in the empirical work on PDERRM 

revolved round the notion of simplicity, elegance, flexibility and robustness in the 

IP QoS architecture. 

10.3.2 Brief Overview ofPDERRM Design 

PDERRM was designed such that its process models are simple and elegant for its 

purpose. In view of the diversities in processing capacities of various nodes and the 

variance in bandwidth that exists in the Internet- a conglomeration of networks, 

PDERRM has been designed with the notion of flexibility and robustness, seen as 

of prime concern in its design objective. The simple and flexible QoS architecture 

could enhance wide spread deployment ofQoS in the Internet. 

Basically the PDERRM architecture consist of the following: 

1. A process model that determined the magnitude of network resources capacity 

of a node. Another process model that shares the network resources in a node 

221 



Conclusion and Discussion on Future Work 

among different traffic classes contending for network resources according to 

their QoS need. Initially the values of resource quota for each traffic class are 

determined on static basis. The static quota values can be shifted based on 

dynamic traffic loading in the node and the permissible ranges of values 

allowed. 

2. The process models that ensure each traffic class complies with its resource 

quota in the resource utilisation in the node. 

3. The process models that queue traffic-flows according to their classes and 

schedule the flows in accordance with the resource quota allocated to each 

traffic class. 

4. The QoS Manager in the node that co-ordinate the activities of the basic 

processes highlighted above. 

The abstracted block diagram of the architecture ofPDERRM is shown in 

Figure 10.1 

Resource Capacity Indication & 
Resource Quota Sharing Process 

~ (RCIRQSP) 

-- ... 
QoS 

Traffic Admission Process .. Manager 
(TAP) -

/ Resource Allocation 
Process (RAP)-- (the Queuing and 
Scheduling Process) 

Figure 10.1 Abstracted Key Action Block Diagram ofPDERRM 

As illustrated in the figure, simply the QoS manager gets information on values of 

node resource capacity and sharing of resource from the RCIRQSP and uses the 

values to parameterise and control the functionality of the TAP and RAP. The TAP 

ensure that traffic-flows loading in the node do not exceed the node capacity, and 

222 



Conclusion and Discussion on Future Work 

RAP- i.e. the queuing and scheduling discipline ensure that each traffic class 

receive its resource quota allocation. 

PDERRM has very interesting features, which include the following: 

• Simplicity- the basic processes are simple and elegant for their purpose. 

• Hybrid functionality- it is possible to operate on the basis of aggregate 

flow resource allocation as found in the DiffServ architecture or on per-flow 

resource allocation as found in IntServ architecture. 

• Mutational functionality- ability to adapt its process model to processing 

capability of a node. 

• Flexibility in functionality- contains stand-alone options depending on 

QoS operation desirable in a node. 

The architecture operates fully as a distributed protocol, which enhance scalability. 

10.3.3 Brief Overview of PDERRM Performance Evaluation 

The results of simulation on performance evaluation of PDERRM are very 

impressive. Five main simulation experiments were carried out to test the 

performance of its basic features. All the results showed that PDERRM is a very 

good QoS architecture. The results are summarily rehearsed as follows: 

• Simulation Scheme-A, (Chapter 9, Section 9.2) that compared PDERRM 

basic functionality with best-effort service model has the results shown in 

the Delay Vector A. 

• Simulation Scheme-B, (Chapter 9, Section 9.3) that compared the PDERRM 

source control with best -effort service model has the results shown in the 

Delay Vector B. 

• Simulation Scheme-C, (Chapter 9, Section 9.4) that compared PDERRM 

edge control with best-effort service model has the results shown in the Delay 

VectorC. 

• Simulation Scheme-D, (Chapter 9, Section 9.5) that compared PDERRM 

basic functionality with IntServ-RSVP service model has the results shown 

in the Delay Vector D. 

• Simulation Scheme-E, (Chapter 9, Section 9.6) that tested PDERRM for 

scalability has the results shown in the Delay Vector E. 

223 



Conclusion and Discussion on Future Work 

Delay Vector A: 

Flow-class 1 Flow-class 2 
(mean delay) (mean delay) 

Best-effort [ 0.922 

PDERRM [ 0.375 

Delay Vector B: 

Flow-class 1 
(mean delay) 

Best-effort [13.131 

PDERRM [ 0.295 

Delay Vector C: 

Best-effort 
(mean delay) 

Global 

Delay Vector D: 

Mean Delay 

Delay Vector E: 

[ 1.886 

RSVP 

[ 0.415 

1.262 

0.444 

Flow-class 2 
(mean delay) 

13.289 

0.420 

PDERRM-basic 
(mean delay) 

0.437 

PDERRM 

0.023 ] 

Flow-class 3 Global 
(mean delay) (mean delay) 

1.980 1.291] 

0.717 0.489] 

Flow-class 3 Global 
(mean delay) (mean delay) 

13.441 13.235 ] 

1.085 0.502 ] 

PDERRM-edge-control 
(mean delay) 

0.413 ] 

Best-effort 

Global mean delay [ 1.886 

PDERRM 

0.413 ] 

As shown above the results are very impressive. It is particularly interesting to note 

that PDERRM gave superior performance compared with the standard IntServ

RSVP paradigm. The performance metric indicators have shown that PDERRM is 

an improved IP QoS architecture compared with the standard architecture. 

Thus the work on PDEJlRjf presented in this thesis has successively proposed 

effective solutions to the research problems posed concerning designing a simple, 

elegant and robust JP QoS architecture. 

224 



Conclusion and Discussion on Future Work 

10.4 Future Research Work on ONTQC 

Further to the work presented in this thesis on ONTQC, the consideration of the 

Virtual Queuing System (VQS) and Optimum Queuing Discipline (OQD) for IP 

convergence require attention. 

Theoretically and intuitively, VQS provides a flexible way to implement multiple 

queuing system. Since its soft state makes it possible to install and remove at will 

any multiple queuing structure that has been implemented for multi service in 

network nodes. Under this consideration for future study and research, we will look 

at the reason why VQS needs to be considered. 

There have been a plethora of publications that accepted that Class Based Queuing 

(CBQ) and Weighted Fair Queuing (WFQ) together with their variants are the most 

suitable queuing and scheduling discipline for multiservice in packet switched 

networks. P CaIIinan et al concluded in their simulation experiment that CBQ might 

be more advantageous to continuous media (audio & video) than WFQ, although 

WFQ might be suitable for data traffic [Cal et aI.OO], and Fayaz A. Shaikh et al 

indicated in their experiment that a hybrid of CBQ and WFQ gave better 

performance than others [Sha et aI.02]. Judging from the text of the literature 

review, there has not been assertive statement on Optimum Queuing Discipline 

(OQD) for IP convergence. Thus we will discuss briefly on the OQD and VQS under 

this umbrella of Future Research Work on ONTQC. 

10.4.1 Virtual Queuing System (VQS) 

The OPNET software simulation package contains process models for 

implementation of all standard protocols and algorithms used in packet switched 

networks. These include process models for implementation of all standard IP QoS 

mechanisms. OPNET implements the process models of the standard IP QoS 

queuing disciplines as global functions, which any node in the network being 

simulated could call at will. In effect the nodes would make use of the IP QoS 

queuing disciplines as Virtual Queues. In the course of the experiment on ONTQC, 

OPNET standard models for CBQ were sometimes used. In one particular 

experiment, which involved eight simulation scenarios in which the author used 

OPNET standard models, the first scenario was configured such that the 

forwarding nodes made use of the FIFO queuing discipline. The remaining seven 

225 



Conclusion and Discussion on Future Work 

scenarios were configured such that the forwarding nodes made use of multiple 

queuing (CBQ) disciplines. Simulation scenario-2 made use of a two-queue 

system, simulation scenario-3 made use of a three-queue system, etc. The results of 

the experiment showed that application performances were far better in the two

queue multiple queuing system than in the mono-queue system, but the results for 

all the multiple queuing systems (two-queue to eight-queue) were the same, i.e. no 

differences were seen. This was strange, consequently the author designed his own 

CBQ process model, but instead of designing this as a virtual CBQ, it was designed 

for hard state CBQ. The results of simulations carried out with the author's CBQ 

process models were very impressive. Each of the multiple queue results was 

different, unlike the OPNET implementation of CBQ. It was then concluded that, 

either there was a bug in OPNET process models of the CBQ or it was the 

peculiarity of the Virtual Multiple Queue systems. 

In view of the operational problem highlighted above, there is a need to carry out 

future work on the investigation of Virtual Multiple Queues systems in order to 

understand its strengths and weaknesses. It is pertinent to note here that Srisanka 

Kunniyur and R. Srikant [KunSriOl] in their work on VQS did not address the 

issue of performance of virtual queue implementation compared with hard state 

queue implementation. The future studies should look into the comparison 

performance of Virtual Multiple Queues systems with Hard State Multiple Queues 

systems in relation to their suitability for multi service network. 

10.4.2 Optimum Queuing Discipline (OQD) for IP Convergence 

As highlighted at the beginning of this section, the CBQ and WFQ disciplines are 

the most suitable for multi service networks based on consensus from the research 

community. The work of P. Callinan et al [Cal et al.OO] lacks a conclusive 

assertive statement on OQD for JP convergence. Also the work of Fayaz A. Shaikh 

et a1 [Sha et al.02] was not emphatic on the issue. There is a need for further 

investigation to identify between CBQ and WFQ, which would be more suitable 

for multi service network. Both CBQ and WFQ have their pros and cons. A study 

on hybrid of the two queuing disciplines would be a worthwhile venture. The 

future study could include the development of a new queuing discipline that could 

support integrated services. 

226 



Conclusion and Discussion on Future Work 

10.5 Future Work on PDERRM 

Generally for any IP QoS architecture to evolve to full maturity, it would require 

years of collective study and investigation from the research community. The 

developmental processes may require modification and additions to the original 

design. For example the IntServ and DiffServ architectures required the attentions of 

IETF and other researchers in the Internet research community for many years before 

the IP QoS architectures become standards. PDERRM cannot be an exception. 

At the present stage of PDERRM development and conceptual understanding, the 

areas that call for further study and investigation include the following: 

• The best method or procedure to determine resource utilisation for each of the 

traffic classes in order to arrive at the best value for a static resource quota for 

each traffic class. 

• PDERRM feature for per-flow resource allocation and the use of the QoS 

Parameter Database. 

• PDERRM interworking with other standard IP QoS architectures. 

• PDERRM development as an Internet protocol suitable for real life 

implementation and deployment. 

Each of these will now briefly be discussed. 

10.5.1 Best method to determine resource utilisation for each of the 
traffic classes 

As stated in Section 8.3.4.2, there are various methods for measuring traffic 

intensities of each class of flows going through a node. Through measurement, we 

can compute the value of resources consumed by each class of traffic in a 

predefined time interval. It was suggested in the section mentioned above that, the 

number of options available for measuring traffic intensities and resource 

utilisation include: (1) The use of a Traffic Network Analyser which could provide 

values for traffic loading of the node for each class of traffic, at predetermined 

interval oftimes. (2) Adaptation of Loughborough University Network Monitoring 

Systems. (3) The use of a Neural Network Algorithm (NNA) and Fussy Logic 

Management (FLM). (4) Direct Computation, which involves scanning the input to 

the node, and measuring the values of cumulating flows for each class of traffic in 

each window. 

227 



Conclusion and Discussion on Future Work 

There is a need to cany out investigation on each of the options listed above; relate 

one to another and work out a collective comparative performance for the options, 

from which the best suitable option can be deduced for PDERRM operation. 

10.5.2 PDERRM feature for per-flow resource allocation 

PDERRM has a built-in mechanism for per-flow resource allocation. The idea that 

is being exploited here has to do with the DSCP value and establishment of the 

QoS Parameter Database. The DSCP value has a hierarchical value interpretation 

in which a section of its value will represent the class to which the traffic belongs 

and the other section of its value will represent the value that has to be mapped to a 

corresponding value in the QoS Parameter Database. The QoS Parameter Database 

has entries for wide range of resource requirements of traffic flows in the form of 

IntServ Token Bucket Parameters. This per-flow resource allocation feature of 

PDERRM requires further work. It needs to be studied and investigated and if need 

be, refined. 

10.5.3 PDERRM interworking with other standard IP QoS 
architectures 

PDERRM inter-operation with other IP QoS architectures is a necessity, since it 

will need to co-exist in the Internet with other IP QoS architectures. The work will 

include how PDERRM service classes will map into other IP QoS architecture's 

service classes and how PDERRM processes and other IP QoS architecture's 

processes will handle the mappings. Also the work will include PDERRM protocol 

interaction with other IP QoS architectures, especially in the area of interpretation 

of each other's messages. 

10.5.4 PDERRM development to Internet protocol application level 

The development of PDERRM to a level ready for real life implementation and 

deployment will be an attractive work. The work will be attractive in view of the 

impressive results obtained from PDERRM performance evaluation. Consequently, 

it is recommends that further work on PDERRM development as an Internet 

protocol be carried out as soon as possible. 

228 



Conclusion and Discussion on Future Work 

Summary 

The summary and conclusions on the work presented in this thesis are covered in 

this chapter. The Internet technology is flexible and this accounts for its nomination 

for IP convergence. IP QoS architectures help to improve the performances of 

applications placed across the networks. The results of empirical investigation on 

ONTQC to support integrated services showed that three-queue multiple queue 

system gave the best global (over all) performance in both end-to-end delay and 

throughput. The results of performance evaluation of PDERRM QoS architecture 

were impressive. PDERRM outperform RSVP in both end-to-end delay and 

throughput. 

Future work could be considered on Virtual Queue Systems (VQS) and Optimum 

Queue Discipline (OQD) for IP convergence. Also it is recommended that future 

work be carried out on development of PDERRM to full fledge Internet protocol 

suitable for real life deployment. 

229 



References 

References 

The References are divided into three sections: Section I is concerned with Internet 

(JETF) documents, Section 2 contains organisational documents, and Section 3 has 

references in the general format. 

Section 1 

RFCs (Request for Comments) are typically Internet standard documents accepted 

for information purposes on Internet technology. 

Internet Drafts are Internet Engineering Task Force (IETF) documents that are works 

in progress, which are not yet standards. Such documents are periodically updated 

and could become standards. 

[RFC 768J 

[RFC 791J 

[RFC 793J 

[RFC 950J 

[RFC 1122J 

[RFC 1349J 

[RFC 1363J 

[RFC 1633J 

Postel J., User Datagram Protocol, August 1980. 

Internet Protocol, STD 5 (or ISI), September 1981. 

Transmission Control Protocol ISI, September 1981. 

Mogul J. and Poste1 J., Internet Standard Subnetting 

Procedure, August 1985. 

Braden R., Requirements for Internet Hosts-Communication 

Layers. STD 3, RFC 1122. (October 1989). 

A1mquist P., Type of Service in the Internet Protocol Suite, 

July 1992. 

Partridge C., A Proposed Flow Specification, Network 

Working Group, September 1992. 

Braden R., Clark D., Shenker S., Integrated Services in the 

Internet Architecture: an Overview, June 1994. 

230 



[IntServ94] 

[RFC 1889] 

[RFC2205] 

[RFC 2209] 

[RFC 2210] 

[RFC 2211] 

[RFC 2212] 

[RFC2215] 

[PREDV-SRVq 

Reforences 

Integrated Service (IntServ) Charter, 29th IETF Meeting, 

March 1994 in Seattle. 

(http://www.ietf.cnri.reston.va.usiproceedingsi94mar/chartersii 

ntserv-charter.html), March 1994. 

Schulzrinne H. Casner S., Frederick R., Jacobson V., RIP: A 

Transport Protocol for Real-Time Applications, Audio-Video 

Transport Working Group, January 1996. 

Braden R., Zhang L., Berson S., Herzog S., Jamin S. Resource 

reSerVation Protocol (RSVP) Version J Specifications, 

September 1997. 

Braden R., Zhang L., Resource reSerVation Protocol (RSVP) -

Version J Message Processing Rules, September 1997. 

Wronclawski 1., The Use of RSVP with IElF Integrated 

Services September 1997. 

Wroclawski 1., Specification of Controlled Load Network 

Element Service, Internet Draft, draf-ietf-intserv-ctrl-Ioad-svc-

02.txt, June 1996. 

Shenker S, Patridge C., Guerin R., Specification of Guaranteed 

Quality of Service, Internet Draft, draft-ietf-intserv

guaranteed-svc-05.txt, July 1996. 

Shenkers S., Wroclawski 1., General Characterization 

Parameters for Integrated Service Network Elements, 

September 1997. 

Shenker S., Partridge C., Davie B., Breslau L., Specification of 

Predictive Quality of Service, Internet Draft, draft-ietf-intserv

predictive-svc-O 1. txt, 1995. 

231 



[DSFWK] 

[RFC 2474] 

[RCF2475] 

[RFC 2597] 

[RFC 2598] 

[RFC 2814] 

[MPLSfrwk] 

[MPLSarch] 

[COPS] 

[COPS-usage] 

Reftrences 

Bernet Y., Binder J, Blake S, Carlson M., Carpenter E., 

Keshav S., Davies E., Ohlman B., Verma, D. Wang Z, and 

Weiss W., A Framework for Differentiated Services, < draft

ietf-differv-framework-02.txt> February, 1999. 

Nichols K, Blake S., Baker, Black D., Definition of 

Differentiated Services Field (DS Field), December 1998. 

Blake et al., An Architecturefor Differentiated Services, IETF, 

December 1998. 

Heinanen J., Baker F., Weiss W., and Wroc1awski J., Assured 

Forwarding PHB Group, June 1999. 

Jacobson v., Nichols K., and Poduri K., An Expedited 

Forwarding PHB, June 1999. 

Yavatkar R., Hoffman D., Bernet Y., Baker F, Speer M, SBM 

(Subnet Bandwidth Manager): A Protocol for RSVP-based 

Admission Control over IEEE 802-style of LANs, May 2000. 

Callon R., Doolan P., Feldman N., Fredette A., Swallow G., 

Viswanathan A., A Framework for Multi-Protocol Label 

Switching, Internet Draft, draft-iet-mpls-05-.txt, September 

1999. 

Rosen C., Viswanathan A., & Callow R., "Multi-Protocol 

Label Switching Architecture," Internet Draft, draft-ietf-mpls

arch-07.txt, July 2000. 

Boyle 1., Cohen R., Durham D., Herzog S., Rajan R., Sastry 

A., The Common Open Policy Service (COPS) Protocol, 

Internet Draft, draft-ietf-rap-cops-04.txt, December 1998. 

Reichmeyer F. et al., COPS Usage for Policy Provisioning, 

Internet Draft (work in progress) draft-ietf-rap-pr-01.txt 

October 1999. 

232 



[188LL-802] 

[SignalPro] 

[SNMP] 

Section 2 

[3ComPro&8rv] 

[eWeek99] 

Refrrences 

Ghanwani A, Wayne Pace J., Srinivasan V., Smith A, Seaman 

M., A Framework for Providing Integrated Service Over 

Shared and Switched IEEE 802 LAN Technologies, Internet 

draft, draft-ietf-issll-framework-05.txt, May 1998. 

Brunner M. Ed., Requirements for Signalling Protocols, IETF 

draft, work in progress, http://www.ietf.orglinternet

draftsldraft-ietf-nsis-reg-07.txt, March 2003. 

Rose M.T. and McCloghriek., How to Manage Your Network 

Using SNMP (RFCs Il57, 1441 to 1452). Englewood Cliffs, 

NI; Prentice Hall, 1995. 

3 Corn Product & Services, «3 Com. Corporation Unveils 

Next Generation Total Control multiservice Access Platform 

at Supercom 2000." 

http://www.3com.comlsolutionslsvprovider/iptelephony2/ip_ 

press Jeleases.html. 

"Cisco Launches VoicelData Quality of Service Effort" 

(http://www.zdnet.comleweeklstories/generall.html). 

[802.ID&p Yr.93] IEEE 802.ID and p Standards "Information Technology 

Telecommunication and Information Exchange between 

Systems- Local and Metropolitan area Networks- Common 

Specifications-Part 3: Media Access Control (MAC) Bridges: 

P802.lDID 1993. 

[802.1D&pYr.98-0S] IEEE 802.ID and p Standards. "Information Technology 

Telecommunication and Information Exchange between 

Systems- Local and Metropolitan area Networks- Common 

Specifications-Part 3: Media Access Control (MAC) 

233 



INSDocOO] 

INSManOO] 

IOpnetDoc03] 

Section 3 

I Abe et aI.06] 

lAky et aI.03] 

lAnd et aI.OO] 

[ArmOO] 

References 

Bridges: P802.IDID, 1998-2005. 

Kevin Fall and Kannan Varadhan (Editors) NS Notes and 

Documentation, The VINT Project- A Collaboration 

between researchers at VC Berkeley LBL, VSCIISI and 

Xerox PARC February 2000. 

NS-Network Simulator (Version 2) Manual pages 

http://www.isi.edulnsnamlns/ns-man.html. 

OPNET Software Documentation, MIL 3, Inc., 3400, 

International Drive, N.w, Washington D. C. 20008 2003. 

Abendroth, Dirk et al., Solving the trade-off between fairness 

and throughput: Token bucket and leaky bucket-based 

weighted fair queuing schedulers, International Journal of 

Electronics and Communications, v 60, n 5, May 2, 2006, P 

404-407. 

Akyildiz, LF. et aI., A new traffic engineering manager for 

Dif/SerVlMPLS networks: Design and implementation on an IP 

QoS testbed, Computer Communications, v 26, n 4, Mar 1, 

2003, P 388-403. 

Andersen Niels et aI, Applying QoS Control through Integration 

of IP and AIM, IEEE Communications Magazine, July 2000, 

p130-136. 

Armitage Grenville (2000), Quality of Service in IP Networks: 

Foundations for a Multi-Service Internet, Pearson Education 

Publisher 2000. ISBN 1-57870-189-9. 

234 



[ArmOO-art] 

[AutKir02] 

[Bak et a1.03] 

[Bak98] 

[Bay72] 

[BhaCroOO] 

[Bia et a1.02] 

[Bia99) 

[Bos et a1.04] 

References 

Armitage Grenville (2000), MPLS: The Magic Behind the 

Myths, IEEE Communications Magazine, January 2000, p124-

131. 

Autenrieth Achim and Kirstadter Andreas, Engineering End-to

End IP Resilience Using Resilience-Differentiated QoS, IEEE 

Communications Magazine, January 2002, p50-57. 

Bak et al., A framework for providing differentiated QoS 

guarantees in lP-based Networks, Computer Communications 

26 (2003) 327-337. 

Baker Fred, IP QoS. Business Communications Review, March 

1998. Vol. 28, Iss. 3; pg.28, 4pgs. 

Bayes J., A Minimum Variance Sampling Technique for 

Simulation Models, Journal of the Association for Computing 

Machinery, Vol. 19, No. 4, October 1972, pp. 734-741. 

Bhatti, Sa[eem N. and Crowcroft, Jon QoS-sensitive flows: 

issues in IP packet handling, IEEE Internet Computing, v 4, n 

4, Jul 2000, p 48-57. 

Bianchi G. et al., Per-flow QoS support over a stateless 

Differentiated Services IP domain, Computer Networks 40 

(2002) 73-87. 

Biagi Susan, Quest for QoS drives multiple approaches, 

Telephony, Chicago: Jan 18, 1999. Vol. 236, Iss. 3; pg 38, 

Ipgs. 

Bosco et al., An Innovative Solution for Dynamic Bandwidth 

Engineering in IPIMPLS Networks with QoS Support, Photonic 

Network Communications, 7:1, 37--2,2004. 

235 



[Bou et a1.03] 

References 

Boutaba, Raouf et al., A Multi-Agent Architecture for QoS 

Management in Multimedia Networks, Journal of Network and 

Systems Management, v 11, n I, March, 2003, 

E-Business Management, p 83-107. 

[Bouras et a1.03] Bouras, Christos et al., QoS and SLA aspects across multiple 

management domains: The SEQUIN approach Future 

Generation Computer Systems, v 19, n 2, February, 2003, 

[Cal et al.OO] 

[Car et al.02] 

[CarS6] 

[Cha et al.OO] 

[Che et al.05] 

[Chen et a1.03] 

p 313-326. 

CaIIinan PhyIIis, Witwit Mehdi and Ball Frank, A Comparative 

Evaluation of Sorted Priority Algorithms and Class Based 

Queueing Using Simulation. The Management of Multi-service 

Networks seminar Kausnor UK July 2000, 8pp. 

Carter S F et al., Techniques for the study of QoS in IP 

networks, BT Technology Journal, Vol. 20 No 3 July 2002, 

pI00-lI5. 

Carlson A. Bruce, Communication Systems: An Introduction to 

Signals and Noise in Electrical Communication 3rd
• ed, 

McGraw-HiIl Book Company 1986. ISBN 0-07-100560-9. 

Chang, Ruay-Shiung et aI., Design of a multiple leaky buckets 

shaper, Computer Communications, v 23, n 13, Jul, 2000, 

p 1307-1318. 

Cheng Yu et al., EffiCient Resource Allocation for China's 

3G/4G Wireless Networks, IEEE Communication Magazine, 

January 2005, p76-82. 

