

Aalborg Universitet

Dependable IMS services - A Performance Analysis of Server Replication and Mid-
Session Inter-Domain Handover

Renier, Thibault Julien

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Renier, T. J. (2008). Dependable IMS services - A Performance Analysis of Server Replication and Mid-Session
Inter-Domain Handover. Department of Electronic Systems, Aalborg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 28, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60424038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://vbn.aau.dk/en/publications/0a0ee820-04be-11de-82e6-000ea68e967b

 1

Dependable IMS Services
–

A Performance Analysis of Server Replication
and Mid-Session Inter-Domain Handover

Ph.D. Dissertation

by

Thibault Renier

June 2008

Center for TeleInfrastruktur
Department of Electronic Systems

Aalborg University
Aalborg, Denmark

 2

Supervisors

Prof., Dr. Ramjee Prasad
Aalborg University, Denmark

Assoc. Prof., Dr. Hans-Peter Schwefel
 Aalborg University, Denmark

Assessment Committee

Assoc. Prof., Henrik Schiøler (Chairman)
 Aalborg University, Denmark

Dr. Hendrik Berndt
Docomo Europe, Munich, Germany

Assoc. Prof., Dr. Andrea Bondavalli
 University of Florence, Italy

Moderator

Prof. Ole Brun Madsen
 Aalborg University, Denmark

ISSN 0908 – 1224

ISBN 87 – 90834 – XX – XX

Copyright © 2008 by Thibault Renier

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and retrieval system, without
written permission from the author.

 3

Abstract
Dependability has been extensively investigated in the industry for decades. Now that
telecommunications markets are getting more competitive than ever, making
telecommunications networks dependable has become another critical commercial
argument for operators. At the same time, telecommunication networks are converging
towards the all-IP paradigm. Despite the undeniable advantages brought by IP-based
architectures, the openness of the IP paradigm has forced operators to devise control
mechanisms such as access and service control in order to limit the access to their
resources to authorized users only. The IP Multimedia Subsystem (IMS) is an access
technology-independent implementation of IP-based (1) access, (2) service and (3)
session control platform. The IMS was originally designed by 3GPP for mobile access
networks, namely UMTS, but its specifications were extended so that it can be deployed
with any IP-based access network and also support communications with non-IP
networks like PSTN telco networks.
Such control platforms add complexity and introduce new points of failures into the
systems they are deployed with. Potentially poor dependability levels in the IMS should
not cancel the considerable efforts made in the area of dependable end-user applications.
It is therefore crucial that faults occurring in the IMS do not impact the overall
dependability levels of the system, which means that the IMS needs to be at least as
dependable as the applications it controls. Meanwhile, the IMS performance as perceived
by the end-user should not be degraded either, since it is undeniably an important
criterion for user satisfaction. Fault tolerance mechanisms tend to decrease performance;
hence, it is a real challenge to improve both dependability and performance of a service
simultaneously. The goal of this thesis is to analyze the performance capabilities of
dependable, IMS-controlled UMTS access networks and suggest optimizations of the
fault tolerance mechanisms in order to control the dependability/performance tradeoff to
meet given sets of dependability and performance requirements. The main fault tolerance
solutions considered to raise the IMS dependability are (1) request retransmissions to
cope with temporary network faults and (2) IMS server replication to support failover
when a server is no longer reachable.

Both the standard and replicated IMS architectures are modeled with Stochastic Activity
Networks in order to evaluate the tradeoff between dependability, performance (IMS
service access time) and additional costs (overall IMS load). Some of the parameters of
the failure detection and recovery mechanisms are tuned to analyze which parameters the
tradeoff is more sensitive to. This way, an optimal fault tolerance configuration can be set
in a given system with specific requirements. Optimal configuration selection strategies
(at design time and at run time) are discussed and a selection example illustrates how to
use the simulation results to do so.
Most IMS servers are distributed stateful entities that keep track of several states (e.g.,
session state, charging state). Thus, state inconsistency can affect dependability when the
traffic is switched from one server to another during failovers or to support a new
transaction (server selection policies). Existing techniques propose to control the tradeoff
between performance and dependability by dynamically delaying the processing of a
service request accordingly to the current inconsistency level. The efficiency of such

 4

algorithms is greatly dependent on the accuracy of the inconsistency metric that they use
as input. Therefore, a new inconsistency evaluation framework for Internet-like services
is introduced and validated experimentally. This framework can be used at system design
time and run time in order to evaluate the probability of reading a stale state replica at a
given server.
Finally, when non-replicated components of a system fail, failovers and retransmissions
to the replicated IMS servers cannot overcome the faults occurring at these non-replicated
components. Then, the best strategy for a client is to switch to another access network,
which requires macro mobility support. While standard mobility solutions support intra-
domain handovers, the IMS specifications do not allow for mid-session inter-domain
handover (i.e. the IP address of the user equipment changes during ongoing sessions) yet.
In this thesis, a Mobile IP-based solution for mid-session macro mobility is investigated
in two steps. First, interoperability problems between Mobile IP and SIP operations are
highlighted and the adequate protocol and functionality adjustments are proposed to
make the deployment of Mobile IP possible in IMS-controlled access networks. Then,
Mobile IP-based handover optimizations are introduced that dramatically decrease the
mid-session inter-domain handover time. The handover times are evaluated analytically
for several scenarios of network delays and number of media streams in the moved IMS
session. Finally, it is analytically analyzed under which conditions—on network delays
and number of media streams—the SIP operations are faster than the novel enhanced
MIP-based solution. This analysis proves that the SIP solution can perform better than
MIP in a very few cases.

The original contributions of the thesis are the following:
• SAN models and Möbius implementations of the standard IMS and replicated IMS

scenarios
• Parametric analysis of relevant input system-state variables and fault tolerance

configuration settings
• Strategies for the selection of the optimal fault tolerance configuration
• Novel inconsistency evaluation framework
• Strategies for network architecture design based on inconsistency/performance

requirements
• MIP and IMS function/protocol extensions for MIP-based network layer macro

mobility in IMS environments—to support session continuity
• Novel enhanced MIP-based macro handover

 5

Dansk Resumé

 6

Acknowledgments

 7

Table of Contents

Abstract ... 3
Dansk Resumé... 5
AcknowledgmentsTable of Contents... 6
Table of Contents.. 7
List of Figures ... 12
List of Tables... 14
List of Acronyms... 14

1. Introduction & Problem Definition 18

1.1. Background ... 18

1.2. Problem Statement .. 20

1.3. Terminology and Problem Limitation... 22
 1.3.1. Dependability.. 22
 1.3.2. Network Topology & Service Provisioning ... 25

1.4. Refined Problem Statement and Contributions............................. 27
 1.4.1. Part I - IMS Server Replication .. 27
 1.4.2. Part II - Mid-Session Macro Handover... 28

1.5. Thesis Outline.. 30

2. IMS Background .. 32

2.1. IMS Paradigms .. 32

2.2. Original IETF Session Initiation Protocol..................................... 33
 2.2.1. SIP Overview.. 33
 2.2.2. SIP Protocol Stack .. 34
 2.2.3. SIP Entities.. 35
 2.2.4. SIP Messages .. 36
 2.2.5. SIP Mechanisms.. 37
 2.2.6. SIP Session Example .. 38

 8

2.3. IMS for 3GPP UMTS Networks ... 38
 2.3.1. The IMS Architecture ... 39
 2.3.2. IMS Control Functions in UMTS ... 40
 2.3.3. Complete Standard Service Provisioning Operations Sequence 42

3. Fault Tolerance – State-of-the-Art 46

3.1. Fault Tolerance Schemes Overview.. 46
 3.1.1. Fault Tolerance at Layer 2 .. 46
 3.1.2. Fault Tolerance at Layer 3 .. 47
 3.1.3. Fault Tolerance at Layer 4 .. 47
 3.1.4. Fault Tolerance at Layer 5 and Layer 7 .. 48
 3.1.5. Motivation for Server Replication in the IMS, ... 48

3.2. Server Replication Paradigms ... 49
 3.2.1. Requirements for Redundant Systems .. 50
 3.2.2. Distributed Servers Paradigm, RSerPool.. 51
 3.2.3. Cluster Paradigm, RTP ... 54
 3.2.4. Integration of Replication Platforms in the IMS....................................... 57

4. Optimal Fault Tolerance Configuration with Replicated SIP
Servers ... 59

4.1. Motivation and Problem Statement... 59

4.2. Background on SAN Modeling and Möbius................................. 60
 4.2.1. Möbius Overview.. 60
 4.2.2. Atomic SAN Models... 61
 4.2.3. Composed Models .. 62
 4.2.4. Reward Models ... 62
 4.2.5. Solver .. 63

4.3. IMS Server Replication - Model Definition.................................. 63
 4.3.1. Topology... 63
 4.3.2. Traffic Model .. 65
 4.3.3. Fault Model... 65
 4.3.4. Failure Detection and Reports .. 66
 4.3.5. Failover Management and Server Selection Policy 66
 4.3.6. Output Metrics .. 67

4.4. Input Variable Selection – Parametric Analysis 68
 4.4.1. Influence of the System State ... 68
 4.4.2. Reference Output Values – Standard IMS Scenario................................. 73

 9

4.5. Fault Tolerance Configuration – Parametric Analysis.................. 77
 4.5.1. Recovery Parameters .. 77
 4.5.2. Failure Detection Parameters.. 83
 4.5.3. Outlook on Report Schemes Analysis .. 88

4.6. Model Application... 88
 4.6.1. Configuration Selection Time... 89
 4.6.2. Configuration Selection Criteria ... 89
 4.6.3. Selection Examples... 91

4.7. Conclusions ... 91

5. State Replication and Consistency.. 94

5.1. Consistency Model in the IMS.. 94

5.2. Inconsistency Evaluation Framework ... 95
 5.2.1. Motivation... 95
 5.2.2. New Evaluation Framework ... 95

5.3. Quantitative Inconsistency Evaluation.. 97
 5.3.1. Experimental System .. 97
 5.3.2. Measurement Approach .. 99
 5.3.3. Factor Evaluation .. 100
 5.3.4. Results and Model Validation... 102
 5.3.5. Framework Application Example ... 104

5.4. Conclusions ... 105

6. Mid-Session Macro Mobility in the IMS............................ 107

6.1. Introduction and Motivation.. 107

6.2. Related Work and Problem Statement .. 107

6.3. Macro Mobility Protocols in IP Networks 108
 6.3.1. Mobility Definitions.. 108
 6.3.2. Macro Mobility Protocols Overview .. 109
 6.3.3. Mobile IP .. 110
 6.3.4. SIP Mobility.. 111

6.4. Scenario Description and Assumptions 111
6.5. MIP-IMS Interoperability Issues... 112
 6.5.1. Delayed MIP Registration... 112

 10

 6.5.2. Addressing Scheme Conflicts ... 113

6.6. Solution for MIP-IMS Interoperability 114
 6.6.1. Assumptions.. 114
 6.6.2. Solution Overview .. 115
 6.6.3. Detailed Operations .. 116
 6.6.4. Analysis... 117
 6.6.5. Conclusions... 118

7. Enhanced MIP-based Mid-Session Macro Mobility 119

7.1. Solution Overview... 119

7.2. Detailed Solution Description ... 120
 7.2.1. Data Bearer Setup ... 121
 7.2.2. IP Reachability.. 121
 7.2.3. Back to Standard Operations .. 121

7.3. Analysis ... 122
 7.3.1. QoS Resource Release at ANold .. 122
 7.3.2. Security Issues .. 123

7.4. Quantitative Analysis .. 123
 7.4.1. Assumptions and Methods.. 123
 7.4.2. Results and Analysis ... 124

7.5. Conclusion... 126

8. Conclusions and Outlook... 128

8.1. Summary ... 128

8.2. Outlook.. 130
 8.2.1. Optimal Fault Tolerance Configuration.. 130
 8.2.2. State Consistency .. 131
 8.2.3. MIP+IMS Macro Mobility.. 131

A. SIP Specifics.. 132

A.1. SIP Responses ... 132

A.2. SIP Headers ... 133
 A.2.1. General Headers.. 133

 11

 A.2.2. Request Headers.. 133
 A.2.3. Response Header... 134
 A.2.4. Entity Headers... 134

B. SAN/Möbius Models .. 135

B.1. Atomic Models .. 135
 B.1.1. NS Model .. 135

B.2. Atomic Models .. 136
 B.2.1. PE Model .. 137
 B.2.2. PU Model .. 141
 B.2.3. PR Model .. 147

B.3. Reward Model – Performance Variables 150

B.4. Simulation Results... 158
 B.4.1. Output Metrics Calculation... 158
 B.4.2. Result Graphs.. 158

References.. 179
Author’s Publications... 185

 12

List of Figures
Fig.1.1, High-level network architecture.. 25
Fig.2.1, SIP protocol stack.. 34
Fig.2.2, SIP architecture ... 35
Fig.2.3, Simple example of original IETF SIP session... 38
Fig.2.4, UMTS+IMS architecture... 39
Fig.2.5, Policy control model for UMTS.. 41
Fig.2.6, IMS session setup flow [Kim03]... 43
Fig.3.1, RSerPool architecture for one pool server, where NS1 is the default name server
and NS2 acts as a backup; NS2 can be the main name server of another pool.................. 51
Fig.3.2, Protocol stacks in the RSerPool architecture .. 52
Fig.3.3, Physical architecture of the Resilient Telco Platform [FSC03] 54
Fig.3.4, Software architecture of the Resilient Telco Platform [FSC03] 54
Fig.3.5, Context manager master and backup processes [FSC03] 56
Fig.4.1, Network topology of the RSerPool-based replicated IMS model. 64
Fig.4.2, Complete composed model for the replicated IMS... 64
Fig.4.3, Load per transaction vs. number of SIP transaction.. 70
Fig.4.4, Network topology of the standard IMS model.. 74
Fig.4.5(a), Standard IMS – CL=100s, RTT=[100;200,500]ms 75
Fig.4.5(b), Standard IMS – CL=1000s, RTT=[100;200,500]ms 75
Fig.4.6(a), Standard IMS – RTT=100ms, CL=[100;1000]s .. 76
Fig.4.6(b), Standard IMS – RTT=500ms, CL=[100;1000]s .. 77
Fig.4.7(a), Replicated IMS – max_FO=1, max_retrans=3, extra_PE=[0,2,4]............... 81
Fig.4.7(b), Replicated IMS – max_FO=3, max_retrans=1, extra_PE=[0,2,4] 81
Fig.4.7(c), Replicated IMS – max_FO=6, max_retrans=0, extra_PE=[0,2,4]............... 81
Fig.4.8, Replicated IMS – CL100, max_FO=3, max_retrans=1, extra_PE=[0,2,4] 82
Fig.4.9(a), Replicated IMS – 1/3/2, interHB=[5,10]s.. 84
Fig.4.9(b), Replicated IMS – 3/1/4, interHB=[5,10]s ... 84
Fig.4.9(c), Replicated IMS – 6/0/7, interHB=[5,10]s.. 84
Fig.4.10(a), Replicated IMS – 1/3/2, ReqTO=[exp.T0,T90%] ... 87
Fig.4.10(b), Replicated IMS – 3/1/4, ReqTO=[exp.T0,T90%] ... 87
Fig.4.10(c), Replicated IMS – 6/0/7, ReqTO=[exp.T0,T90%].. 87
Fig.5.1, Events sequentially leading to inconsistency, and their respective probabilities 96
Fig.5.2, Testbed logical topology for the IMS/RSerPool system. SUM is the message that
contains the state information is sent from the local server to the remote server after every
transaction completion .. 98
Fig.5.3, RO_time and SU_time delays. ... 101
Fig.5.4, Influence of Delay and PER on the inconsistency level. Each curve is the
inconsistency level for a given PER (from bottom to top: 0%, 2%, 5%, 10%, and 15%)
... 104
Fig.6.1, Care-of Address encapsulation mechanism .. 110
Fig.6.2, Mobility scenario... 112
Fig.6.3, Summary of address conflicts at the GGSN filtering functions........................ 114
Fig.6.4, Macro handover with MIP mobility support in IMS-based networks............... 116
Fig.7.1, Enhanced mid-session macro HO procedures... 120

 13

Fig.7.2, SIP and enhanced MIP handover times... 125
Fig.B.1, Standard SIP, CL=100s, comparing RTT... 158
Fig.B.2, Standard SIP, CL=1000s, comparing RTT... 159
Fig.B.3, Standard SIP, RTT=100ms, comparing CL.. 159
Fig.B.4, Standard SIP, RTT=200ms, comparing CL.. 160
Fig.B.5, Standard SIP, RTT=500ms, comparing CL.. 160
Fig.B.6, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=0, comparing pool size 161
Fig.B.7, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=1, comparing pool size 161
Fig.B.8, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=2, comparing pool size 162
Fig.B.9, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=3, comparing pool size 162
Fig.B.10, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=4, comparing pool size .. 163
Fig.B.11, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=5, comparing pool size .. 163
Fig.B.12, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=6, comparing pool size .. 164
Fig.B.13, Regular, CL = 100s, RTT=100ms, FO=1, Retrans=0, comparing pool size .. 164
Fig.B.14, Regular, CL = 100s, RTT=100ms, FO=1, Retrans=1, comparing pool size .. 165
Fig.B.15, Regular, CL = 100s, RTT=100ms, FO=1, Retrans=2, comparing pool size .. 165
Fig.B.16, Regular, CL = 100s, RTT=100ms, FO=1, Retrans=3, comparing pool size .. 166
Fig.B.17, Regular, CL = 100s, RTT=100ms, FO=2, Retrans=0, comparing pool size .. 166
Fig.B.18. Regular, CL = 100s, RTT=100ms, FO=2, Retrans=1, comparing pool size .. 167
Fig.B.19, Regular, CL = 100s, RTT=100ms, FO=3, Retrans=0, comparing pool size .. 167
Fig.B.20, Regular, CL = 100s, RTT=100ms, FO=3, Retrans=1, comparing pool size .. 168
Fig.B.21, Regular, CL = 100s, RTT=100ms, FO=4, Retrans=0, comparing pool size .. 168
Fig.B.22, Regular, CL = 100s, RTT=100ms, FO=5, Retrans=0, comparing pool size .. 169
Fig.B.23, Regular, CL = 100s, RTT=100ms, FO=6, Retrans=0, comparing pool size .. 169
Fig.B.24, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=0, comparing pool size 170
Fig.B.25, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=1, comparing pool size 170
Fig.B.26, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=2, comparing pool size 171
Fig.B.27, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=3, comparing pool size 171
Fig.B.28, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=4, comparing pool size 172
Fig.B.29, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=5, comparing pool size 172
Fig.B.30, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=6, comparing pool size 173
Fig.B.31, Regular, CL = 1000s, RTT=100ms, FO=1, Retrans=0, comparing pool size 173
Fig.B.32, Regular, CL = 1000s, RTT=100ms, FO=1, Retrans=1, comparing pool size 174
Fig.B.33, Regular, CL = 1000s, RTT=100ms, FO=1, Retrans=2, comparing pool size 174
Fig.B.34, Regular, CL = 1000s, RTT=100ms, FO=1, Retrans=3 comparing pool size . 175
Fig.B.35, Regular, CL = 1000s, RTT=100ms, FO=2, Retrans=0, comparing pool size 175
Fig.B.36, Regular, CL = 1000s, RTT=100ms, FO=2, Retrans=1, comparing pool size 176
Fig.B.37, Regular, CL = 1000s, RTT=100ms, FO=3, Retrans=0, comparing pool size 176
Fig.B.38, Regular, CL = 1000s, RTT=100ms, FO=3, Retrans=1, comparing pool size 177
Fig.B.39, Regular, CL = 1000s, RTT=100ms, FO=4, Retrans=0, comparing pool size 177
Fig.B.40, Regular, CL = 1000s, RTT=100ms, FO=5, Retrans=0, comparing pool size 178
Fig.B.41, Regular, CL = 1000s, RTT=100ms, FO=6, Retrans=0, comparing pool size 178

 14

List of Tables
Table 2.1, SIP response classes.. 36
Table 4.1, Summary of the parametric analysis for the system settings 72
Table 4.2, Fault model settings used as input parameters for each test 72
Table 4.3, Mean TTR for the different CL and POFF input values 73
Table 4.4, Standard IMS test settings... 74
Table 4.5, Summary of all the recovery settings tested and their corresponding
max_requests values ... 79
Table 4.6, Replicated IMS test settings – recovery strategies.. 80
Table 4.7, Replicated IMS test settings – failure detection strategies.............................. 83
Table 4.8, Replicated IMS test settings – SIP timeout strategies..................................... 86
Table 4.9, Score functions examples.. 90
Table 4.10, Threshold requirements and optimal fault tolerance configurations............. 91
Table 5.1, Comparative results for the experimental and analytical evaluations of
inconsistency... 103
Table 7.1, Message requirements for the standard SIP-based mobility 123
Table 7.2, Message requirements for the enhanced MIP-based mobility 124
Table 7.3, Communication delays assumptions ... 124
Table 7.4, Examples of T[UEA–HA] thresholds .. 126
Table A.1, SIP response codes and their meaning ... 132

 15

List of Acronyms

2G Second Generation mobile systems
3G Third Generation mobile networks
3GPP Third Partnership Project

AKA Authentication Key Agreement
AN Access Network
ANnew AN a UE is attached to after a handover
ANold AN a UE is attached to before a handover
API Application Programming Interface
AR Access Router
ARQ Automatic Repeat reQuest
AS Application Server
ASAP Aggregate Server Access Protocol

B3G Beyond 3G
BS Bearer Service
BU Binding Update

CDMA Code Division Multiple Access
CF Contributing Factor
CL Cycle Length
CN Corresponding Node
CoA Care-of-Address
COPS Common Open Policy Service
COTS Commercial-Off-The-Shelf
CRC Cyclic Redundancy Check
CSeq Sequence number
CSCF Call Session Control Function

DCCP Datagram Congestion Control Protocol
DoS Denial of Service
DP Dissemination Protocol

E2E End-to-End
ENRP Endpoint Handlespace Redundancy Protocol (previously called Endpoint

Name Resolution Protocol)

FDM Failure Detection Mechanism
FEC Forward Error Correction
FM Failover Mechanism
FMC Fixed-Mobile Convergence
FO Failover

 16

GGSN Gateway GPRS Support Node
GPRS General Packet Radio Service
GSM Global System for Mobile communications

HA Home Agent
HARQ Hybrid ARQ
HB Heartbeat
HBA Hash Based Addresses
HIP Host Identity Protocol
HoA Home Address
HSS Home Subscriber Server
HTTP Hyper-Text Transfer Protocol

I-CSCF Interrogating CSCF
IETF Internet Engineering Task Force
IMS IP Multimedia Subsystem
InterSIP/HB Inter-SIP/HB time
IP Internet Protocol
ISDN Integrated Services Digital Network

LAN Local Area Network
LIFO Last In, First Out

M-MIP Multihomed MIP
MGW Media GateWay
MGCF Media Gateway Control Function
MIP Mobile IP
MN Mobile Node
MPLS Multi-Protocol Label Switching
Msg message
MSH Mid-Session Handover

NS Name Server

PON/POFF Probability that a server is ON or OFF, respectively
P-CSCF Proxy CSCF
PCF Policy Control Function
PDP Packet Data Protocol
PE Pool Element
PEP Policy Enforcement Point
PER Packet Error Rate
PS-CN Packet-Switched Core Network
PSTN Public Switched Telephone Network
PU Pool User

QoS Quality of Service

 17

RAN Radio Access Network
RFC Request For Comments
RO Read Operation
RSerPool Reliable Server Pooling
RSVP Resource reSerVation Protocol
RTCP RTP Control Protocol
RTP Reliable Telco Platform
RTT Round Trip Time

S-CSCF Serving CSCF
SACK Selective ACKnowledgment
SAN Stochastic Activity Network
SAT Service Access Time
SBLP Service-Based Local Policy
SCTP Stream Control Transmission Protocol
SDP Session Description Protocol
SGSN Service GPRS Support Node
SIP Session Initiation Protocol
SLA Service Level Agreements
SMS Short Message Service
SMTP Simple Mail Transfer Protocol
SOM State Ordering Metric
SPI IPSec Security Parameter Index
SS7 Signaling System 7
SSA State Sharing Algorithm
SSP Server Selection Policy
SUM State Update Message

TCP Transmission Control Protocol
TFT Traffic Flow Template
ToS Theft of Service
TSN Transport Sequence Number
TTF Time To Failure
TTR Time To Repair

UAC/UAS User Agent Client/Server
UDP User Datagram Protocol
UE User Equipment
UMTS Universal Mobile Telecommunication System
URI/URL Uniform Resource Identifier/Locator
USRR Unsuccessful State Replication Rate
UTRAN UMTS Terrestrial RAN

VoIP Voice over IP

WLAN Wireless Local Area Network

 18

1. Introduction & Problem Definition

1.1. Background
After more than a decade of operation, second generation (2G) mobile systems such as
the Global System for Mobile communications (GSM) have eventually reached their
limits in terms of penetration rates and average revenue per user. Based on circuit-
switched technologies, 2G systems provide the users with wireless access to voice
communications and a restricted set of data services such as short message service (SMS)
and fax. In order to increase revenues, mobile operators had to plan the evolution of their
aging 2G infrastructures and services.
Until then, the jump to a new generation of mobile network was characterized by the
deployment of a new access technology that would offer higher wireless access
bandwidth and capacity to cope with the constantly rising number of subscribers and the
more complex network management and operations. Such upgrades typically improved
availability and quality of service (QoS). As availability and QoS have became
consistently satisfactory, users start taking these two essential aspects of personal mobile
communications for granted and now expect more in terms of range of applications,
performance, and ease of use. Thus, services are becoming one of the key factors to
create new revenues for mobile operators.

Driven by this new demand from the users, system designers introduced a critical change
in 2.5G systems (e.g., General Packet Radio Service (GPRS) [3GPP04b]) as compared to
2G systems: the transport of data in the core network of these systems is IP-based (i.e.
packet-based). The change to IP-based transport has been further extended to the radio
access network (RAN) from 3G systems, whose deployment examples include the
Universal Mobile Telecommunications Systems (UMTS) [3GPP04a].
In 2G systems, services were proprietary solutions and were solely managed and
upgraded by the mobile operators. By building on top of the IP principles and the Internet
for 2.5G and beyond, (1) applications are not bound to a legacy access technology
anymore and, thus, they can be maintained even as the underlying access networks
change and evolve and (2) independent parties can also provide services to mobile
systems. The shift to IP introduces a flexible platform for service development and
deployment, and encourages the provisioning of innovative mobile multimedia services.
Also, many of the existing services available in the fixed IP world can be quickly adapted
to fit the mobile devices capabilities and, then, be offered to mobile users. Finally, by
allowing multiple network technologies to coexist, the IP paradigm is able to provide
ubiquitous connectivity and to achieve enormous economies of scale.

The support of IP-based services—especially real-time services—raises new challenges
for the mobile operators though.

 19

IP is a connectionless protocol that transmits its packets on a best effort basis; therefore,
QoS is not supported by default in IP-based systems. On the other hand, real-time
services have strict performance requirements in order to meet the user demands in terms
of QoS. One solution is to deploy additional mechanisms in order to organize multimedia
communications into sessions that can be managed individually. A session consists in (1)
separating the communications of a given multimedia application into independent IP
data streams—e.g. for a videoconference: one stream for the voice and one stream for the
video—and (2) setting the expected end-to-end (E2E) QoS levels for each stream, which
requires special QoS support in the operators’ networks (e.g. PDP contexts associated to
TFT and SBLP filters, see Section 2.3.2) and in the networks interconnecting remote
access networks (e.g. MPLS [Rosen01], RSVP [Braden97]). Relevant examples of IP-
based sessions are Internet phone calls and instant messaging (e.g. Skype, MSN
messenger), multi-party multimedia conferences and online gaming.
Users are getting used to accessing the Internet on the move thanks to the success of
novel wireless access technologies such as WLAN [IEEE_web] and Bluetooth
[Bluetooth_web]. These access technologies were originally designed for high bandwidth
and short-range communications in hot spots and home/personal networks
[MAGNET_web][Prasad06]. Also, with the promise that IP-based systems will be the
basis for cross-network service provisioning, users should have the possibility to connect
to a variety of wireless access networks on-demand in order to be “always best
connected” to the services of their choice. The possibility to switch between access
technologies will (1) extend the coverage of the traditional mobile cellular systems in low
density areas where it would be too expensive to deploy cellular equipment, and (2) allow
to select the most appropriate access network to meet the users’ preferences (e.g. cost,
QoS). Therefore, inter-domain mobility, so-called macro mobility, is a critical challenge
to address when designing 3G and beyond 3G (B3G) systems. With users frequently
switching from one access network to another, mobile operators have to control the
access to their scarce radio resources by deploying:
• Access and service controls, to block unauthorized users, prevent theft of services,
• session control, to map users’ subscription profiles to authorized QoS levels in the

access network.

The standardization bodies took those important aspects of 3G and B3G systems into
account and specified an IP-based platform for access, service and session control in
cellular settings—the so-called IP Multimedia Subsystem (IMS), which was introduced
by 3GPP in Release 5 of the UMTS specifications [3GPP02a][3GPP02b]. Even though
the IMS was originally designed exclusively for UMTS networks, 3GPP quickly made it
network-independent by designing a set of required interfaces between the IMS platform
and the access network it should control. IMS procedures rely on modified versions of
SIP [Rosenberg02] mechanisms and servers. The IMS is now considered as the platform
of choice for providing unified session control on top of multiple access technologies and
for supporting flexible multimedia applications.

In summary, the need for a wider diversity of services accessible from mobile devices has
encouraged the transition to IP-based mobile networks, as IP seems to be an excellent
paradigm for fast and flexible development and deployment of mobile services. In

 20

parallel, the convergence of several access technologies will considerably improve the
user’s experience. Therefore, roaming between different access technologies—even
during ongoing sessions—is becoming one of the main challenges considered in the
definition of 3G and B3G systems. Ultimately, the goal is to provide users with any
content, anytime, anywhere.
To make this possible, a major step is the deployment of the IMS, which acts as the
common platform for access/service control and multimedia session control in IP-based
networks.

1.2. Problem Statement
As discussed in the previous section, the deployment of new services and support for
macro mobility are essential characteristics of upcoming mobile IP-based networks.
Nonetheless, the quality and the dependability of multimedia sessions remain constant
requirements from users that mobile operators must meet consistently for fear of losing
market shares. For years, considerable efforts have been made in order to raise the
dependability levels in communications networks, which lead in turn to the dramatic
improvement of the availability and reliability of end-user services and network
operations. This evolution was made possible by developing stable software (e.g.,
systematic testing, efficient programming languages, and software and operating systems
design), robust hardware (e.g., better materials and architectural designs), and
dependability solutions (e.g., redundant subsystems). Nowadays, users expect that almost
every request to access a mobile service is successful and the required QoS for that
service can be sustained QoS during the whole service provisioning. In other terms, end-
user services should be available at any time and, once initiated, multimedia sessions
should not be interrupted due to faults occurring in the system (cf. Section 1.3 for the
fault model and other limitations chosen in this report) or degraded QoS.
The IMS relies on extensive procedures involving multiple entities, which adds
complexity and introduces new points of failures into the overall system. If SIP requests
are lost during the session initiation procedures, the session setup delays can significantly
increase [Fathi06] and some sessions may not even be initiated at all, which means that
the SIP service is unavailable. Potentially poor dependability levels in the IMS should not
cancel the productive efforts made in the area of dependable end-user services and
network operations. It is therefore crucial that faults occurring in the IMS do not impact
the dependability levels of the overall system; so, the IMS needs to be at least as
dependable as the applications it controls.
3GPP is only responsible for defining how the IMS interworks with access networks—
and application platforms—through standardized interfaces. In the standard IMS setup,
fault tolerance mechanisms are limited to the SIP timeouts-per-request and request
retransmissions; no IMS-specific dependability solution has been specified by 3GPP.
Thus, it is necessary to consider additional techniques that can improve the IMS
dependability.
The integration of dependability solutions in IMS-controlled systems will raise the IMS
dependability levels closer to those already achieved by some dependable end-user
services. Unfortunately, the deployment of dependability solutions implies a tradeoff
between dependability and performance [Heddaya96] so, when addressing fault

 21

scenarios, performance needs to be addressed in relation to dependability so that the
mechanisms that make the IMS dependable should impact its performance as little as
possible.

In this work, the means considered for improving IMS dependability is redundancy.
Server replication is a popular approach to mask node failures due to local hardware
and/or software faults, as well as network failures caused by interferences or packet
losses [Helal96][Tanenbaum02]. Replicating some parts of a system seems especially
suited for the dependability/performance tradeoff optimization challenge as it is
sometimes used to increase the capacity— and therefore increase performance as well—
in heavily loaded systems by offering more resources, whether it be bandwidth,
processing power, memory, etc.
The overall goal of this thesis is to investigate the dependability/performance tradeoff in
IMS-controlled UMTS systems, when using replication techniques in order to support
dependable and high-performance service provisioning in the following failure+recovery
scenarios:
• Part I—IMS Server Replication. Like any other components of the UMTS system,

IMS servers are expected to fail or to be isolated from other entities because of
network failures. For coping with temporary network failures (e.g., a random packet
loss) the solution is to ‘replicate’ the original unsuccessful request and retransmit it to
the server. If the retransmitted requests are also unsuccessful, either because the
network failures are not temporary (e.g., a cable breakage that is not detected quickly)
or because the server contacted is crashed, an interesting alternative to request
retransmissions is to replicate the IMS servers. Then, the ongoing sessions supported
by a failed server can be moved altogether to one backup server, or split among
multiple server replicas, in order to mask the server failure and maintain the IMS
service provisioning—this is called failover. The right combination of retransmissions
to one server and number of failovers needs to be looked into to optimize the
dependability/performance tradeoff.
Failover procedures rely on the client side; server-local mechanisms such as
hardware, operating system, or application restarts exist [vanMoorsel06] but they are
not investigated in this work.

• Part II—Mid-Session Macro Handover. It is undeniable that replicating servers is
an effective way to raise dependability; on the other hand, it can be costly to deploy
multiple servers because of the large expenses this entails (server hardware &
software, wiring, network configuration, etc.) and because of the increased overhead
in the system. Therefore, it is rarely possible to replicate all the components that
would potentially crash.
A single point of failure is a system component that is not replicated and that prevents
any level of service provisioning when it has failed. In the IMS-controlled UMTS
scenario, the UMTS access router is an example of critical entity that prevents any
traffic between a user equipment attached to this UMTS network and external
entities, such as an application server or even an IMS server. In this scenario,
retransmissions are ineffective when the component is permanently faulty or faulty
long enough to consider another recovery solution. A good option for the user
equipment is then to connect to another system, where hopefully no single point of

 22

failure is currently crashed. Hence, macro mobility between IMS-controlled UMTS
networks is investigated as a means for fault tolerance against single points of failures
in the access network or in the IMS. In a way, this scenario is a specific case of
replication where the access networks would be the replicated component of a
‘global’ system.

1.3. Terminology and Problem Limitation
In this section, the main dependability- and network environment-related terms that will
be used throughout the report are defined. The scope of the problem, the level of details
and the assumptions for the investigation are also specified for both dependability and the
network environment.

1.3.1. Dependability

Terminology
According to [Avizienis04], a function is defined as what a subsystem is intended to do,
which is described in the subsystem specifications in terms of functionality and
performance. A service is the functionality provided by a component, as seen by its user.
An error is a deviation of the function behavior from its functional specifications. Faults
are what cause errors and they can be verified or hypothesized (e.g., ‘is the remote
process currently crashed or slow?’). In general, systems are vulnerable to faults of varied
nature: hardware component crashes, incorrect software behavior, system overload,
human errors, physically damaged wires and connectors, etc. In communication
networks, faults can be classified into two distinct high-level classes:
• Node fault: when a node stops providing the expected service(s),
• Link fault: when a link stops serving as a medium to convey packets.
When an error becomes perceivable by the users (or subsystems) that requested the faulty
service, it is called failure. Sometimes, the service is provided in a degraded mode, and
the failure is said to be partial; when the user does not have any access to the service, the
failure is total.

Ideally, dependability is the ability of a system to avoid, or hide, any failure that would
prevent the service to keep behaving as expected, i.e. as written in the specifications. In
practice, dependability most often consists in “avoiding service failures that are more
frequent and/or more severe than is acceptable” [Avizienis04]. Dependability has the
following attributes:
• Availability relates to readiness for correct service, i.e. the ability to start the service

execution when the requests are received by a system;
• Reliability characterizes the ability to continuously provide correct service execution.
• Security is the level of trust that can be put in the exchanged information. Security is

a composite of confidentiality (the information cannot be intercepted by third-parties)
and integrity (the information cannot be corrupted by third-parties).

 23

These attributes sometimes rely on sub-attributes such as consistency, which reflects the
ability to provide the system with a consistent image of the state information stored over
multiple replicas.

Dependability can be achieved by implementing the following means:
• Fault prevention: to prevent the occurrence or introduction of faults.
• Fault tolerance: to avoid service failures in the presence of faults.
• Fault removal: to reduce the number and severity of faults.
• Fault forecasting: to estimate the present number and the likely consequences of

faults. Sometimes, fault forecasting deals with predicting faults from the current and
past system state/behavior. The difference with fault prevention is that fault
prevention is achieved at the system design time, while fault forecasting is done
during the system run time.

Fault Model
Dependability. The only attributes of dependability investigated are availability and
reliability, which both relate to the readiness and continuity of correct service
provisioning. Security is accessorily treated in the sense that the design of non-standard
solutions proposed in this work should not weaken the overall system security, but the
main intention here is not to investigate additional means to raise the security levels.

