172 research outputs found

    Analysis of RSVP-TE graceful restart

    Get PDF
    GMPLS is viewed as an attractive intelligent control plane for different network technologies and graceful restart is a key technique in ensuring this control plane is resilient and able to recover adequately from faults. This paper analyses the graceful restart mechanism proposed for a key GMPLS protocol, RSVP-TE. A novel analytical model, which may be readily adapted to study other protocols, is developed. This model allows the efficacy of graceful restart to be evaluated in a number of scenarios. It is found that, unsurprisingly, increasing control message loss and increasing the number of data plane connections both increased the time to complete recovery. It was also discovered that a threshold exists beyond which a relatively small change in the control message loss probability causes a disproportionately large increase in the time to complete recovery. The interesting findings in this work suggest that the performance of graceful restart is worthy of further investigation, with emphasis being placed on exploring procedures to optimise the performance of graceful restart

    RSVP-TE Extensions to Provide Guarantee of Service to MPLS 1

    Get PDF
    Abstract. Independent Quality of Service (QoS) models need to be set up in IP and ATM integration and they are difficult to coordinate. This gap is bridged when MultiProtocol Label Switching (MPLS) is used for this purpose. We propose Guarantee of Service (GoS) to improve performance of privileged flows in congested MPLS networks. We first discuss the GoS requirements for the use in conjunction with MPLS. Then we propose a minimum set of extensions to RSVP-TE that allow signaling of GoS information across the MPLS domain

    Path signalling in a wireless back-haul network integrating unidirectional broadcast technologies

    Get PDF
    The black-haul infrastructures of today's wireless operators must support the triple-play services demanded by the market or regulatory bodies. To cope with increasing capacity demand, in our previous work, we have developed a cost-effective heterogeneous layer 2.5 wireless back-haul (WiBACK) architecture, which leverages the native multicast capabilities of broadcast technologies such as DVB to off-load high-bandwidth broadcast content delivery. Furthermore, our architecture provides support for unidirectional technologies on the data and the control plane. This adopts a centralized coordinator approach, in which coordinator nodes install so-called management and data pipes. No routing state is kept at plain WiBACK nodes, which merely store QoS-aware pipe forwarding state. Consequently, the architecture requires a reliable protocol to push resource allocation and pipe forwarding state into the network, considering possibly unidirectional connectivity. Such a protocol, whose task is related to MPLS label distribution, is essential during the initial forming of WiBACK topologies and during regular network operations to reliably manage the data pipes. In this paper, we present a novel approach to extend our IEEE 802.21-inspired WiBACK TransportService and, based upon this, the design of an RSVP-TE-style pipe signalling protocol using nested hop-by-hop request/response MIH transactions that supports signalling over unidirectional technologies. A thorough evaluation and successful testbed deployments show that this protocol reliably signals pipe state even under high loss conditions

    Mobile IP: state of the art report

    Get PDF
    Due to roaming, a mobile device may change its network attachment each time it moves to a new link. This might cause a disruption for the Internet data packets that have to reach the mobile node. Mobile IP is a protocol, developed by the Mobile IP Internet Engineering Task Force (IETF) working group, that is able to inform the network about this change in network attachment such that the Internet data packets will be delivered in a seamless way to the new point of attachment. This document presents current developments and research activities in the Mobile IP area