Chen Yang, Qiao Chunming, Hamdi Mounir and Tsang Danny 

H. K., Proportional Differentiation: A Scalable QoS Approach, 

IEEE Communications Magazine, June 2003, p52-58. 

236 



[Cho et a1.05] 

[ChrLie03] 

[Cisco02] 

[Coh et a1.82] 

[ComOl] 

[Cor et al.03] 

[DeM et al.OO] 

[Dem et al.89] 

[Dim et a1.03] 

References 

Choi Y ong-Hoon et aI., A Framework for Elastic QoS 

Provisioning in the cdma200 IxEV-DV Packet Core Network, 

IEEE Communication Magazine, April 2005, p82-88. 

Christin Nicolas and Liebeherr Jorg, A QoS Architecture for 

Quantitative Service Differentiation, IEEE Communications 

Magazine, June 2003, p38-45. 

Cisco Systems, Inc. White Paper: MPLS and IP Quality of 

Service In Service Provider AIM Networks, Posted: Thu. Nov 

710:56:38 PST 2002. 

Cohen lW. et al., STRUCTURED MODELlNG, Proceedings 

of the 1982 Winter Simulation Conference, p253-258. 

Corner, D.E ed. (2001) Computer Networks and Internets: With 

Internet Applications. Prentice Hall, Upper Saddle River, N.l 

London. 

Cortese Giovanni et al., CADENUS: Creation and deployment 

of end-user services in premium IP networks, IEEE 

Communications Magazine, v41, n 1, January, 2003, p 54·60. 

Hermann De Meer et aI., Programmable Agents for Flexible 

QoS Management in IP Networks, IEEE Journal on Selected 

Areas in Communication, Vol. 18, No. 2, February 2000, p256-

267. 

Demers Alan, Keshav Srinivasan and Shenker Scott, (1989) 

Analysis and Simulation of a Fair Queueing Algorithm, Proc. 

ACM SIGCOMM", Page 3-12; 1989. 

Dimopoulou Lila et al., QM Tool: An XM/-Based Management 

Platform for QoS-Aware IP Networks, IEEE Networks, 

May/June 2003, p8-14. 

237 



[DouSin99] 

[DurYav99] 

[Eng et aI.03] 

[Fin02] 

[F1oJac95] 

[Fod et aI.03] 

[GanMcK99] 

[Gio et al.03] 

References 

Douligeris Christos and Singh Kumar Brajesh, Analysis of 

neural-network-based congestion control algorithms for AIM 

networks, Engineering Applications of Artificial Intelligence, v 

12, n 4, Aug, 1999, P 453. 

Durham David and Yavatkar Raj, Inside the Internet's 

Resource reSerVation Protocol: Foundations for Quality of 

Service, John WiIey & Sons, Inc. 1999. ISBN 0-471-32214-8. 

Engel Thomas et aI., AQUILA: Adaptive Resource Control for 

QoS Using an lP-Based Layered Architecture, IEEE 

Communications Magazine, January 2003, p46-53. 

Fineberg Victoria, A Practical Architecture for Implementing 

End-to-End QoS in an IP Networks, IEEE Communications 

Magazine, January 2002, pI22-130. 

Floyd S. and Jacobson V., Link-Sharing and Resource 

Management Models for Packet Networks, IEEE ACM 

Transactions on Networking, VoL 3, No. 4, August 1995, 

p365-386. 

Fodor Gabor et al., Providing Quality of Service in Always Best 

Connected Networks, IEEE Communication Magazine, July 

2003, pI54-163. 

Gan, D. and McKenzie S., Traffic policing in AIM networks 

with multimedia traffic: The super leaky bucket, Computer 

Communications, v 22, n 5, Apr, 1999, p 439-450. 

Giordano Silvia et al., Advanced QoS Provisioning in IP 

Networks: The European Premium IP Projects, IEEE 

Communications Magazine, January 2003, p30-36. 

238 



[Goz et al.03] 

[GuiDup02] 

[GunRua99] 

[Ha198] 

[Hei97] 

[Hov et al.05] 

[HsiSiv05] 

[HuiJgo03] 

Reforences 

Gozdecki 1. et al., Quality of Service Terminology in IP 

Networks, IEEE Communications Magazine, March 2003, 

plS3-1S9. 

Guillemin Fabrice and Dupuis Alain, Basic requirement for the 

policing functions in AIM networks, Computer Networks and 

ISDN Systems, v 24, n 4, May 15,1992, P 311-320. 

Gung-Chou Lai and Ruay-Shiung Chang, Support QoS in IP 

over AIM, Computer Communications 22 (1999) 411-418. 

Hall Eric, Implementing prioritization on IP networks, Network 

Computing. Manhasset: August 15, 1998. Vo!. 9, Iss. 15; pg. 

76,3pgs. 

Heidelberg, 18 March 1997, EURESCOMP60S - JUPITER 

Public Seminars on Joint Usability, Performance and 

Interoperability Trials in Europe. 

http://www.eurescom.de/-puplic-

seminars/l0071 ATMlp60S/tsldOl1.htm. 

Hovell Peter, Briscoe, Bob & Corliano Gabriele, Guaranteed 

QoS synthesis - An example of a scalable core IP quality of 

service solution, BT Technology Journal, v 23, n 2, April, 

2005, p 160-170. 

Hsieh Hung-Yun and Sivakumar Raghupathy, Parallel 

Transport: A New Transport Layer Paradigm for Enabling 

Internet Quality of Service, IEEE Communication Magazine, 

April 2005, p114-121. 

Hui-Lan Lu and Igor Faynberg, An Architectural Framework 

for Support of Quality of Service in Packet Networks, IEEE 

Communications Magazine, June 2003, p98-lOS. 

239 



[HusOO] 

[Klel,76] 

[Klell,76] 

[Kli et al.02] 

[KrapOO] 

[Kre93] 

[Kri04] 

[KunSriOl] 

[LeoMas03] 

Reforences 

Huston Goeff, Internet Peiformance Survival Guide: QoS 

Strategies for Multiservice Networks, New York, Chichester: 

Wiley 2000. ISBN 0471378089. 

Kleinrock Leonard, Queueing Systems Volume 1: Theory, John 

Wiley & Sons, Inc. 1976, ISBN 0-471-49110-1. 

Kleinrock Leonard, Queueing Systems Volume 11: Computer 

Applications, John Wiley & Sons, Inc. 1976, ISBN 0-471-

49111-X. 

Klincewicz John G., Schmitt James A. and Wong Richard T., 

Incorporating QoS into IP Enterprise Network Design, 

Telecommunication Systems 20:1,2, 81-106, 2002. Kluwer 

Academic Publishers. 

Krapf Eric, IP QOS vs. AIM integrated access, Business 

Communication Review. Hinsdale: Apr 2000. Vol. 30, Iss. 4, 

pg. 6, Ipgs. 

Kreyszig Erwin, t h Ed Advanced Engineering Mathematics, 

John Wiley & Sons, Inc. 1993. 

Krief Francine, Self-aware management of IP networks with 

QoS guarantees, International Journal of Network 

Management; Int. J. Network Mgmt 2004; 14: 351-364 (DOl: 

10.1 002/nem.532). 

Kunniyur S and Srikant R, Analysis and Design of an Adaptive 

Virtual Queue (AVQ) Algorithm for Active Queue 

Management, ACM SIGCOMM'OI, August 27-31,2001, San 

Diego, California, USA, pI23-134. 

Leon-Garcia Alberto and Mason Lorne G. Virtual Network 

Resource Management for Next-Generation Networks, IEEE 

Communication Magazine, July 2003, pl02-109. 

240 



[LinDeV99] 

[Mae03] 

[Mai et al.03] 

[MaIRog] 

[Man et aI.04] 

[Mer et al.91] 

[Mol et aI.05] 

[MoI89] 

References 

Lindstrom Annie and DeVeaux Paul, Follow the QoS road, 

America's Network Duluth: Jun I, 1999. Vol. 103, Iss. 9; pg. 

53,5pgs. 

Maeda Yoichi, QoS Standards for lP-Based Networks, IEEE 

Communication Magazine, June 2003, pg80, I pg. 

Mai Thi et al., COPS-SLS Usage for Dynamic Policy-Based 

QoS Management over Heterogeneous IP Networks, IEEE 

Network May/June 2003, p44-50. 

Malaney Robert & Rogers Glynn Tutorial, Network Elements 

that Determine QoS Parameters, CSIRO Telecommunications 

& Industrial Physics. 

http://www.atnfcsiro.aul-rmalaney/tutslidesltutorial . 

Maniatis Sotiris I., Nikolouzou Eugenia G., Venieris, Iakovos 

S., End-ta-end QoS specification issues in the converged al/-IP 

wired and wireless environment, IEEE Communications 

Magazine, v 42, n 6, June, 2004, p 80-86. 

Merayo Luis A. et al., A Microprogram-based hardware 

implementation of the Leaky Bucket algorithm, 

Microprocessing and Microprogramming, v 33, n 2, Nov, 

1991, P 91-99. 

Molinaro AntoneIIa et al., A Scalable Framework for End-ta

End QoS Assurance in lP-Oriented Terrestrial-GEO Satellite 

Networks, IEEE Communication Magazine, April 2005, 

p130-137. 

Mole R.H., BASIC graph and network algorithms, Butterworth 

& Co. Limited, 1989. ISBN 0-408-01262-5. 

241 



[MooSil03] 

[Myk et al.03] 

[Pao04] 

[Par92] 

[ParGal94] 

[Peu99] 

[Rod et al.03] 

References 

Moore, Sean S.B and Siller Curtis A., Packet sequencing: A 

deterministic protocol for QoS in IP networks IEEE 

Communications Magazine, v 41, n 10, October, 2003, 

p 98-107. 

Mykoniati Eleni et al., Admission Controlfor Providing QoS in 

DiffServ IP Networks: The TEQUILA Approach, IEEE 

Communications Magazine, January 2003, p38-44. 

Paolo Valente, Exact GPS Simulation with Logarithmic 

Complexity, and its Application to an Optimally Fair 

Scheduler, ACM SIGCOMM'04, Aug. 30fiSept. 3, 2004, 

Portland, Oregon, USA, p269-280. 

Parekh A., A Generalized Processor Sharing Approach to Flow 

Control in Integrated Services Networks, PhD. Dissertation, 

Massachusetts Institute of Technology, (MIT Laboratory for 

Information and decision systems, Report LIDS-TH-2089), 

February 1992. 

Parekh A. K.. and Gallager R.G., A Generalized Processor 

Sharing Approach to Flow Control in Integrated Services 

Networks-The Multiple Node Case. IEEE/ACM Transactions 

on Networking, Vo!. 2, No.2, p137-1S0, April 1994. 

Peuhkuri Markus, IP Quality of Service, Helsinki University of 

Technology, Laboratory of Telecommunications Technology, 

May 1999. 

Rudolf Roth et al., IP QoS Across Multiple Management 

Domains: Practical Experiences from Pan-European 

Experiments, IEEE Communications Magazine, Jan. 2003, 

p62-69. 

242 



(SchWin04] 

(Sei03] 

(Sha et a1.02] 

(ShrVar95] 

(SikTei] 

(Sol et a1.04] 

(SteOO] 

(Ste98] 

(StoiOO] 

(Tak et a1.04] 

References 

Schollmeier Gero and Winkler Christian, Providing 

Sustainable QoS in Next-Generation Networks, IEEE 

Communications Magazine, June 2004, pI02-107. 

Seitz NeaL lTU-TQoS Standardsfor lP-Based Networks, IEEE 

Communications Magazine, June 2003, pS2-S9. 

Shaikh Fayaz A. et al., End-ta-End Testing of IP QoS 

Mechanisms, IEEE Computers May 2002, pSO-S7. 

Shreedhar M. and Varghese G., Efficient Fair Queuing Using 

Deficit Round Robin. Computer Communication Review Vol. 

25, No. 4, October 1995, p 231. 

Sikora J. and Teitelbaum B., Differentiated Services for 

Internet, Internet Draft, Internet2 QoS working group. 

Soldatos John et al., EnforCing Effective Ratesfor Packet-Level 

QoS Control in IP Networks: Theory and Validation Based on 

Real Trqffic Data, Kluwer Academic Publishers, 

Telecommunication Systems 27: 1,9-31,2004. 

Stevens W. Richard, TCP/lP Illustrated Volume I: The 

Protocols, Addison Wesley Longman, Inc. April 2000. 

Stephenson Ashley, Diffserv and MPLS: A quality choice, 

Data Communications. New York: Nov 21, 1998. Vol. 27, Iss. 

17; pg.73, 5pgs. 

Stoica I., Stateless Core: A Scalable Approach for Quality of 

Service in the Internet, PhD thesis Carnegie Melton Univ. 

Pittsburgh PA Dec. 2000. 

Takahashi Akira, Yoshino Hideaki and Kitawaki Nobuhiko, 

Perceptual QoS Assessment Technologies for VoIP, IEEE 

Communications Magazine, July 2004, p2S-34. 

243 



[Tan96) 

[Tur86) 

[Veg03) 

[VeiOO) 

[WanOI) 

[Wet et aI.03) 

[Woo93) 

[Woo96) 

[Yan et aI.04) 

References 

Tanenbaum A S., Computer Networks, Prentice Hall, Upper 

Saddle River, NJ. London, 1996. 

Turner J., New Directions in Communications (or Which Wtry 

to the Information Age?), Proc. Zurich seminar on Digital 

Communication, March 1986, pp. 25-32. 

Vegesna Srinivas, IP Quality of Service: The complete 

resource for understanding and deploying IP quality of service 

for Cisco networks, Cisco Press, December 2003. ISBN 1-

57870-116-3. 

Veil Mark, The solution for IP service quality, Telephony, 

Chicago: Jan 24,2000. Vol. 238, Iss. 4; pg. 54, 4pgs. 

Wang Zheng, Internet QoS: Architectures and Mechanisms for 

Quality of Service, Morgan Kaufmann Publishers 2001. ISBN 

1-55860-608-4. 

Welzl Michael, Franzens Leopold and Miihlhauser Max, 

Sealability and Quality of Service: A Trade-off? IEEE 

Communications Magazine, June 2003, p32-36. 

Woodward Michael E., Communication and Computer 

Networks: Modelling with discrete-time queues, Pentech Press 

Limited, London 1993. ISBN 0-7273-0410-0. 

Woodward M. E Lecture Notes on Communication Networks: 

Policing Mechanisms. Digital Communication Systems, Dept. 

of Electronic & Electrical Engineering, Loughborough 

University, December 1996. 

Yang Xu, Westhead Martin, Baker Fred, An IlTVestigation of 

Multilevel Service Provision for Voice over IP Under 

Catastrophic Congestion, IEEE Communications Magazine, 

244 



[Yen et al.OI] 

[Zha et a1.03] 

References 

June 2004, p94-100. 

Yener Bulent, Su Gong and Gabber Eran, Smart box 

Architecture: a hybrid solution jor IP QoS provisioning, 

Computer Networks 36 (2001) 357-357; Elservier Science. 

Zhang, Jin-Yu et al., Quantitative QoS management implement 

mechanism in IP-DiffServ, Journal of Computer Science and 

Technology, v 20, n 6, November, 2005, p831- 835 

245 



Bibliography 

Bibliography 

Ammeraal L. (2000), c++ For Programmers. John Wiley Chichester. 

Araniti Giuseppe, Iera Antonio and Modafferi Antonio, QoS guarantees in 

heterogeneous systems consisting of IP core networks with satellite access Mobile 

Networks and Applications, v 9, n 3, June, 2004, p 175-184. 

Armitage, Grenville J. (2003), Revisiting IP QoS: Why do we care, what have we 

learned? ACM SIGCOMM 2003 RIPQOS workshop report, Computer Communication 

Review, v 33, n 5, October, 2003, p 81-88. 

Azar Y ossi, and Richter Yossi, Management of multi-queue switches in QoS networks 

Algorithmica (New York), v 43, n 1-2, July, 2005, P 81-96. 

Basturk E., Birman A., Delp G., Guerin R., Haas R., Kamat S., Kandlur D., Pan P., 

Pendarakis D., Peris v., Rajan R., Saha D., Williams D., Design and implementation of 

a QoS capable switch-router Computer Networks, v 31, n 1-2, 14 Jan, 1998, P 19-32. 

Berg H. van den et al. QoS-aware bandwidth provisioning for IP network links. 

Computer Networks 50 (2006) 631-647. 

Bernet Y., The Complementary Roles of RSVP and Differentiated Services in the Full

Service QoS Network, IEEE Communication Magazine, February 2000. 

Bernet Y., Yavatkar R., Ford P., Baker F., Zhang L., Nichols K., Speers M., A 

Framework for Use of RSVP with DiffServ Network, Internet Draft, draft-ietf-diffserv

rsvp-01.txt, November 1998. 

246 



Bibliography 

Bianchi G., Borgonovo F., Capone A., Fratta L., Petrioli C., Endpoint Admission 

Control with delay variation measurements for QoS in IP networks Computer 

Communication Review, v 32, n 2, April, 2002, P 61-69. 

Biakey K., Gregson S., Mulvey M., Unified IP networks BT Technology Journal, v 18, 

n 2, Apr, 2000, p 44-56. 

Braden R., and Hoffman D., An RSVP Application Programming Interface, Internet 

Draft, draft-ietf-rsvp-rapi-01.ps, Februaryl998. 

Briscoe, Bob; Rudkin, Steve Commercial models for IP quality of service interconnect 

BT Technology Journal, v 23, n 2, April, 2005, P 171-195. 

Burgstahler L., Dolzer K., Hauser C., Jahnert 1., Junghans S., Macian C., Payer, W. S, 

Beyond Technology: The Missing Pieces for QoS Success Proceedings of the ACM 

SIGCOMM Workshops, Proceedings of the ACM SIGCOMM Workshops, 2003, p 

121-130. 

Clark D. and Wroc1awski J., An Approach to Service Allocation in the Internet, <draft

clark-diff-svc-alloc-OO.txt>, August, 1997. 

Cook Nigel P., Introductory Digital Electronics, Prentice-Hall Inc., New Jersey 1998. 

Dowdy Shirley and Wearden Stanley Statistics, Statistics for Research, John Wiley & 

Sons Inc., New York 1991. 

Everitt B. S., Introduction to Optimization Methods and their Application in Statistics, 

Chapman and Hall, London, New York, 1987. 

247 



Bibliography 

Gamage Manodha, Hayasaka Mitsuo and Miki Tetsuya, A connection-oriented network 

architecture with guaranteed QoS for future real-time applications over the Internet 

Computer Networks, v 50, n 8 SPEC. ISS., Jun 6, 2006, P 1130-1144. 

Hanly 1. R. and Koffman E. B. (1999) Problem Solving and Program Design in c., 
Addison-Wesley Longman Inc., USA, 1999. 

Hanly, Jeri R. (1997) Essential C++ For Engineers and Scientists, Addison Wesley 

Pub. Co., Harlow. 

Harrison M. and Michael M (1998) Effective TcllTk Programming: Writing Better 

Programs with Tcl and Tk, Addison-Wesley Harlow. 

Herzog S., Preemption Priority Policy Element, Internet Draft, draft-ietf-rap signaled

priority-OO.txt, November 1998. 

Hunt G and Arden P, QoS requirements for a voice-over-IP PSIN. BT Technology 

Journal Vol. 23 No. 2 April 2005. 

IEEE Standards for Local and Metropolitan Area Networks: For Virtual Bridged Local 

Area Networks, (IEEE 802. IQ), IEEE Draft Standard P802.1QIDII, July 1998. 

Johnson Darren M., QoS control versus generous dimensioning, BT Technology 

Journal, v 23, n 2, April, 2005, p 81-96. 

Lee S. S., Das S., Yu H., Yamada K., Pau G., Gerla M, Practical QoS network system 

with fault tolerance Computer Communications, v 26, n 15, Sep 22, 2003, P 1764-

1774. 

248 



Bibliography 

Maniatis Sotiris I., Nikolouzou Eugenia G., Venieris Iakovos S., End-ta-end QoS 

specification issues in the converged all-IP wired and wireless environment IEEE 

Communications Magazine, v 42, n 6, June, 2004, p 80-86. 

Margaliot Michael and Langholz Gideon (2000) New Approaches to Fuzzy Modeling 

and Control: Design and Analysis. World Scientific Publisher, Singapore, 2000. 

Michael C. Fu, A Tutorial Review of Techniques for Simulation Optimisation. 

Proceedings of the 1994 Winter Simulation Conference. 

Moore Sean S. B., Siller Jr., Curtis A, Availability of end-to-end ideal QoS in IP 

packet networks Computer Communications, v 28, n 18, Nov 1,2005, Current Areas 

ofInterest in End-to-End QoS, p 2047-2057. 

Nyhoff Larry R., C++ An Introduction to Data Structures, Prentice-Hall Inc. New 

Jersey 1999. 

Oualline, S. (1995) Practical C++ Programming. O'Reilly & Associates Inc., USA, 

1995. 

Ousterhout, J.K. (1994) Tcl and the Tk Toolkit, Addison-Wesley Wokingham. 

RFC 1812. Baker F., Requirementsfor IP version 4 Routers, June 1995. 

RFC 2460. Deering S. and Hinden R., Internet Protocol, version 6 (IPv6) Specification, 

December 1998. 

Robert Mandeville, David Newman, Traffic tuners: Striking the right note? Data 
Communications. New York: Nov 21, 1998. Vol. 27, Iss. 17; pg. 51, Ipgs 

Saaty Thomas L., Element of Queueing Theory with Applications, McGraw-HiIl Book 

Company Inc. New York 1961. 

249 



Bibliography 

Sven Ubik et aI., Law-Cost Precise QoS Measurement Tool. CESNET technical report 

number 7/2001. 

Tanenbaum A. S. (2001), Modem Operating Systems. Upper Saddle River, N.J: 

Prentice Hall. 

Tassiulas Leandros, Chung Hung Yao, and. Panwar Shivendra S., Optimal Buffer 

Control During Congestion in an AIM Network Node, IEEE/ACM Transactions on 

Networking, Vol. 2, No. 4, August 1994. 

Trecordi Vittorio, Verticale Giacomo, QoS support for per-jlaw services: POS vs. IP

over-A IM lEEE Internet Computing, v 4, n 4, Jul, 2000, p 58-64. 

Tsern-Huei Lee and Kuen-Chu Lai, Characterization of Delay-Sensitive Trqffic, 

IEEE/ACM Transactions on Networking, Vol. 6, No. 4, August 1998 p499. 

Vince Vittore, IP encryption, QoS provide difference among carriers. Telephony 

Chicago: Oct 12, 1998. Vol. 235, Iss. 15; pg. 62 Ipgs. 

Walrand Jean, Introduction to Queueing Networks, Prentice-Hall International, Inc. 

1988. 

Wille E.C.G. et al., Algorithms for IP network design with end-to-end QoS constraints. 

Computer Networks 50 (2006) 1086-1103. 

William C. Thompson, The Application of Simulation in Computer System Design and 

Optimisation, W.C. Thompson--{he Vice President, Software Products Corporation, 

Falls Church, Virginia. 

250 



Bibliography 

Woodward, Michael E et al. ed. (1994) Computer and Telecommunication Systems 

Petformance Engineering: 9th UK Performance Engineering Workshop for Computer 

and Telecommunication Systems held at Loughborough University of Technology July 

1993. London: Pentech 

Yavatkar R., Pendarakis D., Guerin R., A Framework for Policy-based Admission 

Control, Internet Draft, draft-ieft-rap-fhimework-Ol.txt, November 1998. 

Zhang Runtong, Phillis Yannis A. and Kouikoglou Vassilis S., Fuzzy Control of 

Queuing Systems, Springer-Verlag, USA 2005. 

251 



Erie/Overview a/Network Simulator (NS) 

APPENDIX A 

Brief Overview of Network Simulator (NS) 

A.O Introduction 

Network Simulator (NS) is the nickname for VINT (Virtual InterNetwork Testbed) 

project which is a DARPA-funded research project whose aim is to build a network 

simulator that will allow the study of communication networks and protocol 

interaction in the context of current and future network protocols. The VINT is a 

collaborative project involving USCnSI, Xerox P ARC, LBNL, and VC Berkeley 

INS DocOO]. 

A.t Overview ofNS 

The NS is an event-driven network simulator. It is an object oriented simulator 

written in C++ with an Object Tool Command Language (OTcI) interpreter as a 

frontend. The Simulator is an extensible simulation engine implemented in C++ that 

uses MIT's OTcI (an object oriented version of Tool Command Language (TcI)) as 

the command and configuration interface. NS version 1 is a previous version of the 

simulator that used the TC\ as the configuration language. The current version still 

supports simulation scripts written in TcI meant for the NS version I simulator. 