Dependability means. As motivated in the previous subsection, replication—or
redundancy—is the means considered to achieve high dependability in IMS-controlled
systems. Faults are not prevented, removed, or forecast; instead, the approach taken
consists in avoiding or minimizing the effects of faulty components by switching over to
backup resources when faults are suspected.
In replicated systems, the usual recovery strategy consists in isolating components
suspected to be failed or unreachable and involving redundant resources to take over the
ongoing tasks of the failed components. The detailed suite of mechanisms required to
achieve fault tolerance in a replicated architecture are given in Section 3.2.1, and can be
summarized as follows:
• Fault Detection: A faulty component must be detected as quickly as possible so that a

backup component takes over rapidly and that the faulty component is removed from
the system until it is repaired (or replaced). Fault diagnostic is the specific ability to
determine the nature of the faults so as to invoke the most adequate recovery
mechanism.

• Failover: A failover is the most common recovery mechanism in redundant systems.
When a service cannot be delivered by a component, the system should stop using the
latter and switch to a backup component for future service requests.

In Part I, SIP server crashes and network faults are detected using (1) a heartbeat
mechanism involving an independent failure detector and (2) the standard SIP timeout-
per-request. When the failure detector suspects SIP servers to be unavailable, clients stop
contacting the potentially failed servers for future requests. Also, when a SIP client does
not receive a request acknowledgement from a seemingly available server, the SIP
request is retransmitted a given number of times. If the request acknowledgement has not
been received before the maximum number of retransmissions is reached (seven

 24

transmissions total in the standard SIP setting, see Section 3.1.4), the server is considered
failed by the client, and the latter triggers a failover by contacting a backup SIP server
instead.
In Part II, failure detection is outside the problem scope and the investigation assumes
that the clients are aware of a crash at a single point of failure in the system. The analysis
starts at the point when the client triggers the necessary recovery action, i.e. a handover
from the current access network to another access network.

Faults and failures. In Part I, the following assumptions on faults and failures occurring
in IMS-controlled UMTS systems are made, which provides a framework for the
analysis:
• Node faults: Replicating all IMS servers would be highly relevant to provide optimal

IMS service dependability in a real setting. Nevertheless, the analysis only focuses on
the IMS Serving Call Session Control Function (S-CSCF) replication because:
o the S-CSCF is the most critical function for IMS session control;
o the load on the S-CSCF server is expected to be higher than on other IMS entities,

which justifies to replicate the S-CSCF both for dependability and capacity
purposes;

o it is not likely that all IMS entities can be replicated, e.g. because of the overhead
and budget limits;

o the conclusions drawn from the present S-CSCF replication analysis can be
applied to other IMS redundant server scenarios.

The S-CSCF fault model is quite simple as it only consists of crash faults, i.e. the
server stops responding to any request. The S-CSCF crash faults are not permanent;
they are halt faults modeled by a two-state (ON/OFF) Markov model. This model
abstracts the nature of the faults and assumes that each fault (e.g. hardware breakage,
software instability) leads to a complete S-CSCF failure; no partial failure is
considered here. Also, it is assumed that if any protocol layer of the S-CSCF
acknowledges a request (e.g. heartbeat request at Layer 4), all the other functions in
this node are also available. This simplifies the problem because the only diagnostic
to be made is ‘is the node alive?’, instead of the more refined diagnostic ‘up to which
layer is the node available?’ that is required in a real setting.

• Link faults: In general, faults occurring in the communication path are mainly due to
physical link breakage, wireless link interferences leading to high bit error rate, or
capacity shortage (e.g. router overload) and typically translate into (1) packets losses
or (2) complete remote endpoint unreachability due to loss of coverage. In this work,
all link failures are modeled by a unified packet loss probability.

• Timing failures: From the SIP application (i.e. service provisioning) point of view,
the faults assumed here lead to timing failures. Timing failures occur when the
response to a client request is not received before the request timeout expires. Note
that communication and processing delays vary over time and may also lead to timing
failures.

In Part II, since crashes at a single point of failure are assumed to be already detected and
the analysis starts when the macro handover mechanisms are initiated, the nature and
occurrence of the faults that cause the complete access network failure do not matter for
the analysis. Additionally, the analysis of the macro mobility solution is done with the

 25

assumption that no fault affects the new access network or any entity required to support
mobility mechanisms during the whole handover procedure.

A detailed review of the specific faults considered for each contribution is given in the
respective contribution chapters.

1.3.2. Network Topology & Service Provisioning

Terminology
In this subsection, the network topology-related terms are defined—and illustrated in
Figure 1.1—as well as several other concepts behind service provisioning in an IMS-
controlled access network:

The term access network (AN) usually refers to a radio access network, i.e. the part of a
mobile system comprising the access interface (wireless or wired) and the fixed part of an
operator domain between the access links and the core network. Here, AN corresponds to
the whole operator domain, which consists of (1) the radio access network and (2) the
core network, up to its access router (AR) of the operator domain. Note that one operator
can deploy multiple domains. Also, despite the fact that UMTS access networks can
connect to heterogeneous external networks (e.g. the Internet, private IP networks or a
Public Switched Telephone Network (PSTN)), it is assumed that all traffic between a
user equipment (UE) and any external entity is IP-based; so, all external networks are
unvaryingly referred to as the Internet. Throughout the whole document, the terms access
network, mobile network and operator’s domain are interchangeably used to refer to the
infrastructure between a UE and its current access router to the Internet. In UMTS, the
AN infrastructure mostly consists of the UMTS Terrestrial Radio Access Network
(UTRAN) and the UMTS, so-called Packet-Switched Core Network (PS-CN).

Fig. 1.1, High-level network architecture

Internet

UEA

GGSN1 S-CSCF
IMS

AN1

AN2

GGSN 2

UEBAS
AN3

Application
platform

AR3

UTRAN PS-CN

SGSN 2

 26

Figure 1.1 shows a high-level network architecture for the example of three access
networks (AN1 and AN2 are wireless, AN3 is wired) controlled by a unique IMS
(signaling traffic is represented by the black lines). This scenario corresponds to the case
when an operator deploys multiple ANs around the Internet and centralizes the session
control in one ‘remote’ IMS. The actual IMS architecture comprises more entities than
just the S-CSCF and is fully described in Section 2.3.1. In the present example, the
operator outsources the whole end-user service provisioning (e.g. web-pages, file
downloads, emails) to an external third-party provider (red dashed lines). Two UEs (UEA
and UEB) connected to different ANs communicate (e.g. VoIP phone call) directly via the
Internet (dashed blue line), as the IMS is not involved in the data traffic. UEA is
connected to a UMTS AN, namely AN2, for which the internal network architecture with
the UTRAN and the PS-CN is shown; note that AN1 is identical to AN2 its architecture is
not detailed.

One of the strengths of IMS-controlled access networks is that applications can be
deployed outside of the operator domains, e.g. by third-party providers. An application
platform corresponds to the network where a set of application servers (AS) is deployed
and managed.
Access control is the procedure that grants access network connectivity to authorized
users and block the others. This connectivity is usually given only within the bounds of
the specific access network the UE attaches to and often only allows signaling traffic to
and from the control functions of the AN. Service control mechanisms are initiated after
successful access control and are responsible for authorizing a UE to access a requested
service only if the user has subscribed to this service. Once a service has been authorized,
session control solutions may set up a session by negotiating and enforcing some QoS
session parameters as well as the corresponding charging scheme(s).
In UMTS, control functions are deployed in the control plane. The access control is
executed during the GPRS Attach procedure, while both the service and session controls
are handled by the IMS, which negotiates and reserves the QoS resources during the SIP
session setup. The QoS policies resulting from the IMS negotiation phase are applied into
the whole UMTS AN—i.e. between the UE and the GGSN—by reserving resources for
each IP session flow, which is carried through an individual Packet Data Protocol (PDP)
context (see Section 2.3.2).

Problem Scope
The goal of this work is to provide dependable IMS service provisioning, which relies on
E2E multimedia session support. In this context, mechanisms at the IP and upper layers
are the primary focus. Consequently, Layer 2 operations specific to legacy mobile
networks are not of special interest, except for the QoS allocation and management
functions in UMTS ANs that interact with the IMS via dedicated interfaces (mainly the
GGSN).

 27

1.4. Refined Problem Statement and Contributions
1.4.1. Part I - IMS Server Replication

In this study, (1) S-CSCF servers are replicated to provide fault tolerance when the active
S-CSCF goes down and (2) SIP requests are retransmitted to the primary S-CSCF to
recover from failures caused by random packet losses or temporary long communication
delays. The replicated S-CSCFs are gathered in a logical group, which is managed by a
protocol suite implemented at the middleware. Background information on the two main
paradigms for server replication—a distributed approach and a cluster-based approach—
is given in Section 3.2. The analysis is based on the distributed approach (implemented
by the RSerPool protocol suite [Lei07]) but the main results are also discussed in terms of
how using the cluster-based approach would affect them.

Optimal Fault Tolerance Configuration Selection
Server replication improves service dependability but it also affects performance and
adds overhead and complexity, which also worsen performance. It is therefore essential
to investigate how to minimize the performance degradation introduced by replicating
servers, while maintaining the improved dependability levels allowed by server
replication. Two characteristics of replicated systems can be improved in order to
optimize their performance: failure detection and its relation to failover triggers. The
failure detection and failover settings are investigated in order to enhance the standard
fault tolerance mechanisms implemented by RSerPool in a replicated IMS system.
A critical metric is the service access time (SAT), i.e. the average time to successfully
complete a SIP transaction. By finding the right compromise between fast and accurate
failure detection and tuning the failover triggers correspondingly, SAT can be improved
without affecting the high dependability levels achieved with standard settings. The
different parameters that should be taken into consideration during the optimization
process are the following:
• Heartbeat frequency,
• Timeout of the heartbeat and SIP requests,
• Number of failovers and SIP request retransmissions;
Another important requirement for dependable solutions concerns the costs involved in
the enhancements brought to the original setting. The goal is to keep the costs as low as
possible. Examples of costs include:
• Overhead: additional communications due to the heartbeat mechanism impact the

network capacity and the nodes’ network interface and processing load;
• Implementation complexity: computational/memory resources are scarce in most

handheld mobile devices and communication networks, especially in mobile networks
with potentially thousands of users attached simultaneously.

The parameters of replication-based fault tolerance mechanisms are qualitatively
analyzed in terms of their impact on the tradeoff between dependability, performance
(IMS service access time) and additional costs (overall IMS load). Also, both the
standard and replicated IMS architectures are modeled with Stochastic Activity Networks
in order to evaluate the tradeoff and compare different fault tolerance parameters
configurations. This way, an optimal fault tolerance configuration can be applied to a
given system with specific requirements. Optimal configuration selection strategies (at

 28

design time and at run time) are discussed and a selection example illustrates how to use
the simulation results to do so.

State Consistency
Many services in communication networks are stateful, requiring that some functions
collect and maintain states and/or logs about the ongoing communications, network
operations and the system. In the IMS, the SIP servers are stateful entities that keep track
of several states (e.g. session state, charging state). The state information is sometimes
mandatory to process specific incoming requests at a SIP server (c.f. prepaid subscription
example in Chapter 5). In the replicated IMS system, a backup S-CSCF takes over when
the active replica crashes and in order to successfully process the next incoming requests,
the selected backup server must have received a copy of the latest state information
generated by the primary server before it crashed. This is called state consistency.
In distributed systems such as RSerPool, communication delays and packet losses may
lead to state inconsistency, i.e. a backup server receives a SIP request before it has got the
latest state update message that the primary server sent to its peer after completing the
previous transaction. Many solutions have been designed to avoid inconsistency (Section
5.1) and therefore maintain the same dependability levels as with stateless replicated
servers. The main drawback is that these solutions introduce latency and communication
overhead that impact the service performance so there is a continuous tradeoff between
consistency and service access time [Yu00]. In order to minimize the performance
degradation, dynamic commitment protocols were created that apply the smallest delays
necessary to reach a target consistency level in a given system [Bozinovski04a]. These
protocols need to be constantly updated with inconsistency levels to dynamically tailor
the state commitment delay.
An inconsistency definition tailored for the replicated IMS scenario is first given. Then, a
novel inconsistency evaluation framework is proposed, which:
• permits to estimate inconsistency as previously defined and can also be used for

inconsistency evaluation with a wide range of replicated entities;
• is based on contributing factors that are calculated either from the traffic and failure

models of the system or using direct inputs from network analyzers. This means that
the framework can be used at design time or at system run time.

The inconsistency evaluation framework is verified by comparing (1) inconsistency
values measured in an experimental SIP system and (2) inconsistency values generated
with the framework, where the impacting factors are calculated from a mix of inputs from
the system specifications and the experiment.
The framework can also be used to help the architecture/protocol design of a system by
determining the expected inconsistency levels. Accordingly, the state dissemination
protocol that helps meet the predefined target inconsistency/performance tradeoff can be
chosen.

1.4.2. Part II - Mid-Session Macro Handover
Macro mobility is expected to enhance the user’s experience in several ways. A handover
from one access network to another (so-called macro mobility, or vertical handover if the
two ANs rely on different access technologies) can be triggered in the following cases:

 29

• A better suited access network is accessible from the user’s current location—e.g. to a
cheaper or more energy-efficient access technology, or when more/better services are
offered by a certain operator,

• Prolonged service degradation (QoS degradation or loss of connectivity) at the
current access network.

In the second example, macro mobility acts as a fault tolerance solution. If failures occur
on a link or at a node in an access network that does not implement systematic path
redundancy or node replication, communications to and from this access network are
greatly impacted, if not interrupted fully. A macro handover from the current access
network (ANold) to another network (ANnew) can ensure connectivity and potentially the
desired QoS necessary for maintaining ongoing sessions. In this thesis, it is assumed that
the QoS levels guaranteed at ANnew are at least as good as in ANold before it crashed.
Terminal mobility should not be considered independently from other types of mobility
because providing IP connectivity at ANnew is not the only requirement for a complete
IMS mid-session macro handover. Indeed, on top of providing connectivity to another
AN, ongoing sessions should be moved along with their corresponding states in order to
set the communications in ANnew with similar settings as in ANold—for instance the
current status of an ongoing online game. This way, the session can be ‘restarted’ in
ANnew where it was left pending in ANold and with similar characteristics. This is referred
to as session mobility. A prerequisite to session mobility is session continuity: the control
mechanisms should support the changes induced by mobility, i.e. they should not prevent
the session to continue despite these changes.
In the IMS, the whole session mobility could be supported by performing the standard
SIP session establishment procedures at ANnew after obtaining connectivity. This option
unfortunately raises two problems:
• According to the IMS specifications, any session should be stopped if the IP address

of one of the endpoints changes during the session. This requirement causes the loss
of the session states, which is unacceptable to stateful services.

• The standard IMS procedures for session establishment take time. Even though minor
modifications of the standard IMS implementation would allow for changes of IP
address during ongoing sessions—i.e. session continuity—the disruption time due to
session re-establishment is too long not to be perceived by users.

Consequently, the standard IMS cannot provide seamless mid-session macro handover
and needs enhancements to meet the users’ expectations.

IMS-MIP Interworking
Mobile IP (MIP) [Johnson04] is a mature technology expected to be a standard mobility
solution in IPv6 networks (cf. Section 2 in [Johnson04]), and it is shown to be faster than
SIP-based mobility in many systems and scenarios, like in [Kwon02]. MIP is a network
layer mobility solution whose main characteristic is to hide the handovers to the layers
above it (SIP and application included) by always showing the same IP address to these
layers, which makes MIP an excellent candidate to provide session continuity during
mid-session inter-domain handovers. Therefore, MIP is chosen as the basis for macro
mobility support in the IMS, and the SIP responsibilities are limited to the IMS session
management and end-user services (e.g. SIP-based instant messaging). Unfortunately,
MIP cannot be deployed in the standard IMS due to interoperability issues, so the

 30

necessary protocol and function adjustments are proposed to make MIP and the IMS
interwork smoothly and, ultimately, support session continuity. The implementation costs
of the suggested adjustments are discussed. It is also shown that applying the standard
MIP setup into the IMS does not reduce the handover time because MIP only implements
terminal mobility and the SIP procedures still has to be completed for session mobility
support from ANold to ANnew.

Optimized MIP-Based Handover Time
The most common performance metric for mobility solutions is the service disruption
time perceived by the user during the handover phase. Because all the standard SIP
operations have to be successfully completed in ANnew before the UE is granted data
bearers again, the SIP-based handover is much longer than simple terminal mobility with
no session layer requirements. Integrating the standard MIP operations in the IMS
provides session continuity but does not minimize the session disruption time. Hence, an
enhanced MIP-based macro handover approach that supports session continuity and
session mobility, and that shortens the standard, purely SIP-based, session mobility, is
proposed. The solution relies on context transfer so that some secure media-authorization
information obtained from ANold can be reused at ANnew. This allows the UE to
temporarily activate a unique signaling/data bearer in ANnew without involving SIP,
which in turn considerably reduces the disruption time perceived by the user. This novel
solution is described in detail and the improvements that it achieves, the implementation
efforts that it implies, and its impact on the standards, are discussed. Finally, the session
disruption times for the standard SIP mobility and the optimized MIP mobility are
evaluated analytically and compared for a range of network delays and traffic scenarios.

Most of the contributions in this thesis have been published (cf. the Author’s Publications
section at the end of this report). To see the list of the

1.5. Thesis Outline
The thesis is organized as follows:

Chapter 2 gives an overview of the IMS, and introduces the SIP protocol and its original
signaling mechanisms for multimedia session management, the interfaces between the
IMS and the UMTS access network, and the IMS-specific signaling mechanisms for
multimedia session management and resource allocation in association with UMTS
data bearers.

After presenting the state-of-the-art on the IMS, the thesis is divided into two parts.

PART I__________IMS SERVER REPLICATION______ _____________________

Chapter 3 presents the background about dependability; follows an overview of the two

replication paradigms, and the functions and operations of the RSerPool and RTP
replication platforms are described. A practical strategy for the integration of the
RSerPool and RTP architectures in the IMS is suggested.

 31

Chapter 4 starts with some background about the Stochastic Activity Network (SAN)

formalism and the Möbius simulation tool. The standard and replicated IMS
simulation models are defined as well as a set of output metrics. Several environment
and fault tolerance configuration parameters are qualitatively discussed and also
analyzed based on the simulation results. Methods for selecting the optimal fault
tolerance configuration conclude the chapter.

Chapter 5 focuses on IMS state consistency. First, an accurate inconsistency definition

for replicated IMS services is motivated, and a novel inconsistency evaluation
framework is proposed and experimentally validated. Finally, the application of the
evaluation framework to network design and network settings is discussed.

PART II__________MID-SESSION MACRO HANDOVER____________________

Chapter 6 presents the background on macro mobility solutions, which can be used to

support fault tolerance for single points of failures in the AN. The requirements for
mid-session macro mobility in IMS environments are discussed. Then, the main
interworking issues between the IMS and MIP are presented in detail, and a solution
to overcome these issues is introduced and qualitatively analyzed.

Chapter 7 introduces a novel, optimized, MIP-based solution that shortens the inter-

domain handover time in most network delay scenarios, which allows for faster
recovery in case of non-replicated subsystem failures. The details about the
operations that permit to reduce the handover time are given and qualitatively
discussed. Finally, the new optimized MIP-based handover solution is analytically
evaluated and compared to the standard SIP-based solution in order to measure the
gains.

Chapter 8 draws the conclusion of this work and shows directions for future work.

 32

2. IMS Background

IMS service provisioning is the common ground to the whole thesis. Hence, the
background on IMS platforms ought to be presented—here, for the deployment scenario
of UMTS access networks. First, the protocol IMS operations rely on, SIP, is presented.
Then the IMS entities and architecture are introduced before the standard procedures
defined by 3GPP for providing multimedia sessions to mobile users are explained in
details. The standard IMS mechanisms for fault tolerance and macro mobility are
summarized in Chapter 3 and Chapter 6 respectively.

2.1. IMS Paradigms
It is critical for mobile operators to control the access to their scarce radio resources. This
is done by pushing towards the deployment of access and session control in order to
block unauthorized users, prevent Theft of Services (ToS), and map users’ subscription
profiles to authorized QoS levels and the corresponding charging policies. The IMS was
originally introduced in Release 5 of the UMTS specifications and provides an overlay
architecture on top of access networks to support and control IP-based multimedia
sessions. The IMS relies on the Session Initiation Protocol (SIP) [Rosenberg02] at the
session layer to establish, modify and terminate IP multimedia sessions and to participate
in the E2E session resource reservation. Therefore, the IMS is regarded as an enabler for
integrating voice, multimedia, and Internet services in mobile systems.

The definition of the IMS follows three main axes:

1. The IMS was originally defined for UMTS systems but has evolved to become access
independent (from Release 6), i.e. not restricted to any type of access network and can
consequently be associated to fixed and mobile networks. Despite its exclusive use of IP,
the IMS can nonetheless interwork with circuit-switched external networks such as 2G
mobile networks and telco systems like PSTN and Integrated Services Digital Network
(ISDN) via gateway functions, namely the media gateway (MGW) and media gateway
control function (MGCF).

2. The IMS provides several service enablers that can be commonly used by all
applications:
• Authentication and authorization
• Naming and addressing
• Control of QoS and charging
• Session management

 33

A driver for operators to adopt the IMS is the increased probability of successful
communications and guaranteed QoS via the preliminary negotiation of the capabilities
supported by the networks and the end-user devices involved in the session.3GPP has put
significant efforts into standardizing means for guarantying the required QoS levels for
the session signaling and data traffics. The IMS provides authorization, reservation and
final approval of QoS resources in the access network, and the interfaces with the
functions for guarantying QoS in external IP networks (from Release 6). Service-based
charging is also included in the IMS specifications.

3. The IMS provides the means for application deployment based on open standards and
application programming interfaces (API). Therefore, UEs can now access applications
deployed in their operator domain, in a visited domain (when roaming) or from an
independent third-party application platform. The interactions between ANs and
independently owned and managed application platforms assume (1) preliminary
commercial agreements between operators and service providers, and (2) the mapping of
these agreements into control policies (e.g. for QoS and charging). Examples of IMS
services include VoIP, multi-party conferencing, audio and video streaming, push-to-talk,
push-to-show, instant messaging and person-to-person gaming [O’Reagan04][Kim03].

2.2. Original IETF Session Initiation Protocol
Originally designed by the Internet Engineering Task Force (IETF) for multi-party phone
conferences over the IP-based networks, SIP has been reused and extended (mainly, the
INVITE session setup procedure, cf. Section 2.3.3) by 3GPP for service and session
control in IMS-controlled access systems. In this section, the main characteristics of the
original IETF SIP are presented: session management protocol stack, entities, messages
and mechanisms. The IMS-specific SIP procedures are described in the next section.

2.2.1. SIP Overview
The Session Initiation Protocol (SIP) was defined by the IETF in RFC3261: “SIP is an
application-layer control protocol that can establish, modify and terminate multimedia
sessions or calls” [Rosenberg02]. SIP can be used to initiate sessions as well as invite
members to sessions that have already been established so it can manage multi-party
conferences.
SIP inherits features from two protocols: (1) the text-encoding scheme and header style
(To, From, Date, Subject, etc.) from Simple Mail Transfer Protocol (SMTP), which is
used for email and (2) the client-server design and use of Uniform Resource Locators
(URLs) from Hyper-Text Transfer Protocol (HTTP), which is used for web browsing. In
SIP, URLs are referred to as Uniform Resource Identifiers (URI).
Most of SIP is about the session initiation phase: initiating a session requires to determine
where the user to be contacted is located at a particular moment. Once the user is located,
SIP delivers a description of the session to be initiated. The most common protocol used
to describe the session content is the Session Description Protocol (SDP) [Handley98]. In
summary, SIP implements five major features to support the requirements for
establishing and managing sessions:

 34

• user location: localize the user equipment(s) to be added to a session;
• user capabilities: assess the possible media parameters for a session based on the

capabilities of the user equipments involved in the communications;
• user availability: determine (beforehand) the willingness of the called users to accept

the call;
• call setup: establish the session parameters at the user equipments (at both called and

calling parties);
• call handling: manage call transfer, modification of session parameters, and

termination.

2.2.2. SIP Protocol Stack
SIP messages can be carried over any transport protocol, such as UDP, TCP and SCTP.
In order to manage the media of a session, SIP interacts with other protocols at the
session layers, as shown in Figure 2.1. It is designed to collaborate with protocols such as
RSVP for reserving network resources [Braden97], Real-time Transport Protocol (RTP)
for transporting real-time data [Schulzrinne03], which is augmented by the RTP Control
Protocol (RTCP) for providing feedback on QoS levels [Schulzrinne03].
SDP is tightly coupled with SIP for describing the multimedia sessions. The SDP
message body is encapsulated in the SIP messages and carries the information needed for
QoS negotiations (e.g. to select appropriate media codecs) and charging, and to send the
RTP packets to the right location. Here is a non-exhaustive list of the information
available at SDP:
• time(s) the session is active;
• information in order to receive data correctly (addresses, ports…);
• the transport protocol (UDP, RTP, H.320…);
• information about the bandwidth to be used for the session;
• the type of media (video, audio…);
• the format of the media (H.261 video, MPEG video, G.711 voice …).

Fig. 2.1, SIP protocol stack

VOICE

DATA

VIDEO

RSVP

SDP

RTCP

RTP

TCP

UDP

IP

Application

Session

Internet

Transport

SIP

SCTP

 35

2.2.3. SIP Entities
The basic SIP architecture is based on the client-server paradigm. Its main entities are the
user agents, the SIP gateway, and the proxy, location, redirect and registrar servers.
• A user agent (UA), or SIP endpoint, contains both a client function and a server

function. These two functions are respectively (1) the user agent client (UAC), which
initiates the SIP requests and (2) the user agent server (UAS), which generates the
correct responses.

• A SIP gateway provides a SIP architecture with the necessary interfaces to connect to
external networks utilizing different transport/signaling protocols (e.g. SS7 [ITU93]
or PSTN).

• A proxy server receives requests, determines which server to forward them to, and
then forwards them possibly after modifying some of the headers. A proxy is different
from a user agent as the former does not issue requests itself.

• Redirect servers only respond to clients’ requests and indicate—typically, to a proxy
server—the next server to contact.

• The location server consists of a database that stores the current locations of users
when they register (at the SIP level). The database can then be interrogated (e.g. by
redirect servers) to provide the current address information of users.

• Registrar Servers are in charge of registering SIP entities by storing the registration
information (entity’s SIP addresses and the associated IP addresses) in a location
server.

Figure 2.2 illustrates an example of SIP architecture where the SIP servers and a few user
agents are deployed in the same IP network. Note that the SIP servers can be deployed in
different networks. Other user agents can access the SIP services from external networks
via a router (IP networks) or a gateway (fixed telco systems).

Fig. 2.2, SIP architecture

Router

Gateway

 PSTN

Redirect
Server

UA UA UA

 Internet

SIP Phone

Location
Server

Proxy
Server

Registrar
Server

UA

IP network

 36

2.2.4. SIP Messages
SIP is a transactional protocol; a transaction corresponds to a request, optional
provisional responses, and a final response.

SIP Requests
Among the several types of SIP requests, the most important are the REGISTER,
INVITE, ACK, BYE, and CANCEL transactions:
• The REGISTER request is used by a user agent to notify a SIP network of its current

IP address(es) and the possible URIs at which it can receive calls.
• The INVITE transaction is used to establish media sessions between user agents.

Success responses (cf. next subsection) to INVITE requests are always acknowledged
back with a final ACK request (i.e. from UAC to UAS).

• ACK is used to acknowledge the response to an INVITE request. It confirms that the
caller has received the success response to its INVITE request and that the call can
start.

• The BYE request is used to terminate sessions. It can only be sent any user agent
participating in the session, never by proxies or other third parties.

• The CANCEL request cancels a pending request from another transaction but cannot
affect completed transactions. A request is considered pending if the server side has
not issued a final response yet; otherwise, the request is completed. CANCEL
requests can be issued either by any user agent.

A SIP session is defined by the sequence of SIP transactions and application level
communications within the time interval between the successful completion of an
INVITE transaction and the terminating BYE transaction.

SIP Responses
A SIP response is a message generated by a UAS or a SIP server to reply to a request sent
by a UAC. The different classes of SIP responses are listed in Table 2.1. A provisional
response can provide information about the current status of a transaction, while a final
response ends a transaction, whether it is successfully completed or not.
All SIP responses are listed in Appendix A.1.

Table 2.1, SIP response classes

Example Meaning

180 Ringing
200 Success
302 Moved temporarily
401 Unauthorized
502 Bad gateway

600 Busy everywhere

Class Description Response

1xx Informational Provisional
2xx Success Final
3xx Redirection Final

4xx Client error Final

5xx Server error Final
6xx Global failure Final

 37

SIP Headers
There are four types of SIP headers: general headers, request headers, response headers
and entity headers.
• The general headers are all the required headers in a SIP message. General headers

can be present in requests and responses. These headers are created by user agents
and cannot be modified by proxies.

• The request headers allow the client to give the server some additional information
about the request and about the client itself.

• The response headers allow the server side to add information about the response.
• The entity headers provide information about the message body.
All the SIP headers and their definitions are available in Appendix A.2.

2.2.5. SIP Mechanisms

Addressing
UAs are reached with their SIP addresses, which are identified by SIP URIs in the To,
From, and Contact headers.
A SIP URI has the following format ‘sip:user@host’, where the user part is a username
or a telephone number and the host part is either a domain name or a numerical network
address. In many cases, users’ SIP URIs can be guessed from their email address.

Routing and Locating SIP Entities
SIP messages are routed from one SIP entity to the next on the E2E path between UAC
and UAS. This means that each SIP entity attaches a new IP header before forwarding the
SIP message to the next intermediate SIP hop.
When a UAC sends a request to the SIP URI of a UAS, the first SIP node contacted is
usually a pre-configured proxy in UAC’s domain. This proxy is in charge of forwarding
the request to a proxy in UAS’s domain and the latter finally forwards the request to the
UAS. In case a SIP node does not know about the IP address(es) currently mapped to the
SIP URI of a UAS, it can interrogate a redirect/location server that will return a list of
plausible networks or specific IP addresses where to find the SIP entity. The location
server updates this information from static lists (e.g. for proxy servers locations) or
during user registration procedures (a UA registers its current IP address(es)).

Changing a Media in an Existing Session
During a session, a UA may want to change the media transmitted or other session
parameters. This is done by re-issuing an INVITE request, so-called re-INVITE. This
request uses the same Call-ID as the ongoing session, but carries the new set of
parameters to be used.

SIP Mobility and Fault Tolerance
SIP also provides means for fault tolerance and several types of mobility. They are
addressed respectively in Chapter 3 and Chapter 6.

 38

2.2.6. SIP Session Example
A SIP session example is shown in Figure 2.3. In the depicted scenario, the UAC initiates
a SIP session and sends the INVITE request to its proxy server first. Here, it is assumed
that the proxy server already knows from the SIP URI—put in the To header of the
INVITE by the UAC— which actual IP address the INVITE request should be forwarded
to; this is the case for instance when the proxy server has previously forwarded a request
to this specific UAS on behalf of another UAC. If the proxy server did not know the
current IP address of the UAS, it would have to request this information from a location
server. When the UAC receives the 200OK response from the UAS, it immediately sends
the final ACK back and the two endpoints can start:
• interacting directly at the SIP level, i.e. without contacting intermediate proxy

servers;
• exchanging data packets at the application level. When data packets are exchanged,

the SIP layer is not involved in the communications; other session layers such as RTP
might be involved though, e.g. to provide QoS support to IP packets.

When any of the UAs wants to terminate the session, it initiates a BYE transaction.

Fig. 2.3, Simple example of original IETF SIP session

2.3. IMS for 3GPP UMTS Networks
In the IMS, the signaling operations are supported by a combination of (1) SIP
transactions when entities outside of the access network are involved and (2) specific
internal calls for synchronizing the IMS control into the access network. Moreover, some
IMS-specific SIP transactions are different than in the IETF SIP setting (c.f. Section
2.3.3), and the IMS defines a different set of signaling servers, the CSCF servers.

INVITE
180 Ringing

200 OK

Data Traffic

BYE
200 OK

ACK

INVITE
180 Ringing

200 OK

UAC UAS
Proxy
Server

 39

2.3.1. The IMS Architecture
The basic IMS architecture consists of three different types of CSCF servers [3GPP02a]
plus an additional supporting database:
• Home Subscriber Server (HSS) is the integrated database that consists of a location
server, which stores information on the location of users, and a profile database, which
stores security and service profile information about subscribed users.
• Proxy CSCF (P-CSCF) is the server initially contacted by the SIP devices. All SIP
requests are sent from the client to a P-CSCF first. The P-CSCF is usually associated to a
Policy Control Function (PCF)—see next subsection—that interacts with the access
router to apply operator’s access control policies to each bearer in the access network.
The
P-CSCF controls the access network, while being detached from the access network.
• Interrogating CSCF (I-CSCF) acts as first contact point from/to other IMS networks
and has the additional task of selecting an appropriate S-CSCF with the help of the HSS
during a user IMS registration.
• Serving CSCF (S-CSCF) is mainly responsible for managing user profiles and the call
states. It performs service control and assists the billing functions by maintaining
charging states. Furthermore, it provides interfaces to application servers.

Figure 2.4 illustrates an IMS providing control to UMTS access networks and it shows
that the IMS can be deployed remotely from the UMTS ANs so long as they are
connected across the Internet. Outside the UMTS, signaling flows always go via a P-
CSCF before reaching the IMS. Note that after contacting the IMS for registration
purposes, a UE’s signaling messages can be routed directly from the P-CSCF to the S-
CSCF, shortcutting the I-CSCF.

Fig. 2.4, UMTS+IMS architecture

Internet
UE P-CSCF

P-CSCF

GGSN

I-CSCF HSS

S-CSCF

IMS

AN

AN

GGSN

 40

A stateless server is an entity that does not maintain any state of the ongoing sessions or
transactions when it processes SIP messages; it simply forwards each request and
response it receives. A transaction stateful server is an entity that maintains states for the
duration of a transaction only (e.g. when forking a request to several destinations). A call
stateful or session stateful, server retains the global state of a session from the initiating
INVITE transaction to the terminating BYE transaction. In common implementations, the
session state is updated after the (successful or failed) completion of a transaction.
Even though this functional aspect is left open in the IMS specifications and is therefore
implementation-specific, some CSCF servers may need to maintain states. This is at least
mandatory at the S-CSCF, e.g. for billing and for failover purposes—in order to pick up
the session at a backup S-CSCF with the same session settings and in the same state as
when the session was before the active S-CSCF failure.

2.3.2. IMS Control Functions in UMTS
The UMTS specifications define all the necessary interfaces in order to apply in the
access network the control policies negotiated during the IMS session setup phase. When
a UE wants to send packets through a UMTS AN, it must activate a PDP context. This
creates a PDP context data structure in the SGSN that the user is visiting and the GGSN
serving the access point. A PDP context contains information about the session such as
UE IP address, QoS parameters, Tunnel ID (i.e. routing information), etc. PDP contexts
allow for QoS differentiation of IP traffic in the UMTS by using independent UMTS
bearers.
For IMS services, at least two PDP contexts are created for each UE. The first PDP
context allocates resources dedicated to the SIP signaling flow. The other PDP contexts
are created on request for each active media stream the UE is participating to, with their
respective resource reservations.
In the following, we describe the IMS functions and corresponding entities that are
involved in access and session control in the access network.

Policy Control Architecture
Figure 2.5 shows the different entities that participate in access and session control.
• SGSN (Serving GPRS Support Node): The SGSN performs the necessary functions

in order to handle the packet transmission to and from the UE, including mobility
support within the operator domain (i.e. micro mobility).

• GGSN (Gateway GPRS Support Node): The GGSN is the network element
connecting the UE to the external network. The GGSN contains a PEP to enforce
policies. It also contains a UMTS BS Manager for handling resource reservation
requests from the UE (e.g. through PDP context signaling).

• UMTS BS (Bearer Service) Manager: The UMTS BS Manager handles resource
reservation requests from the UE during the PDP context activation procedure.

• PEP (Policy Enforcement Point): The PEP is a logical entity that enforces in the
UMTS AN the policy decisions made by the PCF.

• PCF (Policy Control Function): The PCF is a logical policy decision element which
implements policies in the IP media layer. The PCF makes decisions in regard to
network-based IP policy using policy rules, and communicates these decisions to the
PEP in the GGSN via the standard Go interface for PDP contexts setting.

 41

Fig. 2.5, Policy control model for UMTS

Access Control
The access to IMS services is granted after a UE successfully completes sequentially the
following steps:
• GPRS Attach procedure: during this procedure (see Section 6.5 in [3GPP04b]), the

UE connects to the UMTS services by authenticating itself, updating its location
information in the UMTS AN and creating a security association up to the SGSN.

• PDP context activation: the PDP context creates a logical connection between the UE
and the GGSN that has its specific QoS settings and is used exclusively for signaling
purposes (see Section 9.2.2 in [3GPP04b]). Upon completion, the UE gets a P-CSCF
IP address(es) and can then start contacting the IMS.

• SIP REGISTER transaction: the UE has to be authenticated by the IMS and does so
with the REGISTER transaction (Section 5.2.2.3 in [3GPP02a]).

The UE is now able to request the setup of multimedia setup by calling the IMS/UMTS
service and session control functions. Note that if a UE’s profile does not allow it to be
authenticated or authorized (typically when roaming in a visiting network or when the
account is out of credits), no further operations are possible as no IP bearer is created.