    MOBILITY SUPPORT ARCHITECTURES FOR NEXT-GENERATION WIRELESS NETWORKS

    Get PDF
    With the convergence of the wireless networks and the Internet and the booming demand for multimedia applications, the next-generation (beyond the third generation, or B3G) wireless systems are expected to be all IP-based and provide real-time and non-real-time mobile services anywhere and anytime. Powerful and efficient mobility support is thus the key enabler to fulfil such an attractive vision by supporting various mobility scenarios. This thesis contributes to this interesting while challenging topic. After a literature review on mobility support architectures and protocols, the thesis starts presenting our contributions with a generic multi-layer mobility support framework, which provides a general approach to meet the challenges of handling comprehensive mobility issues. The cross-layer design methodology is introduced to coordinate the protocol layers for optimised system design. Particularly, a flexible and efficient cross-layer signalling scheme is proposed for interlayer interactions. The proposed generic framework is then narrowed down with several fundamental building blocks identified to be focused on as follows. As widely adopted, we assume that the IP-based access networks are organised into administrative domains, which are inter-connected through a global IP-based wired core network. For a mobile user who roams from one domain to another, macro (inter-domain) mobility management should be in place for global location tracking and effective handoff support for both real-time and non-real-lime applications. Mobile IP (MIP) and the Session Initiation Protocol (SIP) are being adopted as the two dominant standard-based macro-mobility architectures, each of which has mobility entities and messages in its own right. The work explores the joint optimisations and interactions of MIP and SIP when utilising the complementary power of both protocols. Two distinctive integrated MIP-SIP architectures are designed and evaluated, compared with their hybrid alternatives and other approaches. The overall analytical and simulation results shown significant performance improvements in terms of cost-efficiency, among other metrics. Subsequently, for the micro (intra-domain) mobility scenario where a mobile user moves across IP subnets within a domain, a micro mobility management architecture is needed to support fast handoffs and constrain signalling messaging loads incurred by intra-domain movements within the domain. The Hierarchical MIPv6 (HMIPv6) and the Fast Handovers for MIPv6 (FMIPv6) protocols are selected to fulfil the design requirements. The work proposes enhancements to these protocols and combines them in an optimised way. resulting in notably improved performances in contrast to a number of alternative approaches

    Dependable IMS services - A Performance Analysis of Server Replication and Mid-Session Inter-Domain Handover

    Get PDF

    Study of architecture and protocols for reliable multicasting in packet switching networks

    Get PDF
    Group multicast protocols have been challenged to provide scalable solutions that meet the following requirements: (i) reliable delivery from different sources to all destinations within a multicast group; (ii) congestion control among multiple asynchronous sources. Although it is mainly a transport layer task, reliable group multicasting depends on routing architectures as well. This dissertation covers issues of both network and transport layers. Two routing architectures, tree and ring, are surveyed with a comparative study of their routing costs and impact to upper layer performances. Correspondingly, two generic transport protocol models are established for performance study. The tree-based protocol is rate-based and uses negative acknowledgment mechanisms for reliability control, while the ring-based protocol uses window-based flow control and positive acknowledgment schemes. The major performance measures observed in the study are network cost, multicast delay, throughput and efficiency. The results suggest that the tree architecture costs less at network layer than the ring, and helps to minimize latency under light network load. Meanwhile, heavy load reliable group multicasting can benefit from ring architecture, which facilitates window-based flow and congestion control. Based on the comparative study, a new two-hierarchy hybrid architecture, Rings Interconnected with Tree Architecture (RITA), is presented. Here, a multicast group is partitioned into multiple clusters with the ring as the intra-cluster architecture, and the tree as backbone architecture that implements inter-cluster multicasting. To compromise between performance measures such as delay and through put, reliability and congestion controls are accomplished at the transport layer with a hybrid use of rate and window-based protocols, which are based on either negative or positive feedback mechanisms respectively. Performances are compared with simulations against tree- and ring-based approaches. Results are encouraging because RITA achieves similar throughput performance as the ring-based protocol, but with significantly lowered delay. Finally, the multicast tree packing problem is discussed. In a network accommodating multiple concurrent multicast sessions, routing for an individual session can be optimized to minimize the competition with other sessions, rather than to minimize cost or delay. Packing lower bound and a heuristic are investigated. Simulation show that congestion can be reduced effectively with limited cost increase of routings

    Mobile Networks

    Get PDF
    The growth in the use of mobile networks has come mainly with the third generation systems and voice traffic. With the current third generation and the arrival of the 4G, the number of mobile users in the world will exceed the number of landlines users. Audio and video streaming have had a significant increase, parallel to the requirements of bandwidth and quality of service demanded by those applications. Mobile networks require that the applications and protocols that have worked successfully in fixed networks can be used with the same level of quality in mobile scenarios. Until the third generation of mobile networks, the need to ensure reliable handovers was still an important issue. On the eve of a new generation of access networks (4G) and increased connectivity between networks of different characteristics commonly called hybrid (satellite, ad-hoc, sensors, wired, WIMAX, LAN, etc.), it is necessary to transfer mechanisms of mobility to future generations of networks. In order to achieve this, it is essential to carry out a comprehensive evaluation of the performance of current protocols and the diverse topologies to suit the new mobility conditions
    corecore