A.I.t Brief Code Overview 

The Simulator supports object class hierarchy in C++ (referred to as compiled 

hierarchy in the documentation), and a similar object class hierarchy within the 

OTcI interpreter (referred to as interpreted hierarchy in the documentation). The 

two hierarchies are closely related to each other, from user's perspective, there is a 

one-to-one correspondence between a class in the interpreted hierarchy and one in 

compiled hierarchy. As shown in the Figure AI, the root of the hierarchy is the 

class TclObject. Users breate new simulator objects through the interpreter, these 

objects are instantiated within the interpreter and are closely imaged and linked to 

the corresponding object in the compiled hierarchy. The interpreted class hierarchy 

is automatically established through methods defined in the class TclClass (see 

252 



Brie/Overview o/Network Simulator (NS) 

Figure AI). User instantiated objects in the interpreted hierarchy are mirrored 

through methods defined in the class TclObject. The code for the Simulator is quite 

extensive, there are other hierarchies in the C++ code and Otcl scripts, which do 

not share the same mirrored alliance in the manner of TclClass with TclObject 

[NSManOOj. 

Class TclObject and its Methods 
(Root Class) 

I I 

, 

L I ---nne-to-one correspondence. I 

C++ coLI m-p-i1-1-d-H-ie..J;'«h
Y 

_----------------------Cbu TdCbu 

~----------------

Class TcI Met 
in Accessing 

hods used 
the Interpreter 

I I 

,Ir 

Ir 

I I 
Class TclCommand Class EmbsddedTcI 

Figure AI: Object Class hierarchy in NS 

Interprete~ Hie rarchy 

I I 
Class InstVar 

The NS code is divided into two main directories-the code to interface with the 

interpreter resides in one directory-the tclel directory and the rest of the simulator 

code resides in the other directory-the ns-2 directory. There are a number of 

classes defined in -telel directory, only six of these are concerned with the 

Simulator. The Class Tel contains the methods that C++ code will use to access the 

interpreter. As mentioned above, the class TelObject is the base class for all 

simulator objects that are also mirrored in the compiled hierarchy. The class 

TelClass defines the interpreted class hierarchy and the methods to permit the user 

253 



Brief Overview of Network Simulator (NS) 

to instantiate TclObjects. The class TclCommand is used to define simple global 

interpreter commands. The class EmbeddedTcl contains the methods to load higher 

level built-in commands that make simulation configuration easier. Finally, the 

class InstVar contains methods to access C++ member variables as OTcl instance 

variables [NSDocOO). These are illustrated in Figure AI. Chapter 3 of NS 

Documentation contains more details on NS code overview. 

A.1.2 The Use of Two Languages 

The NS adopt two languages because the Simulator has two different kinds of 

simulation processes to address. On one hand, detailed simulation of protocols 

requires a system language, which can efficiently manipulate network dynamic 

objects such as packets, timers, etc, and implement algorithms that run over large 

data sets. For these tasks run-time speed is important but operation and 

maintenance time is less important. 

On the other hand, a large part of network research involves slightly varying 

parameters or configurations, which involve quickly exploring a number of 

scenarios. In these cases iteration time (change the model and re-run) is more 

important. In view of the fact that configuration run once (at the beginning of the 

simulation), run time of this part of the task is less important [NSDocOO]. 

The NS meets both of these needs with two languages, C++ and Otc!' C++ is fast to 

run but slower to change, making it suitable for detailed protocol implementation. 

OTcl runs much slower but can be changed very quickly (and interactively), 

making it ideal for simulation configuration. NS (via tclcl) provides glue to make 

objects and variables appear on both languages [NSDocOO]. See the documentation 

for more information on this. 

A.2 Configuring and Running a Simulation 

A simulation is defined by an OTcl script using a text editor such VI or Emas. The 

scripts use the Simulator Class as the principal interface to the simulation engine. 

Using the methods defined in the Simulator Class, a network topology is defined, 

traffic sources and sinks are configured, the simulation is invoked, and the statistics 

254 



Brief Overview ofNeiwork Simulator (NS) 

are collected. The simulator is invoked via the NS interpreter, which is an extension 

of the vanilla otclsh command shell. By building upon a fully functional language, 

offered by OTcl, arbitrary actions can be programmed into the simulation 

configuration [NSManOO]. 

The first step in the simulation is to acquire an instance of the Simulator Class. 

Instances of objects in classes are created and destroyed in NS using the new and 

delete methods. For example, an instance of the Simulator object is created by the 

following command: 

set ns [new Simulator] 

A network topology is realised using three primitive building objects: nodes, links, 

and agents. The Simulator Class has methods to create or configure each of these 

building blocks. The nodes are created with the node Simulator method that 

automatically assigns a unique address to each node. The links are created between 

nodes to form a network topology with the simplex-link or duplex-link methods that 

set up unidirectional and bi-directionallinks respectively. The agents are the objects 

that actively drive the simulation. The agents can be thought of as the processes 

and/or transport entities that run on nodes that may be end hosts or routers. Traffic 

sources and sinks, dynamic routing modules and the various protocol modules are all 

examples of agents. Agents are created by instantiating objects in the subclass of 

class Agent i.e., Agent/type where type specifies the nature of the agent. For 

example, a TCP agent is created using the command: 

set tcp [new AgentlTCP] 

Once the agents are created, they are attached to nodes with the attach-agent 

Simulator method. Each agent is automatically assigned a port number unique across 

all agents on a given node (analogous to a tcp or udp port). Some types of agents 

may have sources attached to them while others may generate their own data. For 

example, you can attach "ftp" and "telnet" sources to "tcp" agents but "constant bit

rate" agents generate their own data. Sources are attached to agents using the attach

source and attachtraffic agent methods [NSManOO]. 

Each object has some configuration parameters associated with it that can be 

modified. Configuration parameters are instance variables of the object. These 

parameters are initialised during startup to default values that can simply be read 

from the instance variables of the object. For example, $tcp set window_returns the 

default window size for the tcp object. The default values for that object can be 

255 



Brie/Overview o/Network Simulator (NS) 

explicitly overridden by simple assignment either before a simulation begins, or 

dynamically, while the simulation is in progress. For example the window-size for a 

particular TCP session can be changed in the following manner: 

$tcp set window _ 25 

The default values for the configuration parameters of all the class objects 

subsequently created can also be changed by simple assignment. For example, we 

can say, 

AgentITCP set window _ 30 

to make all future tcp agent creations default to a window size of30 [NSManOO]. 

Events are scheduled in NS using the at Simulator method that allows OTc1 

procedures to be invoked at arbitrary points in the simulation time. These OTc1 

callbacks provide a flexible simulation mechanism- they can be used to start or stop 

sources, dump statistics, instantiate link failures, reconfigure the network topology 

etc. The simulation is started via the run method and continues until there are no 

more events to be processed. At this time, the original invocation of the run 

command returns and the Tc1 script can exit or invoke another simulation run after 

possible reconfiguration. Alternatively, the simulation can be prematurely halted by 

invoking the stop command or by exiting the script with Tcl's standard exit command 

[NSManOO]. 

Packets are forwarded along the shortest path route from a source to a destination, 

where the distance metric is the sum of costs of the links traversed from the source to 

the destination. The cost of a link is I by default; the distance metric is simply the 

hop count in this case. The cost of a link can be changed with the cost Simulator 

method. A static topology model is used as the default in NS in which the states of 

nodes/links do not change during the course of a simulation. Network Dynamics 

could be specified using methods described in NS documentation under Network 

Dynamic Methods section. Also static unicast routing is the default in which the 

routes are pre-computed over the entire topology once prior to starting the 

simulation. Methods to enable and configure dynamic unicast and multi cast routing 

are described also in NS Documentation under the Unicast Routing Methods and 

Multicast Routing Methods sections respectively [NSDocOO]. 

256 



Brief Overview of Network Simulator (NS) 

A.3 NS Basic Script for Simple Network Simulation 

Resource like Marc Greis's tutorial on web pages (at http://titan.cs.uni-bonn.de/

greis/ns/ns.html) is best place to learn NS scriptive programming. The information 

here serves only as introductory knowledge. 

The first step in running a simulation as stated before is to acquire an instance of the 

Simulator class that has methods to configure and run the simulation. This is 

achieved with the new method of the Simulation Class as follows: 

set ns [new Simulator] 

# Next you create file to write simulation traces, i.e. to write events of the 
# simulation such as packet sent time, receive time, packet loss, etc. 

set trace-file [open out .tr w] 
$ns trace-all $trace-file 

# Also open file to store animation of simulation objects 

set nam-trace [open out.nam w] 
$ns namtrace-all $nam-trace 

# Create four nodes 

set nO [$ns node] 
set nl [$ns node] 
set n2 [$ns node] 
set n3 [$ns node] 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

1Mb 
2ns 

1Mb 
2ns 

2Mb 
5ns 

# Figure A2: Topology of the Simulated Network 

257 



Erie/Overview a/Network Simulator (NS) 

# Connect the nodes with bi-directionallinks with link parameters as shown in the 
# Figure A2. Note that, Mb is the Bandwidth in Mb/s, ns is propagation delay in 
# Nanosecond and DropTail is the FIFO queue discipline. 

$ns duplex-link $nO $n2 1Mb 2ns DropTail 
$ns duplex-link $nl $n2 1Mb 2ns DropTail 
$ns duplex-link $n2 $n3 2Mb 5ns DropTail 

# Create agents and attach agents to nodes and also create traffic sources and attach 
# traffic sources to the agents. Also specifY traffic sources parameters. 

set udpO [new Agent/UDP] 
$ns attach-agent $nO $udpO 
set cbrO [new Application/Traffic!CBR] 
$cbrO attach-agent $udpO 
$cbrO set packetSize _ 48 
$cbrO set interval_ 0.005 
$udpO set class _ 0 

set nullO [new Agent/Null] 
$ns attach-agent $n3 $nullO 

# Connect source agent to sink agent 

$ns connect $udpO $nullO 
$ns at 1. 0 "$cbrO start" 

set tcp [new AgentlTCP] 
$tcp set class _ 1 
$ns attach-agent $nl $tcp 

set sink [new AgentlTCPSink] 
$ns attach-agent $n3 $sink 

set ftp [new ApplicationIFTP] 
$ftp attach-agent $tcp 
$ns connect $tcp $sink 
$ns at 1.2 "$ftp start" 

# Define a finish procedure to close files in the simulation and execute the network 
# animation file 

proc finish { } { 

} 

global ns trace-file nam-trace 
$ns flush-trace 
close $trace-file 
close $nam-trace 
exec nam out.nam & 
exit 0 

258 



BriefOvelView ofNeiwork Simulator (NS) 

# Execute the proc finish (finish procedure) at 10 minutes of simulation time to close 
# the simulation. 

$ns at 10.0 'finish' 

# Run the simulation 

$ns run 

The code above simulates a network of four nodes. Node nO and nl are the sources 

of traffic (See Figure A2). They send their traffic through node n2 to node n3. Node 

nO start to send traffic at 1.0 second of simulation time and continue to send until the 

end of the simulation, while node nl start to send its own traffic at 1.2 second of the 

simulation time and also continue to send until the end of the simulation. The 

simulation runs for 10.0 seconds. 

The NS has extensive commands to create and configure different types of nodes, 

links and agents that are the building blocks of a network topology in the Simulator. 

OTcI being a programmable language used by the interpreter (otclsh) provides 

platform for extensible features that can be programmed into the simulation to meet 

most investigation requirements of network performance evaluations. Where the 

existing capabilities in NS do not meet a particular requirement of network 

simulation, such as simulating a new protocol or algorithm, then there will be need to 

define a new class and its methods with c++ to create the base compiled class and 

the necessary commands. The corresponding interpreted class and its procedure will 

have to be defined with OTcI as well. Marc Greis tutorial part IV is a good place to 

learn this approach. 

The NS object hierarchy and methods are fully documented in NS documentation. 

Readers should please consult the documentation for necessary further information. 

259 



Sample Code Used in NS 

APPENDIXB 

Sample Code Used in NS 

Two sample codes are presented in this appendix, and they represent example of key 

programs written within NS environment on the work of Optimum Number of 

Traffic Queuing Classes (ONTQC) to support Multservice QoS in IP Networks. 

The codes are written in Tool Command Language (TCL) and its Object oriented 

extension·OTCL, which are scriptive languages used in NS. The codes are used to 

model the implementation of the topology shown in Figure BI. The topology is 

technically referred to a Bipartite Digraph (see Section 9.1.1), as illustrated in the 

figure, it is a two tree-like star topology interconnected by a single link. The code 

model traffic generation, processing and transmission from the source hosts of the 

network, through the bottleneck link to the traffic destination hosts. 

The code presented in Section B.l implement FIFO queue discipline in the 

bottleneck link and the one presented in Section B.2 implement Multiple queue 

discipline in the same bottleneck link. In view of limitation of space, other 

voluminous and complex code used in the work could not be chosen for presentation 

here. 

SR 
Bottleneck Link 

S = Source, D = Destination 
SR = Source Router 
DR = Destination Router 

Figure Bl: Topology Implemented by Code in Section 1 and 2 

260 



Sample Code Used in NS 

B.1 Code for Base Scenario (FIFO Queue at Bottleneck Link) 

# NS Basic Code for Single Queue (FIFa) 
# Simulation with eight classes of traffic employing single queue in 
# congested link between node(8-SR) and node(9-DR) 

# Create a Simulator Object 

set ns [new Simulator] 

# Set colour to differentiate between processes in the simulation 
# objects. 

$ns calor 1 Blue 
$ns calor 2 Red 
$ns color 3 Green 
$ns calor 4 Yellow 
$ns calor 5 Orange 
$ns calor 6 Grey 
$ns color 7 Violet 
$ns calor 8 Black 
set qUm 1000 

set nf [open outp2TB.nam w] 
$ns namtrace-all $nf 

set tf [open tracep2T8.tr w] 
$ns trace-all $tf 

# Define a 'finish' procedure 
proc finish {I { 

I 

global ns nf tf 
$ns flush-trace 
#Close the trace file 
close $nf 
close $tf 
#Execute nam on the trace file 
exec nam outp2T8.nam & 
exec tr tracep2T8.tr & 
exit 0 

# Create eighteen nodes, one of them as router 

for {set i DI {$i < 181 {incr i) { 
set n ($i) [$ns node] 

# Create duplex links between the nodes and the nodes implementing 
# FIFa queue discipline 

$ns duplex-link $n(O) $n (8) 1Mb 5ms DropTail 
$ns duplex-link $n (1) $n (8) 1Mb 5ms DropTail 
$ns duplex-link $n(2) $n(8} 1Mb 5ms DropTail 
$ns duplex-link $n (3) $n (8) 1Mb 5ms DropTail 
$ns duplex-link $n(4} $n (8) 1Mb 5ms DropTail 
$ns duplex-link $n(5) $n (8) 1Mb 5ms DropTail 
$ns duplex-link $n (6) $n(8} 1Mb 5ms DropTail 
$ns duplex-link $n (7) $n (8) 1Mb 5ms DropTail 
$ns duplex-link $n (8) $n (9) 1.5Mb 1Dms DropTail 
$ns duplex-link $n (9) $n (10) 1Mb 5ms DropTail 
$ns duplex-link $n (9) $n (11) 1Mb 5ms DropTail 

261 



Sample Code Used in NS 

$ns duplex-link $n (9) $n(12) 1Mb 5ms DropTail 
$ns duplex-link $n(9) $n(13) 1Mb 5ms DropTail 
$ns duplex-link $n (9) $n(14) 1Mb 5ms DropTail 
$ns duplex-link $n(9) $n (15) 1Mb 5ms DropTail 
$ns duplex-link $n(9) $n (16) 1Mb 5ms DropTail 
$ns duplex-link $n (9) $n (17) 1Mb 5ms DropTai1 

# Arrange the topology such that it produces two stars 
# interconnected by a single link as shown in Figure B1. 

$ns duplex-link-op $n(8) $n (0) orient left-up 
$ns duplex-link-op $n (8) $n(l) orient left 
$ns duplex-link-op $n (8) $n(2) orient left-down 
$ns duplex-link-op $n(8) $n (3) orient down 
$ns duplex-link-op $n(8) $n (4) orient right-up 
$ns duplex-link-op $n(8) $n(5) orient up 
$ns duplex-link-op $n (8) $n(6) orient right-down 
$ns duplex-link-op $n(8) $n (7) orient 20 
$ns duplex-link-op $n(8) $n (9) orient right 
$ns duplex-link-op $n (9) $n(10) orient up 
$ns duplex-link-op $n (9) $n(ll) orient right-up 
$ns duplex-link-op $n(9) $n(12) orient right 
$ns duplex-link-op $n(9) $n(13) orient right-down 
$ns duplex-link-op $n (9) $n (14) orient down 
$ns duplex-link-op $n (9) $n (15) orient left-down 
$ns duplex-link-op $n (9) $n(16) orient left-up 
$ns duplex-link-op $n(9) $n(17) orient left 

$ns queue-limit $n(8) $n(9) $qlim 
$ns duplex-link-op $n(8) $n(9) queuePos 0.5 

# create Agents and attach them to Nodes 

set udpO [new Agent/UDP] 
$ns attach-agent $n(O) $udpO 
$udpO set packetSize_ 210 
$udpO set fid 1 
set cbrO [new-Application/Traffic/CBR] 
$cbrO set interval_ 0.02 
$cbrO set random 1 
$cbrO attach-agent $udpO 

set nullO [new Agent/Null] 
$ns attach-agent $n(10) $nullO 
$ns connect $udpO $nullO 

set udp1 [new Agent/UDP] 
$ns attach-agent $n(l) $udp1 
$udp1 set packetSize_ 48 
$udp1 set fid 2 
set expO [new-Application/Traffic/Exponential] 
$expO set burst_time 1s 
$expO set idle time_ lOOms 
$expO set rate 64k 
$expO attach-agent $udp1 

set null1 [new Agent/Null] 
$ns attach-agent $n(ll) $null1 
$ns connect $udp1 $null1 

262 



set udp2 [new Agent/UDP] 
$ns attach-agent $n(2) $udp2 
$udp2 set packetSize lS6 
$udp2 set fid 3 -
set exp1 [new-App1ication/Traffic/Exponentia1] 
$exp1 set burst_time_ 3s 
$exp1 set idle time lOOms 
$exp1 set rate 128k 
$exp1 attach-agent $udp2 

set nu1l2 [new Agent/Null] 
$ns attach-agent $n(12) $nu1l2 
$ns connect $udp2 $nu1l2 

set udp3 [new Agent/UDP] 
$ns attach-agent $n(3) $udp3 
$udp3 set packetSize_ 200 
$udp3 set fid 4 
set paret [new App1ication/Traffic/Pareto] 
$paret set burst_time 2s 
$paret set idle time lOOms 
$paret set rate 200k 
$paret set shape 1.S 
$paret attach-agent $udp3 

set nul13 [new Agent/Null] 
$ns attach-agent $n(13) $nul13 
$ns connect $udp3 $nul13 

set tcpO [new Agent/TCP] 
$ns attach-agent $n(4) $tcpO 
$tcpO set packetSize_ 625 
$tcpO set fid 5 
set telnetO [new Application/Telnet] 
$telnetO set interval O.OOS 
$telnetO attach-agent-$tcpO 

set sinkO [new Agent/TCPSink] 
$ns attach-agent $n(14) $sinkO 
$ns connect $tcpO $sinkO 

set tcp1 [new Agent/TCP] 
$ns attach-agent $n(S) $tcp1 
$tcp1 set packetSize 800 
$tcp1 set fid 6 -
set telnet1 [new Application/Telnet] 
$telnet1 set interval O.OOS 
$telnet1 attach-agent-$tcp1 

set sink1 [new Agent/TCPSink] 
$ns attach-agent $n(lS) $sink1 
$ns connect $tcp1 $sink1 

set tcp2 [new Agent/TCP] 
$ns attach-agent $n(6) $tcp2 
$tcp2 set packetSize_ 700 
$tcp2 set fid 7 
set ftpO [new-Application/FTP] 
$ftpO attach-agent $tcp2 
set sink2 [new Agent/TCPSink] 
$ns attach-agent $n(16) $sink2 

263 

Sample Code Used in NS 



$ns connect $tcp2 $sink2 

set tcp3 [new Agent/TCP] 
$ns attach-agent $n(7) $tcp3 
$tcp3 set packet Size 1000 
$tcp3 set fid 8 -
set ftpl [new-Application/FTP] 
$ftpl attach-agent $tcp3 
set sink3 [new Agent/TCPSink] 
$ns attach-agent $n(17) $sink3 
$ns connect $tcp3 $sink3 

# set the start time and stop time 
$ns at 0.0 n$cbrO start" 
$ns at 0.0 lI$expO start" 
$ns at 0.0 "$expl start" 
$ns at 0.0 U$paret start" 
$ns at 0.0 "$telnetO start" 
$ns at 0.0 "$telnetl start" 
$ns at 0.0 "$ftpO start" 
$ns at 0.0 "$ftpl start" 
$ns at 55.0 "$cbrO stop" 
$ns at 55.0 "$expO stop" 
$ns at 55.0 n$expl stop" 
$ns at 55.0 n$paret stop" 
$ns at 55.0 U$telnetO stop" 
$ns at 55.0 n$telnetl stop" 
$ns at 55.0 "$ftpO stop" 
$ns at 55.0 "$ftpl stop" 

$ns at 56.0 "finish" 
$ns run 

Sample Code Used in NS 

B.2 Code for Multiple Queue Scenario (CBQ at Bottleneck Link) 

# NS MUltiple Queue implementation in Investigation of ONTQC 
# Simulation with multiple queue in the congested link 
# (Eight Queue implementation) 

set ns [new Simulator] 

# Set colour to differentiate 
# objects. 

$ns color 1 Blue 
$ns calor 2 Red 
$ns calor 3 Green 
$ns calor 4 Yellow 
$ns color 5 Orange 
$ns calor 6 Violet 
$ns calor 7 Grey 
$ns calor 8 Black 

set rng [new RNG] 
$rng seed 0 

set fl [open traceRandCl.tr w] 
$ns trace-all $fl 

between processes in the simulation 

264 



set nf [open outRandCl.nam w] 
$ns namtrace-all $nf 

# Define a 'finish' procedure 

proc finish {] { 
global ns f1 nf 
$ns flush-trace 
close $fl 
close $nf 
exec tr traceRandC!.tr & 
exec nam outRandCl.nam & 
exit 0 

# Create nineteen nodes 

for (set i 0) ($i < 18) (incr i) { 
set n ($i) [$ns node] 

Sample Code Used in NS 

# Connect the nodes to have topology orientation as shown in Figure 
# Bl 

for (set i 0) ($i < B) (incr i) ( 
ens duplex-link $n($i) $n(8) 1Mb 5ms DropTail 
ens duplex-link-op $n(8) $n($i) orient left 

ens simplex-link $n(8) $n(9) 1.5Mb 10ms CBQ/WRR 
ens simplex-link $n(9) $n(B) 1.5Mb lOms DropTail 
ens duplex-link-op $n(B) $n(9) orient right 

for (set i 10) ($i < 18) (incr i) ( 
ens duplex-link $n(9) $n($i) 1Mb 10ms DropTail 
ens duplex-link-op $n(9) $n($i) orient right 

) 
# Create CBQClasses and insert them into the CBQLink 

set cbqlink [ens link $n(8) $n(9)] 
set topclass [new CBQClass] 
$topclass setparams none 0 1.0 auto B 2 0 

set voiceClass [new CBQClass] 
set voiceQueue [new Queue/DropTail] 
$voiceQueue set limit 50 
$voiceClass install-queue $voiceQueue 
$voiceClass setparams $topclass true 0.05 auto 0 1 0 

set audioClass [new CBQClass] 
set audioQueue [new Queue/DropTail] 
$audioQueue set limit 100 
$AudioClass install-queue $audioQueue 
$audioClass setparams $topc1ass true 0.1 auto 1 1 0 

set videoClassO [new CBQClass] 
set videoQueueO [new Queue/DropTail] 
$videoQueueO set limit 250 
$videoClassO install-queue $videoQueueO 
$videoClassO setparams $topclass true 0.12 auto 2 1 0 

265 



set videoClass1 [new CBQClass] 
set videoQueue1 [new Queue/DropTail] 
$videoQueue1 set limit 250 
$videoClass1 install-queue $videoQueue1 

Sample Code Used in NS 

$videoClass1 setparams $topclass true 0.13 auto 3 1 0 

set dataClassO [new CBQClassJ 
set dataQueueO [new Queue/DropTailJ 
$dataQueueO set limit 600 
$dataClassO install-queue $dataQueueO 
$dataClassO setparams $topclass true 0.13 auto 4 1 0 

set dataClassl [new CBQClassJ 
set dataQueuel [new Queue/DropTailJ 
$dataQueue1 set limit 600 
$dataClass1 install-queue $dataQueuel 
$dataClass1 setparams $topclass true 0.13 auto 5 1 0 

set dataClass2 [new CBQClassJ 
set dataQueue2 [new Queue/DropTailJ 
$dataQueue2 set limit 600 
$dataClass2 install-queue $dataQueue2 
$dataClass2 setparams $topclass true 0.17 auto 6 1 0 

set dataClass3 [new CBQClassJ 
set dataQueue3 [new Queue/DropTailJ 
$dataQueue3 set limit 600 
$dataClass3 install-queue $dataQueue3 
$dataClass3 setparams $topclass true 0.17 auto 7 1 0 