Service Control and Session Control
The PCF is the logical entity co-located with the P-CSCF that enables general policy
control over IP bearer resources and SIP services to evolve separately in the UMTS
UTRAN and PS-CN. This logical policy decision element uses standard IP mechanisms
to implement Service-based Local Policy (SBLP) in the bearer level. Its task is to enable
the coordination between events in the SIP session level and access network resource
management by authorizing QoS requests based on the user’s profile. The PCF
communicates with the GGSN via the Go interface to transfer information and policy
decisions (following the COPS framework [Durham00]). Therefore, the GGSN is the

 42

policy enforcement point for Service-based Local Policy control. The QoS level
authorized by the PCF applies only to a specific media stream, which is defined by a
unique PDP context in the UMTS. Here is some of the information that can be sent to the
GGSN from the PCF:
• Destination IP address,
• Destination port number,
• Media type information,
• Bandwidth parameter.

PDP Contexts Differentiation
In UMTS, when packets are delivered over the air interface, a packet filtering function
operates using a TFT (Traffic Flow Template), which is located at the GGSN and is
established when configuring the radio bearer. A TFT classifies incoming packets from
external networks into proper PDP contexts. In other words, the TFT filters the incoming
packets received at the GGSN and selects the appropriate PDP context. The TFT hence
specifies the profile of the data that should be carried by the radio bearer. A TFT can
contain the following data:
• Source IP address,
• Destination port range,
• Source port range,
• IPsec Security Parameter Index (SPI)
• Traffic class
• Flow label

2.3.3. Complete Standard Service Provisioning Operations Sequence

From L2 Connectivity to IP and SIP Connectivity
Before a UE can access IP-based communications with external nodes, the legacy UMTS
layer 2 (L2) mechanisms have to be performed. After gaining connectivity on the UMTS
air interface, the UE triggers the GPRS Attach procedure in order to establish a logical
connection in the UMTS IP core, up to the SGSN, and to set security functions.
With respect to multimedia service provisioning, the most important is the primary PDP
context activation, which provides the UE with an IP address, extends the connection
from the UE to a GGSN, which is in charge of managing the access to external IP
networks, and allocates a dedicated P-CSCF that forwards all SIP messages from or to
this UE. Ultimately, the primary PDP context is intended to act as a signaling bearer
through the UMTS UTRAN and PS-CN, i.e. the primary PDP context is used for
SIP/IMS signaling only and additional PDP contexts should be created for each media
flow (see next subsection). Thus, the primary PDP context activation request includes
information about the desired level of QoS that the UE-GGSN tunnel should guarantee
for signaling traffic. If allowed by the operator, a general PDP context can be created
instead that carries both signaling and data traffic.
In terms of UMTS security, UE and access network are mutually authenticated during the
GPRS Attach procedure with the Authentication Key Agreement (AKA) procedure
[3GPP00] and security associations are created to secure the path between UE and SGSN.

 43

After the UE has obtained IP connectivity, it should register at the SIP level (REGISTER
transaction) to be IMS-authenticated, to set security associations with the IMS, and to
update its location information at the HSS (e.g. for future incoming calls). Both UMTS
AKA and IMS AKA authentication procedures are explained in detail in [Zhang06]. Note
that the P-CSCF maintains a security list that defines the range of IP addresses authorized
for the REGISTER.

Multimedia Session Setup
The actual trigger for a multimedia session setup is the SIP INVITE transaction. Figure
2.6 shows in detail the whole INVITE message flow as defined by 3GPP. During this
extensive message exchange, the UE initiates a new session whose media parameters are
negotiated in UEA‘s and UEB‘s respective AN in order to activate the so-called UMTS
data bearers. During this procedure, the E2E signaling allows for E2E QoS provisioning;
the IMS defines the procedures to guarantee QoS in the UMTS and provides the
necessary interfaces for QoS reservation in the Internet (out of scope in this thesis).

Fig. 2.6, IMS session setup flow [Kim03]

First, the two endpoints (UEA and UEB) negotiate the QoS level they require for the
multimedia session with SDP content descriptions that are included in the body of the SIP
messages (Messages 1-2). When Message 2 reaches the P-CSCF, the PCF authorizes the
resources requested by the users, based on the user’s subscription profile, and adds a
Media Authorization Token (AuthToken) in the 183 SIP message (cf. ‘TG’ in the figure).

 44

AuthToken is used to identify the PCF that authorized the resources requested by the UE.
As long as the AuthToken lifetime has not expired, the UE can reuse this token in
subsequent secondary PDP context activation requests it addresses to its GGSN. Based
on this information, the GGSN retrieves the PCF identity and uses COPS over the Go
interface to authorize the required resources from the PCF. Then, the PCF makes sure
that the resources requested were authorized for this particular UE. After receiving
confirmation from the PCF, the GGSN allocates the resources in the access network by
activating one secondary PDP context for each media stream. The next messages
(Messages 5-11) are exchanged to set the filtering functions implemented at the GGSN,
namely the TFT and SBLP filters. TFT dispatches incoming packets to their respective
PDP context based on the source address and SBLP is used to block outgoing and
incoming packets whose destination addresses were not included in the PDP context
negotiation.

 45

PART I
—

Server Replication

 46

3. Fault Tolerance – State-of-the-Art

As motivated in Chapter 1, this work focuses on IMS services and the necessary means to
make them more dependable. In this chapter, the background on fault tolerance
techniques for communication networks is presented, with the emphasis on redundancy,
namely server replication, as the main solution to handle node crash faults and link faults.
‘Replicating’ and retransmitting requests is another technique that can prove effective
against short-term faults (e.g. bursty server or network overload). The two main
architectures to manage server replication, namely distributed- and cluster-based
replication, are thoroughly described. Finally, an integration/mapping scenario of these
two solutions into the IMS is proposed.

3.1. Fault Tolerance Schemes Overview
Fault tolerance is the ability to avoid service failures in the presence of faults. This ability
usually relies on error/failure detection and system recovery, which can both be provided
at several layers of the protocol stack. Some protocols of the protocol stack implement
their own standard fault tolerance solutions; others do not offer any means to hide failures
to the end-user: e.g. at the transport layer, UDP only provides transport functions while
TCP additionally supports congestion control.
Here is a summary—layer by layer—of the fault tolerance solutions implemented at the
most commonly used communication protocols in the TCP/IP model.

3.1.1. Fault Tolerance at Layer 2
Fault tolerance at layer 2 is implemented by link technologies and aims at detecting and
correcting erroneous bits in the frames sent over a link. The frames are checked and
potentially corrected at every single-hop. Note that these techniques are especially
relevant for wireless links, since wireless channels are particularly prone to bit
errors/corruption because of noise/interferences, and maintain data integrity to the upper
layer functionalities.
The most common bit error detection mechanisms rely on a piece of redundant
information to validate the information integrity and examples include parity bit check
and Cyclic Redundancy Check (CRC) [Peterson71].
To cope with corrupted information in a frame, the receiving side may have two options:
• Forward Error Correction (FEC) employs error correcting codes at the sender side so

that the receiver can correct bit errors. One way of doing FEC is to add redundant
parity bits at the sender side, and these parity bits are then used by the receiver to
detect and correct errors. The extent to which a FEC scheme impacts the system
performance highly depends on the amount of redundant bits. The more redundant
bits appended to the original data, the more error bits in a single packet can be

 47

corrected. Even though this technique induces overhead, the fact that fewer frames
are corrupted also means that fewer retransmissions occur (see next point). In most
scenarios, this translates into better overall goodput than when FEC is not
implemented.

• Automatic Repeat reQuest (ARQ) is used to detect bit errors and trigger Layer 2
retransmissions (i.e. only over the link where the error was introduced)—the trigger
can be a timeout or a request sent by the frame receiver. Compared to FEC, ARQ is
simple and achieves reasonable throughput when the channel error rate is not very
high, i.e. when few retransmissions are triggered. However, ARQ quite often leads to
longer E2E transmission delays due to the additional time of retransmissions.
Motivated by this observation, Hybrid ARQ (HARQ)—the combination of FEC and
ARQ—was developed, where ARQ is only used when an error has been detected in
the received frame that cannot be corrected by an error correction scheme at the
receiving side. More advanced implementations of HARQ can also reuse erroneous
packets to rebuild the correct info when receiving retransmitted packets.

3.1.2. Fault Tolerance at Layer 3

As opposed to the fault tolerance techniques at Layer 2, fault tolerance at Layer 3 mainly
deals with relatively long-term errors due to link breakage caused by (physical) link
failures and network topology changes.
Depending on the type of routing protocol, different fault tolerance techniques should be
considered. For unicast communications, fast rerouting (see e.g. [Shand07]) and multi-
path routing are two example techniques. Fast rerouting addresses the problem of finding
an alternative route to a broken route; in multi-path routing, multiple routes are deployed
and the traffic can be selectively sent over a specific route in order to increase
dependability when other routes are highly prone to errors. For broadcasting, the problem
is about achieving the right balance between reliability and efficiency. Examples of
dependable broadcasting techniques are analyzed in [Liu07].
Layer 3 can also make use of multi-homing, which makes a node reachable via different
IP addresses, possibly obtained from different networks. This allows for even more route
diversity and independence to network failures as compared to the multi-path routing
scheme. L3 multi-homing is implemented by several standardized protocol and protocol
extensions: Multihomed Mobile IP (M-MIP) [Åhlund03], Hash Based Addresses (HBA)
[Bugnalo07], and Host Identity Protocol (HIP) [Moskovitz07].

3.1.3. Fault Tolerance at Layer 4
While Layer 2 starts retransmissions when bit errors are detected on a hop-by-hop basis,
reliable transport protocols trigger retransmissions when E2E timing failures occur. At
Layer 4, retransmissions are handled by connection-oriented protocols like Transmission
Control Protocol (TCP) and Stream Control Transmission Protocol (SCTP) [Stewart00].
To do so, the transport protocol at the sending side activates a timeout when a message is
sent. If an acknowledgment to this message has not been received before the timeout
expires, the message is suspected to have not reached the receiving side and is resent.
Retransmission mechanisms for the different reliable transport layer protocols usually
follow the same pattern: a default value for the first retransmission timer (T0) is set based

 48

on the round trip time between the two endpoints and the timer value exponentially
increases after each retransmission. The retransmissions stop (and the message is
definitely discarded) when the timer reaches 64.T0 (i.e. seven unsuccessful transmissions
in total).
While common timeout techniques implemented at Layer 4 usually address timing
failures due to network congestion and packet losses, SCTP brings a new perspective by
addressing network failures thanks to its heartbeating (for failure detection) and multi-
homing (for failure recovery) features. Each SCTP endpoint—when it implements
multiple network interfaces—uses a primary IP address for communications and a
secondary IP address as a backup in case of timing failure. This solution provides
tolerance to physical network interface failures and also provides access diversity if the
network interfaces are connected to different networks.

3.1.4. Fault Tolerance at Layer 5 and Layer 7
Layer 5 provides means to negotiate and control communication aspects such as the
application used (i.e. media type description), the codecs required, etc. SIP is currently
the most popular session management protocol in the IP world and, like the reliable
transport protocols, it handles E2E timing failures with the same exponential backoff
mechanism on a request basis. The SIP timer is an estimate of the round trip time and its
default value is 500ms but it is recommended it be larger in case of high latency access
links. The request retransmissions cease upon reception of the appropriate response, or
after a maximum of seven transmissions of the request. When starting the next
transaction, the SIP resets the timer to the default time interval.
At Layer 7, a wide range of applications can be deployed. Each application is specific
and can implement its own fault tolerance solutions. Layer 7 fault tolerance often uses
time-based failure detection and data retransmissions (e.g. file transfer [Postel85] or
e-mail application [Postel82]). Additionally, application crashes are potentially detected
by the operating system at the node where the faulty application is running, which is then
restarted [van Moorsel06]. The restart operation is called rollback when the application is
brought back to the same state as before the restart, or a roll-forward when the old
application state is lost and the application runs with a new state. In some other failure
scenarios (e.g. memory leak due to erroneous service/application programming), the
operating system might restart the whole system.

3.1.5. Motivation for Server Replication in the IMS,
It is crucial to minimize SIP and IMS node failures because they impact the user
experience. When initiating a phone call or changing some parameters of an ongoing
session, SIP mechanisms are invoked; if these procedures cannot be completed, a phone
call cannot be initiated or the parameters of an ongoing session cannot be changed, even
though the application (running on top of SIP) is operational.
All the standard fault tolerance solutions introduced so far mainly deal with
communication aspects and re-attempt to reach the next hop (L2) or network (L3), or the
other endpoint (L4, L5, L7) when the respective layer suspects that the communications
are not performing as expected. This approach, despite being beneficial to the system
dependability, covers only partially the fault spectrum. E.g. when an endpoint undergoes

 49

a halt failure, the seven SIP request transmissions will not help as the endpoint is not
likely to be brought back up during the overall time interval covered by the seven
timeouts. In this case, multiplying the routes to the failed entity is not the answer either.
To offer timely service provisioning to the users, backup servers should be available to
take over the tasks of a failed server(s), whether the service is interrupted because of a
complete server failure (the machine does not respond) or a partial failure (the machine
can communicate, e.g. up to the SIP layer but the application is deadlocked). The usage
of backup resources is referred to as redundancy, or replication.
Consequently, replication frameworks are investigated in this work in order to mask IMS
server failures. In the following sections, the background on server replication techniques
is given, followed by a discussion on the model for integrating the IMS and replication
platforms.

3.2. Server Replication Paradigms
Redundancy deployment has been one of the most commonly used techniques to provide
dependability in many industrial areas such as control of production lines and automotive
industry. In communications networks, crucial system components can be ‘replicated’ for
dependability and load-balancing purposes. Those components are called peer replicas.
Typically, multiple server nodes (or processes) that implement the same service are
deployed so that big computational tasks can be broken down into smaller tasks, each
allocated to a replicated server, and when one instance of the processes/servers crashes,
its load can be switched over to another, or several other, peer replica(s) in the given
system. All the replicated servers form together what is called a server set, or server pool.
There exist two main paradigms to implement server replication in communication
networks, namely the cluster approach and the distributed server approach. These two
solutions are mainly aimed at increasing dependability, but they can alternatively be used
to increase the capacity of a system by increasing the available computational resources
(which in turns also favours availability).
Deploying redundant servers in so-called clusters has been widely applied for dependable
service provisioning. Clusters provide a single image system to the clients, i.e. clients see
the cluster as a single server and they are not aware of the internal structure of the cluster.
The cluster paradigm is implemented in the middleware—between the transport layer and
the application layer in the protocol stack—and the server set is traditionally deployed in
the same subnetwork (i.e. in LANs). The Resilient Telco Platform (RTP) [FSC03] is an
example of a recent commercial cluster solution. In the past few years, an alternative
approach has emerged that relies on distributing the redundancy over different networks.
This is not a requirement though and peer servers can be connected to the same network.
As opposed to the cluster case, distributed server replication moves part of the failure-
detection and failover functionalities into the client. IETF standardized the distributed
Reliable Server Pooling (RSerPool) protocol suite at Layer 4/Layer 5 [Lei07].
Both the RSerPool and RTP schemes are introduced in detail in Sections 3.2.2 and 3.2.3
respectively.

 50

3.2.1. Requirements for Redundant Systems
Providing dependability requires mechanisms that theoretically hide the impact of all
system faults to the end user. Therefore, the main challenge is to achieve a seamless
transition from the faulty state of a system to its correct state. After a fault occurs at any
component of the system, an operational component should transparently take over the
functionality of the failed one and the fault tolerant mechanisms should be executed as
transparently as possible from the end user’s perspective. Note that this requirement
holds even when the fault(s) occurs during ongoing communications/sessions, which
makes the requirement even more challenging. To be fault tolerant, a redundant system
should implement the following crucial services—the first two functions are only
required for stateful servers, i.e. servers that manage states:

• State-sharing algorithms (SSA): the active server regularly replicates the states

related to ongoing communications to the set of peer servers deployed in the system.
The SSA service consists in managing and maintaining the states among the server
pool so that an incoming state read request returns ‘correct’ state information
according to the requirements imposed by the service/application that requested the
state read. Therefore, SSA should encompass state commitment (i.e. correctly update
the state) and state access (i.e. read the correct state values) mechanisms.

• Dissemination protocol (DP): the dissemination protocol is the transfer mechanism
of the state-sharing algorithms and its task is to communicate and distribute state
updates to all peers that belong to the server set (c.f. [Bozinovski02] for a comparison
of dissemination protocols for replicated IMS servers).

• Fault-detection mechanism (FDM): fault detection is essential for efficient fault-
tolerance as it is responsible for providing information about the state of the system to
the recovery mechanisms. The failure detection should be as fast as possible in order
to allow for prompt recovery strategies but the faster the failure detection, the less
accurate. Therefore a compromise should be maintained between short faulty system
state and potentially costly false alarms due to inaccurate failure detection.

• Failover mechanism (FM): when a fault or failure is detected, the recovery
mechanism triggers what it thinks is the appropriate recovery mechanism. The
recovery mechanism supported in a replicated server set is a so-called failover. Its
task is to switch the service provisioning to an active server within the server set
according to the deployed server selection policy.

• Server selection policy (SSP): it defines the next candidate server(s) in case of
failover. SSP is similar to load-balancing in the sense that for every request, the load-
balancing policy determines which process the request should be allocated to. As for
load-balancing, the SSP can be round robin, weighted round robin, backup, persistent
backup, least used, most used, etc. The SSP function requires access to the list of all
the active servers in the server set. This list can be (1) statically configured or, (2)
dynamically obtained and updated. The first option is simpler to implement, but there
is a major drawback: in systems with frequent dynamic reconfigurations of the server
set (registration/de-registration and node failures) the list quickly becomes obsolete
and not representative of the active servers in the set, which lowers dependability.

 51

3.2.2. Distributed Servers Paradigm, RSerPool

RSerPool Architecture
The goal of RSerPool is to provide the architecture and protocols for management and
operation of server pools supporting highly available and reliable applications within the
Internet, and for client access mechanisms to these server pools. An important
characteristic of distributed architecture like RSerPool is that the peer servers can be
deployed anywhere in IP networks, even in different subnetworks.

Figure 3.1 depicts the RSerPool architecture and its logical functions. Servers that
implement the same service are called pool elements (PE) and form a pool that is
identified by a unique pool handle (i.e. a pool identifier). The users of a server pool are
referred to as pool users (PU). A third party entity, called name server (NS), or ENRP
server, is in charge of registering/de-registering PEs, monitoring the pool by keeping
track of the PEs’ status, and to help the PUs know which PEs the requests can be sent to.

Fig. 3.1, RSerPool architecture for one pool server, where NS1 is the default name server
and NS2 acts as a backup; NS2 can be the main name server of another pool.

RSerPool Protocol Stacks and Functionalities Overview
Fault-tolerance in RSerPool is based on two novel protocols: Endpoint Name Resolution
Protocol (ENRP) [Stewart06b] and Aggregate Server Access Protocol (ASAP)
[Stewart06a]. IETF also selected SCTP to be an underlying transport layer protocol for
RSerPool. This means that SCTP is used as the transport protocol for all RSerPool
signaling, i.e. all messages that carry ASAP or ENRP content.
The protocol stacks for each RSerPool entity are shown in Figure 3.2. Note the two
protocol stacks for the PU and PE at the transport layer: the left side shows the transport
protocol for data packet transmissions—typically UDP, but it could be any transport
protocol; the right side shows ASAP and SCTP, the protocols used for the RSerPool
signaling packets. The name server function only implements RSerPool-related services
so it does not implement several transport protocols or an application.

ENRP

PE1 PE2 PE3

PU PU PU

NS2

NS1

ASAP (for PE status monitoring)

ASAP (for name resolutions)

Server
Pool

Application protocol

 52

Fig. 3.2, Protocol stacks in the RSerPool architecture

PUs use ASAP to request name resolutions from the NS, i.e. the translation of a pool
handle into a set of PEs’ transport addresses (IP addresses and port numbers). In
RSerPool, ASAP achieves similar services to DNS. As opposed to DNS, which translates
a domain name in a single IP address, ASAP replies back with a set of transport
addresses and a suggestion for a server selection policy. Then, the PU can keep the
information obtained from the NS in a cache and use it later for choosing a server when
sending future requests. ASAP is also responsible for fault-detection.
ENRP defines the procedures and message formats of a distributed, fault-resilient registry
service for storing, bookkeeping, retrieving, and distributing pool membership
information. Thus, ENRP communications between name servers are mainly used to
disseminate the status of PEs and to share their knowledge about all server pools.
Because a PE can belong to more than one pool at a time, this is needed to make sure that
the information is consistent and up-to-date in every pool.

RSerPool Fault Tolerance
• State-sharing: [Tuexen02] requires that the name servers should not resolve a pool

handle to a transport layer address of a PE that is not in operation. Thus, name servers
share information about the current status of all the pools they monitor. This allows
other name servers to act as backups when PUs’ home name server fails and always
keep the name service available. Details about how name server fault-detection and
name server failovers are performed can be found in [Stewart06b].
Note that the requirements for high availability and scalability defined in RSerPool do
not imply requirements on shared state. ASAP may provide hooks to assist an
application in building a mechanism to share state (e.g. a so-called cookie
mechanism), but ASAP in itself will not share any state between pool elements.

• Fault-detection: Data loss detection is enabled in SCTP by numbering all data
chunks in the sender with the so-called Transport Sequence Number (TSN). The
acknowledgements sent from the receiver to the sender are based on these sequence
numbers: each received SCTP packet is acknowledged by sending a Selective
Acknowledgement (SACK) which reports all gaps. The SACK is contained in a
specific control chunk. Whenever the sender receives four consecutive SACKs
reporting the same data chunk missing, this data chunk is immediately retransmitted.
Retransmissions are timer-controlled. The timer duration is derived from continuous
measurements of the round trip delay. Whenever such a retransmission timer expires,

PU (client) PE (server)
Application

UDP

IP
SCTP

ASAP

Name server

SCTP
IP

ASAP

 ENRP

Application

UDP

IP
SCTP

ASAP

 53

(and congestion control allows transmissions) all non-acknowledged data chunks are
retransmitted and the timer is started again doubling its initial duration (like in TCP).
Another interesting feature of SCTP is the support of heartbeat messages to monitor
the reachability of far-end transport addresses. An SCTP instance monitors all
transmission paths to the other endpoint of the SCTP association. To this end,
HEARTBEAT chunks are sent over all paths which are currently not used for the
transmission of data chunks. Each HEARTBEAT chunk has to be acknowledged by a
HEARTBEAT-ACK chunk. The number of events where heartbeats were not
acknowledged within a certain time, or retransmission events occurred is counted on
a per-association basis, and if a certain limit is exceeded (the value of which may be
configurable), the peer endpoint is considered unreachable, and the association will
be terminated.
ASAP has monitoring capability to test the reachability of PEs. When detecting a
failure at the ASAP layer, the ASAP endpoint should report the unavailability of the
specified PE by sending an ENDPOINT_UNREACHABLE message to its home NS.
When the unavailability of a PE is detected at another layer, it should be reported to
the ASAP layer via the Transport Failure Primitive.
Each PE is supervised by one specific name server, called the home NS. Home name
servers specifically "audit" their PEs by periodically sending unicast
ENDPOINT_KEEP_ALIVE messages at the ASAP layer. The NS sends this message
to the PE as a “health” check. E.g., in the case when the transport level heartbeat
mechanism is insufficient (usually this means that time outs are set too long or
heartbeats are not frequent enough), the ASAP layer mechanism increases the probing
frequency. The goal is to determine PEs’ health status in a more timely fashion. The
ENDPOINT_KEEP_ALIVE_ACK message is sent by the PE to the NS as an
acknowledgment to the ENDPOINT_KEEP_ALIVE message.
Using ASAP keep-alive messages also has additional value to the accuracy of SCTP
fault-detection. While SCTP level heartbeats monitor the end-to-end connectivity
between the two SCTP stacks, ASAP keep-alive messages monitor the end-to-end
liveliness of the ASAP layer above it. This level of fault-detection implies that
failures at the application layer at the PE cannot be detected, unless the application
also implements a fault-detection mechanism on its own. Section XX investigates
fault-detection at the application layer in the RSerPool architecture.

• Failover: The SCTP protocol is selected to be the underlying protocol for RSerPool
due to its multi-homing capability, i.e., support of multiple IP addresses per host.
Using this feature enables strong survivability in face of communication path failures,
by making SCTP-enabled nodes accessible via several paths. When it detects a fault
on the primary path, SCTP switches the communication over to the secondary path
between the two endpoints.
If a PE is found unreachable, ASAP can automatically select another replica in the
pool and attempt to deliver the message to this particular PE. In other words, ASAP is
capable of transparent failover amongst application replicas in a server pool.
Practically, once the PU realizes about the failure, it can start the failover mechanism
by looking in the PE list cached locally or trigger another name resolution to get an
updated list from the NS. Then, the PU picks a new PE in this list and starts
communicating with it. When using the cached list, the failover can be done as soon

 54

as the fault is detected, but with some probability that an unavailable server is
selected; a repeated name resolution on the other hand increases the chance to request
the service to an active server but also increases the failover time.

3.2.3. Cluster Paradigm, RTP

RTP Architecture
The Resilient Telco Platform (RTP) is a middleware platform for developing dependable
telecommunication applications. RTP is based on a cluster concept, which consists of
several nodes which are linked together via a cluster interconnect that usually is made of
simple cross-connect LAN cables. One of the primary objectives of the Resilient Telco
Platform is to provide the application programmer with a single system image by using a
unique external communication interface. The physical and software architectures of RTP
are illustrated in Figures 3.3 and 3.4, respectively.

Fig. 3.3, Physical architecture of the Resilient Telco Platform [FSC03]

Fig. 3.4, Software architecture of the Resilient Telco Platform [FSC03]

 55

Super Node Manager
The super node manager starts and stops the individual subsystems on the local nodes.
After successful startup, it monitors them. There are two monitoring methods:
• The subsystems report themselves when they are in “serious” difficulty via “reliable”

channels;
• Using health checks, the super node manager detects when a subsystem, which does

not react as expected, enters an undefined state.
The super node manager then attempts to correct the error situation. This takes place in
two stages:
• Local recovery, e.g. local restart of a subsystem;
• Node shutdown.
The super node manager works together with the operating system to detect the failure of
another cluster node and determine the new cluster status (which nodes are currently
active in the cluster and which are inactive).

RTP Components

This section describes RTP components that are of most interest for the IMS-controlled
services in UMTS networks.

• Node manager and inter-process communication

The node managers contribute to the cluster-global process management. Thus, a
node manager needs to run on each cluster node. It is responsible for the management
of all local RTP processes and their communication facilities. The local process
management covers automatic process startup, process monitoring, automatic process
restart, and process shutdown. RTP process management should not be confused with
the process management of the operating system. A node manager maintains only
information for processes that have attached to it, and the information is much
different from what the operating system keeps. All node managers in a cluster need
to have a common view of all active RTP processes, so that an RTP process from any
node can easily address and communicate to an RTP process on any other node. Each
node manager puts addressing and status information of its local RTP processes into
its share of the cluster-global process table. Any change in the local process
configuration is immediately distributed to all other node managers in the cluster. The
validity of the global process table is periodically verified, and consistency problems
are resolved.
Although RTP processes may be spread over several cluster nodes, they can
communicate to each other without having to consider the cluster architecture. The
communication between RTP processes is handled by the RTP communication layer
(also referred to as messaging layer or IPC layer). This layer is implemented partly in
an RTP communication library as well as in the node manager. RTP processes
communicate to each other via messages. Every RTP message contains a type field as
a unique message identifier. When an RTP process attaches to the node manager, it is
provided a queue, on which it will receive messages. The queue is established and
maintained by the node manager, not by the process that owns it. If a process
terminates, its queue may continue to exist. In this way, no messages are lost if the

 56

process is immediately restarted. The address of an RTP process is simply its logical
name. Since logical names are unique within the cluster, a sender does not need to
distinguish between a node-local and a remote destination – the RTP communication
subsystem will route the message to the receiver by the inspecting the cluster-global
Process table.

• Context manager

A context is data stored in memory. Contexts may be used to store "consistency
points" in order to resume the software after a failure. A consistency point is e.g. the
current status of a job (typically, a process of the application running over RTP).
The Resilient Telco Platform works with a process pool that enables a large number
of jobs to be processed in parallel. Before a process can begin a new job or dialog, the
context of the old job must first be saved. This makes it possible to continue
processing the next dialog step of the old job at a later point in time. In our case, the
context manager will copy the state of the last SIP transaction.
For performance reasons, instead of storing the context in a database, the concept of
mirroring (replication) context data on another cluster node has been chosen: one
node holds the master copy of the context and another one the backup copy.
In the general case, there is a context manager master process running on a node and
a backup process running on a different node. To achieve good performance, it is
recommended that any operation on a context always takes place on the node where
the master copy is located. Any access to a context from any other node will result in
a remote access to the master and will therefore impact the performance.
If the node with the master context manager is no longer available, the backup
context manager will take over its responsibility. If the node will be available again,
the master context manager synchronizes its context data with the backup context
manager and then resumes its old role.

Fig.3.5, Context manager master and backup processes [FSC03]

 57

External Communications

• UDP dispatcher
The task of the UDP dispatcher is to act as a mediator between the RTP internal
message system and systems outside of RTP using UDP. It will accept UDP
datagrams on specified ports, analyze these messages and distribute them to RTP
client applications according to algorithms implemented in the RTP UDP plugin
library. Furthermore, it will accept special RTP internal messages from the RTP
clients and send these messages as UDP datagrams to clients on specified ports.
The UDP dispatcher process is started by the node manager in multiple instances.
Each instance has a different logical name and command parameter that defines
which protocol (MGCP, SIP, etc.) the instance handles.

The RTP client applications must attach to a UDP dispatcher in order to use its
service. Attaching/detaching means that the RTP client applications call an
appropriate library function that is part of the RTP core. These library functions
transparently provide the attaching service using other RTP components. The library
functions also accept certain input parameters that are needed by the plugin for
processing the UDP messages, which are handed over to the dispatcher.

• Plugin library

The UDP dispatcher dynamically loads a plugin library, which is responsible for
analyzing a raw UDP message and returning key values to the dispatcher. The
dispatcher uses these values to ensure that messages of a certain type are always
distributed to the same RTP client application. The name of the plugin library
depends on the protocol name.
The plugin library is not part of the RTP core and must be provided by the customer.
Thus, it can be easily modified (e.g. to handle new protocols). The plugin library must
provide functions for initializing, establishing, and removing special protocol key
mappings, and preparing outgoing messages.

3.2.4. Integration of Replication Platforms in the IMS

Preliminary Discussions

When integrating a replication platform in the IMS, decisions should be made as to how
the logical and physical components of the replication platform are mapped into the IMS
architecture. Those decisions are expected to be influenced by the IMS dependability
requirements and IMS traffic model.
Ideally, all IMS entities would be replicated in order to provide optimal fault-tolerance
and to not introduce any single point of failure in the overall dependable architecture.
Note this is generally not realistic because it is costly to implement all hardware and
software components multiple times and such scope of redundancy might flood the
system with pool management overhead and affect the overall performance. In this work,
only the S-CSCF is replicated; this is motivated by two main reasons:

 58

• Among all IMS processes, the S-CSCF is the most vital one since it is the logical
function responsible for the negotiation and the granting of access, service and
session control.

• The S-CSCF is, with the P-CSCF, the only IMS server used in every signaling flow
between a UE and the IMS, and between the UE and other UE(s). P-CSCF replication
is not investigated but similar conclusions as those obtained with S-CSCF replication
(c.f. Chapters 4 and 5) can apply to the P-CSCF. Also, a solution is investigated in
Part II to get around failures of single points in the system by deploying macro
handover support.

IMS-RTP Integration

In the RTP case, integration is quite straightforward as the presence of multiple S-CSCF
servers is hidden to the rest of the system. Therefore, nothing is different compared to the
case without replication, except that the SIP layer in IMS entities tries to contact ‘the S-
CSCF’ at a virtual IP address instead of the IP address of the physical S-CSCF reached.
The virtual IP address uniquely represents the cluster and messages sent to this address
are intercepted and parsed by the UDP dispatcher to send the message to the right S-
CSCF process.

IMS-RSerPool Integration

Being the replicated entity, the S-CSCF is naturally equivalent to a PE. The NS has no
direct equivalent in the IMS so it either be an additional independent server, or collocated
with an existing IMS server if required by the operator. In the latter case, the HSS is
probably a good candidate as it is occasionally (at SIP registration time) interrogated by
other IMS entities the list of contactable S-CSCF servers. The PU, i.e. the RSerPool
client, would be expected to be implemented in the IMS client as well, namely the UE.
Nevertheless, one of 3GPP premises is “intelligent core network, simple terminals”, to
save power consumption in the terminals for instance. Thus, moving the intelligence to
the access network would meet this premise. Since the P-CSCF forwards all SIP
messages on behalf of the UE, the former can decide which S-CSCF in the pool the SIP
messages should be sent to, and trigger retransmissions and failovers. This is the
approach taken in the rest of the thesis. Note that in this setting, the dependability
parameters at the UE should be tuned properly so that, e.g., there is no concurrent
retransmissions of the SIP layer at the UE and the ASAP layer in the PU/P-CSCF.

 59

4. Optimal Fault Tolerance Configuration
with Replicated SIP Servers

4.1. Motivation and Problem Statement
The main goal of fault-tolerant solutions in communication networks is to increase
transaction dependability. These solutions often rely on intra- and inter-node failure
detection and recovery mechanisms that affect the overall performance of the systems
which they are deployed in. Server replication requires that an entity frequently checks on
the servers states so that service requests are most likely routed to available servers at the
first attempt. This is typically done by regularly exchanging heartbeats between the
servers and the monitoring entity, at the cost of traffic overhead and additional
computational load in the servers. In RSerPool, the pool state information is even
communicated to the clients, which is another performance impacting factor. Therefore,
special attention should be given to maintaining high performance in the systems that
deploy fault tolerance solutions, at design-time and—if possible—also at run-time by
fine-tuning the dependability tradeoff according to the current network characteristics. In
this work, dependability and performance are mainly analyzed from the user’s
perspective, meaning that the output metrics that are evaluated reflect on how the user
will perceive the quality of the IMS services both in terms of dependability and
performance.
The SIP service selected for this research consists of a single transaction and mimics SIP-
based services such as registration (REGISTER transaction), SIP server capability query
(OPTION transaction) or the Instant Message service (IM transaction). The latter service
is similar to a chat service and the text sent by the end-users is carried in the payload of
the SIP packets. For most of these services, UEs can send requests ‘on-the-fly’, i.e. they
do not need to preliminarily initiate a session to do so. Two remarks:
• The notion of reliability cannot be applied to the service considered; once the

transaction is completed, the service has been successfully provided and cannot fail
anymore. This means that, in this context, dependability is equivalent to availability
only.

• This type of services is very similar to other client-server services such as Internet
services. Therefore, the results derived from this analysis can be reused for server
replication applied to dependable Internet service deployment scenarios.

One of the main impact of node failures and network failures on user-level performance
is longer transaction completion time—here referred to as service access time (SAT)—
because they cause request retransmissions. Thus, SAT can be minimized if clients
ideally contact an available server every time they send a request. This can be done only
if the system accurately suspects which servers are down and quickly notifies the clients.
Another important performance-related aspect to consider with fault-tolerant services is
the overall load in the system generated by the service platform. Even though, server
replication is expected to increase dependability and reduce the number of

 60

retransmissions, additional communications are required to support the necessary failure
detection and recovery functions and it is therefore often the case that the overall load of
dependable services exceeds that of the non-replicated scenario. Telco systems in general
and wireless systems in particular, have limited bandwidth and perform worse with
heavier loads, which in turn slows the end-user service. The goal here is not to analyze
the impact of the load on the service performance, so only the overall load will be
evaluated; no existing model was used—or new model derived—in order to map load
levels into corresponding performance levels.
The complexity of the system modeled—including fault tolerance, traffic and failure
models—is too high to compute the output metrics analytically; instead, Möbius
[Möbius07] is used to model, and simulate, our system. Möbius is a tool that supports
many formalisms, but was originally designed for stochastic activity networks (SAN)
[Meyer85], to model communication systems and many other types of systems.

In this chapter, the theory on SAN and Möbius is introduced first. Next, the three output
metrics, dependability, SAT, and load, are evaluated in the standard SIP scenario for
different combinations of server and network failures. This gives a reference to
subsequently evaluate the impact of server replication on the end-user experience. Then,
the RSerPool-like Möbius model is explained at high-level – the detailed Möbius models
and code are shown in Appendices B.1, B.2 and B.3. The fault tolerance parameters and
schemes that can be tuned are presented and qualitatively discussed in order to get a first
feeling about which are expected to have a bigger impact on the output metrics and
should therefore be investigated more thoroughly. The most relevant results are shown
and analyzed in order to draw the first conclusions on which fault tolerance settings are
more appropriate to specific failure scenarios.
Because the analysis is based on three output metrics, it is not likely to find a setting for
which all output metrics values are optimal. Hence, when it comes to selecting a fault
tolerance setting for a real system, the best tradeoff between the output metrics should be
selected. The definition of ‘best tradeoff’ is subjective and depends on the requirements
specific to the system and end-user service. It is discussed how requirements on
dependability, SAT and load allow to construct a score function that returns a unique
metric, which quantifies the ‘quality’ of the tradeoff for each setting/scenario. A score
function example is provided to illustrate how to choose one particular setting in a given
deployment scenario.

4.2. Background on SAN Modeling and Möbius
As SAN models and the associated Möbius tool made the evaluation of the complex
RSerPool-IMS system possible, it is crucial to understand the principles behind SAN
modeling.