$cbqlink insert $topclass 
$cbqlink insert $voiceClass 
$cbqlink insert $audioClass 
$cbqlink insert $videoClass1 
$cbqlink insert $videoClassO 
$cbqlink insert $dataClassO 
$cbqlink insert $dataClass1 
$cbqlink insert $dataClass2 

$cbqlink bind $voiceClass 1 
$cbqlink bind $audioClass 2 
$cbqlink bind $videoClass1 3 
$cbqlink bind $videoClassO 4 
$cbqlink bind $dataClassO 5 
$cbqlink bind $dataClass1 6 
$cbqlink bind $dataClass2 7 
$cbqlink bind $dataClass2 8 

set srcO [$ns create-connection UDP $n(O) LossMonitor $n(10) 1J 
set expooO [new Application/Traffic/ExponentiaIJ 
set pktsO [expr 48 + [$rng integer 152JJ 
$expooO set packetSize $pktsO 
$expooO set burst time- 1.0s 
$expooO set idle_time_-0.5s 
set rO [expr 100 + [$rng integer 100J]kb 
$expooO set rate $rO 
$expooO attach-agent $srcO 

266 



Sample Code Used in NS 

set src1 [$ns create-connection UDP $n(l) LossMonitor $n(ll) 2] 
set cbr [new Application/Traffic/CBR] 
set pkts1 [expr 105 + [$rng integer 105]] 
$cbr set packetSize $pkts1 
set int [$rng uniform 0.001 0.05] 
$cbr set interval_ $int 
$cbr attach-agent $src1 

set src2 [$ns create-connection UDP $n(2) LossMonitor $n(12) 3] 
set expoo1 [new Application/Traffic/Exponential] 
set pkts2 [expr 48 + [$rng integer 100]] 
$expoo1 set packetSize_ pkts2 
$expoo1 set burst_time_ 1.5s 
$expoo1 set idle time 0.5s 
set r1 [expr 150-+ [$rng integer 150]]k 
$expoo1 set rate $r1 
$expoo1 attach-agent $src2 

set src3 [$ns create-connection UDP $n(3) LossMonitor $n(13) 4] 
set pareto [new Application/Traffic/Pareto] 
set pkts3 [expr 70 + [$rng integer 140]] 
$pareto set packetSize_ $pkts3 
$pareto set burst time 0.5s 
$pareto set idle time -0.5s 
set r2 [expr 200-+ [$rng integer 150]]k 
$pareto set rate $r2 
$pareto set shape_ 1.5 
$pareto attach-agent $src3 

set src4 [$ns create-connection TCP $n(4) TCPSink $n(14) 5] 
set telnetO [$src4 attach-app Telnet] 
set pkts4 [expr 500 + [$rng integer 500]] 
$src4 set packetSize $pkts4 
set tintO [$rng uniform 0.001 0.005] 
$te1netO set interval $tintO 

set src5 [$ns create-connection TCP $n(5) TCPSink $n(15) 6] 
set telnet1 [$src5 attach-app Telnet] 
set pkts5 [expr 500 + [$rng integer 300]] 
$src5 set packetSize $pkts5 
set tint1 [$rng uniform 0.001 0.004] 
$telnet1 set interval $tint1 

set src6 [$ns create-connection TCP $n(6) TCPSink $n(16) 7] 
set ftpO [$src6 attach-app FTP] 
set pkts6 [expr 1000 + [$rng integer 500]] 
$src6 set packetSize_ $pkts6 

set src7 [$ns create-connection TCP $n(7) TCPSink $n(17) 8] 
set ftp1 [$src7 attach-app FTP] 
set pkts7 [expr 750 + [$rng integer 500]] 
$src7 set packetSize_ $pkts7 

puts "\nll 
puts "Exponential (0) packet size = $pktsO 
puts It 11 

and 

puts "eBR packet size = $pkts1 and interval = 
puts 1111 

puts "Exponential (1) packet size = $pkts2 and 
puts IIU 

rate 

$int\n" 

rate = 

puts "Pareto packet size = $pkts3 and rate = $r2\n" 

267 

= $rO 

$r1\n" 

\n" 



Sample Code Used in NS 

puts 1111 

puts "Telnet (0) packet size = $pkts4 and interval $tintO\n" 
puts 1111 

puts "Telnet(l) packet size = $pkts5 and interval $tintl\n" 
puts 1111 

puts "Ftp(O) packet size $pkts6\n" 
puts 1111 

puts "Ftp(l) packet size = $pkts7\n" 

# set the start time and stop time 
$ns at 0.0 "rnake_2cbqclass" 
$ns at 0.0 U$expooO start" 
$ns at 0.0 U$cbr start" 
$ns at 0.0 n$expool start" 
$ns at 0.0 U$pareto start" 
$ns at 0.0 "$telnetO start" 
$ns at 0.0 "$telnetl start" 
$ns at 0.0 "$ftpO start" 
$ns at 0.0 "$ftpl start" 
$ns at 55.0 n$expooO stop" 
$ns at 55.0 "$cbr stop" 
$ns at 55.0 U$expool stop" 
$ns at 55.0 "$pareto stop" 
$ns at 55.0 "$telnetO stop" 
$ns at 55.0 "$telnetl stopll 
$ns at 55.0 n$ftpO stop" 
$ns at 55.0 "$ftpl stop" 

$ns at 55.0 "finish" 

$ns run 

268 



Overview ofOPNET Software Modelling Package 

APPENDIXC 

Overview of OPNET Software Modelling Package 

This appendix provides a brief overview of the capabilities made available by OPNET 

software modelling simulation package for communication network designers, 

practitioners, researchers, students, etc. Materials presented here are derived solely from 

OPNET Documentation. Readers are referred to the documentation for more detailed 

information on OPNET software modelling paradigm. 

The OPNET software package is a powerful modelling-simulation tool, which is 

invaluable to system modellers and communication system designers in their effort on 

system performance measures and behavioural analysis of existing or proposed systems. 

Its power on system modelling can be captured from the few introductory statements of 

the Modelling Overview chapter of OPNET Documentation [OpnetDoc03]. I quote 

verbatim-"OPNET provides a comprehensive development environment supporting the 

modelling of communication networks and distributed systems. Both behaviour and 

performance of modelled systems can be analysed by performing discrete event 

simulations. The OPNET environment incorporates tools for all phases of a study, 

including model design, simulation, data collection, and data analysis". 

The OPNET Modeller is designed for two groups of people: (1) those who study system 

behaviours and performances and (2), those who deliver modelling environments to 

(design models for) "end users". 

C.l Main System Features 

The OPNET is a vast software package with an extensive set of features designed to 

support general network modelling and to provide specific support for particular types of 

network simulation projects. A brief enumeration of some of the most important 

capabilities of OPNET is as follows: 

269 



Overview oJOPNET Software Modelling Paclmge 

• Object orientation-Systems specified in OPNET consist of objects, each with 

configurable sets of attributes. Objects-classes orientations are adopted for 

specifications and definitions of object characteristics and behaviours. 

• Specialised in communication networks and information systems-OPNET is 

specifically suitable for many constructs relating to communications and 

information processing. 

• Hierarchical models-Models are hierarchical, naturally paralleling the structure 

of actual communication networks. 

• Graphical specification-In most cases, models are entered via graphical editors. 

These editors provide an intuitive mapping from the modelled system to the model 

specification in OPNET environment. 

• Flexibility to develop detailed custom models-OPNET provides a flexible, high

level programming language with extensive support for communications and 

distributed systems. This environment allows realistic modelling of all 

communications protocols, algorithms, and transmission technologies. 

• Automatic generation of simulations-Model specifications are compiled 

automatically into executable, efficient, discrete-event simulations implemented in 

the C programming language. Advanced simulation construction and configuration 

techniques minimise compilation requirements. 

• Application-specific statistics-OPNET provides built-in performance statistics 

that can be collected automatically during simulations. Modellers can also 

augment this set with new application-specific statistics that are computed by user

defined processes. 

• Integrated post-simulation analysis tools-OPNET includes a sophisticated tool 

for graphical presentation and processing of simulation output. 

• Interactive analysis-All OPNET simulations automatically incorporate support 

for analysis via a sophisticated interactive debugger. 

• Animation-Simulation runs can be configured to automatically generate 

animations of the modelled system at various levels of detail and can include 

animation of statistics as they change over time. Extensive support for developing 

customised animations is also provided. 

270 



Overview ofOPNET Software Modelling Package 

• Cosimulation-Y ou can connect OPNET with one or more other simulators so 

that you can see how the models in those simulators interact with OPNET models. 

The external models can represent anything from network hardware to end-user 

behaviour patterns. 

• Application programs interface (API)-As an alternative to graphical 

specification, OPNET models and data files may be specified via a programmatic 

interface. This is useful for automatic generation of models or to allow OPNET to 

be tightly integrated with other tools. 

C.2 Basic Operation in OPNET 

Modelling task in OPNET consists of three basic steps or phases and these are: 

• Specification 

• Data Assembly and Simulation 

• Result Analysis 

These phases are normally performed in sequence. They generally form a cycle, with a 

return to Specification after Result Analysis. Specification is actually divided into two 

parts-Initial Specification and Re-Specification, with only the latter belonging to the 

cycle, as illustrated in Figure Cl. 

L~In::.:it:ia::.:l~s~p:ec:::ifi::,:Ic::ati:·o::.:n~ __ ~ Data Assembly and 
Simulation 

Figure Cl: Modelling Simulation Project Cycle. 

Model specification is the task of developing a representation of the system that is to be 

studied. The OPNET supports the concept of model reuse so that most models are based 

on primitive lower level models developed beforehand and stored in model libraries. The 

library models can be used for any applicable simulation scenario. 

271 



Overview ojOPNET Software Modelling Package 

C.3 Main Components of OPNET Modeller Software Architecture 

The principal modelling tools for simulation of systems made available to users by the 

OPNET software package includes: 

• Extensive Model Library 

• Extensive Kernel Procedure Library and Library of Functions and Utilities 

• Animation Utility Program 

• OPNET Modelling Editors 

We will now briefly summarise information on the principal elements of the tools listed 

above which OPNET provides to make communication network system modelling and 

simulation very interesting. 

C.3.1 Overview Model Library 

The OPNET provides an extensive library of model s that can be used to build 

networks. These models fall into three categories: the standard models, the specialised 

models and the contributed models. The standard models are made available for users 

to use at will. The specialised models support the needs of users with particular 

interests in emerging or vendor-specific technologies. These are like the standard 

models, but an additional license is needed to use these models in a simulation. 

Contributed models are models designed by some users and made available to the user 

community at no charge. 

Most users work primarily with objects from the standard model library. A user may 

decide to design his or her own model taking advantage of the available extensive 

library of functions. 

The standard model library consists of the following types of objects-

Communication Devices (Node), Links, LANs and Clouds, and Utility objects. 

LAN and Cloud Models: The OPNET abstract local area network infrastructure into 

one object, and called it a LAN object. The LAN object models many users on the 

same LAN, and allows for a server within the LAN as well. This paradigm 

dramatically reduce the amount of configuration you need to do to represent your 

internetwork ofLANs. 

272 



Overview ojOPNFT Software Modelling Package 

In a similar manner to the use of LAN objects, parts of wide area network (WAN) 

infrastructure can be abstracted into a Cloud model to represent the WAN 

infrastructure. The Cloud model provides high-level characteristics used to simulate 

the behaviour of the WAN networks. ATM, Frame Relay, and JP model suites can all 

be included in a single Cloud object model. 

Utility Objects: Objects that don't correspond to actual physical infrastructure but 

also used to construct network models are grouped as utility objects in the model 

library. In general, these represent logical function in the network, such as 

configuration of network resources on a global level. 

C.3.2 Kernel Procedure--the Library of Functions 

The OPNET provides extensive library of functions for communication network and 

distributed system modelling. The packages known as Kernel Procedures (KPs) 

represent services provided by the Simulation Kernel for modelling communication 

networks and distributed systems. Simulation services are accessed through the KPs, 

which are procedures that can be called from within process models, Transceiver 

Pipeline stages, C/C++ functions that have been scheduled as interrupts, or simply 

C/C++ functions that are directly or indirectly invoked from one of these contexts. 

The KPs are categorised by primary function, based on the types of objects they 

attempt to manipulate. The collection of the KPs within a category is called a package, 

and the KPs within the same package share a common package keyword in their 

procedure names. For instance, a large number of KPs are concerned with 

manipulating packets; these are grouped together in the packet package and use the 

"pk" keyword. Detailed information on the use ofKP and the means of accessing them 

can be found in the Discrete Event Simulation API Reference Manual of OPNET 

Documentation. OPNET also has other extensive library of function to make 

modelling construct interesting. 

C.3.3 Animation Utility Programs 

Animations of simulations provide useful support for analysing, verifying, and 

troubleshooting dynamic models. Simulations developed within OPNET's modelling 

273 



Overview ojOPNET Software Modelling Package 

editors offer animations for investigating the behaviour and performance of dynamic 

models. Information on Animation System Architecture can be found on Utility 

Programs Reference Manual ofOPNET Documentation. 

C.3.4 OPNET Modelling Editors 

The OPNET supports model specification with a number of tools, called editors, which 

have built-in capabilities to capture the characteristics of a modelled system's 

behaviour. The suite of editors made it easier to address different aspects of a model, 

and offer specific capabilities to address the diverse issues encountered in networks 

and distributed systems. These editors present the model developer with an intuitive 

interface required for modelling information in a manner that is parallel to the structure 

of real network systems. The model-specification editors are organised hierarchically. 

Model specifications performed in the Project Editor rely on elements specified in the 

Node Editor; in turn, when working in the Node Editor, process models developed in 

the Process Editor and External System Editor will be used. The remaining editors are 

used to define various data models, typically tables of values that are later referenced 

by process- or node-level models. This organisation is depicted in the following list: 

• Project Editor-Develop network models. Network models are made up of 

topology, subnet and node models. This editor also includes basic simulation and 

analysis capabilities. 

• Node Editor-Develop node models. Node models are objects in a network model. 

Node models are made up of modules, which is made up of process models. 

Modules may also include parameter models. 

• Process Editor-Develop process models. Process models control module 

behaviour and may reference parameter models. 

• External System Editor-Develop external system definitions. External system 

definitions are necessary for cosimulation. 

• Link Model Editor-Create, edit, and view link models. 

• Packet Format Editor-Develop packet formats models. Packet formats dictate the 

structure and order of information stored in a packet. 

274 



Overview ojOPNET Software Modelling Package 

• ICI Editor-Create, edit, and view interface control information (lCI) formats. 

ICls are used to communicate control information between processes. 

• PDF Editor-Create, edit, and view probability density functions (PDFs). PDFs 

can be used to control certain events, such as the frequency of packet generation in 

a source module. 

There are other editors, which are not included in the list above. 

As highlighted above, OPNET Models are structured hierarchically, in a manner that 

parallels real network systems. Specialised editors address issues at different levels of 

the hierarchy. This provides an intuitive modelling environment and also permits re

use of lower level models. All the model-specification editors present a graphical 

interface in which the user manipulates objects representing the model components 

and structure. Each editor has its own specific set of objects and operations that are 

correct for the modelling task on which it is focused. For instance, the Project Editor 

uses node and link objects; the Node Editor provides processors, queues, transmitters, 

and receivers; and the Process Editor is based on states and transitions. 

The core modelling and simulation operations carried out in the OPNET software 

environment are centred on three principal editors, which are, the Project Editor, the 

Node Editor, and the Process Editor. The key functionality in system model 

specifications and definitions are carried out making use of these three editors, and 

their environments are referred to as modelling domains. Modelling operations 

involving the three domains (network domain, node domain and process domain) has a 

hierarchical flow orientation. This hierarchical modelling domain paradigm adopted by 

the OPNET has structural orientation equivalence to what is obtainable in real systems. 

The work flow is: process models specified and defined in the process domain are used 

in building a module, modules specified and defined in the node domain are used to 

build a node model and node models are interconnected to build a communication 

network. This hierarchy is illustrated with Figure C2. 

It is worthwhile to summarily have a view of the modelling operations carried out in 

these key-modelling environments. 

275 



Overview ojOPNET Software Modelling Package 

No<work '. . .,. .... ..•• ..... . .... 

~~~.------------~-----... -..• -,---... ~ ..• -.. ~ .... --, .. 

1-1- HE I 1
Figure C2: Relationship of Hierarchical Levels in OPNET Models

C.3.4.1 The Project Editor-Network Domain

The Project Editor is the workplace with built-in capabilities to model

communication networks and it is referred to as Network Domain. The specific real

life communication network whose performance analysis is of interest will be called

network model in the environment of the Project Editor. The Network Domain's role

is to define the topology of a communication network. The communicating entities

are called nodes and are interconnected by communication links. The specific

capability of each node is defined by designating its model from available node

models. The node models are developed using the Node Editor. Within one network

model, there may be many nodes that are based on the same node model. The term

node instance is used to refer to an individual node to distinguish it from the class of

nodes sharing the same model.

Network models are composed of the following main building blocks: subnetworks,

communication nodes, and communication links. These objects, either singly or as a

whole, may be referred to as a site. A subnetwork encapsulates other network level

objects. Communication nodes model network objects with definable internal

structure. Communication links provide a mechanism to transport information

between communication nodes.

A network model defines the overall scope of a system to be simulated. It is a high

level description of the objects contained in the system. The network model specifies

the objects in the system, as well as their physical locations, interconnections and

configurations. The size and scope of the networks modelled can range from simple

276

Overview ojOPNET Software Modelling Package

to complex topology. A network model may contain one node, or one subnetwork, or

many interconnected nodes and subnetworks, because the structure and complexity

of a network model typically follows those of the system to be modelled.

A network model may make use of any number of node models. Modellers can

develop their own library of customised node models, implementing any

functionality they require. The Project Editor can provide a geographic context for

network model development. Modellers can choose locations on world or country

maps for the elements of wide-area networks and can use dimensioned areas for

local-area networks. Different types of Iinks-point-to-point, bus and wireless

include objects made available in the Project Editor.

The concept of subnetwork objects in fixed, mobile, and satellite topology in the

network domain is to provide hierarchy in the network model, and are used to break

down complexity into multiple levels. Subnets can contain various combinations of

nodes, links, and other subnets, and can be nested to any depth.

The Project Editor provides interface for modellers to control the characteristics and

behaviour of objects in the Network Domain. Thus the characteristics and behaviour

of communication subnetworks, communication nodes and communication links can

be controlled through the appropriate changes to parameters made available in their

attribute interface.

Figure C3 (a) and (b) are used to illustrate the modelling and simulation capabilities

made available to users in the Project Editor. Figure C3 (a) shows an example of the

use of the Project Editor, in which the topology of a corporate network that consists

of six LAN subnetworks, interconnected by a single switch has been modelled. The

corporate network model includes two utility nodes, which are used for configuration

of applications used in the network and for configuration of application user's

profiles. Figure C3 (b) shows that within the project editor you can define statistics

to collect, run simulation and display results after simulation. In the Figure C3 (b) the

user displayed the throughput for background traffic from LAN segment_O to LAN

segment_l in bits per second and packets per second.

277

(a)

Flows Browser Dl.1log Box

..
(b)

Overview ojOPNET Software Modelling Package

Expand segment_O in
the Souroe Nodn pane.
then .. !eet
segment_O->ngment_1

• 'I

Figure C3: (a) A corporate network topology, which consists of six LAN, a switch
and two utility nodes. (b) The use of Project Editor to display the results
of simulation.

C.3.4.2 The Node Editor - Node Domain

The next in hierarchy of work place when working from top down on communication

networks modelling after the Network Domain is the Node Domain. This approach is

278

Overview ojOPNET Soflware Modelling Package

the paradigm employed in the OPNET software-modelling environment since in real

life systems, you decompose communication networks to its constituent nodes. The

Node Editor, whose workplace is referred to as Node Domaill, provides tools for the

modelling of communication devices that can be deployed and interconnected at the

network level. In OPNET terms, these devices are called lIodes, and in the real world

they may correspond to various types of computing and communicating equipment

such as routers, bridges, workstations, terminals, mainframe computers, file servers,

fast packet switches, satellites, and so on.

Node models are developed in the Node Editor and are specified in terms of smaller

building blocks called modules. Some modules offer capability that is substantially

predefined and can only be con figured through a set of built-in parameters. These

include various trallsmitters and receivers allowing a node to be attached to

communication links in the network domain. Other modules, called processors,

queues, and external systems, are highly programmable, their behaviour being

prescribed by an assigned process model. Process models are developed using the

Process Editor.

A node model can consist of any number of modules of different types. Three types

of connections are provided to support interaction between modules. These are call ed

packet streams, statistic wires and logical associatiolls. Packet streams allow packets

to be conveyed from one module to another. Statistic wires convey simple numeric

signals or control information between modules, and are typically used when one

module needs to monitor the performance or state of another. Both packet streams

and statistic wires have parameters that may be set to configure some aspects of their

behaviour. Logical associations identify a binding between modules . Currently, they

are allowed only between transmitters and receivers to indicate that they should be

used as a pair when attaching the node to a link in the Network Domain.

The modelling paradigm selected for the Node Domain was designed to support

general modelling of high-level communication devices. It is particularly well suited

for modelling arrangements of stacked or layered communication protocols. In the

Node Editor, a device that relies on a particular stack of protocols can be modelled

279

Overview ojOPNI:.7 Software Modelling Package

by creating a processor object for each layer of those stack and defining packet

streams between neighbouring layers.

Figure C4 Ca) shows a typical node model developed in the Node Editor that includes

the three types of connections. And Figure C4 (b) shows a node model which employ

the TCPIlP protocol stacks, in this case the Ethemet Server node model.

------~_packct sbeam

. . 1' · . -_--...!.ffiiI -- = -- ~
'he t •• ~ ..,

stalistic. wilC--------- - ,A'"'IOgiCill iI$sociation

(a)

. '1' ___ _ ::::::=- p.cket Stre8nu

-----~

(b)

Figure C4: Ca) Node model employingpacke/ streams, slatislic wires, and logical
associations (b) Ethemet server node model.

280

Oven 'iew of OPNET Software Modelling Package

C.3.4.3 The Process Editor-Process Domain

As highlighted in the previous section, each node can be decomposed into its

constituent modules. Thus the next workplace in OPNET software environment after

the Node Domain is the Process Domain which is the workplace environment of the

Process Editor. The Process Editor is used to develop Process models, which are

used in specifying and defining module behaviours.

Queue and processor modules are user-programmable elements that are key elements

of communication nodes. The tasks that these modules execute are called processes.

A process is similar to an executing software program, since it has a set of

instructions and maintains state memory. Processes in OPNET are based on process

models that are defined in the Process Editor. The relationship between process

model and process is similar to the relationship between a program and a particular

session of that program running as a task. Just as nodes created in the Project Editor

are instances of node models defined with the Node Editor, each process that

executes in a queue or processor module is an instance of a particular process model.

The process modelling paradigm of OPNET supports the concepts of process groups.

A process group consists of multiple processes that execute within the same

processor or queue. When a simulation begins, each module has only one process,

termed the root process. This process can later create new processes, which can in

turn create others as well, etc (no limits to the number of processes that may be

created in a particular processor or queue module) . When a process creates another

one, it is termed the new process ' parent; the new process is called the child of the

process that created it. Processes that are created during the simulation are referred to

as dynamic processes. Processes may be created and destroyed based on dynamic

conditions that are analysed by the logic of the executing processes. This paradigm

provides a very natural framework for modelling many common systems. In

particular, multitasking operating systems where the root process represents the

operating system itself and the dynamically created processes correspond to new

tasks. Or in multi-context protocols where the root process represents a session

28 1

Oven 'ielV ojOPNET Software Modelling Package

manager, for example, and each new session that is requested is modelled by creating

a new process of the correct type.

Only one process can be executing at any time. A process is considered to be

executing when it is progressing through new instructions that are part of its process

model. When a process begins execution it is said to be invoked . A process that is

currently executing can invoke another process in its process group to cause it to

begin executing. When this happens, the invoking process is temporarily suspended

until the invoked process blocks. A process blocks by indicating that it has

completed its processing for its current invocation. After the invoked process has

blocked, the invoking process resumes execution where it had left off, in a manner

similar to the procedure-call mechanism in a programming language such as C.

Processes respond to interrupts, which indicate that events of interest have occurred

such as the arrival of a message or the expiration of a timer. When a process is

interrupted, it takes actions in response and then blocks, awaiting a new interrupt. It

may also invoke another process; its execution is suspended until the invoked

process blocks. Interrupts and / invocations may be generated by sources external to

a process group, by other members of a process group, or by a process for itself.

The OPNET' s Process Editor specifies and defines process models in a language

called Proto-C, which is specifically designed to support development of protocols

and algorithms. Proto-C is based on a combination of state transition diagrams

(STDs), a library of high-level commands known as Kernel Procedures, and the

general facilities of the C or C++ programming language. A process model ' s STD

defines a set of primary modes or slates that the process can enter and, for each state,

the conditions that would cause the process to move to another state. The condition

needed for a particular change in state to occur and the associated Destination State

are called a Iral1sitiol1 . Proto-C models allow actions to be specified at various

points in the finite state machine (FSM).

282

Overview of OPNET Software Modelling Package

The state transition diagram representation of Proto-C is well suited to the

specification of an interrupt-driven system because it methodically decomposes the

states of the system and the processing that should take place at each interrupt.

In a process model, parameters can be defined, which are called attributes. These are

used when the process model is instantiated as a process to customise aspects of its

behaviour. This technique fosters reuse of process models for various purposes by

avoiding hardwired specification where possible. For instance, a process model that

performs window-based flow control may be defined with the window size as an

attribute, so that it is reusab le in different situations requiring different values of the

window size.

The following Figure CS, taken from the Process Editor, shows example of a process

model ' s STD.

"

--~ ~ • f H

Figure CS: Showing example of a Process Model from the Process Editor.

283

OPNET Proto-C Sample Code for Traffic Generator and Sink in a Host

APPENDIXD

OPNET Proto-C Sample Code for
Traffic Generator and Sink in a Host

The work on performance evaluation of PDERRM was centred on modelling and

simulation of a number of communication network scenarios in which network nodes

made use of PDERRM process models. This involved extensive code generation. In

view of limitation of space, the presentations in this appendix and the next two

appendixes consist only limited sample code to represent few key operations.

Essentially, there were five basic modules used for building an End-Host node model

in the work on performance evaluation of PDERRM. These are; traffic generator,

traffic sink, traffic processor, transmitter and receiver modules. The transmitter and

the receiver modules were predefined by OPNET, users could only configure them

through their parameter attribute interface. The sample code for the process model of

traffic generator and traffic sink will be presented in this appendix. Section D.l

presents sample code for traffic generator process model, while Section D.2 presents

the process model for traffic sink.

D.I Process Model for Traffic Generator

/* The Process Model for Host Traffic Generator */
/* Process model C form file: pre src gen.pr.c */
/* Portions of this file copyright 1992-2003 by OPNET Technologies,
Inc. */

/* This variable carries the header into the object file */
const char pre src gen pr c [1 = "MIL 3 Tfile Hdr 100A 30A
op_runsim 7 43088516 43088516 1 initial-mode1-0 O-none none 0 0 none
o 0 0 0 0 0 0 0 90b 2";

#inc1ude <string.h>

/* OPNET system definitions */
#include <opnet.h>

/* Header Block */

/* Include files.
#include <oms dist_support.h>

/* Special attribute values. */

*/

#define SSC INFINITE TIME -1. 0

284

OPNET Proto-C Sample Code for Traffic Generator and Sink in a Host

/* Interrupt
#define
#define
#define

code values.
SSC START
SSC GENERATE
SSC STOP

/* Node configuration constants.
#define SSC_STRM_TO_LOW

/* Macro definitions for state
/* transitions.
#define
#define
#define
#define
SSC_GENERATE)

START
DISABLED
STOP
PACKET GENERATE

*/

*/

*/

o
1
2

o

*/
(intrpt_code
(intrpt code
(intrpt-code ==
(intrpt::::code ==

SSC_START)
SSC_STOP)
SSC_STOP)

/* Function prototypes. */
static void ss_packet_generate (void) i

/* End of Header Block */

/* OPNET predefine code block */
#if !defined (VOSD_NO_FIN)
#undef BIN
#undef BOUT
#define BIN FIN_LOCAL_FIELD(_op_last_line-passed) =

LINE - _op_block_origin;
#define- BOUT BIN
#define BINIT FIN_LOCAL_FIELD(_op_last_line-passed) 0;
op block origin = LINE ;

#else -
#define BINIT
#endif /* #if !defined (VOSD_NO_FIN) */

/* state variable definitions */
typedef struct

(
/* Internal state tracking
FSM SYS STATE

for FSM */

/* State Variables */
Objid
char
double
double
OmsT Dist Handle
OmsT Dist Handle
Boolean
Evhandle
double
Stathandle
Stathandle
Stathandle
Stathandle
) pre src gen_statei

#define pr_state~tr
(OP SIM CONTEXT PTR->mod state ptr))
#define-own id - -
#define format str

285

own_id;
format str [64J;
start_time;
stop time;
interarrival_dist_ptr;
pksize_dist-ptr;
generate_unfor.mattedi
next~k_evh;
next_intarr_time;
bits_sent_hndl;
packets sent hndl;
packet_size_hndl;
interarrivals_hndl;

pr_state-ptr->own_id
pr_state_ptr->format_str

OPNET Proto-C Sample Code for Traffic Generator and Sink in a Host

#define start time
#define stop_time
#define interarrival_dist_ptr
>interarrival dist ptr
#define pksize_dist-ptr
>pksize_dist-ptr
#define generate_un formatted
>generate unformatted
#define next-pk_evh
#define next_intarr_tirne
>next intarr time
#define bits-sent hndl - -
>bits sent hndl
#define packets_sent_hndl
>packets sent hndl
#define packet_size_hndl
>packet size hndl _
#define-interarrivals_hndl
>interarrivals hndl

pr state ptr->start time
pr=state~tr->stop_time
pr_state_ptr-

pr_state-ptr->next-pk_evh
pr_state_ptr-

/* These macro definitions will define a local variable called */
/* "op_svytr" in each function containing a FIN statement. */
/* This variable points to the state variable data structure, */
/* and can be used from a C debugger to display their values. */
#undef FIN PREAMBLE DEC
#undef FIN-PREAMBLE-CODE
#if defined (OPD PARALLEL)
define FIN PREAMBLE_DEC pre_src_gen_state *op_sv-ptr;
OpT_Sim_Context * tcontext_ptr;
define FIN PREAMBLE CODE
if (VOSS_Mt_Perform_Lock) \

VOS THREAD SPECIFIC DATA GET
(VosI Globals.simi mt context data_key, tcontext-ptr,
SimT_Context*);

else tcontext-ptr = VosI_Globals.simi_sequential_context-ptr;
op_sv_ptr = «pre_src_gen_state *) (tcontext-ptr->mod_state_ptr»;

#else

#define FIN PREAMBLE DEC
#define FIN PREAMBLE CODE
#endif

pre_srC_gen_state *op_svytr;
op_sv-ptr = pr_state-ptr;

/* Function Block */

#if !defined (VOSD_NO_FIN)
enum (op block origin = LINE);
#endif - - -

static void ss-packet_generate (void)
(
Packet*
double

pkptr;
pksize;

/** This function creates a packet based on the packet
generation specifications of the source model and sends it to the
lower layer. **/

FIN (ss_packet_generate (»;

/* Generate a packet size outcome.
pksize = (double) ceil (oms_dist_outcome

286

*/
(pksize_dist-ptr»;

OPNET Proto-C Sample Code for Traffic Generator and Sink in a Host

/* Create a packet of specified format and size. */
if (generate_unformatted == OPC_TRUE)

else

{

/* We produce un formatted packets. Create one. */
pkptr = op-pk_create (pksize);
J

/* Create a packet with the specified format. */
pkptr = op-pk_create_fmt (format_str);
op-pk_total_size_set (pkptr, pksize);
)

/* Update the packet generation statistics.
op_stat write (packets_sent_hndl, 1.0);
op_stat_write (packets_sent_hndl, 0.0);
op_stat_write (bits_sent_hndl, (double) pksize);
op_stat_write (bits_sent_hndl, 0.0);
op_stat_write (packet_size_hndl, (double) pksize);
op_stat_write (interarrivals_hndl, next_intarr_time);

/* Send the packet via the stream to the lower layer. */
op_pk_send (pkptr, SSC_STRM_TO_LOW);

FOUT;
J

*/

/* End of Function Block */

/* Tracing used for debug purposes */
/* Undefine optional tracing in FIN/FOUT/FRET */
/* The FSM has its own tracing code and the other */
/* functions should not have any tracing. */
#undef FIN TRACING
#define FIN_TRACING

#undef FOUTRET TRACING
#define FOUTRET_TRACING

#if defined (__ cplusplus)
extern "e" {
#endif

void pre_src_gen (OP_SIM_CONTEXT_ARG_OPT);
VosT_Obtype pre_src_gen_init (int * init_block-ptr);
VosT Address pre_src_gen_alloc (VOS_THREAD_INDEX_ARG_COMMA

VosT_Obtype, int);
void pre src_gen_diag (OP_SIM_CONTEXT_ARG_OPT);
void pre_src_gen_terminate (OP_SIM_CONTEXT_ARG_OPT);
void pre_src_gen_svar (void *, const char *, void **);

VosT_Fun_Status Vos_Define_Object (VosT_Obtype * _op_obst_ptr,
const char * _op_name, unsigned int _op_size, unsigned int
_op_init_obs, unsigned int _op_inc_obs);

VosT Address Vos Alloc Object MT (VOS THREAD INDEX ARG COMMA
VOST_Obtype _op_ob_hndl); - - - - --

VosT Fun Status Vos Poolmem Dealloc MT
(VOS THREAD INDEX ARG COMMA VosT Address op_ob_ptr);
#if defined-(__ cplusplus)
J

287

OPNET Proto-C Sample Code for Traffic Generator and Sink in a Host

/* end of 'extern "C" I */
#endif

/* Process model interrupt handling procedure */

void pre_src_gen (OP_SIM_CONTEXT_ARG_OPT)
{

#if !defined (VOSD_NO_FIN)
int op block origin = 0;

#endif - - -
FIN MT (pre src gen (»;
if (1)

(
/* Variables used in the "init" state.
char
char
Prg_List*
char*
int
Boolean
int

interarriva1_str [128];
size_str [128];
pk_format_names_lptr;
found_format_str;

low, high;
format_found;
i;

/* Variables used in state transitions.
int intrpt_code;

FSM ENTER (lIpre_src_genlt)

*/

*/

FSM BLOCK SWITCH
{

/** state (init) enter executives **/
FSM STATE ENTER UN FORCED NOLABEL (0, "ini t",

[init enter execs]")
FSM PROFILE SECTION IN ("pre _src_gen [init enter

execs] 11 I

the

i.e.

stateO_enter_exec)
{
/* At this initial state, we read the values of source
attributes and schedule a set interrupt that will
indicate our start time for packet generation. Obtain

object id of the surrounding module. */

/* Read the values of the packet generation parameters,

the attribute values of the surrounding module. */

op_ima_obj_attr_get (own_id, "Packet Interarrival Time",\
interarrival_str);
op_ima_obj_attr_get (own_id, "Packet Size", size_str)i
op_ima_obj_attr_get (own_id, "Packet Format", format_str);
op_ima_obj_attr_get (own_id, "Start Time", &start_time);
op_ima_obj_attr_get (own_id, "Stop Time", &stop_time);

/* Load the PDFs that will be used in computing the packet */
/* interarrival times and packet sizes. */

288

OPNET Proto-C Sample Code for Traffic Generator and Sink in a Host

interarrival dist ptr =\
ams dist load from string(interarrival str);
pksize_dist_ptr - oms_dist_load_from_string (size_str);

/* Verify the existence of the packet format to be used for */
/* generated packets. */
if (strcmp (format_str, "NONE") == 0)

{
/* We will generate unformatted packets. Set the flag. */
generate_un formatted = OPC_TRUE;

)
else
{

/* We will generate formatted packets. Turn off the flag. */
generate_unformatted = OPC_FALSE;