4.2.1. Möbius Overview
Möbius is a software tool for modeling the behavior of complex systems. The first step in
the model construction process is to generate a SAN model (cf. summary in next section
or more details in [Meyer85]). The most basic model in the framework is called an

 61

atomic model, and is built with state variables and actions: state variables hold state
information about a model, while actions provide the mechanism for changing model
states—so-called activities in SAN.
If the model being constructed is intended to be part of a larger model, then the next step
is to compose it with other models to form a larger model. This is sometimes used as a
convenient technique to make the model modular and easier to construct. Although a
composed model is a single model with its own state space, it is not a ‘flat’ model; it is
hierarchically built from submodels.
After a composed model is created, the next step is to specify some measures of interest
on the model using some reward specification formalism: the Möbius tool captures this
pattern by having a separate model type, called reward model, which augments composed
models with reward variables.
The next step is typically to create a solver to compute a solution to the reward model: a
solver is any mechanism that calculates the solution to reward variables. The computed
solution to a reward variable is called a result: since the reward variable is a random
variable, the result is expressed as some characteristic of a random variable (this may be,
for example, the mean, variance, or distribution of the reward variable).

4.2.2. Atomic SAN Models
This section contains a brief recall of the SAN primitive objects: places, activities, input
gates, and output gates. These objects and their usage is illustrated in Appendix B.1.
Places represent the state of the modeled system; they are represented graphically as
circles. Each place contains a certain number of tokens, which represents the marking of
the place. Note that tokens in a place are homogeneous, in that only the number of tokens
in a place is known; there is no identification of different kinds of tokens within a place.
Activities represent actions in the modeled system that take some specified amount of
time to complete. There are two types of activities: timed and instantaneous. Timed
activities have durations that impact the performance of the modeled system (such as a
communication delay or the time associated with a retransmission timer); they are
represented graphically as thick vertical lines. Activity time distribution functions can be
generally distributed random variables, where each distribution can depend on the
marking of the network. Instantaneous activities represent actions that complete
immediately when enabled in the system; they are represented graphically as thin vertical
lines.
Case probabilities, represented graphically as circles on the right side of an activity,
model uncertainty associated with the completion of an activity; each case stands for a
possible outcome (e.g. a routing choice in a network, or a failure mode in a faulty
system). Each activity has a probability distribution, called the “case distribution”,
associated with its cases; this distribution can depend on the marking of the network at
the moment of completion of an activity. If no circles are shown on an activity, one case
is assumed with a probability of one. Each activity has also a reactivation function; this
function gives marking dependent conditions under which an activity is reactivated.
Reactivation of an activated activity means that the activity is aborted and that a new
activity time is immediately obtained from the activity time distribution.
Input gates control the enabling of activities and define the marking changes that will
occur when an activity completes. Input gates are represented graphically as triangles; an

 62

arc is connected to the controlled activity, other arcs are connected to the places upon
which the gate depends, also called input places. Each input gate is defined with an
enabling predicate and a function. The enabling predicate is a Boolean function that
controls whether the connected activity is enabled; it can be any function of the markings
of the input places. The input gate function defines the marking changes that occur when
the activity completes. If a place is directly connected to an activity with an arc, it is
equivalent to an input gate with a predicate that enables the activity whenever the place
has more than zero tokens along with a function that decrements the marking of the place
whenever the activity fires.
Output gates define the marking changes that will occur when activities complete. The
only difference between output gates and input gates is that the former are associated
with a single case of the activity. An output gate is represented graphically as a triangle
with its flat side connected to an activity (or a case of an activity); on the other side of the
triangle is a set of arcs to the places affected by the marking changes. An output gate is
defined only with a function: the function defines the marking changes that occur when
the activity completes. There is also a default scenario for output gates; if an activity is
directly connected to a place, it is equivalent to an activity in which an output gate has a
function that increments the marking of the place whenever the activity is fired.

4.2.3. Composed Models
The Möbius framework allows the construction of composed models from previously
defined models, which allows the modeler to adopt a hierarchical approach to modeling
by constructing submodels as meaningful units and then placing them together to
construct a model of a system.
Model composition is accomplished by the state-sharing approach, which links
submodels together by identifying sets of state variables. Then, interactions between the
submodels are possible, since both can read from and write to the identified common
state variable. This form of state-sharing is known as equivalence sharing, since both
submodels have the same relationship to the shared state variable.
The composed model formalism used by Möbius for SAN models is ‘Replicate/Join’: this
formalism permits to define a composed model in the form of a tree, in which each leaf
node is a predefined atomic or composed model, and each non-leaf node is classified as
either a Join node or a Replicate node. A Join is used to compose two or more submodels
using equivalence sharing; a Replicate is used to construct a model consisting of a
number of identical (indistinguishable) copies of its single child—note that in the server
replication scenario, a special function was created in the replicated atomic model used
for the IMS servers in order to give each replica a unique ID. Each child node of a
Replicate or Join node can be a Replicate, a Join, or a single atomic or composed model.

4.2.4. Reward Models
Reward models are built upon atomic and composed models, equipping them with the
specification of performance measures. Möbius implements a reward model called a
performance variable, which allows for the specification of a measure on one or both of
the following:
• the states of the model, giving a rate reward performance variable;

 63

• action completions, giving an impulse reward performance variable.
A rate reward is a function of the state of the system at an instant of time. An impulse
reward is a function of both the state of the system and the identity of an action that
completes; an impulse reward is evaluated when that particular action completes. A
performance variable can be specified to be measured at an instant of time, to be
accumulated over a period of time, or to be time-averaged over a period of time.
Once the rate and impulse rewards are defined, the desired statistics on the measure must
be specified. Möbius includes solving for the mean, variance, distribution of the measure,
or the probability that the measure will fall within a specified range.

4.2.5. Solver
Möbius supports two classes of solution techniques: discrete event simulation and state-
based, analytical/numerical techniques. Any model specified using Möbius may be
solved using simulation, whilst only models having delays that are all exponentially
distributed, or having no more than one concurrently enabled deterministic delay, may be
solved using a variety of analytic techniques applied to a generated state space.
Möbius simulation supports two modes of discrete event simulation: transient and steady-
state. In the transient mode, the simulator uses the independent replication technique to
obtain statistical information about the specified reward variables. In the steady-state
mode, the simulator uses batch means with deletion of an initial transient period to solve
for steady-state, instant-of-time variables. Estimates available during simulation include
mean, variance, interval, and distributions. Confidence intervals are computed for all
estimates.

4.3. IMS Server Replication - Model Definition
In this section, the different functions of the IMS replicated server scenario that were
modeled and the assumptions made are defined.

4.3.1. Topology
In the scenario considered here, multiple clients want to access an IMS service from a set
of replicated S-CSCF servers. The replication platform is assumed to be RSerPool, which
requires the presence of an additional entity, namely the name server (NS). The NS is
mainly in charge of managing the (de-)registration of the S-CSCF servers (PEs),
regularly checking on the S-CSCF for failure detection, and reporting the pool status to
the pool users (PUs). In order to avoid state space explosion:
• The E2E communications are between the PUs and S-CSCF servers—in the instant

message application scenario, E2E communications would be between the PU and
another UE, but all requests and responses would still go through the S-CSCF.
Therefore, the model designed for this work can be easily adapted to model UEs as
endpoints instead of the S-CSCF by simply increasing the communications delays
between the PU and the other endpoint, and potentially increase the packet error/loss
rate because there are more hops on the PU/UE route than there are on the PU/S-
CSCF route.

• Intermediate entities between PUs and S-CSCFs, such as the I-CSCF, are abstracted.

 64

• (and also because only the entities assumed faulty are the PEs/S-CSCF) The NS is not
replicated, even though the RSerPool supports NS replication for increased
dependability and more accurate pool status monitoring (cf. Section 3.2.2 on NS
replication background).

The network architecture modeled with SAN/Möbius is illustrated in Figure 4.1 for m
PUs and n PEs.

Fig. 4.1, Network topology of the RSerPool-based replicated IMS model.

The transposition of the network architecture into a SAN composed model is shown in
Figure 4.2 for the example of the Regular report scheme (cf. Section 4.5.3 on report
schemes) but the composed models for other report schemes would look just the same.
For more details on the SAN models, see Appendices B.1, B.2 and B.3.

Fig. 4.2, Complete composed model for the replicated IMS

PE1
PU2

PUm

PU1
NS

PEn

SIP

reports

heartbeats

 65

Remark on Communications Modeling Approach
When a heartbeat or a SIP request/response is generated, it is discarded before the next is
sent; so at any time there are no multiple parallel pending messages between each PE and
the NS (for heartbeats), and between each PU and the serving PE (for SIP transactions).
Also, the link characteristics for all PE/NS and PU/PE pairs are the same – uplink and
downlink are modeled by:
• Exponentially distributed communication delays, with mean value Delay ms,
• Packet loss probability PER
Because of the aforementioned traffic model, the SIP and heartbeat ‘communication
channels’ are directly implemented by a single submodel within each replica of the PE
and SIPclient atomic models.
With respect to the pool status reports, multiple messages between the NS and a given PU
could co-exist simultaneously as there is no report timeout. To model this behavior, each
report is allocated a specific Pending_Report replica.

4.3.2. Traffic Model
Each PU sends a new SIP request to the S-CSCF a few seconds after the last transaction
initiated has been successfully completed or dropped because the maximum number of
retransmissions has been reached. The inter-transaction time follows an exponential
distribution, with mean value InterSIP seconds.
Like in the real setting, a PU can start SIP requests only after it has received a first pool
status report, so-called name resolution in RSerPool. Without a report, the PU does not
know which IP address(es) it should send the SIP requests to.
Note that all characteristics of the SAN model are static in the sense that they do not vary
with the current state of the composed model. For instance, the current load in the system
does not affect the PER or the one-way time distribution and mean. Also, processing
times at the network entities were not modeled, which is not a problem because the one-
way time distribution could account for processing times – from the correlation of the
actual one-way time distribution and the processing time distribution at the receiver side.

4.3.3. Fault Model
The model includes three types of faults:
• Any hardware or software fault at an S-CSCF leads to the node failure (node crash

faults). These faults follow an exponentially distributed ON/OFF model, with mean
time to failure of TTF seconds and mean time to repair of TTR seconds. The
probability that a single PE is OFF or ON is POFF and PON respectively.

• Network congestion (e.g. router buffer overflow) and bit errors on the wireless links
both lead to packet losses. It is assumed that each heartbeat, report, and SIP message
consists of only one packet. This is realistic because most SIP messages, such as
INVITE and BYE, do not exceed a few hundred bytes (cf. Table 4.5 in [Fathi06]),
and heartbeats and report messages are expected to be simpler messages than SIP
requests/responses (e.g. SIP relies on many headers). Therefore, each packet loss
leads to the loss of the whole message. Packet losses occur with the probability PER
on both the uplink and the downlink.

 66

• Network delays are exponentially distributed with mean value Delay for both the
uplink and the downlink. Because of the delay distribution, it can happen that some
heartbeat and SIP messages are delayed for a longer time than their respective
timeout allows; these messages are discarded because of timing failures.

PEs are assumed stateless so no inconsistency requirement needs to be considered when
defining the dependability metric. Also, it is assumed that the information returned by all
entities in the system is always trusted (e.g. the content of pool status reports sent by the
NS to the PUs).

4.3.4. Failure Detection and Reports
SIP provides a timeout-per-request for ‘reactive’ failure detection and an exponential
backoff retransmission mechanism for recovery: when a PU sends a new request, it also
starts the timeout-per-request, which is set to T0 first. By default, T0 is equal to the
current mean round trip time (RTT), i.e. twice as much as the mean one-way time Delay.
If the response has not been received within T0, the PU sends the request once more but
this time the timeout is set to 2*T0. Every time the timeout fires, the request is sent again
and the timeout value doubles; the timeout value is therefore equal to
2(# request_retrans)

*T0. By default, a SIP client should send the same request up to seven times
before it discards the transaction, i.e. the transaction is failed. Adding up all the
successive timeout values, a transaction can live up to 127*RTT. For instance, for an
estimated round trip time of 500ms, the maximum transaction lifetime is 63.5s.
On top of the reactive timeout-per-request mechanism of SIP that is implemented locally
in the PUs, the NS sends ASAP-layer heartbeats to all the registered PEs every InterHB
seconds to check on their status—the PEs are assumed to be registered when the
simulation runs start. Once the heartbeat timeout expires, the NS gathers in PElist the
identities of the PEs that have responded on time to the last heartbeat request and orders
them according to their respective heartbeat response times (cf. next subsection for
details on PElist ordering strategies).
In RSerPool, the recovery mechanism is implemented by the PUs since they are in charge
of the request retransmissions and the failovers. Therefore, a mechanism to report the
current pool status to the PUs is needed. Different reporting approaches are discussed in
Section 4.5.3.

4.3.5. Failover Management and Server Selection Policy
The recovery functionalities are implemented at the PUs. First, the PUs are in charge of
triggering the SIP request retransmissions when timeouts expire. After
[1+max_retrans] unsuccessful transmissions, the PU takes the PE out of the current
PElist it caches and makes a failover by sending the following request transmission to the
next server in the PElist. Once max_FO failovers have been made and the
[max_retrans+1] attempts with the last PE have failed, a transaction is discarded and
considered failed. In the more likely case when the transaction succeeds, the current
retrans and FO counters are reset and the same PE is used for the next transaction, unless
a new report was received during the inter-transaction time and the selected PE now
appears to be unavailable (i.e. the PE contact information is in the report but an OFF-flag
shows that the NS suspects it to be down). Even when all PEs left in the list have OFF-

 67

flags, the PU keeps following the retrans/FO pattern. Only in the rare case when the
PElist is empty (no PE responded on time to the last heartbeat, or the PU has taken them
out of the list one by one), the PU stops sending the current request and the number of
failed transaction is incremented. The PU waits for InterSIP and then, either the PU has
received a new non-empty report and sends a request to the first PE, or the PU has not
received a report and it increments the failed transaction counter and waits for another
InterSIP.
When a failover is triggered, many strategies for selecting the next PE can be chosen.
Among them, relevant examples are: round robin, most recently repaired, most available,
shortest RTT, etc. For replicated servers managed by RSerPool, [Bozinovski04b] has
shown that the server selection policy (SSP) that offers the highest dependability levels is
the so-called maximum availability SSP (maSSP): the PE that replied last to the heartbeat
request is picked first, the PE whose heartbeat response was received by the NS second to
last is picked next, and so on – this is a LIFO queue. Consequently, maSSP was the only
server selection policy modeled and the NS orders the PElist accordingly at the end of
each heartbeat round.

4.3.6. Output Metrics
Since the goal of this work is to investigate the dependability/performance tradeoff in the
RSerPool+IMS context, multiple metrics are necessary.

Dependability
Dependability is simply defined as the ratio of successful transactions over the total
number of transactions. This value reflects on how well a level of failure detection,
associated to a specific combination of max_retrans and max_FO, permits to avoid
service unavailability for a given amount of node and network failures.

SAT
SAT is defined as the average time between the moment a transaction is triggered (i.e. the
moment when the request is first sent) and the moment the transaction is completed (i.e.
the moment when the PU receives the response). An important remark is that SAT is
measured only when transactions are successful. This is because the user’s experience is
mainly impacted by (1) how likely he/she will get access to the service when requested
(i.e. dependability) and (2) if the service is obtained, how long it took to access the
service; if the service is not available, it matters little whether the transaction is dropped
after X or Y seconds.
Obviously, SAT is proportional to the RTT value—the longer the communications
delays, the longer the service access times. Thus, in order to better compare how SAT
varies with different RTT input values, the SAT results are normalized to RTT=100ms,
i.e. SATnorm=SAT*(100/RTT).

Load
Even though the model does not offer dynamic parameter settings in relation to the
current system load, it is important to get an idea of how much traffic specific failure
detection and/or recovery strategy settings produce as compared to other settings. Hence,
the load is a measure that includes all types of traffic, even failed transactions: it is

 68

expected that failure detection decreases the SIP traffic by reducing the number of
request retransmissions; at the same time, failure detection introduces a lot of overhead so
it is necessary to evaluate the load in order to see if the overall traffic can be reduced
when using failure detection.
Note that once a message has been sent, the load counter is incremented, even if the
message is lost because of PER before reaching the receiving side. Also, each message
type is defined by a specific packet size, where:
• Size_HB = 1 packet unit
• Size_report = 2 packet units
• Size_SIP message = 4 packet units
Since the (n+1)th transaction initiation time does not only depend on InterSIP time—it
also depends on the nth transaction SAT—all tests do not generate the same total number
of transactions within a given simulated time. In this context, it would be ‘unfair’ to
compare the overall load of different settings/scenarios using the total load. Instead, the
overall load is normalized to one transaction and, thus, the load is given in packet units
per transaction.

4.4. Input Variable Selection – Parametric Analysis
Now that the output metrics have been defined, it is important to identify the input
metrics that would most impact the results. In this section, a set of input metrics for the
RSerPool-based server replication is identified. These input metrics are discussed
qualitatively in terms of their respective relevance in the testing strategy and how varying
their values is expected to affect the three output metrics. The summary of this discussion
is given in Table 4.1.

Each test run was set to last twenty hours (i.e. 72000 seconds) of RSerPool+IMS
simulated operation time. All setting scenarios evaluated are run a minimum of 6 times. If
some reward variables have not converged, the scenario is run again, up to 12 times in
total. Note that the few reward variables that do not converge after the 12 runs are
variables that only serve testing purposes, such as the number of requests that were not
sent by the PUs because their respective PElist was temporarily empty. With this
experiment design, each scenario tested could run up to a whole hour.

4.4.1. Influence of the System State
The influence the current characteristics of a system have on the output metrics is
qualitatively discussed first. Then, results obtained for different settings of the fault
tolerance solution illustrate how changes in the environment characteristics affect the
output metrics.

Traffic Load Parameters
The way the system is modeled, the overall load does not impair the performance of any
function modeled. Consequently, dependability and service access time are expected to
be independent from the load levels in the model.

 69

Nevertheless, the load-related input settings should be so that there are enough event
samples to return statistically significant results. The overall load is made up of the
heartbeat load, the report load and the SIP load:
• The heartbeat load directly depends on the heartbeat frequency. With frequency

values typically ranging from 1/60 to 1/2 (cf. Section 4.5.2 for the discussion on
heartbeat frequency settings), there are respectively between 1200 and 36000
heartbeats ‘rounds’ during every run – at each round, the NS sends a heartbeat to all
the PEs in the server pool.

• The report load depends on the report scheme applied and its associated report
frequency. Even though the report frequency does not have to follow that of the
heartbeat mechanism, there are also between 1200 and 36000 report rounds during
every run – at each round, the NS sends a report to all the PUs.

• The SIP load depends on the number of PUs (#PU) and the frequency of SIP
transaction initiations (1/InterSIP). These settings were fixed to 10 PUs and 5s
InterSIP time for all the runs; a total of more or less 140,000 transactions are
generated during each run. The fluctuations of total number of transaction from one
test setting to another are due to the SIP retransmissions, which affect SAT and the
transaction initiation times distribution.

The total numbers of sample for each test scenario are actually even bigger than the ones
given above because each test is run from 6 to 12 times. These numbers show that the
selected load-related settings generate enough samples to confidently derive conclusions
from the evaluated results.

The average load per transaction is a function of the SIP traffic load setting. This is
because for each test scenario, the heartbeat and report frequencies are fixed and, thus,
their contribution to the total load is fixed too. Since the SIP traffic settings influence the
number of transactions generated during each run, these settings also influence how much
the heartbeat and report traffics contribute to the average load per transaction.; the more
SIP transactions, the lower the load per transaction. Let us verify it analytically:

()1.4
#

totaltrans
SIPloadreportloadHBloadLoad ++

=

The SIP load is directly proportional to the total number of SIP transactions, therefore:

()2.4
#
#

#
__

total

total

total trans
trans

trans
reportloadHBloadLoad

⋅
+

+
=

α

Since heartbeat and report loads are fixed for a given set of fault tolerance settings,

()3.4
#

αβ
+=

totaltrans
Load

 70

Equation (4.3) confirms that the load per transaction is inversely proportional to the total
number of SIP transaction. Equations (4.4) and (4.5) show how the results from a single
test can be used to calculate α and β and, then, extrapolate the load per transaction for any
SIP traffic level—for a given set of other input metrics.

() ()
()4.4_

#

1max_1max_##
SIPsize

trans

retransFOtrans
RTT
SATtrans

total

failedsuccess

⋅

+⋅+⋅+⎟
⎠
⎞

⎜
⎝
⎛⋅

=α

)5.4(__#__# reportsizemsgreportHBsizemsgHB ⋅+⋅=β

Figure 4.3 depicts how the load per transaction varies with the number of SIP
transactions for the example where α = 10 and β = 450,000.

0.5 1 1.5 2 2.5

x 105

11

12

13

14

15

16

17

18

19

Number of SIP transactions

Lo
ad

 p
er

 tr
an

sa
ct

io
n

(in
 p

ac
ke

t u
ni

ts
)

Fig. 4.3, Load per transaction vs. number of SIP transaction

Fault Model Parameters
The fault model greatly influences all results. The fault-related factors that can be tuned
in the model are:

PER affects all communications but the consequences of packet losses change for each
type of message lost:
• When heartbeat requests or responses are lost, the NS suspects PEs to be unavailable

while they might not be—known as false alarm, or false positive—and in turn
generates inaccurate PElists. Erroneous PElists are expected to lower the probability
to selecting a currently available PE; hence, dependability decreases as well when
PER raises. Note that the effects of erroneous PElists are significantly lower when the
server pool deploys many PEs and especially if there are even more PEs than
necessary to reach the maximum number of failovers.

 71

• The impact of lost reports between the NS and PUs is similar to the impact of lost
heartbeats. After some time, PElist become stale and do not reflect the current server
pool status anymore—especially because in the model, the PUs take the PEs that
failed to provide the IMS service out of the PElist. In the model, reports are sent on a
best effort basis, i.e. there is no acknowledgement mechanism, so report
retransmissions are not considered here. Another scheme could be envisaged where
reports are retransmitted in case of reports are lost. There are two drawbacks to this
solution. First, acknowledgment would add considerably more network load in the
system. Second, retransmissions also increase the overall network load and delay the
report update times.

• The loss of SIP messages triggers retransmissions. This has limited direct effects on
dependability. PER is the probability that a message is lost, so the probability q that
the SIP request or response is lost is:

())6.4(11 2PERq −−=

Typically, a SIP request is transmitted up to 7 times before a transaction is dropped,
hence the probability Q that a transaction fails solely because of packet losses is:

())7.4(11
7

2 ⎟
⎠
⎞

⎜
⎝
⎛ −−= PERQ

PER is usually comprised between a few percents and 15-20% in wireless networks
so the chances that PER alone causes failed transactions are low (e.g., for PER=20%,
less than 0.1% of the transactions would fail because of packet losses).
Even though very few transactions are lost because of PER, it causes retransmissions
that increase SAT. Retransmissions are triggered only when the timeout fires and then
another round trip time needs to be added. This means that each retransmission delays
the transaction completion time by the timeout duration, which increases with the
number of retransmissions.
Higher PER also means higher load per transaction; each retransmission costs
between 1 and 2 additional messages, depending on whether the PE has received the
SIP request or not or whether the PE was up when the request reached it.

PE faults are expected to worsen all output metrics because PE unavailability (POFF)
increases request failures that trigger retransmissions and lead to lower dependability,
longer SAT and higher load per transaction.
Additionally, the mean time to repair (TTR) is probably at least as important as the POFF
value. The reason is that unlike packet losses, PE faults are non-instantaneous events
because of the node repair process (modeled by TTR), and the longer TTR, the more
successive retransmissions. Thus, node crashes are more likely to increase the probability
of transaction failures than random packet losses.
Because of the SAT definition it is difficult to predict how SAT varies with TTR. On one
hand, the PE crashes cause retransmissions and, hence, longer SAT is expected when
TTR raises. On the other hand, the longer TTR, the more likely retransmissions are

 72

successive and dependability drops. This phenomenon pulls SAT values down—only
successful transactions are used for SAT calculation.

RTT has effects correlated with those of TTR. It was explained in Section 4.3.3 that the
transaction lifetime is proportional to RTT. If the transaction lifetime increases, the
probability that an unavailable PE repeatedly contacted by a PU is repaired before the
transaction is discarded increases as well. In conclusion, a bigger [RTT/TTR] ratio means
higher dependability, but also longer SAT (cf. analysis in PE faults), less load (mainly
because in the model the longer RTT, the less transactions).

Table 4.1, Summary of the parametric analysis for the system settings

 dependability SAT load relevance
Load_SIP 0 0 – 0
PER_HB – +(?) +/– (?) +

PER_report – + +/– (?) +
PER_SIP – ++ ++ +++

POFF – + + ++
TTR – – +/– (?) + ++

RTT/TTR + + – +

Table 4.1 summarizes the preliminary analysis of the impact of the load and fault models,
where the predicted variations of each output metric due to the increase of the
corresponding input variable. For instance, when the number of packet losses affecting
heartbeat (PER_HB) increase, it is expected that dependability moderately goes down,
SAT will probably lengthen and it is difficult to project the effects on the overall load.
Based on these observations, the relevance of each input variable is established,
motivating that each set of fault tolerance settings should be tested against different PER,
POFF, and TTR levels. Because of the large fault tolerance setting space, each input metric
is set to only 2 levels.
Both PER and POFF vary between Low (1%) and High (10%). Each test scenario is
systematically evaluated for the four input scenarios—so-called X_ticks—resulting from
the combinations of PER and PE fault as shown in Table 4.2.

Table 4.2, Fault model settings used as input parameters for each test

 X_tick1 X_tick2 X_tick3 X_tick4
PER L L H H

OFF L H L H

The third and last system input variable expected to significantly influence the output
results is TTR. Instead of using 3-D graphs, which would make them difficult to read and
analyze, each test scenario is depicted with two independent graphs, one for each input
RTT-related value.

 73

The mean of the sum [TTF+TTR]—so-called cycle length (CL)—is the mean frequency
of crash faults at a single PE. A given combination of CL and POFF permits to determine
the mean duration of the failures resulting from the PE faults, which is shown in Table
4.3. In the model, CL is either fixed to 100 or 1000 seconds, so a fault approximately
occurs every 1.5 and 16.5 minutes respectively. These values seem quite small because in
real environments, faults are rarely so frequent; in some systems, certain failures even
appear as rarely as once a month or every few months.
Longer CLs would model a wider range of real systems. Unfortunately, the simulated
system operation time is fixed to 20hrs to keep the simulation time reasonable so, if CL
values are increased, TTR and TTR are so large at the scale of the simulated time that
there are not enough fault occurrences to properly get exponentially distributed ON and
OFF periods with respective mean TTF and TTR. In order to ‘compensate’ the relatively
short CL settings in the model, RTT is set to 100ms in all fault tolerance tests, which is
also a small value for a real environment (unless all traffics are in a LAN).
Another option would be to scale down all the other time-related parameters – especially
RTT, so that the maximum transaction lifetime is less likely to be close to or longer than
TTR. Unfortunately, the problem is the same as with lengthening CL. Smaller RTT
means more frequent state changes, i.e. longer simulation times for a given simulated
operation time.

Table 4.3, Mean TTR for the different CL and POFF input values

 CL1 (100s) CL2 (1000s)
POFF (1%) 1s 10s
PON (10%) 10s 100s

4.4.2. Reference Output Values – Standard IMS Scenario
In order to evaluate how well each fault tolerance setting performs, it is necessary to
establish reference output levels from the non-replicated standard IMS scenario.
In this section, the standard IMS results are presented and analyzed in comparison with
the foreseen effects of the environment input settings on the output metrics from the
qualitative analysis made in the previous subsection.

Model Definition
In the standard IMS scenario, PUs request the service from a single S-CSCF. Since there
is no replication implemented, the NS—as well as the heartbeat/report mechanisms—is
no longer necessary and the network topology modeled becomes very simple, as
illustrated in Figure 4.4.

The SIP traffic model, the S-CSCF and network fault models, and the SIP timeout and
retransmission mechanisms are the same as in the RSerPool-based model described in
Section 4.3.

 74

Fig. 4.4, Network topology of the standard IMS model

Results and Analysis
The standard IMS system is evaluated against the four X_tick input settings and the two
CL settings, and three RTT levels. This way, observations can be made the influence of
PER, the OFF probability, CL and RTT.
All the input test values are summarized in Table 4.4 and the corresponding results are
depicted in Figures 4.5(a) and 4.5(b).

Table 4.4, Standard IMS test settings

 Test 1 Test 2
CL(s) 100 1000

RTT(ms) 100–200–500 100–200–500
InterSIP(s) 5 5

#PU 10 10

As planned in the qualitative analysis – and for all RTT settings – POFF has a significantly
bigger impact on dependability than it has SAT and the load, while the opposite can be
observed for PER:
• PE failures cause multiple successive retransmissions, and therefore worsen

dependability. As proved by Equation (4.7), random packet losses cause isolated
retransmissions that rarely lead to transaction failures on their own. Consequently, it
is not surprising to observe such differences of dependability levels between POFF(L)
and POFF(H), while the PER hardly makes any difference in terms of dependability.

• Successive retransmissions often lead to failed transactions so these retransmissions
are not counted in the SAT calculation. Thus, SAT increases little with POFF. Isolated
retransmissions hardly ever lead to transaction failures so they almost systematically
lengthen the transaction completion time; the higher PER, the longer the average
service access time of successful transactions.

• Since successive retransmissions are more and more spread out because of the
exponential backoff retransmission mechanism, SIP request are (re-)sent less
frequently during OFF periods than during ON periods. This means that for equal
levels of POFF and PER, random packet losses affect a larger number of SIP requests
than PE failures. This explains why the load increases much more with PER than with
POFF.

S-CSCF
PU2

PUm

PU1
SIP

 75

L-L L-H H-L H-H

97

97.5

98

98.5

99

99.5

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

SA
T

(in
 m

s,
 n

or
m

al
iz

ed
 fo

r R
TT

=1
00

)

L-L L-H H-L H-H

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL100 - RTT100(+),200(o),500(*)

Fig.4.5(a), Standard IMS – CL=100s, RTT=[100;200,500]ms

L-L L-H H-L H-H

97

97.5

98

98.5

99

99.5

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

S
AT

 (i
n

m
s,

 n
or

m
al

iz
ed

 fo
r R

TT
=1

00
)

L-L L-H H-L H-H

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL1000 - RTT100(+),200(o),500(*)

Fig.4.5(b), Standard IMS – CL=1000s, RTT=[100;200,500]ms

In both scenarios, the effects of longer RTT for a given CL are roughly the same.
• Increased RTT significantly improves dependability when the PE crash fault

probability is high. When RTT increases, so does the maximum transaction lifetime
and with it, the probability that the S-CSCF will recover before the transaction has
failed. Hence, it can be consistently seen that for the exponential backoff
retransmission mechanism and for a given CL, the longer the RTT, the higher the
dependability. This confirms that the higher the [RTT/TTR] ratio, the more
dependable the system becomes.

• SAT hardly changes with RTT for CL1000 and changes for CL100, where it is about
10% lower for RTT100 as compared to the RTT200 and RTT500 scenarios. The fact that
SAT slightly increases with RTT is explained by how SAT was defined: SAT

 76

accounts for successful transactions only, so the higher the dependability, the more
likely additional retransmissions have contributed to the increased dependability,
hence, the longer the average transaction completion time.

• The load stays almost identical in the CL100 case. For CL1000, the average load per
transaction decreases for higher RTT values. The reason is that with longer maximum
transaction lifetimes, fewer transactions fail. Therefore, more transactions trigger less
than the maximum 6 retransmissions experienced by unsuccessful transactions;
hence, less load per transaction.

Figures 4.6(a) and 4.6(b) illustrate the same results from a different angle; the goal is to
highlight the effects of CL variations. For both RTT100 and RTT500, similar conclusions
can be drawn from the comparison of the CL100 and CL1000 curves:
• Comparing the respective dependability levels in the two figures further supports the

observation that the higher the [RTT/TTR] ratio, the more dependable the system
becomes. With CL1000, dependability is always lower than in the CL100 case, i.e.
dependability go down when TTR goes up—for a given RTT.

• The differences in terms of SAT for CL100 and CL1000 mainly concern the scenarios
when POFF is high (i.e. 10%). This is because, in the CL100 scenario, TTR is shorter
than the maximum lifetime—10 seconds average against [12.7; 63.5] seconds
transaction lifetimes for RTT100 and RTT500. In this scenario, retransmissions are
quite likely to efficiently get around the PE failures. In the CL1000 case, when POFF is
high (i.e. TTR=100s), retransmissions are not as likely to help keep the transaction
‘alive’ until the PE is repaired.

• The load is inversely proportional to CL. The reasoning is the same as for RTT
variations, where ‘RTT’ should be replaced by ‘TTR’.

L-L L-H H-L H-H

97

97.5

98

98.5

99

99.5

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

S
AT

 (i
n

m
s,

 n
or

m
al

iz
ed

 fo
r R

TT
=1

00
)

L-L L-H H-L H-H

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

RTT100 - CL100(+),1000(o)

Fig.4.6(a), Standard IMS – RTT=100ms, CL=[100;1000]s

 77

L-L L-H H-L H-H

97

97.5

98

98.5

99

99.5

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

S
AT

 (i
n

m
s,

 n
or

m
al

iz
ed

 fo
r R

TT
=1

00
)

L-L L-H H-L H-H

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

RTT500 - CL100(+),1000(o)

Fig.4.6(b), Standard IMS – RTT=500ms, CL=[100;1000]s

4.5. Fault Tolerance Configuration – Parametric Analysis
In this section, the main fault tolerance parameters of the RSerPool-based replicated IMS
system are discussed and, for some of them, simulation results are added in order to
confirm and determine the effects of these parameters more accurately.
Considering the large fault tolerance setting space that result from the parameter analysis,
it is crucial to use a limited set of input system parameters so that the test space does not
explode. By setting all the parameters discussed in Section 4.4 to 2 or 3 values each, the
combination of all settings would add up to more than a million different tests. The
following decisions were made in order to drive the design of experiment for the
replicated IMS test scenarios:
• As we can see from Figures 4.5 and 4.6, both RTT and CL impact dependability and

the load similarly and with relatively equivalent magnitude because of the RTT-TTR
dependency. So both input variables are redundant in a way. Since CL variations
change SAT much more than RTT variations do, it is preferable to compare the
effects of the fault tolerance mechanisms on different SAT ‘behaviors’. Hence, CL
variations are maintained while RTT is fixed.

• Out of the three pre-selected values, the smallest RTT value (RTT100) is chosen in
order to have the shortest maximum transaction lifetime because of the short TTR
settings that the model allow (see Section 4.4.1).

• For the same reason, the main focus is on CL1000, but results for CL100 will be
sometimes shown and analyzed when the scenario with frequent PE failures is
relevant to specific fault tolerance parameter analysis.

4.5.1. Recovery Parameters

The parameters that directly affect the recovery process are:
• max_FO, the number of failovers;

 78

• max_retrans, the number of retransmissions per PE before a failover;
• extra_PE, which is determined by the server pool size and max_FO. There must be a

minimum [max_FO + 1] PEs in a server pool, so the server pool size in each test can
be expressed as [max_FO + 1 + extra_PE];

• SSP, the server selection policy upon failover. This aspect has been extensively
studied in [Bozinovski04b] so no further investigation is made in this work – the most
dependable strategy, the so-called maximum availability SSP is assumed and
implemented in the model.

Preliminary Analysis
In terms of dependability, failovers are expected to be effective against PE failures, while
retransmissions to the same PE mainly help for temporarily long network delays and also
for lossy communication links – even though failovers do this too. This means that, in
general, dependability could be greatly improved:
• by increasing the number of failovers, and keeping the number of retransmissions low

in comparison, when POFF raises;
• by increasing the number of retransmissions to the same PE, and inversely triggering

fewer failovers, when communication delays and packet loss probability get bigger.
Communication delays and packet losses are modeled as random processes independent
from the current system state. Therefore, RTT(msg_n) could easily be twice as short as
RTT(msg_n–1) and RTT(msg_n+1) during the simulation, which is not always the case
in a real system. Consequently, when RTT values temporarily increase, the exponential
backoff retransmission mechanism probably has a smaller positive impact on
dependability than it would have in correlated RTT scenarios.
The goal of deploying more PEs is to increase the overall availability of the pool.
Therefore, larger pool sizes should positively impact dependability because PElists offer
more PEs to pick from and therefore a higher probability to find available PEs to contact.
Since the timeout exponentially increases with the number of retransmissions, successive
retransmissions become extremely costly in term of SAT. Also, every time a failover is
operated, the retrans-counter is reset to ‘0’ and, so, the SIP timeout values stay low. Thus,
it is expected that high max_FO and low max_retrans configurations provide the IMS
service much faster than the opposite type of configurations simply because, for a given
number of retransmissions, the sum of all timeouts is much lower in the ‘failover-
aggressive’ approach than in the ‘retransmission-aggressive’ one.
Extra_PEs should not have any direct effect on SAT in the model. The SAT variations
between the different extra_PE settings are more the consequence of different
dependability outputs.
The overall load is made up of a fixed amount stemming from the fault tolerance
mechanisms and a variable part due to the SIP traffic and that greatly depends on the
number of retransmissions.
In the standard IMS scenario, it was found that the SIP load is lower for longer
transaction lifetimes. Since failovers tend to reduce the maximum transaction lifetime,
the overall load should also increase as compared to settings relying on many
retransmissions.
Equation (4.3) showed how the fixed fault tolerance traffic contributes to the overall load
for a given number of transactions per simulation run. The more PEs, the more heartbeats

 79

exchanged with the NS—the amount of reports depends on the number of PUs—so the
load is naturally expected to grow with extra_PE.