/* Get the list of all available packet formats. */
pk_format_names_lptr = prg_tfile_name_list_get\

(PrgC_Tfile_Type_Packet_Format);

/* Search the list for the requested packet format. */
format found = OPC FALSE;
for (i-= prg list ~ize (pk format names lptr);\

((format_found == OPC=FALSE)-&& (i-> 0»; i--)
{

/* Access the next format name and compare with requested */
/* format name. */
found format str = (char *) prg list access\
(pk format names lptr, i - 1); - -
if (strcmp-(found_format_str, format_str) 0)
format found = OPC_TRUE;
)

if (format_found == OPC_FALSE)
{

/* The requested format does not exist. Generate unformatted
packets. * /

generate_unformatted = OPC_TRUE;

/* Display an appropriate warning. */
op_prg_odb_print_major ("Warning from simple packet generator
model (simple source) :", "The specified packet format",
format_str, "Is not found. Generating un formatted packets
instead.", ope NIL);
) -
/* Destroy the lits and its elements since we don't need it
anymore. */
prg_Iist_free
prg_mem_free
)

. (pk format names lptr);
(pk=format=names=lptr);

/* Make sure we have valid start and stop times, i.e. stop time is
not earlier than start time. */

if «stop_time <= start_time) && (stop_time 1= SSC_INFINITE_TIME»
{
/* Stop time is earlier than start time. Disable the source. */
start time = SSC_INFINITE_TIME;

/* Display an appropriate warning. */

289

OPNET Proto-C Sample Code for Traffic Generator and Sink in a Host

opyrg_odbyrint_major ("Warning from simple packet generator
model

(simple source) :", "Although the generator is not disabled (start
time is set to a finite value), 11 I "a stop time that is not later
than the start time is specified.", "Disabling the generator.",
OPC_NIL) ;
)

1* Schedule a self interrupt that will indicate our start time for
1/ packet generation activities. If the source is disabled, *1
1* schedule it at current time with the appropriate code value. *1
if (start time == SSC INFINITE TIME)
{- - -
op_intrpt_schedule_self (op_sim_time (), SSC_STOP);
)

else

1* In this case, also schedule the interrupt when we will stop *1
/* generating packets, unless we are configured to run until */
1* the end of the simulation. */

if (stop_time != SSC_INFINITE_TIME)
{

op_intrpt_schedule_self (stop_time, SSC_STOP);
)
next_intarr_tirne = oms_dist outcome (interarrival_dist-ptr)i

1* Make sure that interarrival time is not negative. In that case
it\
will be set to O. *1

if (next_intarr_time <0)
{
next_intarr_time = 0.0;

1* Register the
bits sent hndl

statistics that will be maintained by this model. *1
op_stat_reg ("Generator. Traffic Sent (bits/sec)",\
OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);

packets sent hndl
(packets/sec)",

= op stat reg ("Generator.Traffic Sent \
OPC_STAT_INDEX_NONE,OPC_STAT_LOCAL);

packet_size_hndl = op_stat_reg ("Generator. Packet Size (bits)",
OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);

interarrivals hndl = op_stat_reg {"Generator. Packet Interarrival
Time (secs)", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);

/** blocking after enter executives of unforced state. **/
FSM EXIT (1, "pre_src_gen")

/** state (init) exit executives **/
FSM STATE EXIT UNFORCED (0, tfinit", Ifpre_src gen [init exit execs]")

290

OPNET Proto-C Sample Code for Traffic Generator and Sink in a Host

FSM PROFILE SECTION IN (Upre_src_gen [init exit execs]U,
stateO_exit_exec)

(
/*Determine the code of the interrupt, which is used in evaluating
*/
/* state transition conditions. */

intrpt_code = op_intrpt_code ();
)
FSM_PROFILE_SECTION_OUT (stateO_exit_exec)

/** state (init) transition processing **/
FSM_PROFILE_SECTION IN (Upre_src_gen [init trans conditions]U,
stateO_trans_conds)
FSM INIT COND (START)
FSM=TEST=COND (DISABLED)
FSM_TEST_LOGIC (Uinit U)
FSM_PROFILE_SECTION_OUT (stateO_trans conds)

FSM TRANSIT SWITCH
{

FSM_CASE_TRANSIT (0, 1, state1_enter_exec, ss_packet_generate();,
"START", "ss packet generate()", "init", "generate")
FSM CASE_TRANSIT (1-; 2, state2_enter_exec, if "DISABLED", "",
"init", "stop")
)

/** state (generate) enter executives **/
FSM_STATE_ENTER_UNFORCED (1, "generate", statel_enter exec,
"pre src gen [generate enter execs]")
FSM PROFILE_SECTION IN (Upre_src_gen [generate enter execs]U,
statel_enter_exec)
{

/* At the enter execs of the "generate" state we schedule the */
/* arrival of the next packet. */
next intarr time = oms_dist_outcome (interarrival_dist_ptr);

/* Make sure that interarrival time is not negative. In that case it
will be set to O. */
if (next_intarr_time <0)

{
next intarr time = 0;

next-pk_evh = op_intrpt_schedule_self (op_sim_time () +
next intarr_time, SSC_GENERATE);

/** blocking after enter executives of unforced state. **/
FSM_EXIT (3,"pre_src_gen")

/** state (generate) exit executives **/
FSM STATE EXIT UNFORCED (1, "generate", "pre_src gen [generate

exit
execs] It)
FSM_PROFILE_SECTION IN ("pre_src_gen [generate exit execs]U,
statel_exit_exec)
{

291

OPNET Proto-C Sample Code for Traffic Generator and Sink in a Host

/* Determine the code of the interrupt, which is used in
evaluating

state transition conditions. */
intrpt_code = op_intrpt_code ();

)
FSM PROFILE SECTION OUT (state1 exit_exec)

/** state (generate) transition processing **/
FSM PROFILE SECTION_IN ("pre_src_gen [generate trans conditions)",
state1_trans_conds)
FSM INIT COND (STOP)
FSM=TEST=COND (PACKET_GENERATE)
FSM DFLT COND - -
FSM TEST LOGIC ("generate")
FSM-PROFILE_SECTION_OUT (state1_trans conds)

FSM TRANSIT SWITCH
{

FSM_CASE_TRANSIT (0, 2, state2_enter_exec,
"generate", "stop")
FSM_CASE_TRANSIT (1, 1, state1_enter_exec,

ss-packet_generate();,

;, "STOP",

"PACKET_GENERATE", "ssyacket_generate()", "generate",
"generate")

FSM_CASE_TRANSIT (2, 1, statel_enter_exec, ;, "default",
"generate" I "generate")

)

/** state (stop) enter executives **/

1111 ,

"" ,

FSM_STATE_ENTER_UNFORCED (2, "stop", state2_enter_exec, "pre_src_gen
[stop enter execs)")
FSM_PROFILE_SECTION IN ("pre_src gen [stop enter execs)",
state2_enter_exec)
{
/* When we enter into the "stop" state, it is the time for us to */
/* stop generating traffic_ We simply cancel the generation of the
*/
/* next packet and go into a silent mode by not scheduling anything
else. */
if (op_ev_valid (next~k_evh) == OPC_TRUE)

(

op_ev_cancel (next~k_evh);

)

/** blocking after enter executives of unforced state. **/
FSM_EXIT (5, "pre_src_genll)

/** state (stop) exit executives **/
FSM_STATE_EXIT_UNFORCED (2, "stop", "pre_src gen [stop exit
execs] 11)
FSM_PROFILE_SECTION IN ("pre_src_gen [stop exit execs)",
state2_exit_exec)
(
)

/** state (stop) transition processing **/

292

OPNET Proto-C Sample Code for Traffic Generator and Sink in a Host

FSM_TRANSIT_MISSING ("stop")
)

FSM EXIT (0, "pre_src_gen")
)
)
void
pre_src_gen_diag (OP_SIM_CONTEXT_ARG_OPT)
{
/* No Diagnostic Block */
)
void
pre src_gen_terminate (OP_SIM_CONTEXT_ARG_OPT)
{

#if !defined (VOSD_NO_FIN)
int op block origin = LINE __ ;
#endlf - -

Vos_Poolmem_Dealloc MT (OP_SIM_CONTEXT_THREAD INDEX COMMA
pr_stateytr) ;

FOUT
)

/* Undefine shortcuts to state variables to avoid */
/* syntax error in direct access to fields of */
/* local variable prs_ptr in pre_src_gen_svar function. */
#undef own id
#undef format str
#undef start time
#undef stop_time
#undef interarrival_dist ptr
#undef pksize_distytr
#undef generate_un formatted
#undef next_pk_evh
#undef next intarr time - -
#undef bits_sent_hndl
#undef packets sent hndl
#undef packet size hndl
#undef interarrivals hndl

#undef FIN PREAMBLE DEC
#undef FIN PREAMBLE CODE
#define FIN PREAMBLE DEC
#define FIN-PREAMBLE-CODE - -
VosT_Obtype
pre_src_gen_init (int * init_block_ptr)

(

#if !defined (VOSD_NO_FIN)
int _op_block_origin = 0;

#endif
VosT Obtype obtype = OPC NIL;
FIN_MT (pre_src_gen_init-(init_blockytr»

Vas Define Object (&obtype, "proc state vars (pre_src_gen)",
- sizeof (pre_src_gen_state), 0, 20);

*init_hlock_ptr = 0;

293

FRET (obtype)
}

OPNET Proto-C Sample Code for Traffic Generator and Sink in a Host

VosT Address
pre src gen alloc (VOS_THREAD_INDEX_ARG_COMMA VosT_Obtype obtype,
int-init_block)

(
#if !defined (VOSD~O_FIN)

int _op_block_origin = 0;
#endif

pre_src_gen_state * ptr;
FIN_MT (pre_src_gen_alloc (obtype))

ptr = (pre_src_gen_state *)Vos_Alloc_Object MT
(VOS THREAD INDEX COMMA obtype);

void

- if (ptr != OPC_NIL)
ptr->_op_current_block = init_block;

FRET «VosT_Address)ptr)
}

pre_src_gen_svar (void * gen-ptr, const char * var_name, void **
varyytr)

(

*prsytri

if (var_name == OPC_NIL)
(
*varyytr = (void *)OPC_NIL;
FOUT
)

prs_ptr = (pre_src_gen_state *)gen-ptr;

if (strcmp ("own_id" , var_narne) == 0)
(
*vary_ptr = (void *) (&prs-ptr->own_id);
FOUT
}

if (strcmp (nformat_str n , var_name) == 0)
(
*varyytr = (void *) (prsytr->format_str);
FOUT
}

if (strcmp (lIstart_time" , var_name) == 0)
(
*vary-ptr = (void *) (&prs-ptr->start_time);
FOUT
)

if (strcmp ("stop_time" , var_name) == 0)
(
*varyytr = (void *) (&prs-ptr->stop_time);
FOUT
)

if (strcmp (ninterarrival_dist_ptrn , var_name) == 0)
(
*varyytr = (void *) (&prs_ptr->interarrival_distytr);
FOUT
)

if (strcmp (npksize_distytr n ,var_name) 0)
(

294

OPNET Proto-C Sample Code for Traffic Generator and Sink in a Host

*var-p-ptr = (void *) (&prs-ptr->pksize_dist-ptr);
FOUT
I

if (strcmp ("generate_unformatted" , var_name) == 01
{
*var-p-ptr = (void *) (&prs-ptr->generate_unformatted);
FOUT
I

if (strcmp ("next-pk_evh" , var_name) == 0)
{
*var-p-ptr = (void *) (&prs_ptr->next_pk_evh);
FOUT
I

if (strcmp ("next_intarr_time" , var_name) == 0)
{

*var-p-ptr = (void *) (&prs-ptr->next_intarr_time);
FOUT
I

if (strcmp (IIhits_sent_hndl" , var_name) == 0)
{
*var-p_ptr = (void *) (&prs_ptr->bits_sent_hndl);
FOUT
I

if (strcmp ("packets_sent_hndl" , var_name) == 0)
{

*var-p-ptr = (void *) (&prs-ptr->packets_sent_hndl);
FOUT
I

if (strcmp ("packet_size_hndl" , var_name) == 0)
{

*var_p_ptr = (void *) (&prs-ptr->packet_size_hndl);
FOUT
I

if (strcmp ("interarrivals_hndl" , var_namel == 0)
{
*var-p-ptr = (void *) (&prs-ptr->interarrivals_hndl);
FOUT
I

(void *)OPC_NIL;

FOUT
I

D.2 Process Model for Traffic Sink

/* The Process Model for Host Traffic Sink */
/* Process model C form file: pre_rcv-proc.pr.c */
/* Portions of this file copyright 1992-2003 by OPNET Technologies,
Inc. */

/* This variable carries the header into the object file */
const char pre_rcv_proc_pr_c [] = "MIL 3 Tfile Hdr 100A 30A
op_runsim 7 43088517 43088517 1 initial model 0 0 none none 0 0 none
o 0 0 0 0 0 0 0 90b 2";

#include <string.h>

/* OPNET system definitions */
#include <opnet.h>

295

OPNET Proto-C Sample Code for Traffic Generator and Sink in a Host

/* Header Block */

/* End of Header Block */
/* OPNET predefine code block */
#if !defined (VOSD_NO_FIN)
#undef BIN
#undef BOUT
#define BIN FIN_LOCAL_FIELD(_op_Iast_Iine-passed)
__ LINE__ _op_block_or~g~n;

#define BOUT BIN
#define BINIT FIN_LOCAL_FIELD(_op_Iast_Iine-passed) = 0;
_op_block_or~g~n = LINE ;
#else
#define BINIT
#endif /* #if !defined (VOSD_NO_FIN) */

/* 'State variable definitions */
typedef struct

(
/* Internal state tracking for FSM */
FSM SYS STATE
/* State Variables */
Stathandle
Stathandle
Stathandle
Stathandle
Stathandle
Stathandle
Stathandle
Stathandle
Stathandle
Stathandle
} pre_rcv_proc_state;

#define pr_state-ptr
(OP_SIM_CONTEXT_PTR->mod_state-ptr»
#define bits_rcvd_stathandle
>bits rcvd stathandle
#define bitssec_rcvd_stathandle
>bitssec rcvd stathandle
#define pkts_rcvd_stathandle
>pkts rcvd stathandle
#define pktssec_rcvd_stathandle
>pktssec_rcvd_stathandle
#define ete_delay_stathandle
>ete delay stathandle
#define bits_rcvd_gstathandle
>bits rcvd gstathandle
#define bitssec_rcvd_gstathandle
>bitssec rcvd gstathandle
#define pkts_rcvd_gstathandle
>pkts rcvd gstathandle
#define pktssec_rcvd_gstathandle
>pktssec_rcvd_gstathandle
#define ete_delay_gstathandle
>ete_delay_gstathandle

bits_rcvd_stathandle;
bitssec_rcvd_stathandle;
pkts_rcvd_stathandle;
pktssec_rcvd_stathandle;
ete_delay_stathandle;
bits_rcvd_gstathandle;
bitssec_rcvd_gstathandle;
pkts_rcvd_gstathandle;
pktssec_rcvd_gstathandle;
ete_delay_gstathandle;

/* These macro definitions will define a local variable called */

296

OPNET Proto-C Sample Code for Traffic Generator and Sink in a Host

1* "op_svytrll in each function containing a FIN statement. */
/* This variable points to the state variable data structure, */
/* and can be used from a C debugger to display their values. */
#undef FIN PREAMBLE DEC
#undef FIN=PREAMBLE=CODE
#if defined (OPD_PARALLEL)
define FIN PREAMBLE DEC pre_rcv_proc_state *op_sv_ptr;
OpT_Sim_Context * tcontext~tr;
define FIN PREAMBLE CODE \

if (VOSS_Mt_Perform_Lock) \
vas THREAD SPECIFIC DATA GET - -

(VosI_Globals.simi_mt_context_data_key, tcontext~tr, SimT Context
*); \

else \
tcontextytr

VosI_Globals.simi_sequential_contextytr; \
op_sv_ptr = ((pre_rcv_proc_state

>mod_state_ptr»;
#else

*) (tcontextytr-

define FIN PREAMBLE DEC
define FIN PREAMBLE CODE
#endif

pre_rcv-proc_state *op_sv-ptri
op_sv_ptr = pr_state_ptri

/* No Function Block */

/* OPNET predefined code block */
#if !defined (VOSD_NO_FIN)
enum (op block origin = LINE);
#endif - - -

/* Undefine optional tracing in FIN/FOUT/FRET */
/* The FSM has its own tracing code and the other */
/* functions should not have any tracing. */
#undef FIN TRACING
#define FIN_TRACING

#undef FOUTRET TRACING
#define FOUTRET TRACING

#if defined (__ cplusplus)
extern "C" {
#endif

void pre_rcvyroc (OP_SIM_CONTEXT_ARG_OPT);
VosT_Obtype pre_rcv_proc_init (int * init_block_ptr);
VosT_Address pre_rcvyroc_alloc (VOS_THREAD_INDEX_ARG_COMMA

VosT_Obtype, int);
void pre_rcv~roc_diag (OP_SIM_CONTEXT_ARG_OPT);
void pre_rcv~roc_terminate (OP_SIM_CONTEXT_ARG_OPT);
void pre_rcv_proc_svar (void *, const char *, void **);

VosT_Fun_Status Vos_Define_Object (VosT_Obtype * _op_obst_ptr,
const char * _op_name, unsigned int _op_size, unsigned int
_op_init_obs, unsigned int _op_inc_obs);

VosT_Address Vos_Alloc_Object_MT (VOS_THREAD_INDEX_ARG_COMMA
VosT_Obtype _op_ob_hndl);

VosT Fun Status Vos Poolmem Dealloc MT - - - - -
(VOS_THREAD_INDEX_ARG_COMMA VosT_Address _op_obytr);
#if defined (cplusplus)
} /* end of 'extern "c'" */
#endif

297

OPNET Proto-C Sample Code for Traffic Generator and Sink in a Host

/* Process model interrupt handling procedure */

void pre_rcv-proc (OP_SIM_CONTEXT_ARG_OPT)
{

#if !defined (VOSD_NO_FIN)
int op block origin = 0;
#endif - -
FIN_MT (pre_rcv-proc ());
if (1)

{
Packet*
double
double

pkptr;
pk_size;
ete_delay;

FSM ENTER ("pre_rcv-proc")

FSM BLOCK SWITCH
{

/*---*/
/** state (DISCARD) enter executives **/

FSM_STATE_ENTER_FORCED (0, "DISCARD", stateO_enter_exec,
"pre_rcv_proc [DISCARD enter execs]")
FSM PROFILE SECTION IN ("pre_rcv_proc [DISCARD enter execsJ",
stateO_enter_exec)
{

/* Obtain the incoming packet. */
pkptr = op-pk_get (op_intrpt_strm ());

/* Caclulate metrics to be updated. */
pk_size = (double) op~k_total_size_get (pkptr);
ete_delay = op_sim_time () - op-pk_creation_time_get(pkptr);

/* Update local statistics. */
op_stat_write (bits_rcvd_stathandle, pk_size);
op_stat_write (pkts_rcvd_stathandle, 1.0);
op_stat_write (ete_delay_stathandle, ete_delay);

op_stat_write (bitssec_rcvd_stathandle, pk_size);
op_stat_write (bitssec_rcvd_stathandle, 0.0);
op_stat_write (pktssec_rcvd_stathandle, 1.0);
op_stat_write (pktssec_rcvd_stathandle, 0.0);

/* Update global statistics. */
op_stat_write
op_stat_write
op_stat_write

(bits_rcvd_gstathandle,
(pkts_rcvd_gstathandle,
(ete_delay_gstathandle,

pk_size) ;
1. 0) ;

ete _delay) ;

op_stat_write (bitssec_rcvd_gstathandle, pk_size);
op_stat_write (bitssec_rcvd_gstathandle, 0.0);
op_stat_write (pktssec_rcvd_gstathandle, 1.0);
op_stat_write (pktssec_rcvd_gstathandle, 0.0);

/* Destroy the received packet. */
op-pk_destroy (pkptr);
}

/** state (DISCARD) exit executives **/
FSM_STATE_EXIT_FORCED (0, "DISCARD", "pre_rcv proc [DISCARD exit

execs] 11)

298

OPNET Proto-C Sample Code for Traffic Generator and Sink in a Host

FSM PROFILE SECTION IN ("pre_rcvyroc [DISCARD exit execs]",
stateO_exit_exec)

{
]

FSM PROFILE SECTION_OUT (stateO_exit_exec)

/** state (DISCARD) transition processing **/
FSM_TRANSIT_FORCE (2, state2_enter_exec, ;, "default",
"DISCARD", list 12")

"" ,

/*------------=--*/

/** state (INIT) enter executives **/
FSM_STATE_ENTER_FORCED_NOLABEL (1, "INIT", "pre_rcvyroc [INIT enter
execs] ")
FSM PROFILE SECTION IN ("pre _ rcv yroc [INIT enter execs]",
state1_enter_exec)

{

/* Initilaize the statistic handles to keep track of traffic
sinked by this process. */
bits_rcvd_stathandle = op_stat_reg ("Traffic Sink. Traffic Received
(bits)", OPC_STAT_INDEX_NONE, ope_STAT_LOCAL);

bitssec rcvd stathandle = op stat reg ("Traffic Sink. Traffic
Received (bits/sec)", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);

pkts_rcvd_stathandle = op_stat_reg ("Traffic Sink.Traffic Received
(packets)",OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);

pktssec rcvd stathandle = op_stat_reg ("Traffic Sink. Traffic
Received (packets/sec)", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);

ete_delay_stathandle = op_stat reg ("Traffic Sink.End-to-End Delay
(seconds)", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);

bits_rcvd_gstathandle = op_stat_reg ("Traffic Sink. Traffic Received
(bits)", OPC_STAT_INDEX_NONE, OPC_STAT_GLOBAL);

bitssec rcvd gstathandle = op stat reg ("Traffic Sink. Traffic
Received (bits/sec)", OPC_STAT_INDEX_NONE, OPC_STAT_GLOBAL);

pkts_rcvd_gstathandle = op_stat_reg ("Traffic Sink. Traffic Received
(packets) ", OPC _ STAT _INDEX_NONE, OPC_STAT_ GLOBAL) ;

pktssec rcvd gstathandle = op_stat_reg ("Traffic Sink. Traffic
Received (packets/sec)", OPC_STAT_INDEX_NONE, OPC_STAT_GLOBAL);

ete_delay_gstathandle = op_stat_reg ("Traffic Sink.End-to-End Delay
(seconds) ",OPC_STAT_INDEX_NONE, OPC_STAT_GLOBAL);
}

/** state (INIT) exit executives **/
FSM_STATE_EXIT_FORCED (1, "INIT", "pre_rcvyroc [INIT exit execsl ")
FSM_PROFILE SECTION IN ("pre_rcvyroc [INIT exit execs]",
statel_exit_exec)
{
}

FSM_PROFILE_SECTION_OUT (statel_exit_exec)

/** state (INIT) transition processing **/

299

OPNET Proto-C Sample Code for Traffic Generator and Sink in a Host

FSM_TRANSIT_FORCE (2, state2_enter_exec, ;, "default", 1111, "INIT",
list 12")

/*-=---*/
/** state (st_12) enter executives **/
FSM_STATE_ENTER_UNFORCED (2, "st_12", state2_enter_exec,
"pre_rcvyroc [st_12 enter execs] 11)

FSM PROFILE SECTION IN ("pre_rcvyroc [st_12 enter execs]",
state2_enter_exec)

(
)
FSM_PROFILE_SECTION_OUT (state2_enter_exec)

/** blocking after enter executives of unforced state. **/
FSM_EXIT (5,"pre_rcvyroc")

/** state (st_12) exit executives **1
FSM STATE EXIT UN FORCED (2, "st_12", "pre_rcv_proc [st_12 exit
execs]")
FSM_PROFILE_SECTION IN ("pre_rcvyroc [st_12 exit execs]",
state2_exit_exec)

(
)

FSM PROFILE_SECTION_OUT (state2_exit_exec)

/** state (st_12) transition processing **1
FSM_PROFILE_ SECTION_IN ("pre_rcv yroc [st_12 trans conditions]",
state2_trans_conds)
FSM_INIT_COND (ARRIVAL_RCV)
FSM DFLT COND - -
FSM_TEST_LOGIC ("st_12")
FSM PROFILE_SECTION_OUT (state2_trans conds)

FSM TRANSIT SWITCH
(

FSM_CASE_TRANSIT (0, 0, stateO_enter_exec, ;, "ARRIVAL_RCV",
"st_12", "DISCARD")
FSM_CASE_TRANSIT (1, 2, state2_enter_exec, "
"st_12", "st_12")

}

"default", 1111 ,

/*---*/

FSM EXIT (1, "pre_rcv_proc lt
)

)
}

void pre_rcvyroc_diag (OP_SIM_CONTEXT_ARG_OPT)
(
1* No Diagnostic Block *1
)

void pre_rcvyroc_terminate (OP_SIM_CONTEXT_ARG_OPT)
(

#if !defined (VOSD_NO_FIN)
int op block origin = LINE
#endif - -

Vos Poolmem_Dealloc_MT (OP_SIM_CONTEXT_THREAD INDEX COMMA
pr_stateytr) ;

300

'"' ,

OPNET Proto..c Sample Code for Traffic Generator and Sink in a Host

FOUT
}

/* Undefine shortcuts to state variables to avoid */
/* syntax error in direct access to fields of */
/* local variable prs-ptr in pre_rcv_proc_svar function. */
#undef bits rcvd stathandle
#undef bitssec_rcvd_stathandle
#undef pkts_rcvd_stathandle
#undef pktssec_rcvd_stathandle
#undef ete_delay_stathandle
#undef bits_rcvd_gstathandle
#undef bitssec_rcvd_gstathandle
#undef pkts_rcvd_gstathandle
#undef pktssec_rcvd_gstathandle
#undef ete_delay_gstathandle

#undef FIN PREAMBLE DEC
#undef FIN_PREAMBLE_CODE

#define FIN PREAMBLE DEC
#define FIN_PREAMBLE_CODE

VosT_Obtype
pre_rcv_proc_init (int * init_block~tr)

(

#if !defined (VOSD NO FIN)
int _op_block_origin = 0;

#endif
VosT_Obtype obtype = OPC_NIL;
FIN_MT (pre_rcv_proc_init (init_block_ptr»

Vos_Define_Object (&obtype, "proc state vars (pre_rcv_proc)",
sizeof (pre_rcv_proc_state), 0, 20);

*init_block-ptr = 2;

FRET (obtype)
}

VosT Address
pre_rcv-proc_alloc (VOS_THREAD_INDEX_ARG_COMMA VosT_Obtype obtype,
int init_block)

(
#if !defined (VOSD_NO_FIN)

int _op_block_origin = 0;
#endif

pre_rcv_proc_state * ptr;
FIN_MT (pre_rcv-proc_alloc (obtype»

ptr = (pre_rcv~roc_state *)Vos_Alloc_Object_MT
(VOS_THREAD_INDEX_COMMA obtype);

if (ptr != OPC_NIL)
ptr->_op_current_block = init_block;

FRET «VosT_Address)ptr)
}

void pre_rcv-proc_svar (void * gen_ptr, const char * var_narne, void
** var-p-ptr)

{

301

OPNET Proto-C Sample Code for Traffic Generator and Sink in a Host

if (var_name == OPC_NIL)
{

*prsytr;

*var_p-ptr = (void *)OPC_NIL;
FOUT
)

prs_ptr = (pre_rcv_proc_state *)gen_ptr;

if (strcmp ("bits rcvd stathandle" , var_name) == 0)

*var-p-ptr = (void *) (&prs-ptr->bits_rcvd_stathandle);
FOUT
)

if (strcrnp (tlbitssec_rcvd_stathandle" I var_narne) -- 0)
{
*var-p_ptr = (void *) (&prs_ptr

>bitssec_rcvd_stathandle);
FOUT
}

if (strcmp ("pkts_rcvd_stathandle" , var_name) == 0)
{
*var_p-ptr = (void *) (&prs_ptr->pkts_rcvd_stathandle);
FOUT
}

if (strcmp ("pktssec_rcvd_stathandle" ,var_name) 0)
{

*var-p-ptr = (void *) (&prs-ptr
>pktssec_rcvd_stathandle);

FOUT
}

if (strcmp ("ete_delay_stathandle" , var_name) == 0)
{

*var-p-ptr = (void *) (&prs-ptr->ete_delay_stathandle);
FOUT
}

if (strcmp ("bits_rcvd_gstathandle" , var_name) == 0)
{
*var-p-ptr = (void *) (&prs-ptr->bits_rcvd_gstathandle);
FOUT
}

if (strcmp ("bitssec_rcvd_gstathandle"
{

*var-p-ptr = (void *) (&prs-ptr
>bitssec_rcvd_gstathandle);

FOUT
}

var_name)

if (strcmp ("pkts_rcvd_gstathandle" , var_name) == 0)
{

0)

*var-p-ptr = (void *) (&prs~tr->pkts_rcvd_gstathandle);

FOUT
}

if (strcmp ("pktssec_rcvd_gstathandle"
{
*var-p-ptr = (void *) (&prs_ptr

>pktssec_rcvd_gstathandle);
FOUT
}

if (strcmp ("ete_delay_gstathandle" , var_name) -- 0)

302

0)

OPNET Proto-C Sample Code for Traffic Generator and Sink in a Host

*varyytr
FOUT
)

(void *) (&prs_ptr->ete_delay_gstathandle);

*vary_ptr = (void *)Ope_NIL;

FOUT
)

303