Tests Selection
Tests were run for many combinations of max_FO, max_retrans. For each combination,
the total number of SIP request transmissions is given by:

() ())8.4(1max_1max_max_ +⋅+= retransFOrequests

For each max_FO setting, the highest max_retrans is chosen so that max_requests is
closest to seven, which is the standard SIP setting. In case two settings give two
max_requests values equidistant from seven, the setting yielding the higher max_requests
is picked. Table 4.5 shows the list of tests resulting from this choice, and the
corresponding max_requests is indicated for each test.
The selected tests are all evaluated for three server pool sizes:
• 0 extra_PE, the pool deploys just enough PEs to allow all the failovers to be

supported by different PEs;
• 2 extra_PEs, the pool has two PEs more than necessary for the failovers;
• 4 extra_PEs, the pool has four PEs more than needed.
Each test is referenced by a unique code that specifies the parameters values in this order:
“max_FO/max_retrans/pool_size”. For instance ‘3/0/5’ refers to the test with 3 FOs
maximum, no retransmission to the same PE before triggering a failover, and a server
pool with 5 PEs (i.e. the 2 extra_PEs case).

Table 4.5, Summary of all the recovery settings tested and their corresponding
max_requests values

max_retrans
0 1 2 3 4 5 6

0 1 2 3 4 5 6 7
1 2 4 6 8
2 3 6
3 4 8
4 5
5 6

m
ax

_F
O

6 7

Results and Analysis
In order to illustrate the tradeoff between number of retransmissions and number of
failovers, Figures 4.7(a), 4.7(b) and 4.7(c) show three different configurations: the first
configuration heavily relies on retransmissions, the second is a compromise between

 80

retransmissions and failovers, and the third is all failovers. The input parameters and their
settings are shown in Table 4.6.
For comparison, all test results are compared to the standard IMS setting, which is
illustrated by the black line with diamond markers in all figures.
In the three tests depicted below, dependability, SAT and the load are always higher than
the standard IMS levels, especially when POFF is high. E.g., dependability is consistently
maintained above 99%. This is not the case for all combinations of fault tolerance
settings that are not shown here though; the results for all fault tolerance combinations
selected in Table 4.5 can be seen in Appendix B.4

Table 4.6, Replicated IMS test settings – recovery strategies

 Test 3 Test 4 Test 5
CL 1000 1000 1000

RTT 100 100 100
PU 10 10 10

InterHB 5 5 5
HB timeout 5 5 5

InterSIP 5 5 5
SIP timeout exp.backoff T0=100 exp.backoff T0=100 exp.backoff T0=100

max_FO 1 3 6
max_retrans 3 1 0

extra_PE 0–2–4 0–2–4 0–2–4

The results show that for the given network characteristics and PE fault model it is
preferable to favor failovers over retransmissions in order to get the highest dependability
levels in all input fault scenarios. The advantage of using many failovers instead of
retransmissions-per-PE is that the timeout value always stays low despite
retransmissions, so SAT becomes much shorter as well.
Modeling correlated network delays might reduce the differences between the
configurations in terms of both the output dependability and SAT by permitting to fully
make use of the exponential backoff mechanism when more retransmissions are used. At
the same time, modeling correlated PER would probably amplify the differences between
recovery configurations; unless most packet losses occur in PU’s network, in which case
it is likely that the request never reaches the PE, no matter which PE is contacted.
We can see from Figures 4.7 that the load slowly increases with the number of failovers.
Looking in detail into the results revealed that the SIP contribution is roughly the same in
the three cases and is similar to that of the standard IMS scenario. What causes such
difference is the total number of transactions generated during each run, which was
proven to impact the overall load inversely proportionally (cf. Equation 4.3).

 81

L-L L-H H-L H-H
94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H
100

150

200

250

300

350

400

450

500

S
A

T
(in

 m
s)

L-L L-H H-L H-H
11

12

13

14

15

16

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL1000 - RTT100
1/3/2(+),1/3/4(o),1/3/6(*)

Fig.4.7(a), Replicated IMS – max_FO=1, max_retrans=3, extra_PE=[0,2,4]

L-L L-H H-L H-H
94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

150

200

250

300

350

400

450

S
AT

 (i
n

m
s)

L-L L-H H-L H-H
11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL1000 - RTT100
3/1/4(+),3/1/6(o),3/1/8(*)

Fig.4.7(b), Replicated IMS – max_FO=3, max_retrans=1, extra_PE=[0,2,4]

L-L L-H H-L H-H
94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

280

300

320

S
AT

 (i
n

m
s)

L-L L-H H-L H-H

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL1000 - RTT100
6/0/07(+),6/0/09(o),6/0/11(*)

Fig.4.7(c), Replicated IMS – max_FO=6, max_retrans=0, extra_PE=[0,2,4]

 82

It is surprising to notice for the fault tolerance configurations depicted, and most of the
configurations tested in Appendix B.4, that the more extra_PEs, the lower dependability,
especially when POFF is high. The reason is probably linked with a certain aspect of the
SSP design, even though this cannot be verified from simulation outputs. Each PU
deletes the identity of a PE after max_retrans unsuccessful attempts with this PE. When a
PU has been through all the identities that are suspected by the NS to be available, it
starts contacting apparently unavailable PEs on the list until a new PElist is received from
the NS. Therefore, in scenarios with larger pool sizes, PUs are more likely to still have
PE entries in their current PElist when receiving a new PElist, even when the previous
PElist was never received or received very late because of longer communication delays.
This means that in larger pool size scenarios, it is plausible that PUs send a request to
‘low-ranked’ PEs left in the lists soon—or just—before they receive a new PElist. These
PEs have less chances to be available than the first rank in the new PElist received.
This characteristic should degrade the dependability of configurations with fewer
failovers more because they offer fewer opportunities to recover from contacting the
unavailable PE before the PElist is refreshed. Comparing Figures 4.7(a), 4.7(b), and
4.7(c) corroborates this assumption.
Also, when PER is higher, there are more instances when larger PElists at PUs become
‘empty’ as well and the behavior is closer in all pool size configurations, hence the
dependability values are less sensitive to the pool size parameter for X_tick4.
Results from the CL100 scenario permit to confirm the aforementioned reasoning. Figure
4.8 shows the output for a maximum of one failover and three retransmissions per PE. In
the CL100 case, PE failures are shorter and, therefore, PEs recover more often as PUs send
the last request before a PElist update. This explains why dependability levels—and thus
SAT levels—are less sensitive to the pool size setting in the CL100 case than in the CL1000
one for all X_ticks.

L-L L-H H-L H-H
94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

150

200

250

300

350

400

SA
T

(in
 m

s)

L-L L-H H-L H-H
11

12

13

14

15

16

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL100 - RTT100
1/3/2(+),1/3/4(o),1/3/6(*)

Fig.4.8, Replicated IMS – CL100, max_FO=3, max_retrans=1, extra_PE=[0,2,4]

 83

4.5.2. Failure Detection Parameters
The accuracy of the feedback from the heartbeat mechanism can really help the PUs
make the right choice when it comes to pick a PE for the first request of a transaction or
for a failover. The heartbeat parameters are the inter-heartbeat (InterHB) time and the
heartbeat timeout.

Heartbeat Frequency
Reducing interHB offers the advantage of refreshing the pool status image at the NS
more often. Consequently, the fraction of time during which PElists are accurate is higher
with frequent heartbeats, which should directly improve dependability. The drawback of
higher heartbeat rates is the additional load that ensues.
Note that with the regular report technique implemented in the model, every PElist
update at the NS should trigger the immediate distribution the corresponding report to all
PUs. This report scheme has compounding effect on both dependability and load
because:
• there is no delay between issuing the PElist and sending the corresponding report so

the pool status information is made available to the PUs before it becomes stale
(assuming short communication delays). Thus, the accuracy gains from more frequent
PElist updates at the NS can fully benefit the PUs.

• when more heartbeats are generated, more reports follow, which further increases the
load.

Three InterHB settings are tested. The five seconds InterHB time is compared to a less
aggressive InterHB setting of ten seconds is used as well in order to evaluate if load-
sensitive that cannot sustain frequent heartbeats. The three test settings are listed in Table
4.7.

Table 4.7, Replicated IMS test settings – failure detection strategies

 Test 6 Test 7 Test 8
CL 1000 1000 1000

RTT 100 100 100
PU 10 10 10

InterHB 5–10 2–5–10 2–5–10
HB timeout 5–10 2–5–10 2–5–10

InterSIP 5 5 5
SIP timeout exp.backoff T0=100 exp.backoff T0=100 exp.backoff T0=100

max_FO 1 3 6
max_retrans 3 1 0

extra_PE 0 0 0

 84

L-L L-H H-L H-H
96

96.5

97

97.5

98

98.5

99

99.5

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

100

150

200

250

300

350

SA
T

(in
 m

s)

L-L L-H H-L H-H

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

1/3/2 - CL1000 - RTT100 - HBfreq 2(+),5(o),10(*)

Fig.4.9(a), Replicated IMS – 1/3/2, interHB=[5,10]s

L-L L-H H-L H-H

97

97.5

98

98.5

99

99.5

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

150

200

250

300

350

400

S
A

T
(in

 m
s)

L-L L-H H-L H-H

12

14

16

18

20

22

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

3/1/4 - CL1000 - RTT100 - HBfreq 2(+),5(o),10(*)

Fig.4.9(b), Replicated IMS – 3/1/4, interHB=[5,10]s

L-L L-H H-L H-H

97

97.5

98

98.5

99

99.5

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

150

200

250

300

350

400

S
A

T
(in

 m
s)

L-L L-H H-L H-H

12

14

16

18

20

22

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

6/0/7 - CL1000 - RTT100 - HBfreq 2(+),5(o),10(*)

Fig.4.9(c), Replicated IMS – 6/0/7, interHB=[5,10]s

 85

Figures 4.9(a), 4.9(b) and 4.9(c) show that the effects of heartbeat frequency variations
on dependability are similar to those of the pool size variations in Figures 4.7. Namely,
when POFF is high, dependability sometimes becomes better when the heartbeat frequency
slows down while the opposite is expected. Like for the pool size analysis, this influence
is artificially caused by the conjunction of the SIP traffic model and SSP definitions when
PElist. Varying heartbeat frequencies lead to the same discrepancy because, in the model,
PElist updates and report broadcasts are synchronized so when PUs are sent reports less
often, they are more susceptible to deal with empty PElists. Hence dependability is
artificially raised, and SAT lowered, by slower heartbeat rates while the opposite
influence is expected. Also, it can observed that the impact of this phenomenon diminish
when increasing max_FO and/or PER, just as in the pool size analysis.
Nonetheless, the model permits to see consistently the positive effects of sending
heartbeats less frequently on the overall load; e.g. by reducing the InterHB time by half,
the gap between the standard IMS load and that of the replicated scenario is at least
divided by two.

Heartbeat and SIP Request Timeouts
Playing with the heartbeat timeout is probably another way of gaining PElist accuracy.
The heartbeat timeout determines how long before the pool status is updated at the NS a
heartbeat should be sent. In the model tested, the heartbeat timeout is always equal to the
InterHB value because the heartbeat sending and PElist update processes are
synchronized. Instead, the heartbeat timeout could be shortened so that, when the PElist
is updated, the heartbeat responses from the PEs are more recent; this provides another
way to make the pool status information more accurate when PElists are populated by the
NS. For instance, the heartbeat timeout could be set so that it is statistically longer than
RTT is 90%. This aims at maintaining the heartbeat timeout as low possible while
avoiding most false positive PE failure detections due to longer communication delays.
This setting has not been tested.

Failure detection is also done at the SIP layer by implementing SIP request timeout.
Results from tests 3, 4 and 5 showed that in the model the exponential backoff
mechanism might not be so relevant. Therefore, a fixed SIP request timeout might lower
the SAT levels without impacting dependability because, in the fixed timeout case, the
second retransmission occurs twice as fast as with the exponential backoff, the third
retransmission four times as fast, etc.
The same reasoning as for the heartbeat timeout holds when it comes to choosing the
timeout duration so in the following tests, the SIP timeout value is so that it statistically
encompasses at least 90% of the communication delays. Assuming exponentially
distributed RTT, this probability is expressed as:

())9.4(_1exp_Pr ⎟
⎠
⎞

⎜
⎝
⎛ ⋅−=≥ timeoutrequest

RTT
RTTtimeoutrequest

Equation (4.9) gives T90%=230ms. The effects of using a different timeout strategy are
tested as in Table 4.8.

 86

Table 4.8, Replicated IMS test settings – SIP timeout strategies

 Test 6 Test 7 Test 8
CL 1000 1000 1000

RTT 100 100 100
PU 10 10 10

InterHB 5 5 5
HB timeout 5 5 5

InterSIP 5 5 5
SIP timeout exp.(100)– fixed(230) exp.(100)– fixed(230) exp.(100)– fixed(230)

max_FO 1 3 6
max_retrans 3 1 0

extra_PE 0 0 0

The results in Figures 4.10(a), 4.10(b) and 4.10(c) consistently show that both SAT and
the load are considerably reduced thanks to the fixed request timeout setting, while
dependability worsens for fault tolerance configurations with few retransmissions and
significantly improves for POFF(H) when the number of failover raises. There are several
reasons behind these observations:
• The fact that the fixed timeout value encompasses 90% of the communication delays

greatly reduces the number of ‘early’ retransmissions that occur in the exponential
backoff scenario where T0 is set to the mean RTT, which explains why the load gets
considerably closer to the standard IMS with the fixed value.

• The fixed T90% setting does not help in scenarios favoring SIP retransmissions
because the ‘transaction lifetime per PE’ becomes shorter, lowering the probability
that a PE has recovered by the time the last retransmission to that PE is sent. For the
test settings considered, i.e. T0=100ms and T90%=230ms, the transaction lifetime per
PE is almost the same for the second retransmission and becomes much shorter from
the third retransmission in the fixed timeout case (920ms against 1500ms). When the
number of retransmissions is below three, like in tests 7 and 8, the transaction lifetime
per PE is actually larger with T90% so dependability increases.
Dependability improves in scenarios with fewer retransmissions also for the same the
reason as for the load improvement.

• By avoiding some of the retransmissions caused by long communications delays, the
SAT is reduced, especially for configurations with many retransmissions since each
retransmission costs twice as much as the previous one in the exponential backoff
scenario. With the 6/0/7 configuration, SAT is even about as good as the standard
IMS case.

 87

L-L L-H H-L H-H

96.5

97

97.5

98

98.5

99

99.5

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

100

150

200

250

300

350

400

S
AT

 (i
n

m
s)

L-L L-H H-L H-H

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

1/3/2 - CL1000 - RTT100 - ReqTO T0.2retrans(+),T90%5(o),10(*)

Fig.4.10(a), Replicated IMS – 1/3/2, ReqTO=[exp.T0,T90%]

L-L L-H H-L H-H

96.5

97

97.5

98

98.5

99

99.5

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

100

150

200

250

300

350

400

S
AT

 (i
n

m
s)

L-L L-H H-L H-H

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

3/1/4 - CL1000 - RTT100 - ReqTO T0.2retrans(+),T90%5(o),10(*)

Fig.4.10(b), Replicated IMS – 3/1/4, ReqTO=[exp.T0,T90%]

L-L L-H H-L H-H

96.5

97

97.5

98

98.5

99

99.5

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

100

150

200

250

300

350

400

S
AT

 (i
n

m
s)

L-L L-H H-L H-H

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

6/0/7 - CL1000 - RTT100 - ReqTO T0.2retrans(+),T90%5(o),10(*)

Fig.4.10(c), Replicated IMS – 6/0/7, ReqTO=[exp.T0,T90%]

 88

4.5.3. Outlook on Report Schemes Analysis
Ideally, the accurate pool status should be available at each PU before it sends a new SIP
request. The following schemes for pool status propagation from the NS to the PUs could
be compared – but this is postponed to future work:

Proactive the NS decides when to send reports to the PUs.
• Regular: the NS regularly broadcasts reports to all PUs, which has been thoroughly

investigated in this work.
• Change-driven: the NS sends reports (or the relevant subset of the pool information

only) when the pool status has changed during an update, i.e. when the status of at
least one PE has changed since last heartbeat round. It is expected that for smaller
pool sizes the pool status does not change often so it helps keep the report load low.
The danger with this approach is that the one time each PElist might never be
received by some PUs because of packet losses and this PElist is not sent again, only
a different version will trigger the next report round – leaving some PUs with empty
PElists longer than with the regular scheme.

Reactive PUs request the latest pool status from the NS, and usually keep
retransmitting the report request until they receive the report from the NS.
• Per-request: PUs request the latest pool status just before sending every SIP request.

The advantage is to consistently provide the PUs with the latest pool status
information generated by the NS. This solution presents two major drawbacks
though. First, the report procedure delays the actual beginning of each transaction,
impacting SAT that much. In scenarios with high PER, the report request would have
to be retransmitted, which would increase SAT even more. Second, the report
procedure is a two-way mechanism so load_report is proportionally larger. The
overall load depends on the SIP traffic load.

• Cache: the PU caches the PElist for a given time period before it asks the NS for the
latest version. This is almost equivalent to the regular scheme analyzed in the SAN
model except that
o The regular approach is on a best-effort basis, while the cache procedure is a two-

way mechanism that makes it resilient to packet losses. This is not a problem
though because the regular scheme could be augmented with acknowledgments
from the PUs that would let the NS know which PUs might have not received a
report. The NS could trigger the necessary subset of report retransmissions
accordingly.

o PUs request reports independently from the heartbeat process, so they are not sure
they are getting recent pool status information, which seems less efficient in terms
of failure detection

4.6. Model Application
The model helps understand and evaluate how server replication-based fault tolerance
influences the IMS system both in terms of dependability and performance. For instance,
the simulation environment could be used to validate analytical models that evaluate

 89

dependability and/or performance metrics in similar network/communications/fault
scenarios.
Also, the simulation environment can be used to determine which fault tolerance
configuration would benefit a system most and at which cost. As it was shown, the
setting space is very large so the general observations made from the simulation results
about the influence of fault tolerance parameters can be reused to narrow down the range
of tests to be conducted to find an optimal configuration.
In this section, several aspects of configuration selection are analyzed and an example
based on the replicated IMS model is given to illustrate some of these aspects.

4.6.1. Configuration Selection Time

Design Time
Simulations are run for a given set of input parameter settings that can be drawn from
system specifications or average values measured in the real system. Once the output
metrics are evaluated for a subset of input variable settings and configuration settings, the
selection criteria (cf. Section 4.5) should be tested in order to pick the single
configuration that should be implemented the real system
This approach becomes limited for systems with dynamic fault models though. If the
fault model varies with time, it is not ideal to pick the optimal configuration based on
only one fault model (e.g. X_tickn). One way to include this aspect in the offline process
is to create aggregate input values. For instance, the overall PER value could be the sum
of each PER level in a system times the individual fraction of time that the system
experiences each PER level. The danger with this approach is that the output metrics
have not been proven to vary linearly with the input variables so the configuration for the
average PER, POFF and CL values might not be the one that gives optimal average
dependability, SAT and load.

Run Time
In order to cope with dynamically changing fault models, the run time approach should
be considered whenever possible. Run time fault-tolerance configuration tuning assumes:
• A database containing the results of the subset of configurations to be used for a

given set of input variable values corresponding to the current system state.
• Real-time input metrics measurement techniques
• Protocol extensions in order to communicate the dynamic input values to the entities

such as NS and PU that control the configuration parameters. E.g. the NS can adapt
the reporting scheme (heartbeat timeout values, report frequency, report
acknowledgements) according to the current PER and RTT levels for NS-PE
communications; the PU can adapt the recovery strategy, e.g. by increasing the
number of failovers when PE failures are long or adapt the SIP request timeout
according to RTT (PU-PE communications).

4.6.2. Configuration Selection Criteria

Because of the evaluation approach, each configuration tested is evaluated with three
output metrics. This makes it near impossible to determine which configuration is
optimal by just looking at the graphs generated because it is very unlikely that a single

 90

configuration can return optimal values for the three output metrics simultaneously.
Therefore, some criteria are necessary to guide the selection process.

Output Metric Thresholds
The simplest way to rule fault tolerance configurations out during the selection process is
to set a threshold value for each output metric. These thresholds should translate some of
the system requirements. E.g. users might demand that dependability should be above
99%; the QoS requirements from an end-user application (e.g. online auctions) impose
that SAT is below 300ms; the bandwidth of the system can only support a maximum load
of 15 packet units per transaction.
Note that this technique might still leave several configuration candidates for the final
choice. If one of the metrics has a higher priority than the other two, such as
dependability would be in safe-critical systems, only two output metrics are bounded and
the configuration that gives the best level for the third metric is picked (cf. example in
Section 4.6.3).

Score Function
If no limit is imposed on less than two output metrics, a score function is needed in order
to rank each fault tolerance configuration by returning a single score value for a given
combination of output values. The score function is made up of contribution factors
(CF)—usually one CF per output metric for which a threshold is not required. A
contributing factor can simply be the ratio between the specific configuration output level
and the standard output level. Note that for the dependability contributing factor
definition it is more relevant to consider the ratio between undependability because:
• the difference between standard and replicated IMS dependability levels can be so

minute that the magnitude of this ratio is much lower that of the SAT and load ratios
and, thus, insignificant in the score function;

• this way, the variations of each contributing factor reflect on the system behavior
similarly: CFundep., CFSAT, CFload increase/decrease when the system behavior
worsens/improves respectively.

When one threshold is defined, the score function is calculated for the subset of
configurations that respect the threshold requirement.

In Table 4.9, some score function examples are given. The first example does not favor
any output metric for the selection process but the next two functions are shaped so that
CFundep variations have a bigger incidence on the final configuration rankings.

Table 4.9, Score functions examples

Score function CF priority
loadSATundep CFCFCF ⋅⋅. Fair

() loadSATundep CFCFCF ⋅⋅.exp CFundep.

()loadSATundep CFCFCF +⋅. CFundep.

 91

4.6.3. Selection Examples
Let us use the simulation results discussed earlier to exemplify the selection process. The
set of configurations considered for the following examples is restricted to the whole set
of failovers and retransmissions per PE listed in Table 4.5. with the following settings:
• CL1000, RTT100
• Exponential backoff SIP retransmissions, T0=100ms
• InterHB = 5s
• Extra_PEs = 0
• Fault model: X_tick2 and X_tick4 scenarios
The selection process is based on output metric thresholds and is repeated for two sets of
requirements. Table 4.10 shows the selection criteria and the corresponding optimal
configurations, which are found by comparing the graphs in Appendix B.4.

Table 4.10, Threshold requirements and optimal fault tolerance configurations

 Criteria 1 Criteria 2
Dependability ≥ 99% ≥ 99%

SAT ≤ 350ms optimize
load optimize ≤ 17 p.units

Optimal Config. (X_Tick2) 2/1/3 4/0/5
Optimal Config. (X_Tick4) 2/1/3 5/0/6

In the first example, dependability and SAT are bounded; therefore, the optimal
configuration is the one with the lowest load among the configurations that meet the other
two requirements. A compromise between failovers and retransmissions (2/1/3) to a same
PE are best for both fault scenarios.
When a relatively large amount of load can be sustained by the system, good
dependability can be achieved with shorter SAT than the 2/1/3 configuration when the
PUs never send a SIP request twice to the same PE.

4.7. Conclusions

Summary
The standard IMS and RSerPool+IMS systems were modeled with SAN. These models
were implemented in Möbius in order to evaluate the dependability/performance tradeoff
and look for. Output metrics to look at fault tolerance with holistic approach in order to
highlight the interdependence between dependability and performance.

The influence of input variables such as communication delays and parameters from the
fault models was analyzed. Simulation results using the standard IMS model showed that:
• PER raises SAT and load, hardly impacts dependability (SIP messages);

 92

• PE faults cause transaction failures, lower dependability, and SAT and load (the both
because of the SAT definition);

• RTT/TTR ratio is very important because it determines how likely retransmissions
can help against PE failures.

The analysis of individual fault tolerance mechanisms (recovery, failure detection)
revealed that:
• The interdependency between dependability and load is the opposite of that with the

standard IMS model; the more load, the better dependability. Here, fault tolerance
mechanisms improve dependability at a fixed load cost, which depends on the failure
detection and recovery settings. To significantly improve dependability, the
additional fault tolerance load (introduced by heartbeats and reports) becomes much
larger than the gains in terms of SIP load achieved thanks to the failure detection
mechanism.

• Recovery and failure detection mechanisms rely on parameters that can be optimally
tuned for a given fault model and set of dependability/performance requirement. For
the replicated IMS—and for the specific fault and traffic models, and SSP tested—it
was shown that
o when the number of failovers increases (and the number of retransmissions per PE

correspondingly decreases), both dependability and SAT improve but the load is
greatly worsened;

o the server pool should not have more PEs than necessary to execute the maximum
number of failovers set for the current recovery configuration—when the server
pool deploys extra PEs, all metrics get worse, especially for configurations with
fewer failovers allowed;

o the impact of the heartbeat frequency setting varies greatly for each recovery
configuration so it is diffucult to draw general conclusions about its influence on
the tradeoff. It is suggested that once the recovery configuration has been
selected, a few heartbeat frequency settings are tested in order to optimize the
output metrics for the given input fault model;

o finally, having an accurate input model of the communication delay distribution
permits to ideally set the SIP request timeout, which significantly improves the
tradeoff, especially with recovery configurations favoring failovers over
retransmissions per PE.

Directions were given to implement a selection solution at design time and at run time
that indicates which fault tolerance settings optimize the dependability/performance
tradeoff in a specific system for a given set of application requirements on the individual
metric of the tradeoff. One example was used to illustrate how to manipulate simulation
results to determine the optimal configuration.

Discussion about RTP
The high-level modeling approach used for the RSerPool+IMS system permits to quickly
adapt the SAN model in order to get equivalent results and draw the respective
conclusions for the RTP-like cluster solutions. The main difference is that in the RTP
scenario the failure detection and recovery mechanisms are centralized directly within the

 93

server set, which means that (1) there is no need for name resolution as in the RSerPool
architecture (cf. Section 3.2.3 on Reports) and (2). This difference could be simply
modeled by setting specifically low heartbeat and report communication delays and PER.
This makes RSerPool look like it can be neither as dependable nor as fast as RTP.
Nevertheless, it should be kept in mind that RTP is a very complex implementation
because it relies on the additional cluster platform and shared database so much. This
level of software complexity significantly affects RTP performance and dependability,
which has been investigated in [Grønbæk07]. Therefore, it is not granted that RTP will
outperform RSerPool in most environments.

 94

5. State Replication and Consistency

When replicating stateful servers, the states held in these servers must be replicated as
well. If the servers are deployed in distributed networks, state inconsistency may be
introduced during the state replication process. Inconsistency can impact the system in
many different ways, which are specific to the usage of the state information in relation to
the service that uses this information: e.g. charging state inconsistency usually affects
operators’ revenues, while session state inconsistency might lead to incorrect transaction
processing and, in turn, unavailability. Several consistency models have been designed
that permit to address the inconsistency problem and are implemented via state
dissemination, commitment and concurrency protocols. In addition to decreasing
inconsistency, these solutions usually have a quite big impact on performance; hence
newly introduced dynamic approaches attempt to optimize the tradeoff inconsistency-
performance for some sets of inconsistency metrics, assuming that an accurate knowledge
of the current inconsistency level in the system is known. In this chapter, a new
inconsistency evaluation framework is presented that is made up of a few contributing
factors that can be evaluated separately, either from real-time measurements or derived
from the traffic model, and for a range of consistency models. A thorough discussion on
IMS consistency shows the requirements on state replication in our system and the
inconsistency evaluation framework is then validated for the IMS charging state.

5.1. Consistency Model in the IMS
Most of the time, inconsistency is referred to as state sequence disorder, also called
event-ordering problem. With this approach, possible inconsistency definitions are such
as the probability that a state update is ordered correctly, or the probability that all the
state updates of a session are fully ordered, which is especially suited for dependent
states, i.e. when state update n is a function of the state value resulting from state update
n+1. Most common models corresponding to this notion are linearizability [Herlihy90]
and sequential consistency [Lamport78].
These definitions and requirements originate from distributed computing, where all
processes must have the same picture of the state (i.e. same data item) that they use as a
unified input to their computational task. If the perception of the state differs in one
process, then the logic is affected and it will not execute the correct operation.
In distributed communication networks, not all the replicated servers need to have the
same state. For a given IMS session, only one copy of the IMS state is used for each
transaction at the current master server; this means that at the moment when the master
server processes the SIP request it does not really matter if the backup servers are
consistent or not. The only requirement is that their state is consistent when it is needed,
i.e. when there is failover to a backup server during the ongoing session and then, only

 95

the selected backup server needs to hold a correct image of the state. Hence a state
disorder can sometimes be transparent to the service/system: in our system, inconsistency
can be observed—and, therefore, can have an impact—only when the state is read.
Not retrieving the correct state value leads to erroneous behavior of the system. Then, it
is more relevant to focus on the correctness of the state when a read operation (RO) is
done, which is called misread probability. This is defined in [Tanenbaum02] as strict
consistency: “Any read on a data item x returns a value corresponding to the result of the
most recent write on x”.
For instance, it is usual to read the state only once for billing purposes, at the end of the
session, in order to deduct the amount of credits spent by the user from his account. In
that case, a relevant metric is the distance between the state value read and the expected
value, which measures the operator’s losses. In the prepaid charging scenario, the
operator wants to control the access to the network and potentially stop the session when
all the user’s credits are spent. Then, it is important for the operator to also have access to
a consistent session state during the life-time of a session.

5.2. Inconsistency Evaluation Framework
5.2.1. Motivation

Dynamic, adaptive mechanisms have been proposed [Bozinovaki04a][Yu00] to restraint
the inconsistency level under a certain threshold. For systems implementing such
solutions, the need for accurate inconsistency evaluation is evident. However,
inconsistency occurs in distributed systems, which makes it difficult to measure in reality
(e.g. time stamps are difficult to use because of the clock synchronization problem).
Here, we suggest an evaluation framework that uses the characteristics of a system in
order to break the computation of the inconsistency level down to influencing factors that
can be either measured or approximated from the traffic model and the description of the
system. This evaluation approach offers the advantage of not requiring any specific,
additional inconsistency evaluation functions to be implemented in the system.

5.2.2. New Evaluation Framework
One has to be careful when defining the correctness of the state. With SIP, the state at the
server(s) where the read is being processed needs to be the same value as the one saved at
the master server that committed the last state update. In other terms:
• The master server (local server) should replicate the state of interest to the backup

servers (remote servers) before a read request is received by any of the remote
servers.

• The state held at the local server, which is the most recent state information, should
not be overwritten by older state information received from a server that was
previously the master/local server.

• State update messages (SUM) are sometimes sent over unreliable links and therefore
state ordering does not fully encompass all the causes for inconsistency to happen; the
probability that a SUM never reaches a remote server(s) must be included in the
evaluation.

 96

Note that these requirements hold only if the state (or part of the state) of interest has
been modified since the last read operation. This is because even if the last SUM
generated is lost or disordered, the value returned by the seemingly stale state at the
remote server is the same as the expected one and therefore the RO can be processed
correctly.
The scenarios (shown in Figure 5.1) that lead to inconsistency in distributed
communication networks are for the example of strict inconsistency, i.e. the probability
to access a state that is not the last state committed in the system. The starting point
corresponds to a read operation; the bold lines represent the paths to inconsistency
instances, which occur when the last event of a path actually happens (shown in the grey
text boxes). This evaluation approach can be generalized to any inconsistency definition
that looks at the probability to read a correct state from the strict consistency point of
view.

Fig. 5.1, Events sequentially leading to inconsistency, and their respective probabilities

Because of the server selection policy (or load balancing scheme) implemented in a
system, a RO can occur at the server where the last state update was committed, the local
server, or at another server of the system, a remote server. When a RO is done at a remote
server, the state update message (SUM, see next section) carrying the last state update of
the system must be received at this server; this message might never get to this server,
especially for connectionless communications (e.g. over UDP), and the state would never
be updated. Fulfilling only this requirement does not guarantee consistency: also, the
latest SUM must be processed/committed at the remote server before the next RO arrives.
The local server has already committed the last state update when the next RO arrives
and, therefore, cannot be impacted by a SUM loss. However, if a SUM carrying the n-1th
state update is received after commitment of local state update n, the correct value might
be overwritten and corrupt the correctness of the state before the RO is processed.
Usually a simple sequence number can prevent any local disorder to occur.
This discussion shows that the overall inconsistency depends on three factors:

Local
server

Remote
server

1-SSP SSP

Disorder Order SUM not
received

SUM
received

1-SOML SOML USRR 1-USRR

Disorder Order

SOMR1-SOMR

Read

 97

• State Ordering Metric (SOM): the probability that the last state update in the system
is committed at the server where the RO request is received, before this RO request is
received. One should be careful when evaluating the SOM as it is expected to be
different for the local server (SOML) and a remote server (SOMR).

• Server Selection Policy (SSP): the probability of reading a state in a remote server.
This probability depends on three system characteristics:
o the server selection policy, which chooses the server where the next transaction

will be processed;
o the failure model;
o the fail-over mechanism, which chooses the server where a retransmitted request

should be sent to after a failure was detected (there are many existing policies that
determine the destination server for request retransmissions).

• Unsuccessful State Replication Rate (USRR): the probability that the state replication
is failed, i.e. that the SUM is not processed at the remote server, either because of
packet loss or buffer overflow.

Those factors permit to devise a new measurement approach for the misread probability,
directly derived from the probabilities illustrated in Figure 5.1:

5.3. Quantitative Inconsistency Evaluation
In this section, inconsistency in the IMS as defined in the previous sections is evaluated
experimentally and compared to the new analytical approach in order to validate the
evaluation framework. This work also gives the opportunity to foresee the expected
inconsistency levels in the IMS.

5.3.1. Experimental System
We want to investigate inconsistency in the call control part of the IMS, whose
experimental logical architecture is shown in Figure 5.2. We use the RSerPool example
as state-sharing is not part of the standardization effort and therefore, this aspect needs to
be investigated with special attention for this replicated architecture. More details about
this experimental system are given in [Renier06].
In the RTP case, two options for state-sharing, or context management, are offered:
• the context management is distributed over the cluster and each server manages its

own context manager, which in turn replicates the state to the other context managers
on other nodes when an update occurs. This option is equivalent to the RSerPool case
and similar conclusions will hold for both architectures

• the context management is centralized and the same context manager is accessed for
all read operations, i.e. even from remote servers. This option ensures that there is no
commitment or concurrency problem but it introduces a delay (to retrieve the state in
the context manager) that impacts service performance more than the previous option.
This will not be investigated specifically here.

() () () ()[])1.5(1111 RL SOMUSRRUSRRSSPSOMSSPncyInconsiste −⋅−+⋅+−⋅−=

 98

The logical entities implement the IMS-like SIP call control servers (CSCFs)
standardized by the 3GPP as defined in Section 2.3.1. The grey shaded entities represent
the RSerPool components. The two redundant S-CSCFs form a server pool of Pool
Elements and the P-CSCF was implemented as Pool User (see Section 3.2.4 for
motivation). Every time a P-CSCF receives an INVITE request, it uses ASAP to request a
name resolution from the name server in order to get the list of available servers to
forward the requests to. The P-CSCF keeps this list in its cache for the whole duration of
the session, a new session triggering a new name resolution request. The other
communications during the session are made over UDP.

Fig. 5.2, Testbed logical topology for the IMS/RSerPool system. SUM is the message

that contains the state information is sent from the local server to the remote server after
every transaction completion

CSCF servers usually maintain a large number of session states simultaneously. In our
example, the session state is only influenced by the transactions of its own session.
Hence, parallel sessions are not required for the evaluation of inconsistency. UEA follows
a simple session/transaction generation pattern. Between the INVITE and BYE
transactions, UEA generates instant message transactions with the MESSAGE request.
The inter-transaction time is the time between the moment when a transaction ends
(completion or abortion) and the moment when the request for the next transaction is
sent. In the testbed, the inter-transaction time is exponentially distributed, with mean
value 1/λ set to one second. The server selection policy is round robin at the scale of the
transaction, meaning that each request is sent alternatively to either S-CSCF, and the
response(s) is sent back via the same S-SCSF (according to the SIP specifications, all
messages in the same SIP transaction must be processed by one S-CSCF server only).
Because RSerPool does not specify any state-sharing functionality, we had to implement
our own solution in the system. Our state-sharing mechanism is a best effort, message-
based solution, over the connectionless transport protocol, UDP. When a transaction is
completed at a server, the call state is updated in this server and the state update is
replicated to its peer in a file sent with what we call a state update message (SUM), using
the direct link between the two servers shown with the dashed line in Figure 5.2. The
simplest models for state commitment and concurrency are used in our system. When the
replicated servers receive the SUM, they extract the state information and immediately
commit it, i.e. update the state. Also, when a read operation request is processed by a

UEA P-CSCF

S-CSCF1

S-CSCF2

P-CSCF UEB

I-CSCF

NS

SUM

 99

server, the state is immediately accessed and no delay is introduced in order to ensure the
correctness of the values read. The characteristics of the link (packet error rate, delay,
etc.) between the replicated servers impact the time needed to propagate the SUM; their
specific settings in the experimental system are given in Section 5.3.4.
There are no artificial server failures implemented in the testbed since the focus is not on
the capability of the system to cope with failures of the SIP servers. The prototype SIP
implementation used is not fully reliable though and failures can be observed at all SIP
servers. Therefore, the fault-tolerant properties of RSerPool are used for fault recovery.
When a failure/error is detected (timeout per SIP request set to 0.5 second), the P-CSCF
retransmits the request to the back-up S-CSCF. The transaction is dropped if the timeout
also expires when trying with the second server.

5.3.2. Measurement Approach
In this Section, we explain how we evaluated inconsistency (1) by implementing a
solution in the experimental system, called experimental evaluation, and (2) by analyzing
the influencing factors introduced previously, called factor evaluation. The goal is to
compare the experimental and factor evaluations results in order to verify the validity of
the proposed formula (c.f. Equation (5.1)).

We implemented an algorithm in the testbed to directly, and experimentally, measure the
inconsistency level of the SIP fault-tolerant system. The (distributed) call state element in
this example is a charging counter (CSeq_server) in the S-CSCF that keeps track of the
cumulative number of successful MESSAGE transactions provided to the user. In this
particular example, the approach to directly measure inconsistency is to also implement
this counter in UEA (CSeq_msg) and to communicate the UEA’s counter value to the S-
CSCF in every SIP message.
When UEA is aware that the last transaction is completed, i.e. it receives the
corresponding final response, CSeq_msg is incremented before it is put in the next
request UEA sends. At the S-CSCF side, the local CSeq counter, CSeq_server, is saved
with the call state. We consider that every request received by an S-CSCF initiates a Read
Operation. Therefore, upon reception of a SIP request at an S-CSCF, we can be sure that
the state is consistent at this server if the CSeq in the message is the next value in the
incremental CSeq sequence, compared to the CSeq saved locally at the S-CSCF after the
last state update (due to local update or SUM). In other words, there is inconsistency iff:

)2.5(1__ >− serverCSeqmsgCSeq

When a SUM is disordered (meaning that the SUM arrives at the peer server after the
request for the next transaction has been received) or when a SUM is missing, the value
is not up-to-date and the RO increments the inconsistency counter (InconCount) at this
server.
As described in the previous section, any server of the system can fail. When a
transaction is unsuccessful because of a P- or I-CSCF failure, it might happen that the SIP
messages are blocked on the SIP path before the state has been updated at an S-CSCF.
Then, it would be unfair to the system to check inconsistency with a CSeq value that the

 100

system potentially never saved at any of the S-CSCFs. Therefore, a RO can trigger an
inconsistency check only after a successful transaction, i.e. only when we are sure that at
least the local S-CSCF is aware of the last CSeq value generated by UEA.
The inconsistency level is measured by dividing the inconsistency instance counter
(InconCount) by the total number of ROs that requested the inconsistency check
(CheckCount).
While rather simple to implement in this specific system, this experimental approach to
evaluate inconsistency proves also to be quite limited. First, it requires dedicated code for
inconsistency evaluation purposes, which may not be desirable e.g. for systems with low
computational power. It also assumes that the state is monotonic and, therefore, relies on
some sense of knowledge about the future state values, mandatory in order to assess the
correctness of the state. Finally, UEA is involved in the state evaluation, which seems
against the operators’ philosophy that suggests giving minimum control to the end users
with respect to critical information, especially when dealing with charging-related
information.

5.3.3. Factor Evaluation
In this section, we analyze how to evaluate independently each factor of the evaluation
framework for the example of strict inconsistency requirement. Many inconsistency
definitions/metrics can be broken down into influencing factors equivalent to the ones
proposed here; then, those factors can be directly measured or analytically derived from
the traffic model and system description.

State Ordering Metric (SOM)
In the system considered here, the state to be retrieved has monotonically increasing
values (incremented by one for each new transaction); it should always be bigger than the
previous one. Therefore, it does not make sense to update the state with a SUM when its
CSeq_msg value is smaller than the current CSeq_server where it is received. That way,
we prevent the propagation of disordered SUMs to several ROs. This would not be the
case for non-monotonic state values (e.g. location information), which make it impossible
to detect an out-of-date state value in the SUM and, thus, requires that the state is updated
every time a SUM is received. Also, with this state update model, inconsistency cannot
occur at a local server since an old SUM cannot overwrite the latest state at the local
server, which implies that SOML is equal to one. Consequently, a disordered state update
can only impact a remote server (SOMR).
SOMR is the probability that a RO request (i.e. any SIP request in our context) is
processed by the remote server after the last SUM has been received and committed at
this remote server. To evaluate this factor, we choose the moment when the state is
updated at the local server as the reference starting point. Let (1) the Read Operation time
(RO_time) be the time between the local state update and the next Read Operation, and
(2) the State Update time (SU_time) be the time for the remote server to get and commit
the SUM from the local server. Then, SOMR can be expressed as the following
probability:

{ })3.5(__Pr timeSUtimeROSOM R >=

 101

Figure 5.3 shows all the delays that make up RO_time and SU_time, where: D1 is the
processing time between the final 200OK response leaves the local server and the
corresponding SUM is sent to the remote server; Delay is the link delay between the two
servers; D2 is the processing time to commit the state update at the remote server after
reception of the SUM. D3 is the processing time at UEA to complete the transaction after
reception of the final 200OK response; D4 is the inter-transaction time; D5 is the
processing time between the beginning of the transaction and the moment when UEA
actually sends the request; D6 is the propagation time of the request from UEA to the
remote server. Note that the two other propagation times, namely between S1-CSCF and
UEA, and between the two S-CSCFs, are negligible (the bandwidth is 1Mbps); only this
propagation time was considered since non-negligible processing times at the P-/I-CSCF
are to be considered in the calculation of SOMR. D7 is the processing time between
reception of the read request and the actual checking of the state values.
Let us break those two times down into their respective delays:

⎪⎩

⎪
⎨
⎧

++=

++++=

21

76543

_

)4.5(_

DDelayDtimeSU

DDDDDtimeRO

Fig. 5.3, RO_time and SU_time delays.

On one hand, according to the traffic model, D4 is exponentially distributed, with mean
value 1/λ. On the other hand, we can assume that the other delays are deterministic
because of the light load in the system. Therefore, in order to evaluate SOMR, we can
isolate D4 and Equation (3) becomes:

() (){ })5.5(Pr 7653214 DDDDDDelayDDSOM R +++−++>=

UEA P-/I-CSCF S1-CSCF S2-CSCF

D1 D3

D2

Delay

D5

D4

D7

D6

Final response
sent by UEB

RO_time
SU_time

 102

And in the case of exponentially distributed D4, as defined previously:

() ()()[])6.5(exp 765321 DDDDDDelayDSOM R +++−++⋅−= λ

Server Selection Policy (SSP)
Without failures and with the round robin server selection policy at the transaction scale,
a new remote server is accessed for every successive transaction, i.e. SSP is 100%.
Because of the inherent SIP failures, and because there are only replicated S-CSCF in the
example scenario, the first S-CSCF contacted to process a transaction might be
unavailable and the retransmitted request is finally processed by the local S-CSCF for the
previous transaction, i.e. the RO is local; therefore, SSP is not equal to 1 anymore. We
could have approximated SSP at 1, or derive it from the failure model. Instead, we
measured it by comparing in the tcpdump files the server that processed transaction n
successfully, noted server(n), and the server that processed the read request for
transaction n+1, noted server(n+1). SSP equals the ratio between the number of cases
when server(n) and server(n+1) are different and the total number of comparisons.
This illustrates that the proposed inconsistency evaluation framework can rely on
different methods to determine its input values.

Unsuccessful State Replication Rate (USRR)
We assume that no state update is dropped due to buffer overflow since the traffic is very
small compared to the memory and CPU capacities of the machines used in the system.
Then, the probability that the SUM is not received is directly equal to the Packet Error
Rate in the link between the two S-CSCFs.

Once the three influencing factors have been evaluated, they can be used in Equation
(5.1) to directly derive the inconsistency level.

5.3.4. Results and Model Validation

Results
The previous section showed that, in our system, inconsistency is a function of the
characteristics of the link used for the state replication, namely packet error rate and
delay. These link characteristics were emulated at the S-CSCFs, in the function in charge
of receiving the SUMs. To emulate delay in the link, the corresponding thread freezes for
the desired time while the received SUMs are randomly dropped according to the chosen
PER, before they are processed. The bandwidth was fixed to 1Mbps. We ran six tests
with different values for those two link parameters, shown in Table 5.1. For each
scenario, the duration of the test in terms of number of sessions established by UEA is set
to 1400 sessions. The number of messages per session is geometrically distributed with a
mean value of 10; hence, the overall number of read requests to the session state (at
which inconsistency is evaluated) is approximately 14000.
Although the system was lightly loaded, the measurements of the processing delays DX
(D1, D2, and D3, D5, D6, D7) showed that they were not deterministic and were distributed

 103

with long tails. For example, D7 was around 8ms for most of the RO requests but its
values ranged from 5-6ms up to 800-900ms. Since the values in the tail of the delay
distribution are not relevant for inconsistency, but they influence the mean strongly, we
choose to use the most likely delay values of DX (the modes of the empiric distributions)
in the calculation of SOMR.
Table 5.1 gives for each test scenario the final inconsistency results for the experimental
evaluation (direct measurement of inconsistency) and the factor evaluation (via the right-
hand side of Equation (5.1)), as well as the absolute difference between the two
approaches.

Table. 5.1, Comparative results for the experimental and analytical evaluations of
inconsistency

Analysis
The results show that the inconsistency level evaluated with the factor approach is
slightly higher than the directly measured inconsistency in our experimental system in all
scenarios except when there is no delay in the link used for propagating the state update
(third row 3 in Table 5.1). When the delay is much larger, i.e. 300ms, the absolute gaps
between experimental and factor results get larger as well: up to 6.17% in the worst case
(delay=300ms, PER=15%).
The observation of bigger deviations in settings with higher Delay between the two
servers can be explained via the empiric distribution of the delays DX. As stated earlier,
the delays that contribute to RO_time and SU_time are not deterministic and vary
(sometimes even reaching large values), even though the load on the SIP/RSerPool
system always stayed low. The variations in the DX values appear to be a consequence of
the SIP software implementation. Both RO_time and SU_time contain additive delay
parts with such variation (the ones that are due to processing time); however, there are
more of those in RO_time. As a consequence, the deterministic assumption used to
compute SOMR underestimates both RO_time and SU_time, but RO_time more strongly
(contains four processing delays as opposed to only two in SU_time). Thus, the factor
approach overestimates inconsistency due to the variation of the processing delays.
When Delay is null (i.e. resulting in smaller SU_times), the state is almost always
updated at the remote server before the next RO is received, therefore RO_time is
expected to be longer than SU_time and then, even longer RO_times do not hide potential
inconsistency instances caused by disordering (only remaining cause of inconsistency is

Delay
(ms)

PER
(%)

Experimental
evaluation

Factor
evaluation

Absolute
difference

20 2 2.76% 3.80% +1.04%
20 2 3.45% 3.92% +0.47%
0 15 13.77% 13.38% -0.39%

300 0 19.51% 23.38% +3.87%
300 15 29.09% 33.77% +4.68%
300 15 27.45% 33.62% +6.17%

 104

packet loss). Hence, much higher accuracy is obtained with the factor evaluation in the
scenarios with low or no Delay between the two servers.
Note that for the purpose of validation, we picked extreme settings for our tests that lead
to very high inconsistency levels; it is rare to reach 15% PER, especially in the wired
core network between two servers.

5.3.5. Framework Application Example
After discussing how to map the influencing factors to our IMS system, we concluded
that SOML is equal to 1. Then, Equation (5.1) becomes:

() ()[])7.5(11 RSOMUSRRUSRRSSPncyInconsiste −⋅−+⋅=

In Figure 5.4, we draw the inconsistency level as a function of the delay in the link
between the replicated servers, for different given PER values; respectively 0%, 2%, 5%,
10%, and 15% from the upper curve to the lower curve. We assume SSP to be equal to 1
from the round robin setting, and that USRR is the PER. As stated earlier, when Delay is
null, RO_time and SU_time are almost equal, and SOMR is equal to 1. Note that in our
system, for scenarios with no link delay between the replicated servers, inconsistency has
the product of SSP and PER as lower-bound.

Fig. 5.4, Influence of Delay and PER on the inconsistency level. Each curve is the

inconsistency level for a given PER (from bottom to top: 0%, 2%, 5%, 10%, and 15%)

The figure proves useful when analyzing the requirements on the system so that the
inconsistency level stays below a given threshold. For example, it shows that no more
than 10% PER (when no Delay) OR no more than 100ms Delay (when no PER) can be
tolerated in our system to keep the inconsistency under 10%. Within those two bounding

 105

ranges, all pair values Delay-PER allow inconsistency levels under 10%. This analysis
highlights the need to consider the tradeoff between Delay and PER, which can be critical
when designing a system. The type of protocol used to propagate the SUMs influences
those two link characteristics and, consequently, influences also the inconsistency level.
Reliable, TCP-like protocols ensure that fewer SUMs are lost when being propagated
(lower PER) at the cost of longer delays while connectionless, UDP-like protocols offer
lower delays but poor reliability to the SUMs. The impact of the protocol used can be
analyzed analytically, based on its retransmission and congestion control models applied
to the system of interest.

5.4. Conclusions
In this chapter, we introduced a framework for evaluation inconsistency in a replicated
IMS. Direct measurements of inconsistency are deployed for model validation but in
most cases they are not feasible in practical systems. The introduced new approach is
based on an analysis of contributing factors, related to the Server Selection Policy, the
packet drop rate between server replicates, and the disordering probability of state update
messages. The first two factors are either known from system properties or can be
estimated efficiently from the running system. The last factor is derived from parameters
of the traffic model and different delay parameters in the system. The comparison of the
evaluation approach via the contributing factors with a dedicated direct inconsistency
measurement approach in an experimental prototype of IMS call control shows a close
match despite simplifications on assumptions on processing delays. The relation between
inconsistency and the contributing factors can also be used for network planning
purposes.

 106

PART II
—

Mid-Session Macro Handovers

 107

6. Mid-Session Macro Mobility in the IMS

6.1. Introduction and Motivation
As discussed in the previous chapters, fault tolerance often relies on replication
architectures that permit to shift the current load and communications of a failed entity to
an available backup replica. So far, it has been assumed that the IMS functions could be
replicated, and important aspects related to replication for the most critical function,
namely the S-CSCF, were analyzed.
In some systems, replication is not a desirable option to cope with failures for several
potential reasons:
• Replicating physical nodes and software can be expensive,
• Replication increases the overall load of a system, limiting its capacity,
• Replication can cause serious performance degradations.
Therefore, it is important to investigate scenarios where single points of failures are
unavailable and block all traffic at an access network or IMS and discuss the potential
options to mask these fault scenarios.
One trivial way to deal with timing failures perceived by the UE is the simple
retransmission mechanism. Nevertheless, this assumes that the failed part of the system
can be rebooted or replaced quickly enough to minimize the impact on the users’
experience. When these two options do not work, the users lose/do not get access to the
desired services either (1) because some access network failure prevents any
communications with external network and isolate the users or (2) because the failure has
happened at a non-redundant component, which makes the service unavailable. When
this happens, connecting to another access network is the only active approach left not to
lose the ongoing sessions. Also, in case of macro mobility, i.e. a handover that involves a
change of access network, the QoS settings guaranteed in ANnew should be at least as
good as those granted in ANold before the failure so that the service keeps performing as
expected.
Also, B3G systems will be characterized by a collection of radio and fixed networks
providing access to IP-based services. Thus, providing mobility management across
different access technologies will become a crucial task in B3G networks, not only for
fault tolerance but also, e.g., for providing extended coverage or faster and/or cheaper
connections.

6.2. Related Work and Problem Statement
While macro mobility is becoming an important feature of IP-based multimedia sessions
as it is expected that mobile terminals will often switch between heterogeneous networks,
operators want to control the access to their scarce radio resources by deploying access
control and session control in their systems. The IMS can provide the desired control

 108

levels but its current specifications do not allow for any change of the UE’s IP address
during an ongoing session; when a user moves to another access network (ANnew), all
ongoing sessions have to be terminated and the corresponding session states are
processed and then discarded. Additionally, the long SIP session setup procedures have to
be performed once more at ANnew, which causes unacceptable disruptions for delay-
sensitive, real-time services. Consequently, the standard IMS cannot provide seamless
mid-session macro mobility.
Some enhancements have been recently proposed that reduce the disruption time during
mid-session macro handovers in IMS environments [Larsen06a][Larsen06b][Castro06].
These SIP-based approaches (1) assume that the SIP session states can be kept (despite
the session termination) and, then, use (2) context-transfer and (3) new signaling
procedures in order to reduce the overall number of signaling messages that have to be
exchanged for session establishment and resource allocation at ANnew. Even though these
efforts achieve greatly improved disruption times, stateful applications running on top of
SIP would still lose their session states and could not continue the service provisioning at
ANnew where it got interrupted at ANold without changing the implementation of both the
SIP and application layers Lack of session continuity is not acceptable for stateful
applications such as online gaming and auctions.
Ideally, application implementations should be kept as simple and standardized as
possible, which helps the fast deployment of new services. So, another approach for
macro handovers consists in using Mobile IP (MIP) instead. MIP is a network-layer
protocol that provides session continuity to the upper layers by hiding UE’s changes of IP
address and therefore the session does not have to be terminated as the SIP layer is
unaware of the change of IP address. Nevertheless, [Roos03][Faccin04][Chen07] have
shown that several interoperability issues compromise the deployment of MIP in the
IMS. These issues, plus some new issues raised in this thesis, are presented in detail in
Section 6.5.1.

In this chapter, we first give some state of the art about macro mobility support in IP
networks. Then, we highlight MIPv6 and SIP/IMS requirements, respectively, in terms of
addressing scheme and their interaction with the application layer. Then, we analyze how
these requirements are conflicting and lead to limitations when MIPv6 is used
simultaneously with SIP in an IMS-controlled environment. Consequently, we introduce
a MIPv6-based solution for supporting macro mobility in IMS that permits to respect the
MIPv6 and IMS paradigms at the cost of a few additional non-standard operations and
functionalities. We also discuss the impact of our solution on the standards, the
implementation efforts that it implies, and the improvements that can be achieved.

6.3. Macro Mobility Protocols in IP Networks
6.3.1. Mobility Definitions

There is a set of mobility definitions that can be often found in the literature, e.g.
[Schulzrinne00]. Here are the definitions used in this work.

 109

Terminal Mobility
Terminal mobility allows a device to change its point of attachment to IP subnets, while
continuing to be reachable for incoming requests and maintaining ongoing sessions
across subnet changes.
• Pre-session mobility: the user device can be reached anytime at its current point of

attachment,
• Mid-session mobility: the user can roam across networks, changing the point of

attachment during an ongoing session.

Personal Mobility
Personal mobility allows a user to be contacted at multiple devices via the same logical
address or to change the device used during ongoing stateless communications.
• Pre-session mobility: the user can be reached at several devices (but often times only

one device is used once the user picks up),
• Mid-session mobility: the user can switch the ongoing session from one terminal to

another.

Session Mobility
In addition to the two previous fundamental types of mobility, session mobility can
provide mobility-related functionalities when UEs are on the move. This is not a ‘core
mobility feature’ in the sense that it is not meant to make the UE reachable at the IP level,
i.e. it does not deal with network layer connectivity. Nevertheless, session mobility is
essential for stateful applications to handover as transparently as possible from the user’s
perspective.
Session mobility, also called service migration, is the ability to suspend an ongoing
session and to resume it at another device with the same session state. This implies that
the same settings should be allocated to the session after connecting to the new access
point or changing the device. The user may want to move only a part of the session, e.g.
in the case when a specialized device is more suited for handling one of the session media
streams. This special feature is also referred to as component mobility or partial service
migration.
Note that session mobility can be done only if session continuity allowed. Session
continuity is ability of a system or application to maintain the session state despite
mobility.

6.3.2. Macro Mobility Protocols Overview
Mobility solutions have been proposed that can be implemented at several layers of the
protocol stack:
• Legacy networks (GSM, UMTS…) mobility is usually implemented at the link layer

and is restricted to homogeneous networks, i.e. it allows the UE to change its point of
attachment in the subnetwork. This means that the UE keeps its global IP address,
which allows only for micro mobility (i.e. intra-domain handovers); E.g., in UMTS,
micro mobility is within a given GGSN domain.
Macro mobility has to be supported at higher layers.

 110

• Network-layer mobility (Mobile IP, see Section 6.3.3) is provided for any kind of
networks without regard to the link layer techniques deployed underneath and hides
the mobility to the application by always showing a fixed global IP address.

• More recent research has brought mobility to the transport-layer, via mobility
extensions of the newly introduced transport protocols, SCTP [Stewart 00][Riegel 06]
and DCCP [Kohler 06a][Kohler 06b]. This solution moves the mobility support into
the end nodes and keeps the network stateless.

• Mobility can also be implemented at the session/application layer with SIP (see
Section 6.3.4). Moving the mobility management to the application layer means that
mobility functions can be easily downloaded and installed on a device—the mobility
software is needed at both ends though..

• Protocols originally designed for other purposes may support some aspects of
mobility management. This is the case with RSerPool that completes mobile SCTP
[Dreibholz03].

6.3.3. Mobile IP

MIP was first specified in [Perkins02] for IPv4 networks. MIP is intended to provide
terminal mobility only.
A MIP handover consists of a movement detection and registration, called Binding
Update (BU), with the Home Agent (HA). The UE, called Mobile Node (MN) in the MIP
architecture, registers with a HA in its home domain. Each MN is given a permanent
Home Address (HoA) in the home domain. When the MN visits a foreign domain, it gets
a Care-of-Address (CoA) with DHCP or PPP. After it gets a CoA, the MN registers the
new address with the HA. When a packet is received in the home domain, the HA
forwards it to the MN through a tunnel using to IP-in-IP encapsulation, as illustrated in
Figure 6.1. On the other hand, the MN communicates directly with the other endpoint, so-
called Correspondent Node (CN). This leads to what is referred to as triangular routing.

Fig. 6.1, Care-of Address encapsulation mechanism

The intrinsic problems of MIP are:
• Overhead due to IP-in-IP encapsulation, which impacts the overall application

goodput. This is partly solved with header compression [Degermark99].
• Long process to detect movement (agent solicitation messages sent by MN after

connecting to ANnew). Many novel solutions have been and still are proposed
proactive mechanisms in order to reduce the handover latency (e.g. see [Feng04]).

• The MIP registration delays might be long if the MN and HA are far apart.
• Triangular routing introduces communication delays. To prevent this drawback, route

optimization was designed to allow for direct communications from the CN to the

Care-of Address Home Address Information

Home Address Information

 111

MN [Perkins01]. After receiving an a BU containing MN’s CoA, the CN can start
using the binding entry from its routing table to sends encapsulated packets directly to
the MN.

With MIPv6 [Johnson04], the system benefits from the IPv6 neighbor discovery and
stateless address auto-configuration for faster IP connectivity and movement detection.
The route optimization support is implemented by MIPv6 by default but requires a new
method called return routability procedure. It consists of two checks (i.e. four messages
between the MN and the CN) to guarantee MN’s identity, thus ensuring a secure BU at
the CN.

6.3.4. SIP Mobility
SIP is capable of supporting all mobility types. Here we only detail the operations for
terminal and session mobility, which are the required mechanisms for mid-session macro
mobility in the IMS. To read about all the mobility types supported by SIP, refer to
[Schulzrinne00].

Terminal Mobility
Terminal mobility impacts SIP at two stages: pre-session and mid-session.
• For pre-session mobility, the UE simply need to re-REGISTER in order to update its

current location at the location manager (IETF) or HSS (3GPP).
• For the mid-session mobility, the UE sends a re-INVITE request to its correspondent.

This request contains an updated session description with the new IP address, in the
contact field of the SIP message. In addition, the UE has to register again so it can be
reached for new incoming SIP messages.

Session Mobility
In the standard IETF architecture, the UE uses the REFER method to transfer the session
to another device. This method is very similar to the re-INVITE and does not transfer
session states to the new device.
Note that in the IMS, specifications do not allow session continuity at the SIP layer if the
IP address of any participating endpoint changes, so the SIP session statea are lost and
session mobility mechanisms can only achieve the equivalent of terminal mobility.

6.4. Scenario Description and Assumptions
Figure 6.2 shows the scenario considered in our work: a user equipment (UEA) is attached
to a UMTS access network and communicates with another user equipment (UEB)
attached to another IMS-based access network. We assume that a multimedia session, e.g.
video conference, is ongoing between the two users. After some time, UE-A performs a
handover from the old access network, ANold, to the new access network, ANnew.
In case of stateful sessions, e.g. video gaming, session continuity is crucial since the users
do not want to lose the history (i.e. the session state) of the ongoing session. Therefore,
this work focuses on providing means for macro mobility support in IMS environments at
the IP layer, which will hide the mobility to the higher layers and keep the session alive,

 112

Internet

Mid-session
handover

UEA

HA

UEB

P-CSCFold

P-CSCFnew

GGSNold

GGSNne

I-CSCF HSS

S-CSCF

P-CSCFB

IMS
ANold

ANnew

ANB

while respecting the standard resource allocation mechanisms specified at the session
layer by the IMS.

Fig. 6.2, Mobility scenario

6.5. MIP-IMS Interoperability Issues
In this section, we present the main problems related to MIPv6 integration in the IMS
platform.

6.5.1. Delayed MIP Registration
Whenever a UE connects to a new access network (when switching the device on or after
pre-/mid-session handover), it activates a primary context and gets its new IP address
(CoA). The primary PDP context is designed to carry SIP messages only and, therefore,
the access router will block other packet types such as MIPv6 registration packets; the
MIP signaling is only possible after a secondary PDP context is created. This means that
the UE cannot become reachable at the IP layer until a secondary PDP context is
activated.
Before the secondary PDP context activation procedure can be completed, SIP messages
have to be exchanged between the UE and entities in external networks for (1) SIP
registration (S-CSCF) and (2) QoS negotiation (UEB). Thus, SIP packets cannot be routed
back to the UE and this issue leads to a deadlock situation where the UE can never
complete either SIP or MIP signaling procedures.

 113

6.5.2. Addressing Scheme Conflicts
MIPv6 hides UE’s mobility to layers above IP and therefore requires that those layers use
its HoA. On the other hand, IMS-based access control and QoS allocation negotiations
are based on policies that are specific to the access network the UE is currently visiting,
which is identified by UE’s CoA. Those conflicting requirements impact two critical
entities that participate to the access and service control, namely the P-CSCF and the
GGSN.

P-CSCF
When the UE registers with the IMS, the P-CSCF checks for the address used in the SIP
REGISTER request. As defined by the MIPv6 requirements, the UE should register its
HoA at the SIP level. The P-CSCF will reject the SIP registration request because the
HoA does not represent the current location of the MN, i.e. the HoA is not in the range of
IP addresses matching the current access network. To avoid this problem, registering
UE’s CoA at the SIP layer is problematic because:
• this would require new interfaces between MIP and SIP at the UE so that the MIP

communicates the UE’s CoA to the SIP layer instead of the HoA;
• SIP would have to update the UE’s location information after every handover –then it

is similar to the SIP mobility case;
• changes of the IP addresses are not hidden to the SIP and application layers and, thus,

session continuity cannot be ensured without additional implementation efforts.

GGSN
Once the UE is registered at the SIP level, it triggers a secondary PDP context activation
for each data flow. In the process, the access router sets up the TFT and SBLP filtering
functions, with the IP addresses of the data flow endpoints: UEB’s IP and UEA’s HoA.
The addresses used to set the filters and the ones put in the IP header are not consistent in
all scenarios of MIP communications between UEA and UEB, depending on whether the
home agent is involved in the data path.

Based on these remarks, the following limitations can occur when MIP is used at the IP
layer in an IMS environment:
• Without route optimization (i.e. reverse tunneling is implemented; the packets are

systematically routed to UE’s HA before being forwarding towards either endpoint):
o Both GGSNs would block the packets originally sent by either endpoint because

those packets are forwarded from the HA, which puts its IP address in the source
IP address field of the outer IP header (TFT only lets through packets with either
UEB’s IP or UEA’s IP),

o Both GGSNs block the packets received from the endpoints: the SBLP does not
allow packets with HA’s IP in the destination field. The destination should be
UEB’s IP or UEA’s IP, but reverse tunneling requires to send the packet to the HA
first, i.e. HA’s IP in the IP address header.

• With route optimization:
o GGSNB blocks the packets from UEA because the latter sends IP packets with its

CoA in the source address field while the TFT at the GGSN is expecting the HoA,

 114

o GGSNB blocks the packets from UEB because the SBLP that has been set at the
GGSN expects UEA’s HoA in the destination IP address field while UEB uses the
CoA.

o Incoming packets received from the UE-B are blocked at GGSNA by the SBLP
because instead of UEA’s HoA in the destination IP address field, the CoA
appears.

The address conflicts at the GGSN are also detailed in [Chen07] and summarized in
Figure 6.3 for both the MIP bidirectional tunneling and route optimization modes.

Fig. 6.3, Summary of address conflicts at the GGSN filtering functions

6.6. Solution for MIP-IMS Interoperability
We describe a solution that respects MIPv6 and IMS paradigms by adding functionalities
to the access router and P-CSCF and exchanging a few additional MIPv6 messages.

6.6.1. Assumptions
The following assumptions on the system were made prior to designing the MIP-IMS
interoperability solutions:
• The MIP HA is deployed in the Internet (it could be at the edge of the access network

though) and, therefore, UE-A is in a foreign network in every access network from
the IP point of view.

SBLP
Dest=HoA

SBLP
Dest=HoA

TFT
Src=HoA

SBLP
Dest=CN

SBLP
Dest=HoA

TFT
Src=CN

UEA GGSNA HA GGSNB UEB

Dest=CoA, Src=CN

Dest=CoA, Src=CN
Dest=CoA, Src=CN

Dest=HA, Src=CoA

Dest=CN, Src=CoA
Dest=CN, Src=CoA

Dest=HoA, Src=CN

Filter mismatch - Filter type
- Expected value

R
ou

te
 o

pt
im

iz
at

io
n

B
id

ir
ec

tio
na

l t
un

ne
lin

g Dest=HA, Src=CoA
Dest=CN, Src=CoA

Dest=CN, Src=CoA

Dest=HoA, Src=CN
Dest=HoA, Src=HA

Dest=HoA, Src=HA

Dest=CN, Src=CoA

 115

• Each access network is connected to a unique P-CSCF so macro mobility implies the
change of P-CSCF as well.

• The IMS requires IPv6 for transport; so we assume that IPv6 is also deployed in the
other domains considered in this work (Internet, UMTS core network, etc.).

• In terms of failure detection, UEA is aware that the sessions are being dropped (forced
by operator’s policies) or that the communications are not reaching UEB due to
failures in its access network. If a communication path exists between the user
equipment and the network monitoring entities, the latter can send a status report to
the user equipment with the nature of the error/failure and a recommendation about
the best recovery strategy; this is a network-initiated handover.

• Because of the scarce resources on the air interface, we assume that the resources in
the Internet exceed those that are available in the access network. This means that we
only need to focus on the resource allocation and control in the access networks. For
simplicity, we also assume that the resources available to the UE at ANnew are at least
as good as at ANold. If that was not the case, the UEs would have to re-negotiate new
QoS levels for the ongoing session and decide whether they want to continue the
session with downgraded QoS.

• The two access networks that UEA attaches to can belong to different operators.
Roaming between different operators’ domains presents inherent challenges
[Roos03], especially related to security and QoS. We assume that the UEA roams
between access networks whose operators have signed roaming agreements, which
establish clear rules about security (encryption, authentication methods and keys) as
well as QoS compatibility, e.g. user profiles should be mapped to operators' specific
Service Level Agreements (SLA).

6.6.2. Solution Overview

In order to allow the MIP registration procedure to take place as soon as UEA has
obtained a CoA, i.e. after a primary PDP context is activated between the UE and its
current GGSN, the best solution is to allow MIP signaling through the primary PDP
context. In general, it is reasonable to assume that the access router should treat MIP
signaling as part of the signaling flow and not as a specific data stream. This is because
(1) the high bandwidth available for the primary PDP context should benefit MIP
mechanisms, (2) MIP signaling packets are not intended to any user application and
should not be charged the same way as application data. So there is a rationale for
including the MIP registration in the primary PDP context. For implementation purposes,
one might argue that a primary PDP context can only carry SIP messages; in that case, a
general PDP context should be activated instead since it is designed for mixed, signaling
and data traffic. The same QoS allocation and charging policies can be applied to SIP and
MIP signaling, while secondary PDP contexts are activated for the different data streams.
Both types of address conflicts introduced in the previous section can be solved with the
same approach: by making the GGSN and the P-CSCF aware of both UEA’s addresses
(HoA and CoA), both entities can look up in their binding table and prevent rejecting
packets that contain a seemingly wrong IP address. This requires that both the GGSN and
the P-CSCF are fully MIP-compliant –see next section for details.

 116

6.6.3. Detailed Operations
This section presents the sequence of events that take place after a MN gets connectivity
in a new access network. Those events are summarized in Figure 6.4. Note that this also
holds when the user switches its mobile device on.

Fig. 6.4, Macro handover with MIP mobility support in IMS-based networks

After getting connectivity on the air interface in the new access network, UEA activates a
primary PDP context in order to get IP connectivity with external networks (IMS
included). Assuming that MIP signaling can be sent over the primary PDP context—or a
general PDP context—UEA starts the MIP registration procedure immediately after
primary PDP context activation in order to be reachable at the network layer by external
nodes. When receiving the MIP registration request—namely, the binding update—from
UEA, the MIP-aware GGSN recognizes the message thanks to the Home Registration bit
and the Mobility Header Type field in the Mobility Header. The primary PDP context
now being improved with MIP signaling support, the access router does not discard the
MIP request even though it is not a SIP message that is carried through the primary PDP
context.
Then, UEA needs to treat its current P-CSCF as a MIP correspondent node so that the
latter knows about the HoA/CoA correspondence and does not reject the SIP registration
request from UEA. Concretely, UEA sends a binding update to its MIP-compliant P-

UEA GGSNnew P-CSCFnew UEB

MIP registration (Binding Update to HA)

Data packets (potentially via MN’s HA)

HA S-CSCF

SIP re-INVITE

Secondary PDP context
activation(s)

SIP ACK (final re-INVITE msg)

Signaling
bearer
setup

IP
reacha-
bility

IMS connec-
tivity

Primary
PDP

context
activation

SIP registration (REGISTER to S-CSCF, via P-CSCF)

HoA/CoA mapping (Binding
Update to P-CSCF)

Data
bearer(s)

setup

Data flow

 117

CSCF, which updates its binding table. When the P-CSCF receives a SIP REGISTER
with a forbidden address, it can look up the table for a mapping address that belongs to
ANnew. Only then, can the P-CSCF process successfully the SIP REGISTER request with
UEA’s HoA. Note that a new interface is needed so that SIP accesses the MIP binding
information. After UEA has registered with its S-CSCF, it activates a secondary PDP
context (sending a SIP re-INVITE to UEB) for each data stream that participated in the
ongoing session(s) at ANold.
In order to solve the address mismatch in the filtering functions at the GGSN, a similar
address-mapping database to the one added to the P-CSCF needs to be implemented in
the GGSN. For instance, the GGSN can extract UEA’s addresses from the MIP
registration request sent to the HA before forwarding it; subsequently, the GGSN
commits the address mapping when it receives the binding acknowledgment back from
the HA. Another approach is to make the P-CSCF communicate both UEA’s addresses
during the secondary PDP context activation process so that the GGSN sets the filters
with those two addresses. Also, in Section 6.5.2, we showed that in bidirectional
tunneling mode (between the two UEs) the GGSN blocks the packets that UEA
sends/receives to/from its HA. Thus, we suggest that the GGSN decapsulates the data
packets to/from the HA in order to check for the validity of the destination and/or the
source address in the inner IP header.

6.6.4. Analysis

Handover Times
In most scenarios, MIPv6 is expected to achieve shorter handover times than SIP
mobility [Kwon02]. Nevertheless, in IMS-based networks, providing mobility support is
not sufficient to perform a complete handover: access and service control functions have
to be set at ANnew, this is the session mobility aspect of the handover. In the 3GPP
specifications, the SIP INVITE transaction simultaneously provides location update – for
mobility support – and enables the negotiation and application of QoS policies at ANnew's
GGSN with the activation of secondary PDP contexts – for access and service control.
This means that in our scenario MIP mechanisms will be responsible for the terminal
mobility at the IP layer and the SIP INVITE for the session signaling. Therefore, MIPv6
integration in IMS-based networks does not permit to shorten the handover delays when
following the standard secondary PDP context activation after moving to ANnew. In the
best case, MIP and SIP signaling (Figure 6.4) can be processed in parallel. The MIP
registration procedures being shorter than the SIP ones, the MIP mechanisms do not
impact the handover times, which are consequently expected to be the same as in the pure
SIP-based handover case. Here, the only impact on the handover time could be the result
of the computational load that the MIP mechanisms add to the system. This may slightly
affect the overall performance of the system; e.g. the GGSN and the P-CSCF could slow
down because of the additional processing and treatment of the MIP signaling.

Signaling Overhead
The additional MIP operations used in our solution consist of binding update procedures
between UEA and its HA, and its P-CSCF. Return routability procedure and binding

 118

registration are made up of six small signaling messages (cf. Table 5.2 in [Fathi06]). So
in total, our solution requires twelve MIP signaling messages.
Note that if we want to avoid the impact of triangular routing on the data traffic, an
additional six messages are necessary to complete the whole binding update with UEB.

Implementation Efforts
The integration of MIP in IMS-based networks is not straightforward and our solution
requires some implementation efforts:
• The primary PDP context should allow for MIPv6 signaling. In the previous

subsection, we argued why this requirement would not impact the IMS specifications
much.

• The GGSN and the P-CSCF should be MIPv6-compliant so they process binding
update messages and map UEA’s HoA and CoA at the IP layer. Both entities will be
deployed in IPv6 networks and a particularity of IPv6 nodes is that they implement
MIPv6 functionalities by default in their kernel. So, again, not much implementation
costs are introduced here.

• A specific software architecture should allow the functions in the GGSN and the P-
CSCF to resolve address conflicts by accessing the binding information for UEA's
addresses. In particular, an interface is needed for the higher layers to call the CoA-
HoA address mapping functions in MIP and for MIP to respond to them accordingly.
Cross-layer mechanisms [Srivastava05] could easily be an answer to this requirement.