Sample Code for Traffic Processor and Regulator in a PDERRM-Host

APPENDIXE

Sample Code for Traffic Processor and Regulator in a
PDERRM-Host

The sample source codes presented in this appendix concern traffic processing that

took place in a host after traffic has been generated by the traffic generator module.

There are two modes of operation--basic operation and basic operation with traffic

rate regulation.

The basic operation involves traffic programming interface and network interface

linkage. The second operation adds on top of the basic operation, the action of traffic

rate regulation, which made use of global parameters in injecting traffic to the

network.

E.1 Process Model for Traffic Processor

/* The Process Model for Host Traffic Processor */
/* Process model C form file: pre src proc.pr.c
/* Portions of this file copyright 1992-2003 by OPNET Technologies,
Inc. * /

/* This variable carries the header into the object file */
const char pre_srcyrocyr_c [] = "MIL_3_Tfile_Hdr_ 100A 30A
op_runsim 7 43088517 43088517 1 initial model 0 0 none none 0 0 none
o 0 0 0 0 0 0 0 90b 2";

#inc1ude <string.h>

/* OPNET system definitions */
#include <opnet.h>

/* Header Block */

/* Define Input Packet Streams */
#define GEN IN STRM 0
#define RCV=IN=STRM 1

/* Output Packet Streams */
#define TO SINK OUT STRM 0
#define TO=XMT_OUT_STRM 1

/* OUtput Statistic for Source Adaptive Control */
#define TO_GEN_OUT_STAT 0

/* Macros for in Packet Processing */
#define GEN_ARRVL (op_intrpt_type() -- OPC INTRPT STRM &&
op_intrpt_strm() == GEN_IN_STRM)

304

Sample Code for Traffic Processor and Regulator in a PDERRM-Host

#define RCV_ARRVL (op_intrpt_type()
op_intrpt_strm() == RCV_IN_STRM)

/* Global String declaration */
char *reduce_arrvl_ratei

/* End of Header Block */

/* OPNET predefined code block */
#if !defined (VOSD_NO_FIN)
#undef BIN
#undef BOUT

OPC INTRPT STRM &&

#define BIN FIN_LOCAL_FIELD(_op_Iast_Iine-passed) =
LINE - _op_block_origin;

#define- BOUT BIN
#define BINIT FIN_LOCAL_FIELD(_op_Iast_Iine-passed) 0;
_op_block_origin = LINE ;
#else
#define BINIT
#endif /* #if !defined (VOSD_NO_FIN) */

/* State variable definitions */
typedef struct

{
/* Internal state tracking
FSM SYS STATE

for FSM */

/* State Variables */
Objid
int
Objid
int
} pre_src~roc_state;

#define pr_state_ptr
(OP SIM CONTEXT PTR->mod state ptr))
#define-proc id- -
#define dest=address
#define parent node
#define app_qos_attr

proc_idi
dest_address;
parent_node;
app_qos_attr;

pr_state-ptr->proc_id
pr_state-ptr->dest_address
pr_state-ptr->parent_node
pr_state_ptr->app_qos_attr

/* These macro definitions will define a local variable called */
/* Ifop_svytr" in each function containing a FIN statement .. */
/* This variable points to the state variable data structure, */
/* and can be used from a C debugger to display their values. */
#undef FIN PREAMBLE DEC
#undef FIN-PREAMBLE-CODE
#if defined (OPD_PARALLEL)
define FIN_PREAMBLE_DEC pre_src-proc_state *op_sv-ptr;
OpT Sim Context * tcontext ptr;
define FIN PREAMBLE_CODE ,

if (VosS_Mt_Perform_Lock) ,
VOS THREAD SPECIFIC DATA GET - -

(VosI Globals.simi mt context data key, tcontext-ptr, SimT Context
*); ,- - - --

else ,
Tcontext-ptr

VosI_Globals.simi_sequential_context_ptr; ,
op_sv_ptr = ((pre_src-proc_state *) (tcontext-ptr

>mod_state_ptr));
#else
define FIN PREAMBLE DEC pre_src_proc_state *op_sv-ptr;

305

Sample Code for Traffic Processor and Regulator in a PDERRA1-Host

define FIN PREAMBLE CODE
#endif

/* No Function Block */

#if !defined (VOSD_NO_FIN)
enum { op block origin LINE};
#endif - - -

/* Undefine optional tracing in FIN/FOUT/FRET */
/* The FSM has its own tracing code and the other */
/* functions should not have any tracing. */
#undef FIN_TRACING
#define FIN_TRACING

#undef FOUTRET TRACING
#define FOUTRET_TRACING

#if defined (__ cplusplus)
extern "c" {
#endif
void pre_src-proc (OP_SIM_CONTEXT_ARG_OPT);
VosT_Obtype pre_src_proc_init (int * init_block_ptr);
VosT_Address pre_src-proc_alloc (VOS_THREAD_INDEX_ARG_COMMA
VosT_Obtype, int);
void pre_src-proc_diag (OP_SIM_CONTEXT_ARG_OPT);
void pre_src-proc_terminate (OP_SIM_CONTEXT_ARG_OPT);
void pre_src-proc_svar (void *, const char *, void **);

VosT Fun Status Vos Define Object (VosT Obtype * _op_obst_ptr, const
char-+ _~p_name, unsigned !nt _op_size,-unsigned int _op_init_obs,
unsigned int _op_inc_obs);
VosT Address Vos Alloc Object MT (VOS THREAD INDEX ARG COMMA
VoST:::Obtype _op_ob_hndl); - - - --
VosT_Fun_Status Vos_Poolmem_Dealloc_MT (VOS_THREAD_INDEX_ARG_COMMA
VosT_Address _op_ob_ptr);

#if defined
} /* end of
#endif

cplusplus)
t extern "C" I * /

/* Process model interrupt handling procedure */

void pre_src-proc (OP_SIM_CONTEXT_ARG_OPT)
{

#if !defined (VOSD NO FIN) int _op_block_origin = 0;
#endif - -
FIN MT (pre_src-proc (»;
if (1)

{

Packet* pkptr;

FSM_ENTER ("pre_src-proc")
FSM BLOCK SWITCH

{
/*---*/
/** state (init) enter executives **/

FSM_STATE_ENTER_FORCED NOLABEL (0, "init", "pre_src-proc {init enter
execs] 11)

306

Sample Code for Traffic Processor and Regulator in a PDERRM-Host

FSM_PROFILE_SECTION IN ("pre_src_proc [init enter execs]",
stateO_enter_exec)

(
proc_id = op_id_self();
parent_node = op_topo-parent(proc_id);
op_ima_obj_attr_get(parent_node, "App_dest_address",

&dest_address);
op_ima_obj_attr_get(parent_node, "App_qos_attribute",

&app_qos_attr) ;
}

FSM_PROFILE_SECTION_OUT (stateO_enter_exec)

/** state (init) exit executives **/
FSM_STATE_EXIT_FORCED (0, "init", "pre_srcyroc [init exit execs] ")
FSM_PROFILE_SECTION IN ("pre_src_proc [init exit execs]",
stateO_exit_exec)

{
}
FSM_PROFILE_SECTION_OUT (stateO_exit_exec)

/** state (init) transition processing **/
FSM_TRANSIT_FORCE (I, statel_enter_exec, it "default", "", "init",

"idle")
/*---*/

/** state (idle) enter executives **/
FSM_STATE_ENTER_UNFORCED (1, "idle", state1_enter exec,
IIpre_srcyroc [idle enter execs] ")
FSM PROFILE SECTION IN ("pre_src -proc [idle enter execs]",
statel_enter_exec)

(
)

FSM_PROFILE_SECTION OUT (state1_enter_exec)

/** blocking after enter executives of unforced state. **/
FSM_EXIT (3, "pre_src_proc")

/** state (idle) exit executives **/
FSM_STATE_EXIT_UNFORCED (1, "idle", "pre_src_proc [idle exit
execs] ")
FSM_PROFILE_SECTION IN ("pre_src-proc [idle exit execs]",
state1_exit_exec)

(
)

FSM_PROFILE_SECTION_OUT (state1_exit_exec)

/** state (idle) transition processing **/
FSM _PROFILE_SECTION_IN ("pre _src_proc [idle trans conditions]",
state 1 trans conds)
FSM INIT COND (RCV ARRVL)
FSM=TEST=COND (GEN=ARRVL)
FSM DFLT COND
FSM_TEST_LOGIC ("idle")
FSM_PROFILE_SECTION OUT (state1_trans_conds)

FSM TRANSIT SWITCH - -
(
FSM CASE TRANSIT (0, 3, state3 enter _exec, ; , -"idle", "rev")
FSM CASE TRANSIT (1, 2, state2 enter exec, ; , - - -"idle", "xmt")

307

"RCV_ARRVL", till ,

"GEN_ARRVL" I "" ,

Sample Code for Traffic Processor and Regulator in a PDERRAf-Host

FSM CASE TRANSIT (2, 1, state1_enter_exec, "
"idle")
}

IIdefault" , IIU ,

/*---*/
/** state (xmt) enter executives **/

"idle",

FSM STATE ENTER FORCED (2, "xmt", state2_enter_exec, "pre_srcyroc
[xrnt enter execs]")
FSM PROFILE SECTION IN ("pre_srcyroc [xmt enter execsl",
state2_enter_exec)
(
pkptr = opyk_get(GEN_IN_STRM);
op_pk_nfd_set(pkptr,"dst_addr", dest_address);
opyk_nfd_set (pkptr, "qos_num", app_qos_attr);
op_pk_send(pkptr, TO_XMT_OUT_STRM);
)
FSM_PROFILE_SECTION_OUT (state2_enter_exec)

/** state (xmt) exit executives **/
FSM_STATE_EXIT_FORCED (2" "xmt" , "pre_srcyroc [xmt exit execsl")
FSM_PROFILE_SECTION IN ("pre_src_proc [xmt exit execsl",
state2_exit_exec)
(
)
FSM_PROFILE_SECTION_OUT (state2_exit_exec)

/** state (xmt) transition processing **/
FSM_TRANSIT_FORCE (1, statel_enter_exec, ;, "default", "", "xmt",
"idle")
/*---*/
/** state (rev) enter executives **/
FSM STATE_ENT ER_FORCED (3, "rev", state3_enter_exec, "pre_srcyroc
[rev enter execs] 11)
FSM PROFILE SECTION IN ("pre_srcyroc [rcv enter execsl",
state3_enter_exec) -
(
pkptr = op_pk_get(RCV_IN_STRM);
opyk_send(pkptr, TO_SINK_OUT_STRM);

}
FSM_PROFILE_SECTION_OUT (state3_enter_exec)

/** state (rev) exit executives **/
FSM_STATE_EXIT_FORCED (3, "rcv", "pre_srcyroc [rcv exit execsl")
FSM_PROFILE_SECTION IN ("pre_srcyroc [rcv exit execsl",
state3_exit_exec)
{
}

FSM_PROFILE_SECTION_OUT (state3_exit_exec)

/** state (rev) transition processing **/
FSM_TRANSIT_FORCE (1, statel_enter_exec, ;, "default", "", "rev",
"idle")
/*---*/
}
FSM EXIT (0, "pre_src_proc")
}

}
void pre_src_proc_diag (OP_SIM_CONTEXT_ARG_OPT)

(
/* No Diagnostic Block */

308

Sample Code for Traffic Processor and Regulator in a PDERRAf-Host

void pre_src-proc_terrninate (OP_SIM_CONTEXT_ARG_OPTI
(
#if !defined (VOSD NO FINI
int _op_block_origin ~ __ LINE __ ;
#endif
FIN_MT (pre_src-yroc_terminate (11

vos_Poolmem Dealloc MT (OP_SIM_CONTEXT_THREAD INDEX COMMA
pr_state-ptrl;

FOUT
)

/* Undefine shortcuts to state variables to avoid */
/* syntax error in direct access to fields of */
/* local variable prs_ptr in pre_src-proc_svar function. */
#undef proc_id
#undef dest_address
#undef parent node
#undef app_qos_attr

#undef FIN PREAMBLE DEC
#undef FIN PREAMBLE CODE

#define FIN PREAMBLE DEC
#define FIN PREAMBLE CODE

VosT_Obtype
pre_src-yroc_init (int * init_block_ptrl

{

#if !defined (VOSD_NO_FINI int _op_block_origin 0;
#endif
VosT_Obtype obtype = OPC_NIL;
FIN_MT (pre_src-proc_init (init_block_ptrl)
Vos_Define_Object (&obtype, "proc state vars (pre_srcyroc)",
sizeof (pre_src_proc_statel, 0, 201;
*init_block_ptr = 0;

FRET (obtype)
)
VosT Address
pre src_proc alloc (VOS_THREAD_INDEX_ARG_COMMA VosT_Obtype obtype,
int init_blockl

{
#if !defined (VOSD_NO_FINI
int op block origin = 0;
#endlf - -
pre_src_proc_state * ptri
FIN_MT (pre_src-yroc_alloc (obtypell

ptr = (pre_src-yroc_state *IVos_Alloc_Object_MT
(VOS_THREAD_INDEX_COMMA obtypel;
if (ptr != OPC NILI
ptr-> op current block = init_block:
FRET «VQST_Addresslptr)
)
void pre_srcyroc_svar (void * gen~tr, const char * var_name, void
** var-y-ptrl

{

pre_src_proc_state *prs_ptr;

309

Sample Code for Traffic Processor and Regulator in a PDERRAf-Host

if (var_name == OPC_NIL)
{

*var-p-ytr = (void *)OPC_NIL;
FOUT
)

prs-ytr = (pre_src-yroc_state *)gen_ptr;

if (strcm.p (lIproc_id" , var_name) == 0)
{

*var_p-ptr = (void *) (&prs-ptr->proc_id);
FOUT

if (strcmp (IIdest_address" , var_name) == 0)
{

*var-p-ptr = (void *) (&prs_ptr->dest_address);
FOUT
)

if (strcmp {"parent_node" , var_name} == 0)
{

*var-p-ytr = (void *) (&prs-ptr->parent_node);
FOUT
}

if {strcmp ("app_qos_attr" , var_name) == 0)
(

*var_p-ptr = (void *) (&prs-ptr->app_qos_attr);
FOUT

}

*var-p-ytr
FOUT
}

(void *)OPC_NIL;

E.2 Process Model for Traffic Processor and Regulator

/* The Process Model for Traffic Processor and Regulator in a Host
*/
/* Process model C form file: src-proc_add.pr.c */
/* Portions of this file copyright 1992-2003 by OPNET Technologies,
Inc. * /

/* This variable carries the header into the object file */
const char src-yroc_add_pr_c !] = "MIL_3_Tfi1e_Hdr_ 100A 30A
op_runsim 7 430BCBED 430BCBED 1 igbega Asiri 0 0 none none 0 0 none
o 0 0 0 0 0 0 0 gOb 2";

#include <string.h>

/* OPNET system definitions */
#include <opnet.h>

/* Header Block */

/* Define Input Packet Streams */
#define GEN IN STRM 0
#define RCV-IN-STRM 1

/* Output Packet Streams */
#define TO SINK OUT STRM 0
#define TO XMT OUT STRM 1

310

Sample Code for Traffic Processor and Regulator in a PDERRM-Host

/* OUtput Statistic for Source Adaptive Control */
/* #define TO_GEN_OUT_STAT 0 */

/* Macros for in Packet Processing */
#define GEN_ARRVL (op_intrpt_type() -- OPC INTRPT STRM &&
op_intrpt_strm() == GEN_IN_STRM)
#define RCV_ARRVL (op_intrpt_type() == OPC INTRPT STRM &&
op_intrpt_strm() == RCV_IN_STRM)

/* define control constant */
#define WINDOW SIZE 1.0

/* Intrrupt code constant */
#define RARRVL_RATE 5

/* Global declaration of arrival rate*/
double arrvl_rate;

/* End of Header Block */

/* OPNET System predefined block */
#if !defined (VOSD_NO_FIN)
#undef BIN
#undef BOUT
#define BIN FIN_LOCAL_FIELD(_op_last_line_passed)
__ LINE __ - _op_block_origin;
#define BOUT BIN
#define BINIT FIN_LOCAL_FIELD(_op_last_line_passed) 0;

op block origin = LINE ;
#else - ----
#define BINIT
#endif /* #if !defined (VOSD_NO_FIN) */

/* State variable definitions */
typedef struct

(
/* Internal state tracking
FSM SYS STATE

for FSM */

/* State Variables */
int
Objid
Objid
int
double
int
int
int
double
) src-proc_add_state;

#define pr_state-ptr
(OP SIM CONTEXT PTR->mod state ptr»
#define-dest address -
#define proc_id
#define parent_node
#define qos_numb

311

dest_address;
proc_idi
parent_node;
qos_numb;
resource allocatn;
allowedJ;its;
total_bits_rcvd;
time_ctrl;
service_rate;

pr_state-ptr->dest_address
pr_state_ptr->proc_id
pr_state-ptr->parent_node
pr_state-ptr->qos_numb

Sample Code for Traffic Processor and Regulator in a PDERRA1-Host

#define resource allocatn
>resource allocatn
#define allowed bits
#define total bits rcvd - ->total bits rcvd
#define time_ctrl
#define service_rate

pr_state-ptr->allowed_bits
pr_state-ptr-

pr_state-ptr->tirne_ctrl
pr_state_ptr->service_rate

/* These macro definitions will define a local variable called */
/* "op_svytrll in each function containing a FIN statement. */
/* This variable points to the state variable data structure, */
/* and can be used from a C debugger to display their values. */
#undef FIN PREAMBLE DEC - -
#undef FIN PREAMBLE CODE
#if defined (OPD_PARALLEL)
define FIN PREAMBLE DEC src-proc_add_state *op_sv-ptr;
OpT Sim Context * tcontext_ptr;
define FIN PREAMBLE CODE ,

if (VosS Mt Perform_Lock) ,
vas THREAD SPECIFIC DATA GET - - -

(VosI Globals.simi mt context data key, tcontext-ptr, SimT Context
*); ,- - - --

else ,
tcontext ptr =

VOSI_Globals.simi_sequential_context_ptr; ,
op sv ptr = ((src proc add state

>mod_state_ptr));- - - -
#else

*) (tcontext-ptr-

define FIN PREAMBLE DEC
define FIN PREAMBLE CODE
#endif

src_proc_add_state *op_sv~tr;
op_sv-ptr = pr_state_ptr;

/* No Function Block */

#if !defined (VOSD_NO_FIN)
enum { _op_block_origin = __ LINE __);
#endif

/* Undefine optional tracing in FIN/FOUT/FRET */
/* The FSM has its own tracing code and the other */
/* functions should not have any tracing. */
#undef FIN TRACING
#define FIN_TRACING

#undef FOUTRET TRACING
#define FOUTRET_TRACING

#if defined (__ cplusplus)
extern "C" {
#endif

void src_proc_add (OP_SIM_CONTEXT_ARG_OPT);
VosT_Obtype src-proc_add_init (int * init_block-ptr);
VosT_Address src_proc_add_alloc (VOS_THREAD_INDEX_ARG_COMMA

VosT_Obtype, int);
void src-proc_add_diag (OP_SIM_CONTEXT_ARG_OPT);
void src-proc_add_terminate (OP_SIM_CONTEXT_ARG_OPT);
void src_proc_add_svar (void *, const char *, void **);

VosT_Fun_Status Vos_Define_Object (VosT_Obtype * _op_obst_ptr,
const char * _op_name, unsigned int _op_size, unsigned int
_op_init_obs, unsigned int _op_inc_obs);

312

Sample Code for Traffic Processor and Regulator in a PDERRM-Host

VosT Address Vos Alloc Object MT (VOS THREAD INDEX ARG COMMA
VOST_obtype _op_ob_hndl); - - - - --

VosT Fun Status Vos Poolmem Dealloc MT - - -
(VOS THREAD INDEX ARG COMMA VosT Address op ob ptr);
#if defined-(cplusplus) - -
} /* end of 'extern "C" I */
#endif

/* Process model interrupt handling procedure */

void src-Froc_add (OP_SIM_CONTEXT_ARG_OPT)
(

#if !defined (VOSD_NO_FIN)
int op block origin = 0;
#endif - -

FIN_MT (src-Froc_add (»;
if (1)

{

Packet*
int
int
int
double
double
double
double

pkptr;
insert_ok;
pksizei
intrpt_codei
current_time;
start_time;
change_time;
narrvl_rate;

FSM BLOCK SWITCH
{

/*---*/
/** state (init) enter executives **/

FSM_STATE_ENTER_FORCED_NOLABEL (0, "init", "srcyroc_add [init enter
execs] ")
FSM PROFILE SECTION IN ("src_proc_add [init enter execs]",
stateO_enter_exec)

(

proc id = op id self();
parent_node ~ op_topo_parent(proc_id);
op_ima_obj_attr_get(proc_id, "Service_rate", &service rate);
op_ima_obj_attr_get(proc_id, "Resource_allocation",
&resource_allocatn};
op_ima_obj_attr_get(parent_node, "App_dest_address",
&dest_address);
op_ima_obj_attr_get(parent_node, "App_qos_nurol::>", &qos_numb);

time ctrl = 0;

allowed bits
service_rate;

resource allocatn * WINDOW SIZE *

total bits rcvd 0;
)

/** state (init) exit executives **/
FSM STATE EXIT FORCED (0, "init", "src_proc_add [init exit execs] ")

313

Sample Code for Traffic Processor and Regulator in a PDERRM-Host

FSM_PROFILE_SECTION IN ("src_proc_add [init exit execsl ",
stateO_exit_exec)

{
}

FSM PROFILE_SECTION_OUT (stateO_exit_exec)

/** state (init) transition processing **/
FSM_TRANSIT_FORCE (1, statel_enter_exec, ;, "default", 1111, "init",
"idle")
/*---*/

/** state (idle) enter executives **/
FSM STATE ENTER UNFORCED (1, "idle", state1 enter exec,
"src proc-add (Idle enter execs] ") -
FSMj'ROFILE_SECTION IN ("srcyroc_add [idle enter execsl ",
state1_enter_exec)

{
}

FSM PROFILE SECTION OUT (state1 enter exec)
/**-blocking after enter executives of unforced state. **/

FSM EXIT (3, "src_proc_add")

/** state (idle) exit executives **/
FSM_STATE_EXIT_UNFORCED (1, "idle", "src_proc_add [idle exit
execs] ")
FSM PROFILE SECTION IN ("srcyroc_add [idle exit execsl ",
statel_exit_exec)

{
}

FSM PROFILE_SECTION_OUT (state1_exit_exec)

/** state (idle) transition processing **/
FSM_PROFILE_SECTION_IN ("srcyroc_add [idle trans conditionsl",
state1_trans_conds)

FSM_INIT_COND (GEN_ARRVL)
FSM TEST COND (RCV_ARRVL)
FSM DFLT COND - -
FSM_TEST_LOGIC ("idle")
FSM_PROFILE SECTION_OUT (state1_trans_conds)

FSM TRANSIT SWITCH
{

FSM CASE TRANSIT (0, 2,
"idle ll

, "xmt ")
FSM CASE TRANSIT (1, 3,
"idle", "rev")
FSM CASE TRANSIT (2, 1,
"idle")

}

state2 enter _exec, 11 GEN _ ARRVL" , - "
state3 enter - - exec, ; , "ReV _ ARRVL",

state1 _enter_exec, ; , "default", ""

1111

1111

,

/*---*/

/** state (xmt) enter executives **/

,

,

"idle",

FSM_STATE_ENTER_FORCED (2, "xmt", state2_enter_exec, "srcyroc_add
[xmt enter execs]")
FSM_PROFILE_SECTION_IN ("srcyroc_add [xmt enter execsl ",
state2_enter_exec)

{

pkptr = opyk_get(GEN_IN_STRM);
opyk_nfd_set(pkptr,"dst_addr", dest_address);
op_pk_nfd_set(pkptr,"qos_num", qos_nurnb);

314

Sample Code for Traffic Processor and Regulator in a PDERRM-Host

if (time_ctrl == 0)
start time = current_time;

time ctrl = 1;

change_time = start time t WINDOW_SIZE;

if (current_time >= change_time)
(

time ctrl = 0;

total bits rcvd = 0;

total bits rcvd t= pksize;

if ((total_bits_rcvd <= allowed_bits) && (current_time <=
change_time))

(
op_pk_send(pkptr, TO_XMT_OUT_STRM);
}

else

/* Compute new arrival rate */
narrvl rate = l/((resource_allocatn * service_rate)/pksize);

/* Insert packet into queue and schedule self interrupt */
/* to remove the packet from the queue such that */
/* packet rate to the network will be reduced */

op_intrpt_schedule_self(op_sim_time() + (1.5 * arrvl_rate),
RARRVL_RATE) ;
op-pk_destroy(pkptr);

}

/** state (xmt) exit executives **/
FSM_STATE_EXIT_FORCED (2, "xmt" , "src_proc add [xmt exit execsl ")
FSM_PROFILE_SECTION IN ("src_proc_add [xmt exit execsl ",
state2_exit_exec)

{
}

FSM PROFILE SECTION_OUT (state2_exit_exec)

/** state (xmt) transition processing **/
FSM TRANSIT FORCE (1, state1 enter exec, ;, "default", 1111, "xmt",
"idle") - --

/*---*/
/** state (rev) enter executives **/
FSM_STATE_ENTER FORCED (3, "rev", state3_enter_exec,
[rev enter execs] ")

315

"srcyroc_add

Sample Code for Traffic Processor and Regulator in a PDEl/R},{-Host

FSM PROFILE SECTION IN ("src_proc_add [rcv enter execs)",
state3_enter_exec)

(
pkptr = op~k_get(RCV_IN_STRM);
op~k_send(pkptr, TO_SINK_OUT_STRM);
)
FSM_PROFILE_SECTION_OUT (state3_enter_exec)

/** state (rcv) exit executives **/
FSM_STATE_EXIT_FORCED (3, "rcv" , "srcyroc_add [rcv exit
execs]")
FSM_PROFILE_SECTION IN ("src_proc_add [rcv exit execs)",
state3_exit_exec)
(
)

/** state (rev) transition processing **/
FSM TRANSIT FORCE (1, statel enter exec, ;1 "default", 1111, "rev",
"idle") - --
/*---*/

)

FSM EXIT (0, "src~roc_add")
)
)

void src_proc_add_diag (OP_SIM_CONTEXT_ARG_OPT)
(
/* No Diagnostic Block */
)

void src~roc_add_terminate (OP_SIM_CONTEXT_ARG_OPT)
{

#if !defined (VOSD_NO_FIN) int _op_block_origin = __ LINE __ ;
#endif

Vos_Poolmem_Dealloc MT (OP_SIM_CONTEXT THREAD INDEX COMMA
pr_state_ptr) ;

FOUT
)

/* Undefine shortcuts to state variables to avoid */
/* syntax error in direct access to fields of */
/* local variable prs-ptr in src_proc_add_svar function. */
#undef dest address
#undef proc_id
#undef parent_node
#undef qos_numb
#undef resource allocatn
#undef allowed bits
#undef total bits rcvd - -#undef time ctrl
#undef service rate

#undef FIN PREAMBLE DEC
#undef FIN PREAMBLE CODE

#define FIN PREAMBLE DEC

316

Sample Code for Traffic Processor and Regulator in a PDERRM-Host

#define FIN PREAMBLE CODE - -

VosT_Obtype
src-yroc_add_init (int * init_block_ptr)

{

#if !defined (VOSD_NO_FIN)
int _op_block_origin = 0;

#endif
VosT Obtype obtype = OPC NIL;
FIN_M! (src_proc_add_init (init_block_ptr))

Vos Define Object (&obtype, "proc state vars (src_proc_add)",
sizeof (src_proc_add_state), 0, 20);
*init_block_ptr = 0;

FRET (obtype)
)

VosT Address
src-yroc_add_alloc (VOS_THREAD_INDEX_ARG_COMMA VosT_Obtype obtype,
int init_block)

{
#if !defined (VOSD~O_FIN) int _op_block_or1g1n = 0;
#endif
src-proc_add_state * ptr;
FIN_MT (src_proc_add_alloc (obtype))

ptr = (src proc add state *)Vos Alloc Object MT
(VOS THREAD INDEX COMMA obtype);- - -
if (ptr != OPC_NIL)

ptr-> op current block = init_block;
FRET ((VosT=Address)ptr)
)

void src-proc_add_svar (void * gen-ptr, const char * var_name, void
** var-yytr)

{

if (var_narne == OPC_NIL)
{

*var-y-ytr = (void *)OPC_NIL;
FOUT
)

prs_ptr = (src_proc_add_state *)gen_ptr;

if (strcrnp ("dest_address" , var_narne) == 0)
{

*var-y-ytr = (void *) (&prs-ytr->dest_address);
FOUT
)

if (strcmp (lIproc_id" I var_name) == 0)
{

*var_p_ptr = (void *) (&prs-ytr->proc_id);
FOUT
)

if (strcmp ("parent_node" , var_name) 0)
{

J17

Sample Code for TrafJic Processor and Regulator in a PDERRM-Host

*var_pytr
FOUT
}

(void *) (&prs_ptr->parent_node);

if (strcmp ("qos_numb" , var_narne) == 0)
(
*varyytr = (void *) (&prsytr->qos_numb);
FOUT
)

if (strcmp ("resource_allocatn" , var_narne) == 0)
(
*var_pytr = (void *) (&prs_ptr->resource_allocatn);
FOUT
)

if (strcmp ("allowed_bits" , var_narne) == 0)
{
*varyytr = (void *) (&prsytr->allowed_bits);
roUT
)

if (strcmp ("total_bits_rcvd" , var_narne) == 0)
{
*varyytr = (void *) (&prsytr->total_bits_rcvd);
FOUT
)

if (strcmp (IItime_ctrl" , var_name) == 0)
{
*var _p ytr = (void *) (&prs ytr->tirne _ ctrl) ;
FOUT
)

if (strcmp ("service_rate ll
I var_name) == 0)

FOUT
)

{

*vary_ptr = (void *) (&prsytr->service_rate);