6.6.5. Conclusions

The concepts that make MIP-IMS interoperability possible mainly rely on the standard
MIP binding update registration at the P-CSCF and the HA. This is done at the cost of
reasonable implementation efforts, especially between the MIP and SIP layers in the
GGSN and P-CSCF. The UE, which implements MIPv6 by default as an IPv6 node, and
the application do not need to be modified at all.
As compared to the original SIP procedures, our solution supports transparent session
mobility. If the same feature had to be provided in the pure SIP scenario, interfaces
between the SIP and application layers would have to be introduced so that SIP does not
trigger the session termination and the application does not lose the ongoing session state
as the UE’s IP address changes. In this scenario, applications would have to be modified,
which plays against one of the motivations for the IMS: easy and standard application
development and deployment.

 119

7. Enhanced MIP-based Mid-Session
Macro Mobility

The analysis in the previous chapter showed that MIP does not permit to reduce the
macro handover delays as compared to the original SIP in IMS environments because of
the session mobility requirements. IMS macro handover optimizations found in the
literature are SIP-based, which is not an optimal option for the reasons mentioned in
Section 6.2. In this chapter, a novel mechanism for fast MIP-based mid-session macro
mobility solution is proposed and the improvements that can be achieved, the
implementation efforts that it implies, and its impact on the standards are discussed.

7.1. Solution Overview
During a mid-session handover, the most important aspect from the user’s perspective is
the disruption of the service, i.e. the discontinuity of the data flow at the application level.
Therefore, emphasis should be put on creating a data path in ANnew as fast as possible in
order to achieve a low latency handover. Ideally data could be carried in the first bearer
created in the access network while controlling the resources allocated to this bearer.
General PDP contexts meet this requirement since their particularity is to carry signaling
packets and data packets, and to be granted resources by the access network.
In our scenario, resources have already been authorized and allocated in both UEA’s and
UEB’s access networks before the handover. Thus, two arguments particularly motivated
the design of an alternative solution to the complex end-to-end multimedia session setup:
(1) after the HO, resources do not need to be dedicated to the ongoing session in UEB’s
access network again, and (2) UEA has stored media-authorization Our solution defines a
new PDP context type, namely Mid-Session Handover PDP context (MSH PDP context).
This new PDP context is similar to a general PDP but is activated with specific
procedures detailed in the next section. The MSH PDP context activation process
requires:
• A new interface between PCF/P-CSCFold and PCF/P-CSCFnew so that PCF/P-

CSCFnew can get the session-related information that it uses to allocate resources for
MSH PDP context and to charge the user appropriately;

• Additional information: the media authorization token for the ongoing session and P-
CSCFold’s IP address;

Our solution permits the data bearer to be set at ANnew without using SIP mechanisms
(REGISTER and INVITE) and, therefore, to complete the resource allocation procedure
much faster. After the unique data bearer is activated, UEA uses MIP mobility
mechanisms to re-establish IP reachability with UEB and to start exchanging data packets.

 120

Once UEA’s and UEB’s application layers can communicate again, UEA transparently
returns to the standard IMS-based operations (i.e. primary and secondary PDP contexts).
In summary:
• MIP and SIP procedures are decoupled
• MIP provides terminal mobility
• Session mobility is supported by context transfer
• Media resources are allocated with new PDP activation methods

7.2. Detailed Solution Description
Figure 7.1 shows the full message flow of our solution and will be explained in the
following subsections.
Note that, even though it is not a 3GPP requirement, we assume that P-CSCF and PCF
are collocated and can commonly access the states of the sessions they control.

Fig. 7.1, Enhanced mid-session macro HO procedures

UE GGSNnew PCFnew PCFold

MSH PDP
activation
request

COPS
request

COPS
response MSH PDP

activation
response

CN

Data packets (UE to CN only)

MIP mobility (Binding Update to HA and CN)

Data packets (both directions)

COPS
request

COPS
response

HA S-CSCF

Data transmissions

SIP REGISTER

SIP re-INVITE

Secondary PDP context
activation(s)

SIP ACK (final re-INVITE msg)

MSH PDP context modified
into primary PDP context

Data
bearer
setup

IP
Reach-
ability

Back to
standard

operations

 121

7.2.1. Data Bearer Setup
After UEA looses connectivity at ANold, it triggers the L2 Attach procedure at ANnew and
authenticates with the network (UMTS AKA). When it detects that a session(s) was still
ongoing before loosing connectivity at ANold, the UE triggers the MSH PDP activation
instead of the standard primary PDP context activation.
When setting the secondary PDP in ANold, UEA obtained a media authorization token,
which specifies the PCF that generated this token. The token is added into the MSH PDP
context activation request sent to GGSNnew. This request should be treated by the GGSN
the same way as for a secondary PDP context so that access control for data packets can
be set up as well. Therefore, GGSNnew converts the PDP activation request into a COPS
request that it sends to PCFnew. The latter behaves as a COPS proxy: it recognizes the
specific MSH request and uses AuthToken to retrieve PCFold’s location, where it
forwards the request. In case AuthToken is insufficient to retrieve PCFold’s location, e.g.
when the two access networks are in separate administrative domains, then P-CSCFold’s
IP address is used to route the request to PCFold. PCFold recognizes AuthToken, accepts
the request and looks into its database for the corresponding session information. It
responds to PCFnew with a response that contains the user’s profile, the SIP session state
and the QoS levels authorized for this session in ANold. When PCFnew receives the
response from its peer, it (1) maps the old QoS levels into local levels – this depends on
the roaming agreements between operators, (2) creates a temporary charging state and (3)
interacts with GGSNnew to finalize the activation of the MSH PDP context and open the
access control filters.

7.2.2. IP Reachability
Once the MSH PDP context is activated, UEA is able to communicate with external
networks from ANnew. The priority at this point is to quickly inform UEB about UEA’s
new location so that the data packets can be routed properly from the CN to the UE. Note
that the UE can start sending data packets after it receives the MSH PDP activation
response because:
• UEA already knows UEB’s IP address.
• UEB will not reject those packets since MIP always shows UEA’s HoA at the

application layer, which was knows by UEB before the handover.
In our solution, the communications in ANnew are carried via a single PDP context,
equivalent to a general PDP context. Signaling and data packets sent to UEA are sent
from different external nodes and make filtering policies difficult to implement for one
PDP context. Therefore, we assume that the filtering functions that apply to the MSH
PDP context are limited to checking for UEA’s addresses in the destination address of
incoming packets (for the TFT filter to redirect packets into UEA’s MSH PDP context)
and applying the QoS level agreed for the MSH PDP context.
UEA should start the MIP procedures immediately after the MSH PDP is activated by
sending a binding update to its HA and UEB.

7.2.3. Back to Standard Operations
The goal of the MSH PDP context is to provide support in ANnew for IP multimedia
communications as fast as possible but this PDP should not last until the end of the

 122

session. This is because unless packet type differentiation can be implemented at the
GGSN, the user would most likely be charged for signaling traffic at the same rate as data
traffic when SIP packets are carried through the MSH PDP context. So whenever
possible after the multimedia session is re-established, UEA should trigger the necessary
mechanisms to return to the standard operations defined by 3GPP, i.e. separate signaling
and data traffic in primary and secondary PDP contexts. Nevertheless, UEA should
postpone those mechanisms when most of the MSH PDP resources are being temporarily
used for the data stream(s), e.g., to download packets that had been buffered during the
handover operations.
First, the UE sends a REGISTER to its S-CSCF via the MSH PDP context in order to:
• establish the SIP path between S-CSCF and P-CSCFnew;
• establish the security association at IMS level (IMS AKA);
• update HSS location database for future SIP requests addressed to the UE.

Because the mobility is handled at the IP layer, UEB does not need to be updated about
UEA’s new location information; on the other hand, the SIP re-INVITE is needed by the
UE to obtain a new AuthToken in order to activate secondary PDP contexts at ANnew.
After it forwards the final message of the re-INVITE (ACK message) to the UE, P-
CSCFnew logs the charging information related to the traffic in MSH so far and starts a
new call state representative of the different charging rates of the data streams in their
respective secondary PDP contexts. After receiving the final ACK message, the UE
switches the data traffic to those PDP contexts and modifies the MSH PDP context to be
dedicated to SIP signaling.

7.3. Analysis
7.3.1. QoS Resource Release at ANold

The main goal of establishing PDP contexts is to allow operators to control their
resources in the access network. When UEA leaves ANold, PCFold and P-CSCFold need to
keep the session information to be retrieved later on by PCFnew. Two scenarios are
possible:
• GGSNold does not detect UEA’s movement and keeps the PDP contexts active while

UEA is moving to ANnew. After it responds to the COPS request received from
PCFnew, PCFold could release the resources in ANold by sending a network-initiated
PDP release to GGSNold. Because it may happen that the COPS response from PCFold
to PCFnew is lost, PCF/P-CSCFold keeps AuthToken, the user’s profile and the session
state for a time Tretrans, set to 60 seconds, after responding to PCFnew. This way, PCFold
still has the information in case of COPS request retransmission(s).

• GGSNold detects that UEA has detached and it releases its PDP contexts. Instead of
deleting all session-related information when GGSNold requests it, PCF/P-CSCFold
triggers Troam, set to 120 seconds, and keeps the information for that duration. If
PCFold does not receive a COPS request from another PCF within Troam, then it
deletes the information. If it receives a COPS request, Tretrans is triggered after sending
the response.

 123

7.3.2. Security Issues
IETF specifications require that the Media-Authorization header sent by the proxy (i.e.
the PCF in our 3GPP UMTS environment) should be protected from eavesdropping and
tampering [Hamer03]. In case AuthToken is intercepted anyway, it is recommended to
set AuthToken timeout value to a few seconds to protect against replay attacks. In the
mid-session handover case, we do not know how long the session will last before UEA
moves and, consequently, how long AuthToken lifetime needs to be. There are two
solutions to this problem: (1) operators take the risk of replay attacks and allow for long
AuthToken timeouts or (2) the PCF provides UEA with new, additional specific token,
that we call AuthTokenRoaming, which UEA can use only when it activates an MSH
PDP context in a new access network.

7.4. Quantitative Analysis
7.4.1. Assumptions and Methods

Here the handover times for both the original SIP and the enhanced MIP solutions are
analytically compared. In both cases, the starting point is just after the UE has completed
the L2 Attach procedures and is about to start the first bearer activation. Now we discuss
for both mobility solutions when the handover would be considered completed:
• In the SIP case, an INVITE needs to be processed to allocate a data bearer for each

media stream. So the handover finishes when the final response of the last INVITE
transaction is received at UEA. The SIP handover time is therefore proportional to the
number of media streams to be created in ANnew.

• In the enhanced MIP case, all resources are available at ANnew as soon as the MSH
PDP context is activated, which means that the MIP-based handover time is
completely independent from the number of media streams that participate in the
ongoing session moved to ANnew. The MSH PDP context activation is not enough
from the UE point of view because it is important to consider E2E connectivity.
Therefore, the MIP-based handover is complete when the BU with the CN/UEB has
been successfully completed.

The following analytical discussion abstracts the difference of packet size between SIP
and MIP messages.

Looking at the message flows in Figures 2.6 and 7.1, we can list the different types of
message exchanged and their number for the standard SIP and enhanced MIP mobility
solutions, as seen in Tables 7.1 and 7.2.

Table 7.1, Message requirements for the standard SIP-based mobility

Operation Messages Number
primary PDP context activation UEA – GGSNnew 2

SIP REGISTER UEA – S-CSCF 4
secondary PDP context activations GGSNnew – PCFnew 2 (per stream)

resource allocations UEA – UEB 11 (per stream)

 124

Table 7.2, Message requirements for the enhanced MIP-based mobility

Operation Mesages Number

MSH PDP activation

UEA – GGSNnew
GGSNnew – PCFnew

PCFnew – PCFold

2
2
2

binding update (with HA) UEA – HA 2
binding update(with UEB,

(including the 4 route
returnability messages)

UEA – UEB

6

Assumptions on communication delays in the access network and in the Internet have
been discussed in [Kwon02] and [Fathi06]. The same assumptions are used in this work,
and are shown in Table 7.3. GGSN-PCF delays are very short because the PCF is
collocated with the P-CSCF, which, by default, has to be deployed in the same domain as
the GGSN so few hops should separate them.

Table 7.3, Communication delays assumptions

Mesage Delay
UEA – GGSNnew

(when UEA is in ANnew) 20ms

GGSNnew – PCFnew 5ms
PCFnew – PCFold 100ms

In the discussion that follows, T[A–B] refers to the communication delay between any
given node A and node B.
T[UEA–S-CSCF], T[UEA–UEB] and T[UEA–HA] are used as input variables.

7.4.2. Results and Analysis
Figure 7.2 represents the handover times for the SIP and MIP solutions together in each
subplot. Each subplot is generated for a given T[UEA–UEB]—50,150,250ms—while
T[UEA–S-CSCF] is the input variable for the SIP curves and T[UEA–HA] the input for
the MIP curves. Both values are varied simultaneously and range from 50ms to 250ms.
For each T[UEA–UEB] scenario, the SIP handover times are calculated for an ongoing
session with 1, 2 and 3 media streams respectively.
It makes sense to compare MIP ans SIP handover time for a fixed T[UEA–UEB] value
because in a real setting, this delay would be the same whether the UE invokes the SIP or
the MIP mobility solution.
These results show that MIP handover is always faster than the SIP handover when
T[UEA-S-CSCF] and T[UEA–HA] are identical. It can be seen how much the number of
streams in the session impacts the SIP handover time. The latter is also very sensitive to
the delays between the UEs. This is because of the extensive number of E2E SIP

 125

messages necessary to set the QoS parameters for each media stream in the session in
both UEs’ access networks.

50 100 150 200 250

1000

2000

3000

4000

5000

6000

7000

8000

9000

TUE
A
-UE

B
=50ms

H
an

do
ve

r t
im

e
(in

 m
s)

50 100 150 200 250

1000

2000

3000

4000

5000

6000

7000

8000

9000

TUE
A
-UE

B
=150ms

50 100 150 200 250

1000

2000

3000

4000

5000

6000

7000

8000

9000

TUE
A
-UE

B
=250ms

MIP
SIP-1stream
SIP-2streams

SIP-3streams

Handover TImes VS. TUE
A
-HA or TUE

A
-SCSCF

Fig. 7.2, SIP and enhanced MIP handover times

In a real environment, T[UEA-S-CSCF] and T[UEA–HA] would most likely be different.
The graph clearly indicate that By comparing the handover time equations derived from
Tables 7.1 and 7.2, it can be easily calculated under which conditions on T[UEA–S-
CSCF], T[UEA–UEB] and T[UEA–HA] the MIP solution becomes slower than the SIP
one, where n is the number of media streams in the ongoing session to be moved to
ANnew:

)1.7(SIPMIP TT ≥

)2.7(11246222 UEUEPCFGGSNSCSCFUEUEUEHAUEPCFPCFPCFGGSN TnTnTTTTT −−−−−−− ⋅⋅+⋅⋅+⋅≥⋅+⋅+⋅+⋅

())3.7(10051
2

6112 −⋅−+⋅
−⋅

+⋅≥ −−− nTnTT UEUESCSCFUEHAUE

Table 7.4 shows some examples of T[UEA–HA] thresholds above which the MIP
handover times become larger than the SIP handover times. These thresholds are derived
from Inequation (7.3) for specific combinations of number of media streams, T[UEA–S-
CSCF] and T[UEA–UEB] values.
Figure 7.2 already showed that when the network delays are the same between UEA and
its HA and UEA and its S-CSCF are equal, MIP-based mobility outperforms the SIP-
based approach. Table 7.4 highlights how much longer T[UEA–HA] has to be compared
to T[UEA–S-CSCF] so that SIP performs macro handovers faster than IMS. For example,

 126

when the session has only one media stream and the one-way delays delays between the
UEs are short (50ms) and T[UEA–S-CSCF] is 100ms long, T[UEA–HA] can be up to 2.25
times bigger than T[UEA–S-CSCF] before it is not worth implementing MIP mobility in
the IMS—this can also be seen on the first subplot of Figure 7.2.
Also, remember that the packet size has not been considered in the analytical model. In
real systems, MIP messages are much smaller than SIP signaling messages cf. Tables 4.5
and 5.2 in [Fathi06] for detailed SIP and MIP message sizes), which would influence the
results even more in favor of the MIP solution. Communication delays are especially
sensitive on the air interface where the frame loss probability is much higher than in
wired parts of the system. Another factor in relation to frame losses on the air interface is
the number of messages that exchanged to and from both UEs, which is also much higher
with the SIP solution.

Table 7.4, Examples of T[UEA–HA] thresholds

of
streams Inequation T[UE–SCSCF] T[UE–UE] T[UE–HA]

thresholds

1 1005,22 −⋅+⋅≥ −−− UEUESCSCFUEHAUE TTT 100
50

100
150

225
350
475

2 9582 −⋅+⋅≥ −−− UEUESCSCFUEHAUE TTT 100
50

100
150

505
905

1305

3 905,132 −⋅+⋅≥ −−− UEUESCSCFUEHAUE TTT 100
50

100
150

785
1460
2035

7.5. Conclusion
Our novel mobility solution is based on a new type of PDP context that can be activated
quickly and without SIP. It offers the advantages of being simpler and more efficient:
fewer messages are involved, especially on the air interface, which is prone to longer
delays and more packet losses, and does not require end-to-end communications between
UEs. The use of the authorization token given by the IMS in the old access network
ensures service control in the new access network, while considerably shortening the
handover times. Except in a very specific scenario, the MIP solution will perform much
faster than the standard SIP procedures (up to 4.5 times faster in the best conditions).
The drawbacks of the solution are limited:
• small standardization and implementation efforts in comparison to the huge gains in

terms of handover delays;
• little additional cost for the user until the signaling and data flows are separated again;
• short period with no SIP services until the UE can re-REGISTER with the IMS.
The solution proposed assumes that the QoS level granted in ANnew for the MSH PDP
context matches those in ANold. If the levels in ANold and ANnew differ, UEA needs to
perform end-to-end QoS negotiation again after the handover. This QoS negotiation

 127

would impact handover delays considerably so a fast mechanism needs to be designed in
order to keep those delays reasonable. In case of proactive handover, the UE could
perform the negotiation before leaving ANold.
Future work could also investigate the benefits of using alternative MIPv6-based
solutions (FMIP, HMIP, etc.) to better improve the handover delays.
Finally, since the IMS was designed to be network-independent, we need to analyze the
portability of our solution to other access networks, such as WLAN, using ongoing
research that focuses on integration of access control functionalities in such access
networks.

 128

8. Conclusions and Outlook

8.1. Summary
The IMS is becoming a key component in IP-based service provisioning. Because of the
requirements steming from the end-users and the critical involvement of the control
procedures in multimedia session management, the IMS should be dependable without
getting slower or invasive for the access network it controls.
The contributions in this thesis focus on the dependability/performance tradeoff and
investigate means to improve performance while maintaining the dependability levels
guaranteed by the fault tolerance mechanisms in their ‘standard’ setup.
Two main fault scenarios were considered that require appropriate recovery strategies:
• IMS servers sometimes crash for some periods of time so they are replicated,

allowing for failovers to mask the servers failures.
• Sometimes, communications with external entities are made impossible because of

faults affecting single points of failure. The best option in this case is to attach to
another access network.

In Chapter 2, the complex IMS procedures and their interactions with access network
entities are explained, as well as the SIP mechanisms these procedures rely on.

In Chapter 3, two approaches to support server replication are introduced, their
integration with the IMS platform is shortly discussed and a solution is proposed that
allocates the recovery decisions to the P-CSCF instead of the service clients themselves.

In Chapter 4, the models used to evaluate the dependability/performance tradeoff in the
standard and replicated IMS are thoroughly explained, and a set of output metrics suiting
the models is defined. These metrics are
• Dependability, the successful transaction probability
• SAT, the average successful transaction completion time
• Load, the average load per transaction
A first analysis of the environment input variables is qualitatively discussed and
supported by simulation results from the standard IMS scenario, motivating a restricted
set of input variables for the main ‘optimal fault tolerance configuration’ analysis. It
shows that the SIP traffic load is not very important and the little effects it has on the
output metrics can be evaluated analytically. Packet losses are not likely to cause
transaction failures thanks to retransmissions but they surely increase the service access
time a lot and also the load, to a lesser extent. The effects of server failures on the system
are quite different from those of packet losses: dependability can be greatly affected as
the probability that servers are OFF rises while the service access time does not increase
by much. Another important measure proved to be the ratio between the round trip time

 129

and the average time to repair or, more precisely, the ratio between the maximum
transaction lifetime and the time to repair. For the rare systems where server failures do
not last more than a few seconds, the reaction of the three metrics to packet loss and
server unavailibity are different because the round trip time/time to repair ratio becomes
abnormally big; so, then, dependability still decreases as packet losses and server
unavailability increase but service access time and load increase much faster than in
smaller round trip time/time to repair scenarios.
Several fault tolerance parameters are considered in the second phase of the analysis,
where the expected effects of the input parameters on the tradeoff are compared to the
simulation results. In general, for the model settings considered, fault tolerance
configurations with more failovers are more dependable and more performant than other
configurations for which max_request is the same or even higher sometimes. The
drawbacks of deploying many replicated servers are extra load (but not that much in
comparison to the dependability and service access time gains) and additional
deployment costs such the expenses for many servers and all the wiring and maintanance,
etc. Having even more servers than necessary for the failover, or increasing the heartbeat
rate both seem like promising tracks to investigate for improvement. Finally, when the
distribution of network delays is known, it is possible to adapt the SIP timeout by fixing a
threshold on the percentage of network delays that the timeout should be bigger than.
This way, many retransmissions due to late responses from available servers could be
avoided, which provides great best improvements in terms of dependability and maintain
both are introduced service access time and the load almost at the standard IMS levels.
Methods that use the conclusions of the analysis to select the optimal fault tolerance
configuration are suggested and an example illustrates the direct application of the results
for the replicated IMS system.

In Chapter 5, an inconsistency definition that suits the IMS system is given. Then, a
framework is presented that can be used to evaluate the metric previously defined. The
evaluation approach relies on contributing factors that are influenced by the server
selection policy, traffic model, state replication model, and network characteristics such
as packet losses and network delays.
The inconsistency evaluation framework is verified by comparing (1) inconsistency
values measured in an experimental SIP system and (2) inconsistency values generated
with the framework, where the impacting factors are calculated with a mix of inputs from
the system specifications and experimental tests. It is pretty accurate overall but seems to
perform better with lower network delays.
The framework was primarily designed to help dynamic commitment protocols to
determine precisely the delay they should wait before updating a state. The framework
can also be used to help the architecture/protocol design of a system by determining the
expected inconsistency levels. Accordingly, the state dissemination protocol that helps
meet the predefined target inconsistency/performance tradeoff can be chosen.

In Chapter 6, several mobility solutions for macro handovers are presented. Then, it is
argued that in the IMS environment MIP is best suited to support macro mobility. The
addressing conflicts between MIP and the IMS are highlighted and a set of
protocol/function extension is proposed to get around these conflicts. At this stage, the

 130

MIP+IMS architecture provides session continuity, which the standard IMS does not, but
the handover time is not improved.

Chapter 7 proposes a novel MIP-based macro mobility solution for IMS environments
that shortens the handover times. To do so, secure media authorization information
generated, and saved, at ANold is transferred to ANnew so that a single, novel PDP context
is created at ANnew. The advantage of using only one PDP context is that the UE can start
exchanging data packets much quicker than with a standard SIP handover/session setup.
Indeed, the handover times with this solution are independent from the number of
ongoing data streams at ANold before the handover, while the standard IMS solution is
almost directly proportional to the number of ongoing sessions. Therefore, the new
mobility design is especially improving the handover time of sessions with multiple data
stream such as a Skype session where there would simultaneously be voice, video and
instant messages.

8.2. Outlook
There are a number of open issues raised in the thesis that could be interesting for further
research.

8.2.1. Optimal Fault Tolerance Configuration
The average service access time affects the distribution of SIP transaction initiation
times. By implementing the SIP traffic model at each PU with the possibility to support
multiple simultaneously pending transactions it would probably cancel the counter-
intuitive results showing that increasing the heartbeat frequency or the pool size yields
lower dependability.
This should be done in conjunction with fine tuning the server selection policy so that
there is a good compromise between dependability and load: e.g. should the clients keep
sending SIP requests when the PElist is empty (i.e. keep the server address in the list
upon failover but indicate that the server was actually unavailable when contacted so it
should be contacted again only after the list has been declared ‘empty’). If the clients do
keep sending the SIP requests, chances are that dependability slightly increases at a
higher load cost, in proportions to the dependability gains.

The model should include more realistic network delays and packet loss distributions.
E.g. a SIP request sent by one client to a given server will experience network delays that
are completely independent from the network delays experienced by another SIP request
to the same server sent by a different client, which is not so realistic. Also the
exponentially distributed network delays can have values close to ‘0’, which once again
is not realistic.
Scenarios with more realistic round trip time/time to repair ratios should also be
investigated. Unfortunately, this would imply much longer simulation times (48hrs per
test…?).

 131

Implementing load-dependent processing times would also make the model more realistic
because clients implement a server selection policy that makes them all pick the same
servers in the same order. Therefore, it could be possible that the servers become slower
or even fully overloaded. The effects of server selection policy are interesting to
investigate to broaden the holistic view on the inter-relation between dependability and
performance even more.

Additional failure detection schemes could be tested that would introduce additional
feedback from the clients to the name server and the SIP servers to the name server about
SIP servers’ status.

8.2.2. State Consistency
The validation exercise showed that the processing times of the prototype SIP server had
a long-tail distribution. So in order to verify the evaluation framework in a more
‘controlled’ setup, the framework could be implemented in the SAN models and
compared to simulation inconsistency results.

It would be interesting to develop concrete procedures for run time inconsistency
evaluation and test it with Möbius to assess the capacity of the framework to fulfil the
task it was originally designed for

8.2.3. MIP+IMS Macro Mobility
Experimental setups are always a good option when it comes to provide a proof-of-
concept, e.g. [Larsen06b] proved that security associations can be moved from one P-
CSCF to another. Here, the goal would be to test the feasibility/complexity of the
interworking approach and find out more in detail the type of constraints that could
prevent the implementation of the novel MSH PDP context.

In addition to service continuity (important to the user), charging continuity should also
be considered in our scenario. Even though it greatly depends on operators’ charging
policies, we suggest that the session state logged at P-CSCFold for the ongoing session is
transferred to P-CSCFnew in order to create a new charging state at ANnew. More media-
related information is provided at the IMS level than what is specified in the PDP context
activation requests: the SDP content indicates the codecs used in the session. This allows
appropriate charging based on the type(s) of media carried in the MSH PDP context.

Potential faults have not been taken into account when designing the fast MIP-based IMS
macro handover but it would be interesting to extend the macro handover solution to
consider fault scenarios. Faults would definitely increase the handover time. In more
severe cases where, say, the MIP home agent is crashed, the handover to ANnew might not
even be feasible at all. IETF has started a new standardization activity that focuses on
MIP architectures with multiple home agents [Faizan04] so maybe solutions already exist
that can be integrated with the mobility solution to make it dependable as well.

 132

A. SIP Specifics

A.1. SIP Responses

Table A.1, SIP response codes and their meaning

Type Code Meaning
100 Trying
180 Ringing
181 Call is being forward

Information

182 Queued
Success 200 OK

300 Multiple choices
301 Moved permanently
302 Moved temporarily
303 See other
305 Use proxy

Redirection

380 Alternative service
400 Bad request
401 Unauthorized
402 Payment required
403 Forbidden
404 Not found
405 Method not allowed
406 Not acceptable
407 Proxy authentication required
408 Request timeout
409 Conflict
410 Gone
411 Length Required
413 Request Entity Too Large
414 Request-URI Too Large
415 Unsupported Media Type
420 Bad Extension
480 Temporarily not available
481 Call Leg/Transaction Does Not Exist
482 Loop Detected

Client error

483 Too Many Hops

 133

484 Address Incomplete
485 Ambiguous
486 Busy Here
500 Internal
501 Not Implemented
502 Bad Gateway
503 Service Unavailable
504 Gateway Time-out

Server Error

505 SIP Version not supported
600 Busy Everywhere
603 Decline
604 Does not exist anywhere

Global Failure

606 Not Acceptable

A.2. SIP Headers
There are the different headers belonging to the four types of SIP headers.

A.2.1. General Headers

• Call ID: it is mandatory in all SIP messages. It permits to identify a call between two
user agents.

• Contact: it is present in INVITE, ACK, REGISTER requests and 1xx, 2xx, 3xx
responses. It provides the URL where the user can be called or reached.

• CSeq: Command Sequence is required in every request. It contains a decimal number
that increases at each request.

• Date: it indicates the time when the request or response has been sent.
• Encryption: it is used to show the portion of the SIP message that has been encrypted.

Encryption provides privacy for end users.
• From: it indicates the initiator URL.
• Organization: it indicates the organization to which the initiator belongs.
• Retry-After: it indicates when a resource will be available again.
• Subject: it indicates the subject of the session.
• Supported: it indicates the options supported by a user agent or server.
• Time stamp: it is used to mark the exact time when a request was generated.
• To: it indicates the recipient SIP URL.
• User Agent: it conveys information about the initiator of the message.
• Via: it records the SIP path taken by the request and this path is used to route a

response back to the initiator.

A.2.2. Request Headers

• Accept: it indicates what type of media is acceptable.

 134

• Accept - Encoding: the same function as Accept header, encoding is ensuring that a
SIP message with a large message body fits inside a single UDP packet.

• Accept – Language: it specifies in which language the messages are written.
• Authorization: it is used by a user to authenticate itself in a sever.
• Hide: it indicates that the client wants the path mentioned in the VIA header field to

be hidden from subsequent proxies and user agents.
• Max – Forwards: it indicates the maximum number of hops that the SIP request may

take.
• Priority: it indicates the urgency of the request.
• Proxy – Authorization: it allows the client to identify itself to a proxy which requires

authentication.
• Route: it indicates the route taken by the request.
• Proxy – Require: it lists the features required by the user agent or the proxy in order

to process request.
• Record – Route: it imposes all requests to go through a specified proxy.
• Require: it lists all the features the UAC requires the UAS to support.
• Response Key: it can be used by a client to request the key that the called user agent

uses to encrypt the response with.

A.2.3. Response Header

• Proxy–Authenticate: it is used in the 407 Proxy–Authentication Required response.
• Server: it contains information about the software used by the UAS to process

request.
• Unsupported: it indicates the features not supported by the server.

A.2.4. Entity Headers

• Content–Encoding: it allows the UAS to know the decoding scheme to interpret the
message body.

• Content–length: it indicates the number of bytes in the message body.
• Content–Type: it specifies the media type in the body message.
• Expires: it indicates the time within the request is valid.

 135

B. SAN/Möbius Models

This work was conducted in collaboration with Alessandro Daidone (University of
Florence, Italy). Thanks for his insights on SAN modelling and Möbius implementation.

B.1. Atomic Models
Each atomic model of the composed model described in Section 4.3 is shown below.

B.1.1. NS Model

Place Names Initial Markings
HB_sent 0
HB_stop 0
HB_timeoutstart 0
NS_start 1
PElist_atNS Number_PE
PElisttemp_atNS Number_PE
PElisttemp_rank 0
Report 0

Timed Activity: HB_generator

Distribution
Parameters

Value

HB_intertime

Activation Predicate (none)
Reactivation Predicate (none)

Timed Activity: HB_time

Distribution
Value

 136

Parameters HB_timeout

Activation Predicate (none)
Reactivation Predicate (none)

Output Gate: HB_broadcast

Function

for (int i=0; i<Number_PE; i++)
{
 HB_sent->Index(i)->Mark() = 1;
}

HB_timeoutstart->Mark() ++;

NS_start->Mark() = 1;

Output Gate: HB_expires

Function

for (int i=0; i<Number_PE; i++)
{
 HB_stop->Index(i)->Mark() = 1;
}

for (int j=0; j<Number_PE; j++)
{
 PElist_atNS->Index(j)->Mark() = PElisttemp_atNS-
>Index(j)->Mark();
}

for (int h=0; h<Number_PE; h++)
{
 PElisttemp_atNS->Index(h)->Mark() = 0;
}

for (int k=0; k<Number_PU; k++)
{
 Report->Index(k)->Mark() = 1;
}

PElisttemp_rank->Mark() = 0;

B.2. Atomic Models

 137

B.2.1. PE Model

Place Names Initial Markings
Fake_HBsent 0
Fake_PEup 0
HB_PEcheck_failure 0
HB_PEcheck_success 0
HB_atPE 0
HB_sent 0
HB_stop 0
HBdl_stop 0
HBdownload_failure 0
HBul_stop 0
HBupload_failure 0
ID_PE_ext 0
ID_PE_int Number_PE
ID_starttoken 1
Load_HB 0
PE_down 0
PE_up 1
PElisttemp_atNS Number_PE
PElisttemp_rank 0
test_sent 0
test_stop 0

Timed Activity: HB_download

Distribution
Rate

 138

Parameters download_PE_NS

Activation Predicate (none)
Reactivation Predicate (none)

Case Distributions

case 1

1-PER
case 2

PER

Timed Activity: HB_upload

Distribution
Parameters

Rate

upload_NS_PE

Activation Predicate (none)
Reactivation Predicate (none)

Case Distributions

case 1

1-PER
case 2

PER

Timed Activity: Time_to_failure

Distribution
Parameters

Rate

TTF

Activation Predicate (none)
Reactivation Predicate (none)

Timed Activity: Time_to_repair

Distribution
Parameters

Rate

TTR

Activation Predicate (none)
Reactivation Predicate (none)

Instantaneous Activities Without Cases:
ID_PE_trigger
Instant_HBsent
Instant_HBstop
Instant_PEup

Input Gate: HBselect_sent

Predicate

(ID_starttoken->Mark() == 0) && (HB_sent-
>Index(ID_PE_int->Mark())->Mark() == 1)

Function

//fprintf (stderr, "__INPUT function of
HBselect_sent__\n");

int time = LastActionTime;

//fprintf (stderr, "Time = %i \n", time);

 139

//fprintf (stderr, "ID_PE_int = %i \n", ID_PE_int-
>Mark());
//fprintf (stderr, "HB_sent = %i \n", HB_sent-
>Index(ID_PE_int->Mark())->Mark());
//fprintf (stderr, "__INPUT function of HBselect_sent
DONE__\n\n");

HB_sent->Index(ID_PE_int->Mark())->Mark() = 0;

Input Gate: HBselect_stop

Predicate

(ID_starttoken->Mark() == 0) && (HB_stop-
>Index(ID_PE_int->Mark())->Mark() == 1)

Function

HB_stop->Index(ID_PE_int->Mark())->Mark() = 0;

Input Gate: ID_alloc

Predicate
(ID_starttoken->Mark() == 1)

Function

ID_PE_int->Mark() = ID_PE_ext->Mark();

ID_PE_ext->Mark() ++;

ID_starttoken->Mark() = 0;

fprintf (stdout, "____CIAO ID alloc done CIAO____
\n");

Input Gate: PE_failure

Predicate

(ID_starttoken->Mark() == 0) && (PE_up->Index(ID_PE_int-
>Mark())->Mark() == 1) && (Fake_PEup->Mark() == 0)

Function
;

Output Gate: HB_flush

Function

HB_sent->Index(ID_PE_int->Mark())->Mark() = 0;

if (Fake_HBsent->Mark() == 1)
{
 Fake_HBsent->Mark() = 0;
 HBul_stop->Mark() ++;
}

if (HB_atPE->Mark() == 1)
{
 HB_atPE->Mark() = 0;
 HBdl_stop->Mark() ++;
}

test_stop->Mark() ++;

Output Gate: HB_success

 140

Function

PElisttemp_atNS->Index(ID_PE_int->Mark())->Mark() =
(Number_PE - PElisttemp_rank->Mark());

PElisttemp_rank->Mark() ++;

Output Gate: Load_HBul

Function

test_sent->Mark() ++;
Load_HB->Mark() ++;

Output Gate: PE_check

Function

if ((Fake_PEup->Mark() == 1) || (PE_down->Mark() == 0))
{
 HB_PEcheck_success->Mark() ++;
 Load_HB->Mark() ++;
 HB_atPE->Mark() ++;
}

else
 HB_PEcheck_failure->Mark() ++;

Output Gate: PE_repair

Function

PE_up->Index(ID_PE_int->Mark())->Mark() = 1;

// for (int i=0; i<Number_PE; i++)
// {
// (*trout)<< "PEindex_" << ID_PE_int->Mark() << " = " <<
PE_up->Index(ID_PE_int->Mark())->Mark() << endl;
// }

// (*trout) << endl;

Output Gate: PEup_clean

Function

PE_up->Index(ID_PE_int->Mark())->Mark() = 0;

PE_down->Mark() = 1;

Output Gate: og

Function
HBupload_failure->Mark() ++;

Output Gate: og2

Function
HBdownload_failure->Mark() ++;

 141

B.2.2. PU Model

Place Names Initial Markings
Deduct_SAT 0
ID_PU_ext 0
ID_PU_int Number_PU
ID_starttoken 1
Load_reports 0
Load_sip 0
Number_FO 0
Number_Reqretrans 0
PE_up 1
PE_used Number_PE
PElist_atPU Number_PE
PR 0
PR_cseq 1
PR_overload 0
Report 0
Report_first 0
Req_PEcheck_failure 0
Req_PEcheck_success 0
Req_atPE 0
Req_new 0

 142

Req_number 0
Req_sent 0
Req_timeoutstart 0
Reqdl_stop 0
Reqdownload_failure 0
Requl_stop 0
Requpload_failure 0
SAT 0
Startup_client 1
Trans_failed 0
Trans_new 0
Trans_success 0
Trans_total 0
count_reqNOTsent 0
count_reqsent 0