FOUT
)

(void *)OPC_NIL;

318

Sample Code for Traffic Forwarding Process in a PDERRM Router

APPENDIXF

Sample Code for Traffic Forwarding Process in a
PDERRM Router

The PDERRM forwarding device (router) essentially consists of three modules,

which are--forwarding module, transmitter module and receiver module. As stated

in Appendix C and D, transmitter and receiver modules are predefined by OPNET.

The forwarding module could consist of a number of process models, the sample

code presented here is based on the basic root process model.

Process Model for Traffic Forwarding Process
/* The basic Process Model for Traffic Management and Forwarder in

a PDERRM Forwarding Device (Router)*/
/* Process model C form file: pre fwd proc.pr.c */
/* Portions of this file copyright 1992-2003 by OPNET Technologies,
Inc. */

/* This variable carries the header into the object file */
const char pre_fwdyrocyr_c [] = "MIL 3 Tfile Hdr_ 100A 30A
op_runsim 7 43088517 43088517 1 initial model 0 0 none none 0 0 none
o 0 0 0 0 0 0 0 90b 2";

#inc1ude <string.h>

/* OPNET system definitions */
#include <opnet.h>

/* Header Block */

/* Define Output Streams */
#define XMT OUT STRM 0 0
#define XMT OUT STRM 1 1
#define XMT OUT STRM 2 2
#define SUBNET STRM 3

/* Define Macro for Packet Procesing */

#define EMPTY QUEUE
#define ARRIVAL
#define COMPLT SVC

/* Define Resource
#define RESOURCE 0
#define RESOURCE 1
#define RESOURCE 2

(op_q_empty())
(op_intrpt_type () -
(op_intrpt_type()

share for
0.2
0.3
0.5

each class */

OPC_INTRPT_STRM)
OPC_INTRPT_SELF)

/* Define Window size for estimation of arrived packets */
#define WINDOW SIZE 1.0

319

Sample Codejor Traffic Forwarding Process in a PDERRM Router

/* Define Packet state */
#define PKT_IN_SVC 0

/* Declare functions for packet arrival estimation */
static double time_rf_pt(void);
static int pkt_counter (int pkt_class);

/* End of Header Block */

/* OPNET System predefined Code Block */
#if !defined (VOSD_NO_FIN)
#undef BIN
#undef BOUT
#Define BIN FIN_LOCAL_FIELD(_op_last_line-passed) =
__ LINE__ _op_block_or1g1n;
#define BOUT BIN
#define BINIT FIN_LOCAL_FIELD(_op_last_line-passed) = 0;

op block or1g1n = LINE
#else -
#define BINIT
#endif /* #if !defined (VOSD_NO_FIN) */

/* State variable definitions */
typedef struct

{

/* Internal state tracking for FSM */
FSM SYS STATE
/* State Variables */
double
Objid
int
int
int
int
int
int
int
int
int
Objid
} pre_fwd-proc_state;

#define pr_state-ptr
(OP_SIM_CONTEXT_PTR->mod_state-ptr))
#define service rate
#define own id
#define nd ~onfig
#define server_busy
#define allowed bitsO
>allowed bitsO
#define allowed_bitsl
>allowed bitsl
#define allowed_bits2
>allowed bits2
#define t contrl
#define pkt_in_bits_rcvdO
>pkt_in_bits_rcvdO

320

service_rate;
own_id;
nd_config;
server_busy;
allowed_bitsO;
allowed_bitsl;
allowed_bits2;
t_contrl;
pkt_in_bits_rcvdO;
pkt_in_bits_rcvdl;
pkt_in_bits_rcvd2;
parent_nd_config;

pr_state-ptr->service_rate
pr_state_ptr->own_id
pr_state-ptr->nd_config
pr_state-ptr->server_busy
pr_state_ptr-

pr_state-ptr->t_contrl
pr_state_ptr-

Sample Code for Traffic Forwarding Process in a PDERRM Router

#define pkt_in_bits_rcvdl
>pkt in bits rcvdl
#define-pkt in bits rcvd2
>pkt in bits rcvd2 -
#define-parent_nd_config
>parent_nd_config

/* These macro definitions will define a local variable called */
/* "op_svytr" in each function containing a FIN statement. */
/* This variable points to the state variable data structure, */
/* and can be used from a C debugger to display their values. */
#undef FIN PREAMBLE DEC
#undef FIN-PREAMBLE-CODE
#if defined (OPD PARALLEL)
define FIN_PREAMBLE_DEC pre_fwd-proc_state *op_sv-ptr;
OpT_Sim_Context * tcontext-ptr;
define FIN PREAMBLE CODE \

if (VosS Mt Perform_Lock) \
VOS THREAD SPECIFIC DATA GET - -(VosI Globals.simi mt context data key,

*); \ - - - --
tcontext-ptr, SimT Context

else \
tcontext-ptr

VosI_Globals.simi_sequential_context-ptr; \
op_sv-ptr = «pre_fwd-proc_state

>mod_state-ptr));
#else

*) (tcontext_ptr-

define FIN PREAMBLE DEC
define FIN PREAMBLE CODE
#endif

pre_fwd-proc_state *op_sv-ptr;
op_sv-ptr = pr_state_ptr;

/* Function Block */

#if !defined (VOSD_NO_FIN)
enum { op block origin = LINE);
#endif - - - --

/* The Function Block provides optional service */
/* Procedure to determine time reference for window interval */

static double time ref pt(void)
(- -
static int k = 0;
double future_time;
static double time_ref;
double current_timeO;

FIN (time_ref-pt(void));

if (k == 0) time ref current_tirneO;

k++;

future time = time_ref + WINDOW_SIZE;

if (current_timeO <= future time)
(FRET (time_ref);

)

321

else {

Sample Code for Traffic Forwarding Process in a PDERRM Router

if (current_timeO > future_time)
(
k = 0;

time ref = 0;

FRET (current_timeO);
)

static int pkt_counter lint cnt)
{
static int pkt_cnt1 = 0;
static int pkt_ cnt2 0;
static int pkt_cnt3 = 0;
double current _time;
double time_interval;
double start _time;

FIN (pkt_counter (»;

start time = time_ref-pt();

if (cnt == 1)
(

pkt_cnt1 += 1;

current time = op_sim_tirne();

time interval = current time - start time;

if (time_interval <= WINDOW_SIZE)
(FRET (pkt_cnt1);
)

else
if (time_interval> WINDOW_SIZE)

{ pkt_cnt1 = 1;
FRET (pkt_cnt1);

else if (cnt == 2)
(

current time = op_sim_time();

time interval = current time - start_time;

if (time_interval <= WINDOW_SIZE)
{ FRET (pkt_cnt2);

else {

)

if (time_interval> WINDOW_SIZE)
{ pkt_cnt2 = 1;

FRET (pkt_cnt2);

322

Sample Code for Traffic Forwarding Process in a PDERRM Router

else

}
}

if (cnt == 3)
(

current time = op_sim_time();

time_interval = current_time - start_time;

if (time_interval <= WINDOW_SIZE)
(FRET (pkt_cnt3);

)

else (

/* End of Function Block */

if (time_interval> WINDOW_SIZE)
{ pkt_cnt3 = 1;

FRET (pkt_cnt3);

/* OPNET System predefined code block */
/* Undefine optional tracing in FIN/FOUT/FRET */
/* The FSM has its own tracing code and the other */
/* functions should not have any tracing. */
#undef FIN TRACING
#define FIN TRACING

#undef FOUTRET TRACING
#define FOUTRET_TRACING

#if defined (__ cplusplus)
extern "C" {
#endif

void pre fwd proc (OP SIM CONTEXT ARG OPT);
VOST_Obtype pre_fwd_proc_init (int * init_block-ptr) ;
VosT_Address pre_fwd_proc_alloc (VOS_THREAD_INDEX_ARG_COMMA

VOST_Obtype, int);
void pre_fwd~roc_diag (OP_SIM_CONTEXT_ARG_OPT);
void pre_fwd_proc_terminate (OP_SIM_CONTEXT_ARG_OPT);
void pre_fwd~roc_svar (void *, const char *, void **);

VosT_Fun_Status Vos_Define_Object (VosT_Obtype * _op_obst-ptr,
const char * op name, unsigned int op size, unsigned int
_op_init_obs,-unsigned int _op_inc_obs);

VosT_Address Vos_Alloc_Object_MT (VOS_THREAD_INDEX_ARG_COMMA
VosT_Obtype _op_ob_hndl);

VosT Fun Status Vos Poolmem Dealloc MT - - - - -(VOS_THREAD_INDEX_ARG_COMMA VosT_Address _op_ob~tr);
#if defined (__ cplusplus)

323

Sample Code for Traffic Forwarding Process in a PDERRAf Router

} /* end of 'extern "C'" * /
#endif

/* Process model interrupt handling procedure */

void pre_fwd~roc (OP_SIM_CONTEXT_ARG_OPT)
(

#if !defined (VOSD NO FIN)
int op block origin = 0;

#endif - - -
FIN_MT (pre_fwd-proc ());
if (1)

{

Packet*
int
int
int
int
int
int
double
double
double
double

pkt-ptr ;
dest address;
pkt_class;
pkt_lentO;
pkt_lentl;
pkt_lent2:
insert_ok;
pkt_svc_time;
current time;
start_time;
change_time;

FSM BLOCK SWITCH
{

/*---*/
/** state (init) enter executives **/

FSM_STATE_ENTER_FORCEDyOLABEL (0, "init", "pre_fwd~roc [init
execs] ")
FSM_PROFILE_SECTION IN ("pre_fwd-proc [init enter execsl ",
stateO_enter_exec)

(

/* Obtain queue own object identification */
own_id = op_id_self();

enter

/* Get assigned value of serve processsing rate */
op_ima_obj_attr_get{own_id, "service_rate", &service_rate}i

*/
/* Determine the connection configuration of the parent node

parent_nd_config = op_topo_parent(own_id);
op_ima_obj_attr_get(parent_nd_config, "Node Configuration",

&nd_ config) ;

/* Allocate memory for schedule time array at the Subqueues */
pkt_shdle_time = (double*) op-prg_mem_alloc(sizeof (double) *
num~kts) ;

/* Initialise the server to idle state */
server_busy = 0;

allowed bitsO WINDOW SIZE * RESOURCE 0 * service_rate:

allowed bitsl WINDOW SIZE * RESOURCE 1 * service_rate:

324

Sample Code for Traffic Forwarding Process in a PDERRM Router

allowed bits2 = WINDOW SIZE * RESOURCE 2 * service_rate;

)
FSM PROFILE_SECTION OUT (stateO enter exec)

/** state (init) exit executives **/
FSM_STATE_EXIT_FORCED (0, "init", "pre_fwdyroc [init exit execs]")
FSM_PROFILE_SECTION IN ("pre_fwdyroc [init exit execs] ",
stateO_exit_exec)

{
}

FSM PROFILE_SECTION_OUT (stateO_exit_exec)

/** state (init) transition processing **/
FSM_PROFILE_SECTION_IN ("pre_fwdyroc [init trans conditions] ",
stateO_trans_conds)

FSM_INIT_COND (ARRIVAL)
FSM DFLT COND
FSM_TEST_LOGIC ("init")
FSM_PROFILE_SECTION_OUT (stateO_trans_conds)

FSM TRANSIT SWITCH
{

FSM CASE TRANSIT (0, 1,
"arrlv")
FSM CASE TRANSIT (1, 4,
"idle")

}

state1 enter _exec, ; , "ARRIVAL" , -
state4 enter _exec, ; , "default" ,

1111 ,
fI" ,

/*---*/
/** state (arrlv) enter executives **/

"ini t",

lIinitll,

FSM STATE ENTER FORCED (1, "arrlv", statel_enter_exec, "pre_fwd_proc
[arrlv enter execs] ")
FSM PROFILE SECTION IN ("pre_fwd_proc [arrlv enter execs]",
statel_enter_exec)

{

/* Acquire the arriving packets from various input stream */
pktytr = opyk_get(op_intrpt_strm(»;

current time = op_sim_time();

if (t_contrl == 0)
start time = current_time;

t contrl = 1;

change_time start time + WINDOW_SIZE;

if (current_time >= change_time)
{

pkt in bits rcvdO = 0;
pkt=in=bits=rcvd1 = 0;

325

Sample Code for Traffic Forwarding Process in a PDERRM Router

/* Get the value of packet field for QoS processing */
op_pk_nfd_get (pktytr, "qos_nwn", &pkt_class);

/* Segregate packets for differential service */

switch (pkt_class)
(
case 1:

/* Calculate the size of the packet */
pkt_lentO = op_pk_total_size_get(pkt-ptr);

/* Calculate total number of packets allowed for this class of
packet in each window */

pkt allowedO = (int) WINDOW SIZE * RESOURCE 0 *
service_rate/pkt_lentO; -

/* Get estimate of packet delivered so far */
estimate = pkt_counter(pkt_class);

/* Compare the estimate with allowed and process */
if «pkt_in_bits_rcvdO <= allowed_bits 0) && (current_time <=

change_time))

if (op_sub~k_insert(O, pkt-ptr, OPC_QPOS_TAIL) != OPC_QINS_OK)
(

else

/* Insertion may fail due to may be full queue, destroy the
packet */
opyk_destroy(pkt-ptr);

/* Set Flag indicating insertion failed */
insert ok = 0;

else
(
/* Insertion successful */
insert ok = 1;

/* If source of the packet exceed its arrival rate, destroy the
packet */
op_pk_destroy(pkt_ptr);
insert ok = 0;
}

break;

case 2:

/*Calculate the size of the packet */
pkt_lentl = op_pk_total_size_get(pkt-ptr);

326

Sample Code for Traffic Forwarding Process in a PDEKRM Router

/* Calculate total number of packets allowed for this class of
packet in each window */
pkt allowedl = (int) WINDOW SIZE * RESOURCE 1 *
service_rate/pkt_lentl; -

/* Get estimate
estimate =

of packet delivered so far */
pkt_counter(pkt_class);

/* Compare the estimate with allowed and process */
if ((pkt_in_bits_rcvdl <= allowed_bitsl) && (current_time <=

change_time))
(

if (op_sub~k_insert(l, pkt-ptr, OPC_QPOS_TAIL) !=
OPC _QINS _OK)
(
/* Insertion may fail due to, may be full queue,
destroy the packet */
op_pk_destroy(pkt~tr);

/* Set Flag
insert ok

indicating insertion failed */
0;

else

/* Insertion successful */
insert ok = 1;

else
(
/* If source exceed its allowed arrival rate destroy the packet

*/

break;

op~k_destroy(pkt_ptr);

insert ok = 0;

case 3:

/* Calculate the size of the packet */
pkt_lent2 = op~k_total_size_get(pkt-ptr);

/* Calculate total number of packets allowed
for this class of packet in each window */

pkt allowed2 = (int) WINDOW SIZE * RESOURCE 2 *
service_rate/pkt_lent2; -

/* Get estimate of packet delivered so far */
pkt_counter(pkt_class); estimate =

/* Compare the estimate with allowed and process */
if ((pkt_in~its_rcvd2 <= allowed_bits2) && (current_time <=
change_time))
{

if (op_subq-pk_insert(2, pkt-ptr, OPC_QPOS_TAIL) != OPC_QINS_OK)
{

327

Sample Code for Traffic Forwarding Process in a PDERRM Router

/* Insertion may fail due to may be full queue,
destroy the packet */

op-Fk_destroy(pkt_ptr);

/* Set Flag indicating insertion failed */
insert ok Dj

else
(
/* Insertion successful */
insert ok = 1;

else
(

/* If source exceed its allocated arrival rate destroy the packet
*/

op_pk_destroy(pkt_ptr);
insert ok = 0 i

break;
)

/** state (arrlv) exit executives **/
FSM_STATE_EXIT_FORCED (1, "arrlv", "pre_fwd_proc [arrlv exit
execs] ")
FSM_PROFILE_SECTION IN ("pre_fwdyroc [arrlv exit execs] ",
state1_exit_exec)

{

/** state (arrlv) transition processing **/
FSM_PROFILE_SECTION_IN ("pre_fwdyroc [arr1v trans conditions]",
state1_trans_conds)
FSM_INIT_COND (!server_busy && insert_ok)

FSM DFLT COND - -FSM _TEST_LOGIC ("arrl v")
FSM_PROFILE_SECTION_OUT (state1_trans conds)

FSM TRANSIT SWITCH

FSM_CASE_TRANSIT (0, 2, state2_enter exec, ;,
insert_ok", "tI, "arrlv", "in_svc")
FSM CASE TRANSIT (1, 4, state4_enter_exec, "
"arrlv", "idle")

)

"!server_busy &&

"default", "" ,

/*---*/
/** state (in_svc) enter executives **/
FSM_STATE_ENTER_FORCED (2, lIin_svc", state2_enter exec,
"pre_fwd_proc [in_svc enter execs] ")
FSM PROFILE SECTION IN ("pre_fwd_proc [in_svc enter execs] ",
state2_enter_exec)

{

328

(

Sample Code for Traffic Forwarding Process in a PDERRM Router

pkt_ptr = op_sub~pk_access(O, OPC_QPOS_HEAD);

/* Obtain the size of the packet */
pkt_lentO = op~k_total_size_get(pkt-ptr);

/* Compute the service time for this packet */
pkt_svc_time = (double) pkt_lentO/service_rate;

/* Schedule the packet for the next available time */
op_intrpt_schedule_self(op_sim_time() + pkt_svc_time, 0);

/* Flag the present state of the server */
server_busy = 1;

else if (!op_subq_empty(1»
(

2) ;

/* Obtain the size of the packet */
pkt_lent1 = op-pk_total_size_get(pkt~tr);

/* Compute the service time for this packet */
pkt_svc_time (double) pkt_lent1/service_rate;

/* Stamp the packet to indicate its present state
of service */
op_pk_priority_set(pkt_ptr, PKT_IN_SVC); */

/* Schedule the packet for the next available time */
op_intrpt_schedule_self(op_sim_time() + pkt_svc_time, 1);

/* Flag the present state of the server */
server_busy = 1;

)

else if (!op_subq_empty(2»
(

/* Obtain the size of the packet */
pkt_lent2 = op~k_total_size_get(pkt~tr);

/* Compute the service time for this packet */
pkt_svc_time (double) pkt_lent2/service_rate;

/* Stamp the packet to indicate its present state of
service */

op_pk_priority_set(pkt_ptr, PKT_IN_SVC);

/* Schedule the packet for the next available time */
op_intrpt_schedule_self (op_sim_time () + pkt_svc time,

/* Flag the present state of the server */
server_busy = 1;
)

FSM PROFILE SECTION OUT (state2_enter_exec)

329

Sample Code for Traffic Forwarding Process in a PDERRM Router

/** state (in sve) exit executives **/
FSM_STATE_EXIT_FORCED (2, lIin_Bve", tlpre_fwdyroc [in_Bye exit
execs] ")
FSM_PROFILE_SECTION IN ("pre_fwdyroc [in_svc exit execs) ",
state2_exit_exec)

(

)

/** state (in_sve) transition processing **/
FSM TRANSIT FORCE (4, state4_enter_exec, i, "default", "" , "in_sve",
"idle")
/*---*/

/** state (complt_svc) enter executives **/
FSM_STATE_ENTER_FORCED (3, "complt_svc", state3_enter exec,
"pre_fwdyroc [complt_svc enter execs]")
FSM_PROFILE_SECTION IN ("pre_fwdyroc [complt_svc enter execs}",
state3_enter_exec)
{

if (op_intrpt_code() == O}
{

(

pktytr = op_subq_pk_remove (0, OPC_QPOS_HEAD);
if (nd_config == 1)

/* forward the packet on stream designated as SUBNET LINE
causing an immediate interrupt at destination. */ -

opyk_send_forced (pktytr, SUBNET_STRM);

/* server is idle again. */
server_busy = 0;
}

else
opyk_nfd_get(pkt_ptr, "dst_addr", &dest_address);
if (dest_address == 5)

(op_pk_send_forced (pkt_ptr, XMT_OUT_STRM_O);
server_busy = 0;

else if
{

(dest_address
op_pk_send_forced
server_busy = 0;

6)
(pkt_ptr, XMT_OUT_STRM_1);

else if (dest_address == 7)
{ op_pk_send_forced (pkt_ptr, XMT_OUT_STRM_2);
server_busy = 0;

}

else if (op_intrpt_code() == 1)
{

(

pktytr = op_subq_pk_remove (1, OPC_QPOS_HEAD);
if (nd_config == I)

/* forward the packet on stream designated as SUBNET LINE
causing an immediate interrupt at destination. */ -

opyk_send_forced (pkt_ptr, SUBNET_STRM);

/* server is idle again. */

330

Sample Code for Traffic Forwarding Process in a PDERRM Router

server_busy 0;
}

else
(opyk_nfd_get(pktytr, "dst_addr " , &dest_address);

if (dest_address == 5)
(op_pk_send_forced (pkt_ptr, XMT_OUT_STRM_O);

server_busy = 0;
}

else if (dest_address == 6)
(op pk send forced (pkt_ptr, XMT_OUT_STRM_1);

server_busy = 0;

else if (dest_address == 7)
(op pk send forced (pkt_ptr, XMT_OUT_STRM_2);

server_busy = 0;

else if (op_intrpt_code() == 2}

pktytr = op_sub~k_remove (2, OPC_QPOS_HEAD);
if (nd_config == 1)

}

(
/* forward the packet on stream designated as

SUBNET LINE causing an immediate interrupt at
destination. */

opyk_send_forced (pktytr, SUBNET_STRM);

/* server is idle again. */
server busy = 0;

} -
else

opyk_nfd_get(pktytr, "dst_addr", &dest_address);
if (dest_address == 5)

op pk send forced (pkt ptr, XMT_OUT_STRM_O);
server_busy = 0; -

else if (dest_address == 6)
(op pk send forced (pktytr, XMT_OUT_STRM_1);

server_busy = 0;

else if (dest_address == 7)
(opyk_send_forced (pkt_ptr, XMT_OUT_STRM_2);

server_busy = 0;

/** state (coroplt_svc) exit executives **/
FSM_STATE_EXIT_FORCED (3, "complt_svc", "pre_fwdyroc [complt_svc
exit execs]")
FSM PROFILE SECTION IN ("pre_fwdyroc [complt_svc exit execsj",
state3_exit_exec)

(

)

FSM PROFILE SECTION_OUT (state3_exit_exec)

/** state (complt_svc) transition processing **/

331

Sample Code for Traffic Forwarding Process in a PDERRM Router

FSM_PROFILE_SECTION_IN ("pre_fwdyroc [complt_svc trans
conditions]", state3_trans_conds)

FSM_INIT_COND (!EMPTY_QUEUE)
FSM DFLT COND
FSM-TEST-LOGIC ("complt svc")
FSM-PROFILE SECTION OUT-(state3_trans conds)

FSM TRANSIT SWITCH
(

FSM CASE TRANSIT (0, 2, state2_enter_exec, if "!EMPTY_QUEUE",
"complt_svc ll

, "in_sve")
FSM_CASE_TRANSIT (1, 4, state4_enter_exec, i, "default", 1111,

"complt_svc" I "idle")
)

/*---*/
/** state (idle) enter executives **/
FSM_STATE_ENTER_UNFORCED (4, "idle", state4_enter exec,
"pre_fwdJ>roc [idle enter execs]")
FSM PROFILE_SECTION_IN ("pre_fwdyroc [idle enter execsl ",
state4_enter_exec)

(
)

FSM PROFILE SECTION_OUT (state4_enter_exec)

/** blocking after enter executives of unforced state. **/
FSM EXIT (9, "pre_fwd_proc")

/** state (idle) exit executives **/
FSM_STATE_EXIT_UNFORCED (4, "idle", "pre_fwd proc [idle exit
execs] ")
FSM_PROFILE_SECTION IN ("pre_fwdyroc [idle exit execsl",
state4_exit_exec)

(
)

FSM PROFILE_SECTION_OUT (state4_exit_exec)

1111 ,

/** state (idle) transition processing **/
FSM_PROFILE_SECTION_IN ("pre_fwdyroc [idle trans conditionsl ",
state4_trans_conds)

FSM_INIT_COND (COMPLT_SVC)
FSM_TEST_COND (ARRIVAL)
FSM_TEST_LOGIC ("idle")
FSM PROFILE SECTION OUT (state4_trans_conds)

FSM TRANSIT SWITCH
(

FSM_CASE_TRANSIT (0, 3, state3_enter_exec, if "COMPLT_SVC", Ill',
"idle", "complt_svc")
FSM_CASE_TRANSIT (1, 1, statel_enter_exec, ;, "ARRIVAL", "", "idle",
"arrlv")

}

/*---*/
}

FSM EXIT (0, "pre_fwdyroc")
}

void pre_fwd_proc_diag (OP_SIM_CONTEXT_ARG_OPT)
(

332

Sample Code for Traffic Forwarding Process in a PDERRM Router

/* No Diagnostic Block */
}

void pre_fwd-proc_terrninate (OP_SIM_CONTEXT_ARG_OPT)
{

#if !defined (VOSD_NO_FIN) int _op_block_or~g~n =
#endif

FIN_MT (pre_fwd-yroc_terminate ())

LINE

vos_Poolmem_Dealloc_MT (OP_SIM_CONTEXT_THREAD INDEX COMMA
pr_state_ptr);

FOUT
}

/* Undefine shortcuts to state variables to avoid */
1* syntax error in direct access to fields of */
/* local variable prs-ptr in pre_fwd-yroc_svar function. */
#undef service rate
#undef own id
#undef nd_config
#undef server_busy
#undef allowed bitsO
#undef allowed bits!
#undef allowed bits2
#undef t contrl
#undef pkt_in_bits_rcvdO
#undef pkt_in_bits_rcvd!
#undef pkt_in_bits_rcvd2
#undef parent_nd_config

#undef FIN_PREAMBLE_DEC
#undef FIN PREAMBLE CODE

#define FIN PREAMBLE DEC
#define FIN PREAMBLE CODE

VosT_Obtype pre_fwd-proc_init (int * init_block-ytr)
{

#if !defined (VOSD NO FIN)
int _op_block_origin ~ 0;
#endif
VosT_Obtype obtype = OPC_NIL;
FIN_MT (pre_fwd_proc_init (init_block_ptr))

Vos_Define_Object (&obtype, "proc state vars (pre_fwdyroc)",
sizeof (pre_fwd_proc_state), 0, 20);
*init_block_ptr = 0;

FRET (obtype)
}

VosT Address
pre_fwd_proc_alloc (VOS_THREAD_INDEX_ARG_COMMA VosT_Obtype obtype,
int init_block)

{

#if !defined (VOSD_NO_FIN)
int op block origin = 0;
#endif - -
pre_fwd-proc_state * ptri

333

void

Sample Code for Traffic Forwarding Process in a PDERRM Router

ptr = (pre_fwd_proc_state *)Vos_Alloc_Object_MT
(VOS_THREAD_INDEX_COMMA obtype);
if (ptr != OPC_NIL)

ptr->_op_current_block init_block;
FRET «VosT_Address)ptr)
}

pre_fwd_proc_svar (void * gen~tr, const char * var_name, void **
varyytr)

{
*prs_ptr;

if (var_name == OPC_NIL)
{

*varyytr = (void *)OPC_NIL;
FOUT
)

prs_ptr = (pre_fwd_proc_state *)gen_ptr;

if (strcmp ("service_rate" , var_name) == 0)
{
*varyytr = (void *) (&prsytr->service_rate);
FOUT
}

if (strcmp ("own_id" I var_name) == 0)
{

*var_p_ptr = (void *) (&prs_ptr->own_id);
FOUT
}

if (strcmp (ltnd_config" , var_name) == 0)
{

*varyytr = (void *) (&prsytr->nd_config);
FOUT
}

if (strcmp ("server_busy" I var_name) == 0)
{

*var_p_ptr = (void *) (&prsytr->server_busy);
FOUT
}

if (strcmp ("allowed_bitsO" , var_name) == 0)
{

*varyytr = (void *) (&prs_ptr->allowed_bitsO);
FOUT
}

if (strcmp ("allowed_bitsl" , var_name) == 0)
{

*varyytr = (void *) (&prs_ptr->allowed_bitsl);
FOUT
}

if (strcmp ("allowed_bits2" , var_name) == 0)
{

*var_p_ptr = (void *) (&prsytr->allowed_bits2);
FOUT
}

if (strcmp ("t_contrl" var_name) -- 0)

334

*var_p_ptr
FOUT
}

Sample Code for Traffic Forwarding Process in a PDERRM Router

(void *) (&prsytr->t_contrl);

if (strcmp ("pkt_in_bits_rcvdO" , var_name) == 0)
{

*varyytr = (void *) (&prsytr->pkt_in_bits_rcvdO);
FOUT
)

if (strcmp ("pkt_in_bits_rcvdl" , var_name) == 0)
{

*varyytr = (void *) (&prs_ptr->pkt_in_bits_rcvdl);
FOUT
)

if (strcmp ("pkt_in_bits_rcvd2" , var_name) == 0)
{

*varyytr = (void *) (&prsytr->pkt_in_bits_rcvd2);
FOUT
)

if (strcmp ("parent_nd_config" , var_name) == 0)
{

*varyytr = (void *) (&prsytr->parent_nd_config);
FOUT
}

*varyytr = (void *)OPC_NIL;

FOUT
)

335