Timed Activity: Req_download

Distribution
Parameters

Rate

download_PE_PU

Activation Predicate (none)
Reactivation Predicate (none)

Case Distributions

case 1

PER
case 2

1-PER

Timed Activity: Req_time

Distribution
Parameters

Value

Req_timeout*(pow(2,(Req_number->Mark()-1)))

Activation Predicate (none)
Reactivation Predicate (none)

Timed Activity: Req_upload

Distribution
Parameters

Rate

upload_PU_PE

Activation Predicate (none)
Reactivation Predicate (none)

Case Distributions

case 1

PER
case 2

1-PER

Timed Activity: Trans_generator
 Rate

 143

Distribution
Parameters

Trans_intertime

Activation Predicate (none)
Reactivation Predicate (none)

Instantaneous Activities Without Cases:
ID_PU_trigger
InstantPU1
Instant_req
Launch_client

Input Gate: ID_alloc

Predicate
(ID_starttoken->Mark() == 1)

Function

ID_PU_int->Mark() = ID_PU_ext->Mark();

ID_PU_ext->Mark() ++;

ID_starttoken->Mark() = 0;

Input Gate: Report_select

Predicate

(ID_starttoken->Mark() == 0) && (Report->Index(ID_PU_int-
>Mark())->Mark() == 1)

Function
Report->Index(ID_PU_int->Mark())->Mark() = 0;

Input Gate: Startup_test

Predicate

(Report_first->Mark() > 0) && (Startup_client->Mark()
> 0)

Function
Startup_client->Mark() = 0;

Output Gate: OG_SAT

Function

SAT->Mark() ++;
Trans_total->Mark() ++;
Req_number->Mark() = 0;

Output Gate: PE_check

Function

if (PE_up->Index(PE_used->Mark())->Mark() == 1)
{
 Req_atPE->Mark() ++;
 Load_sip->Mark() ++;
 Req_PEcheck_success->Mark() ++;
}

else
 Req_PEcheck_failure->Mark() ++;

Output Gate: PR_alloc

Function
int index_PR=0;

 144

while (index_PR<Number_PR)
{
 if (PR->Index(index_PR)->Mark() == 0)
 {
 PR->Index(index_PR)->Mark() = PR_cseq->Mark();
 PR_cseq->Mark() ++;
 Load_reports->Mark() ++;
 break;
 }
 else
 index_PR++;

 if (index_PR == Number_PR) PR_overload->Mark() ++;
}

Output Gate: Req_expires

Function

if (Req_sent->Mark() > 0)
{
 Req_sent->Mark() = 0;
 Requl_stop->Mark() ++;
}

if (Req_atPE->Mark() > 0)
{
 Req_atPE->Mark() = 0;
 Reqdl_stop->Mark() ++;
}

if (Number_Reqretrans->Mark() == Max_Reqretrans)
{
 Number_Reqretrans->Mark() = 0;
 PElist_atPU->Index(PE_used->Mark())->Mark() =
Number_PE+1;
 PE_used->Mark() = Number_PE;

 if (Number_FO->Mark() == Max_FO)
 {
 Number_FO->Mark() = 0;
 Deduct_SAT->Mark() += Req_number->Mark();
 Req_number->Mark() = 0;
 Trans_failed->Mark() ++;
 SAT->Mark() --;
 Trans_new->Mark() ++;
 }
 else
 {
 Number_FO->Mark() ++;
 Req_new->Mark() ++;
 }
}

else
{

 145

 Number_Reqretrans->Mark() ++;
 Req_new->Mark() ++;
}

Output Gate: Req_success

Function

Req_timeoutstart->Mark() = 0;
SAT->Mark() --;
Trans_success->Mark() ++;
Trans_new->Mark() ++;

// WE CHOSE TO RESET PE_RETRANS VALUES AFTER EVERY
SUCCESSFUL TRANSACTION...
Number_Reqretrans->Mark() = 0;
Number_FO->Mark() = 0;
Req_number->Mark() = 0;

Output Gate: SSP

Function

// we chose to keep using the same PE as for the previous
transaction if it is still 'up' (from the PU perspective)

if ((PE_used->Mark() == Number_PE) || ((PE_used->Mark() <
Number_PE) && (PElist_atPU->Index(PE_used->Mark())->Mark() >=
Number_PE)))
{
 PE_used->Mark() = Number_PE;

 int rankSSP = 0;
 while (rankSSP < Number_PE+1)
 // in this case, SSP also checks for PEs that are
apparently OFF in the PElist_atPU (i.e. rank=Number_PE)
BUT...
 // ...SSP excludes PEs that were tried by the PU but could
NOT be reached within Max_Reqretrans attempts (i.e. PE for
which rank=Number_PE+1), see code Req_expires!!
 {
 int index=0;
 while (index < Number_PE)
 {
 if (PElist_atPU->Index(index)->Mark() == rankSSP)
 {
 PE_used->Mark() = index;
 break;
 }
 else
 index++;
 }

 if (PE_used->Mark() == Number_PE)
 rankSSP++;
 else
 break;
 }

 if (PE_used->Mark() < Number_PE)

 146

 {
 Req_sent->Mark() ++;
 count_reqsent->Mark() ++;
 Load_sip->Mark() ++;
 Req_number->Mark() ++;
 Req_timeoutstart->Mark() ++;
 }
 else
 {
 count_reqNOTsent->Mark() ++;
 Trans_failed->Mark() ++;
 SAT->Mark() --;
 Deduct_SAT->Mark() += Req_number->Mark();
 Number_Reqretrans->Mark() = 0;
 Number_FO->Mark() = 0;
 Req_number->Mark() = 0;
 Trans_new->Mark() ++;
 }
}

else
{
 Req_sent->Mark() ++;
 count_reqsent->Mark() ++;
 Load_sip->Mark() ++;
 Req_number->Mark() ++;
 Req_timeoutstart->Mark() ++;
}

Output Gate: og

Function
Requpload_failure->Mark() ++;

Output Gate: og2

Function
Reqdownload_failure->Mark() ++;

 147

B.2.3. PR Model

Place Names Initial Markings
ID_PR_ext 0
ID_PR_int Number_PR
ID_starttoken 1
Load_reports 0
PElist_atNS Number_PE
PElist_atPU Number_PE
PElist_inPR Number_PE
PR 0
PR_cseq 1
PR_sent 0
PR_starttoken 1
PR_stop 0
Report_first 0

Timed Activity: PR_upload

Distribution
Parameters

Rate

upload_NS_PU

Activation Predicate (none)
Reactivation Predicate (none)

Case Distributions

case 1

1-PER
case 2

PER

Instantaneous Activities Without Cases:
ID_PR_trigger
Instant_PR
Instant_PRstop

 148

Input Gate: ID_alloc

Predicate
(ID_starttoken->Mark() == 1)

Function

ID_PR_int->Mark() = ID_PR_ext->Mark();

ID_PR_ext->Mark() ++;

ID_starttoken->Mark() = 0;

Input Gate: PR_select

Predicate

(ID_starttoken->Mark() == 0) && (PR_starttoken->Mark() ==
1) && (PR->Index(ID_PR_int->Mark())->Mark() > 0)

Function
PR_starttoken->Mark() = 0;

Input Gate: PRstop_select

Predicate

(ID_starttoken->Mark() == 0) && (PR_stop-
>Index(ID_PR_int->Mark())->Mark() == 1)

Function
PR_stop->Index(ID_PR_int->Mark())->Mark() = 0;

Output Gate: PR_failure

Function

for (int i=0; i<Number_PE; i++)
{
 PElist_inPR->Index(i)->Mark() = 0;
}

PR->Index(ID_PR_int->Mark())->Mark() = 0;
PR_starttoken->Mark() = 1;

Output Gate: PR_flush

Function

PR_sent->Mark() = 0;
PR_starttoken->Mark() = 1;
PR->Index(ID_PR_int->Mark())->Mark() = 0;
PR_stop->Index(ID_PR_int->Mark())->Mark() = 0;

for (int i=0; i<Number_PE; i++)
 PElist_inPR->Index(i)->Mark() = 0;

Output Gate: PR_ready

Function

for (int j=0; j<Number_PE; j++)
{
 PElist_inPR->Index(j)->Mark() = PElist_atNS-
>Index(j)->Mark();
}

Load_reports->Mark() ++;
PR_sent->Mark() = 1;

Output Gate: PR_success

 149

Function

Report_first->Mark() ++;

for (int i=0; i<Number_PE; i++)
{
 PElist_atPU->Index(i)->Mark() = PElist_inPR->Index(i)-
>Mark();
 PElist_inPR->Index(i)->Mark() = 0;
}

if ((PR->Index(ID_PR_int->Mark())->Mark() +1) == PR_cseq-
>Mark())
 PR_cseq->Mark() = 1;

(*trout) << "PR_id_int=" << ID_PR_int->Mark() << endl;

 for (int j=0; j<Number_PR; j++)
 {
 if ((0 < PR->Index(j)->Mark()) && (PR->Index(j)->Mark()
< PR->Index(ID_PR_int->Mark())->Mark()))
 PR_stop->Index(j)->Mark() = 1;
 (*trout) << "PRstop(" << j << ")=" << PR_stop-
>Index(j)->Mark() << endl;
 }

(*trout) <<endl;

PR->Index(ID_PR_int->Mark())->Mark() = 0;
PR_starttoken->Mark() = 1;

 150

B.3. Reward Model – Performance Variables
Many performance variables were created in order to verify that all the functions
modeled behave as expected.

Performance Variable : avg__PE_ON
Affecting Models PE_maSSP
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*PE_maSSP->Fake_PEup->Mark())/Number_PE);

Simulator Statistics Type Time Averaged Interval of Time
Performance Variable : avg__PE_OFF

Affecting Models PE_maSSP
Impulse Functions

Reward Function
(Reward is over all Available Models)

return (1.0*(PE_maSSP->PE_down->Mark())/Number_PE);

Simulator Statistics Type Time Averaged Interval of Time
Performance Variable : Frequency_PE_ONOFFcycles

Affecting Models PE_maSSP
PE->Time_to_failure
(Reward is over all Available Models)

return (1.0/(1.0*Number_PE));

PE_maSSP->Time_to_repair
Impulse Functions

(Reward is over all Available Models)

return (1.0/(1.0*Number_PE));

Reward Function
(Reward is over all Available Models)

Simulator Statistics Type Interval of Time
Performance Variable : HB_generated

Affecting Models NS_reg
NS->HB_generator
(Reward is over all Available Models)

return 1.0;

NS_reg->HB_generator
Impulse Functions

(Reward is over all Available Models)

return 1.0;

Reward Function
(Reward is over all Available Models)

Simulator Statistics Type Interval of Time
Performance Variable : HB_sent_pl

Affecting Models PE_maSSP

 151

Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*PE_maSSP->test_sent->Mark())/Number_PE);

Simulator Statistics Type Instant of Time
Performance Variable : HB_stop_pl

Affecting Models PE_maSSP
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*PE_maSSP->test_stop->Mark())/Number_PE);

Simulator Statistics Type Instant of Time
Performance Variable : HBul_success

Affecting Models PE_maSSP
PE->HB_upload_case1
(Reward is over all Available Models)

return 1.0;

PE_maSSP->HB_upload_case1
Impulse Functions

(Reward is over all Available Models)

return 1.0;

Reward Function
(Reward is over all Available Models)

Simulator Statistics Type Interval of Time
Performance Variable : HBul_failures_pl

Affecting Models PE_maSSP
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*PE_maSSP->HBupload_failure->Mark())/Number_PE);

Simulator Statistics Type Instant of Time
Performance Variable : HBul_stop_pl

Affecting Models PE_maSSP
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*PE_maSSP->HBul_stop->Mark())/Number_PE);

Simulator Statistics Type Instant of Time
Performance Variable : HB_PEcheck_success_pl

Affecting Models PE_maSSP
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*PE_maSSP->HB_PEcheck_success->Mark())/Number_PE);

Simulator Statistics Type Instant of Time
Performance Variable : HB_PEcheck_failures_pl

Affecting Models PE_maSSP

 152

Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*PE_maSSP->HB_PEcheck_failure->Mark())/Number_PE);

Simulator Statistics Type Instant of Time
Performance Variable : HBdl_success

Affecting Models PE_maSSP
PE->HB_download_case1
(Reward is over all Available Models)

return 1.0;

PE_maSSP->HB_download_case1
Impulse Functions

(Reward is over all Available Models)

return 1.0;

Reward Function
(Reward is over all Available Models)

Simulator Statistics Type Interval of Time
Performance Variable : HBdl_failures_pl

Affecting Models PE_maSSP
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*PE_maSSP->HBdownload_failure->Mark())/Number_PE);

Simulator Statistics Type Instant of Time
Performance Variable : HBdl_stop_pl

Affecting Models PE_maSSP
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*PE_maSSP->HBdl_stop->Mark())/Number_PE);

Simulator Statistics Type Instant of Time
Performance Variable : PR_generated_atNS

Affecting Models NS_reg
NS->HB_time
(Reward is over all Available Models)

return 1.0;

NS_reg->HB_time
Impulse Functions

(Reward is over all Available Models)

return 1.0;

Reward Function
(Reward is over all Available Models)

Simulator Statistics Type Interval of Time
Performance Variable : PR_sent_byPU

Affecting Models SIPclient_reg_expTO
SIPclient->InstantPU1 Impulse Functions

(Reward is over all Available Models)

 153

return 1.0;

SIPclient_reg_expreqTO->InstantPU1
(Reward is over all Available Models)

return 1.0;

SIPclient_reg_expTO->InstantPU1
(Reward is over all Available Models)

return 1.0;

Reward Function
(Reward is over all Available Models)

Simulator Statistics Type Interval of Time
Performance Variable : PR_overload_atPU_pl

Affecting Models SIPclient_reg_expTO
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*SIPclient_reg_expTO->PR_overload->Mark())/Number_PU);

Simulator Statistics Type Instant of Time
Performance Variable : PR_allowed_atPR

Affecting Models PR_reg
Pending_report->Instant_PR
(Reward is over all Available Models)

return 1.0;

PR_reg->Instant_PR
Impulse Functions

(Reward is over all Available Models)

return 1.0;

Reward Function
(Reward is over all Available Models)

Simulator Statistics Type Interval of Time
Performance Variable : PR_success_atPR

Affecting Models PR_reg
Pending_report->PR_upload_case1
(Reward is over all Available Models)

return 1.0;

PR_reg->PR_upload_case1
Impulse Functions

(Reward is over all Available Models)

return 1.0;

Reward Function
(Reward is over all Available Models)

Simulator Statistics Type Interval of Time
Performance Variable : PR_failures_atPR

Affecting Models PR_reg
Impulse Functions Pending_report->PR_upload_case2

 154

(Reward is over all Available Models)

return 1.0;

PR_reg->PR_upload_case2
(Reward is over all Available Models)

return 1.0;

Reward Function
(Reward is over all Available Models)

Simulator Statistics Type Interval of Time
Performance Variable : PR_stop_atPR

Affecting Models PR_reg
Pending_report->Instant_PRstop
(Reward is over all Available Models)

return 1.0;

PR_reg->Instant_PRstop
Impulse Functions

(Reward is over all Available Models)

return 1.0;

Reward Function
(Reward is over all Available Models)

Simulator Statistics Type Interval of Time
Performance Variable : SAT_pl

Affecting Models SIPclient_reg_expTO
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*SIPclient_reg_expTO->SAT->Mark())/Number_PU);

Simulator Statistics Type Interval of Time
Performance Variable : SAT_deduct_pl

Affecting Models SIPclient_reg_expTO
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*SIPclient_reg_expTO->Deduct_SAT->Mark())/Number_PU);

Simulator Statistics Type Instant of Time
Performance Variable : Req_started

Affecting Models SIPclient_reg_expTO
SIPclient->Instant_req
(Reward is over all Available Models)

return 1.0;

SIPclient_reg_expreqTO->Instant_req
(Reward is over all Available Models)

return 1.0;

SIPclient_reg_expTO->Instant_req

Impulse Functions

(Reward is over all Available Models)

 155

return 1.0;

Reward Function
(Reward is over all Available Models)

Simulator Statistics Type Interval of Time
Performance Variable : Req_sent_pl

Affecting Models SIPclient_reg_expTO
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*SIPclient_reg_expTO->count_reqsent->Mark())/Number_PU);

Simulator Statistics Type Instant of Time
Performance Variable : Req_NOTsent_pl

Affecting Models SIPclient_reg_expTO
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*SIPclient_reg_expTO->count_reqNOTsent->Mark())/Number_PU);

Simulator Statistics Type Instant of Time
Performance Variable : Requl_success

Affecting Models SIPclient_reg_expTO
SIPclient->Req_upload_case2
(Reward is over all Available Models)

return 1.0;

SIPclient_reg_expreqTO->Req_upload_case2
(Reward is over all Available Models)

return 1.0;

SIPclient_reg_expTO->Req_upload_case2

Impulse Functions

(Reward is over all Available Models)

return 1.0;

Reward Function
(Reward is over all Available Models)

Simulator Statistics Type Interval of Time
Performance Variable : Requl_failures_pl

Affecting Models SIPclient_reg_expTO
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*SIPclient_reg_expTO->Requpload_failure->Mark())/Number_PU);

Simulator Statistics Type Instant of Time
Performance Variable : Requl_stop_pl

Affecting Models SIPclient_reg_expTO
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*SIPclient_reg_expTO->Requl_stop->Mark())/Number_PU);

 156

Simulator Statistics Type Instant of Time
Performance Variable : Req_PEcheck_success_pl

Affecting Models SIPclient_reg_expTO
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*SIPclient_reg_expTO->Req_PEcheck_success-
>Mark())/Number_PU);

Simulator Statistics Type Instant of Time
Performance Variable : Req_PEcheck_failures_pl

Affecting Models SIPclient_reg_expTO
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*SIPclient_reg_expTO->Req_PEcheck_failure-
>Mark())/Number_PU);

Simulator Statistics Type Instant of Time
Performance Variable : Reqdl_success

Affecting Models SIPclient_reg_expTO
SIPclient->Req_download_case2
(Reward is over all Available Models)

return 1.0;

SIPclient_reg_expreqTO->Req_download_case2
(Reward is over all Available Models)

return 1.0;

SIPclient_reg_expTO->Req_download_case2

Impulse Functions

(Reward is over all Available Models)

return 1.0;

Reward Function
(Reward is over all Available Models)

Simulator Statistics Type Interval of Time
Performance Variable : Reqdl_failures_pl

Affecting Models SIPclient_reg_expTO
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*SIPclient_reg_expTO->Reqdownload_failure->Mark())/Number_PU);

Simulator Statistics Type Instant of Time
Performance Variable : Reqdl_stop_pl

Affecting Models SIPclient_reg_expTO
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*SIPclient_reg_expTO->Reqdl_stop->Mark())/Number_PU);

Simulator Statistics Type Instant of Time
Performance Variable : Trans_total_pl

 157

Affecting Models SIPclient_reg_expTO
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*SIPclient_reg_expTO->Trans_total->Mark())/Number_PU);

Simulator Statistics Type Instant of Time
Performance Variable : Trans_success_pl

Affecting Models SIPclient_reg_expTO
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*SIPclient_reg_expTO->Trans_success->Mark())/Number_PU);

Simulator Statistics Type Instant of Time
Performance Variable : Trans_failed_pl

Affecting Models SIPclient_reg_expTO
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*SIPclient_reg_expTO->Trans_failed->Mark())/Number_PU);

Simulator Statistics Type Instant of Time
Performance Variable : load_HB_pl

Affecting Models PE_maSSP
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*PE_maSSP->Load_HB->Mark())/Number_PE);

Simulator Statistics Type Instant of Time
Performance Variable : load_reports_pl

Affecting Models SIPclient_reg_expTO
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*SIPclient_reg_expTO->Load_reports->Mark())/Number_PU);

Simulator Statistics Type Instant of Time
Performance Variable : load_sip_pl

Affecting Models SIPclient_reg_expTO
Impulse Functions

Reward Function
(Reward is over all Available Models)

return ((1.0*SIPclient_reg_expTO->Load_sip->Mark())/Number_PU);

Simulator Statistics Type Instant of Time

 158

B.4. Simulation Results
B.4.1. Output Metrics Calculation

The three output metrics were calculated from specific Möbius performance variables.
Here is how they were calculated:

Dependability
Dep. = 100*Trans_success_pl/(Trans_success_pl+Trans_failed_pl)

SAT (successful transactions only)
SAT_per_transaction = 1000*(SAT_pl - SAT_deduct_pl)/Trans_success_pl

Dependability
Load_total = ((load_HB_pl*sizeHB)+(load_reports_pl*sizeREPORT)+ ...

...(load_sip_pl_10*sizeSIP)) /Trans_total

B.4.2. Result Graphs

L-L L-H H-L H-H

97

97.5

98

98.5

99

99.5

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

S
A

T
(in

 m
s,

 n
or

m
al

iz
ed

 fo
r R

TT
=1

00
)

L-L L-H H-L H-H

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL100 - RTT100(+),200(o),500(*)

Fig.B.1, Standard SIP, CL=100s, comparing RTT

 159

L-L L-H H-L H-H

97

97.5

98

98.5

99

99.5

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

SA
T

(in
 m

s,
 n

or
m

al
iz

ed
 fo

r R
TT

=1
00

)
L-L L-H H-L H-H

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL1000 - RTT100(+),200(o),500(*)

Fig.B.2, Standard SIP, CL=1000s, comparing RTT

L-L L-H H-L H-H

97

97.5

98

98.5

99

99.5

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

S
A

T
(in

 m
s,

 n
or

m
al

iz
ed

 fo
r R

TT
=1

00
)

L-L L-H H-L H-H

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

RTT100 - CL100(+),1000(o)

Fig.B.3, Standard SIP, RTT=100ms, comparing CL

 160

L-L L-H H-L H-H

97

97.5

98

98.5

99

99.5

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

S
A

T
(in

 m
s,

 n
or

m
al

iz
ed

 fo
r R

TT
=1

00
)

L-L L-H H-L H-H

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

RTT200 - CL100(+),1000(o)

Fig.B.4, Standard SIP, RTT=200ms, comparing CL

L-L L-H H-L H-H

97

97.5

98

98.5

99

99.5

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

SA
T

(in
 m

s,
 n

or
m

al
iz

ed
 fo

r R
TT

=1
00

)

L-L L-H H-L H-H

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13
Lo

ad
 (p

er
 tr

an
sa

ct
io

n)

RTT500 - CL100(+),1000(o)

Fig.B.5, Standard SIP, RTT=500ms, comparing CL

 161

L-L L-H H-L H-H
30

40

50

60

70

80

90

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

280

SA
T

(in
 m

s)

L-L L-H H-L H-H

7

8

9

10

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL100 - RTT100
0/0/1(+),0/0/3(o),0/0/5(*)

Fig.B.6, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=0, comparing pool size

L-L L-H H-L H-H
30

40

50

60

70

80

90

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

280

SA
T

(in
 m

s)

L-L L-H H-L H-H

7

8

9

10

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL100 - RTT100
0/1/1(+),0/1/3(o),0/1/5(*)

Fig.B.7, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=1, comparing pool size

 162

L-L L-H H-L H-H
30

40

50

60

70

80

90

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

280

S
AT

 (i
n

m
s)

L-L L-H H-L H-H

7

8

9

10

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL100 - RTT100
0/2/1(+),0/2/3(o),0/2/5(*)

Fig.B.8, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=2, comparing pool size

L-L L-H H-L H-H
30

40

50

60

70

80

90

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H
100

200

300

400

500

600

700

S
A

T
(in

 m
s)

L-L L-H H-L H-H

7

8

9

10

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL100 - RTT100
0/3/1(+),0/3/3(o),0/3/5(*)

Fig.B.9, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=3, comparing pool size

 163

L-L L-H H-L H-H
30

40

50

60

70

80

90

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H
100

200

300

400

500

600

700

SA
T

(in
 m

s)

L-L L-H H-L H-H

7

8

9

10

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL100 - RTT100
0/4/1(+),0/4/3(o),0/4/5(*)

Fig.B.10, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=4, comparing pool size

L-L L-H H-L H-H
30

40

50

60

70

80

90

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H
100

200

300

400

500

600

700

S
A

T
(in

 m
s)

L-L L-H H-L H-H

7

8

9

10

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL100 - RTT100
0/5/1(+),0/5/3(o),0/5/5(*)

Fig.B.11, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=5, comparing pool size

 164

L-L L-H H-L H-H
94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H
100

200

300

400

500

600

700

S
AT

 (i
n

m
s)

L-L L-H H-L H-H

7

8

9

10

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL100 - RTT100
0/6/1(+),0/6/3(o),0/6/5(*)

Fig.B.12, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=6, comparing pool size

L-L L-H H-L H-H

70

75

80

85

90

95

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

280

S
AT

 (i
n

m
s)

L-L L-H H-L H-H
11

12

13

14

15

16
Lo

ad
 (p

er
 tr

an
sa

ct
io

n)

CL100 - RTT100
1/0/2(+),1/0/4(o),1/0/6(*)

Fig.B.13, Regular, CL = 100s, RTT=100ms, FO=1, Retrans=0, comparing pool size

 165

L-L L-H H-L H-H
94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

280

S
AT

 (i
n

m
s)

L-L L-H H-L H-H
11

12

13

14

15

16

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL100 - RTT100
1/1/2(+),1/1/4(o),1/1/6(*)

Fig.B.14, Regular, CL = 100s, RTT=100ms, FO=1, Retrans=1, comparing pool size

L-L L-H H-L H-H
94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

150

200

250

300

350

400

S
AT

 (i
n

m
s)

L-L L-H H-L H-H
11

12

13

14

15

16
Lo

ad
 (p

er
 tr

an
sa

ct
io

n)

CL100 - RTT100
1/2/2(+),1/2/4(o),1/2/6(*)

Fig.B.15, Regular, CL = 100s, RTT=100ms, FO=1, Retrans=2, comparing pool size

 166

L-L L-H H-L H-H
94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

150

200

250

300

350

400

S
A

T
(in

 m
s)

L-L L-H H-L H-H
11

12

13

14

15

16

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL100 - RTT100
1/3/2(+),1/3/4(o),1/3/6(*)

Fig.B.16, Regular, CL = 100s, RTT=100ms, FO=1, Retrans=3, comparing pool size

L-L L-H H-L H-H
85

90

95

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

140

160

180

200

220

240

260

280

SA
T

(in
 m

s)

L-L L-H H-L H-H
11

12

13

14

15

16
Lo

ad
 (p

er
 tr

an
sa

ct
io

n)

CL100 - RTT100
2/0/3(+),2/0/5(o),2/0/7(*)

Fig.B.17, Regular, CL = 100s, RTT=100ms, FO=2, Retrans=0, comparing pool size

 167

L-L L-H H-L H-H
94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

140

160

180

200

220

240

260

280

S
A

T
(in

 m
s)

L-L L-H H-L H-H
11

12

13

14

15

16

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL100 - RTT100
2/1/3(+),2/1/5(o),2/1/7(*)

Fig.B.18. Regular, CL = 100s, RTT=100ms, FO=2, Retrans=1, comparing pool size

L-L L-H H-L H-H

94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

140

160

180

200

220

240

260

280

S
AT

 (i
n

m
s)

L-L L-H H-L H-H
11

12

13

14

15

16
Lo

ad
 (p

er
 tr

an
sa

ct
io

n)

CL100 - RTT100
3/0/4(+),3/0/6(o),3/0/8(*)

Fig.B.19, Regular, CL = 100s, RTT=100ms, FO=3, Retrans=0, comparing pool size

 168

L-L L-H H-L H-H
94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

280

300

SA
T

(in
 m

s)

L-L L-H H-L H-H
11

12

13

14

15

16

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL100 - RTT100
3/1/4(+),3/1/6(o),3/1/8(*)

Fig.B.20, Regular, CL = 100s, RTT=100ms, FO=3, Retrans=1, comparing pool size

L-L L-H H-L H-H
94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

140

160

180

200

220

240

260

280

S
A

T
(in

 m
s)

L-L L-H H-L H-H
11

12

13

14

15

16
Lo

ad
 (p

er
 tr

an
sa

ct
io

n)

CL100 - RTT100
4/0/5(+),4/0/7(o),4/0/9(*)

Fig.B.21, Regular, CL = 100s, RTT=100ms, FO=4, Retrans=0, comparing pool size

 169

L-L L-H H-L H-H
94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

140

160

180

200

220

240

260

280

SA
T

(in
 m

s)
L-L L-H H-L H-H

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL100 - RTT100
5/0/06(+),5/0/08(o),5/0/10(*)

Fig.B.22, Regular, CL = 100s, RTT=100ms, FO=5, Retrans=0, comparing pool size

L-L L-H H-L H-H
94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

140

160

180

200

220

240

260

280

S
AT

 (i
n

m
s)

L-L L-H H-L H-H

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL100 - RTT100
6/0/07(+),6/0/09(o),6/0/11(*)

Fig.B.23, Regular, CL = 100s, RTT=100ms, FO=6, Retrans=0, comparing pool size

 170

L-L L-H H-L H-H
30

40

50

60

70

80

90

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

80

100

120

140

160

180

200

220

240

260

280

SA
T

(in
 m

s)

L-L L-H H-L H-H

7

8

9

10

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL1000 - RTT100
0/0/1(+),0/0/3(o),0/0/5(*)

Fig.B.24, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=0, comparing pool size

L-L L-H H-L H-H
30

40

50

60

70

80

90

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

80

100

120

140

160

180

200

220

240

260

280

SA
T

(in
 m

s)

L-L L-H H-L H-H

7

8

9

10

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL1000 - RTT100
0/1/1(+),0/1/3(o),0/1/5(*)

Fig.B.25, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=1, comparing pool size

 171

L-L L-H H-L H-H
30

40

50

60

70

80

90

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

80

100

120

140

160

180

200

220

240

260

280

SA
T

(in
 m

s)

L-L L-H H-L H-H

7

8

9

10

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL1000 - RTT100
0/2/1(+),0/2/3(o),0/2/5(*)

Fig.B.26, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=2, comparing pool size

L-L L-H H-L H-H
30

40

50

60

70

80

90

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

200

400

600

800

1000

1200

S
A

T
(in

 m
s)

L-L L-H H-L H-H

7

8

9

10

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL1000 - RTT100
0/3/1(+),0/3/3(o),0/3/5(*)

Fig.B.27, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=3, comparing pool size

 172

L-L L-H H-L H-H
30

40

50

60

70

80

90

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

200

400

600

800

1000

1200

S
A

T
(in

 m
s)

L-L L-H H-L H-H

7

8

9

10

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL1000 - RTT100
0/4/1(+),0/4/3(o),0/4/5(*)

Fig.B.28, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=4, comparing pool size

L-L L-H H-L H-H
30

40

50

60

70

80

90

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

200

400

600

800

1000

1200

S
AT

 (i
n

m
s)

L-L L-H H-L H-H

7

8

9

10

11

12

13

14

15

16

17
Lo

ad
 (p

er
 tr

an
sa

ct
io

n)

CL1000 - RTT100
0/5/1(+),0/5/3(o),0/5/5(*)

Fig.B.29, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=5, comparing pool size

 173

L-L L-H H-L H-H
30

40

50

60

70

80

90

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

200

400

600

800

1000

1200

SA
T

(in
 m

s)
L-L L-H H-L H-H

7

8

9

10

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL1000 - RTT100
0/6/1(+),0/6/3(o),0/6/5(*)

Fig.B.30, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=6, comparing pool size

L-L L-H H-L H-H

70

75

80

85

90

95

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

280

SA
T

(in
 m

s)

L-L L-H H-L H-H
11

12

13

14

15

16

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL1000 - RTT100
1/0/2(+),1/0/4(o),1/0/6(*)

Fig.B.31, Regular, CL = 1000s, RTT=100ms, FO=1, Retrans=0, comparing pool size

 174

L-L L-H H-L H-H

70

75

80

85

90

95

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

280

S
A

T
(in

 m
s)

L-L L-H H-L H-H
11

12

13

14

15

16

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL1000 - RTT100
1/1/2(+),1/1/4(o),1/1/6(*)

Fig.B.32, Regular, CL = 1000s, RTT=100ms, FO=1, Retrans=1, comparing pool size

L-L L-H H-L H-H
94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H
100

150

200

250

300

350

400

450

500

S
AT

 (i
n

m
s)

L-L L-H H-L H-H
11

12

13

14

15

16

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL1000 - RTT100
1/2/2(+),1/2/4(o),1/2/6(*)

Fig.B.33, Regular, CL = 1000s, RTT=100ms, FO=1, Retrans=2, comparing pool size

 175

L-L L-H H-L H-H
94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H
100

150

200

250

300

350

400

450

500

SA
T

(in
 m

s)
L-L L-H H-L H-H

11

12

13

14

15

16

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL1000 - RTT100
1/3/2(+),1/3/4(o),1/3/6(*)

Fig.B.34, Regular, CL = 1000s, RTT=100ms, FO=1, Retrans=3 comparing pool size

L-L L-H H-L H-H

86

88

90

92

94

96

98

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

140

160

180

200

220

240

260

280

SA
T

(in
 m

s)

L-L L-H H-L H-H
11

12

13

14

15

16

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL1000 - RTT100
2/0/3(+),2/0/5(o),2/0/7(*)

Fig.B.35, Regular, CL = 1000s, RTT=100ms, FO=2, Retrans=0, comparing pool size

 176

L-L L-H H-L H-H
94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

280

300

S
A

T
(in

 m
s)

L-L L-H H-L H-H
11

12

13

14

15

16

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL1000 - RTT100
2/1/3(+),2/1/5(o),2/1/7(*)

Fig.B.36, Regular, CL = 1000s, RTT=100ms, FO=2, Retrans=1, comparing pool size

L-L L-H H-L H-H

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

280

S
A

T
(in

 m
s)

L-L L-H H-L H-H
11

12

13

14

15

16

17
Lo

ad
 (p

er
 tr

an
sa

ct
io

n)

CL1000 - RTT100
3/0/4(+),3/0/6(o),3/0/8(*)

Fig.B.37, Regular, CL = 1000s, RTT=100ms, FO=3, Retrans=0, comparing pool size

 177

L-L L-H H-L H-H
94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

150

200

250

300

350

400

450

S
A

T
(in

 m
s)

L-L L-H H-L H-H
11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL1000 - RTT100
3/1/4(+),3/1/6(o),3/1/8(*)

Fig.B.38, Regular, CL = 1000s, RTT=100ms, FO=3, Retrans=1, comparing pool size

L-L L-H H-L H-H
94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

140

160

180

200

220

240

260

280

SA
T

(in
 m

s)

L-L L-H H-L H-H
11

12

13

14

15

16

17
Lo

ad
 (p

er
 tr

an
sa

ct
io

n)
CL1000 - RTT100

4/0/5(+),4/0/7(o),4/0/9(*)

Fig.B.39, Regular, CL = 1000s, RTT=100ms, FO=4, Retrans=0, comparing pool size

 178

L-L L-H H-L H-H
94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

280

SA
T

(in
 m

s)
L-L L-H H-L H-H

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL1000 - RTT100
5/0/06(+),5/0/08(o),5/0/10(*)

Fig.B.40, Regular, CL = 1000s, RTT=100ms, FO=5, Retrans=0, comparing pool size

L-L L-H H-L H-H
94

95

96

97

98

99

100

D
ep

en
da

bi
lit

y
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

280

300

320

SA
T

(in
 m

s)

L-L L-H H-L H-H
11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL1000 - RTT100
6/0/07(+),6/0/09(o),6/0/11(*)

Fig.B.41, Regular, CL = 1000s, RTT=100ms, FO=6, Retrans=0, comparing pool size

 179

References

[3GPP00] 3GPP, “3G security; security architecture”, Tech. Rep. TS33.102, December
2000

[3GPP02a] 3GPP, “IP Multimedia Subsystem (IMS) (Release 5)”, Tech. Rep. TS23.228,
March 2002

[3GPP02b] 3GPP, “End-to-end Quality of Service (QoS) concept and architecture
(Release 5),” Tech. Rep. TS23.207, March 2002

[3GPP02c] 3GPP, “Quality of Service (QoS) concept and architecture (Release 5)”, Tech.
Rep. TS23.107, March 2002

[3GPP04a] 3GPP, “Network architecture (Release 6),” Tech. Rep. TS23.002, December
2004

[3GPP04b] 3GPP, “General Packet Radio Service (GPRS), Service Decription (Release
6)” Tech. Rep. TS23.060, December 2004

[Avizienis04] A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr, “Basic Concepts and
Taxonomy of Dependable and Secure Computing,” IEEE Transactions on Dependable
and Secure Computing, vol.1, no.1, pp.11-33, January 2004

[Bluetothweb] http://www.bluetooth.com/Bluetooth/Technology/Building/Specifications/Default.htm

[Bozinovski02] M. Bozinovski, L. Gavriloska, R. Prasad, “Performance Evaluation of a
SIP-based State-sharing Mechanism”, 56th Vehicular Technology Conference (VTC),
September 2002

[Bozinovski04a] M. Bozinovski, H-P. Schwefel, R. Prasad, “Algorithm for Controlling
Transaction Consistency in SIP Session Control Systems”, IEE Electronic Letters, vol.40,
no.3, pp.209-211, February 2004

[Bozinovski04b] M. Bozinovski, Algorithm for Controlling Transaction Consistency in
SIP Session Control Systems, Ph.D. dissertation, Aalborg University, Denmark, June
2004

[Braden97] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, S. Jamin, “Resource
ReSerVation Protocol (RSVP) – Version 1 Functional Specification,” IETF, RFC2205,
September 1997

[Bugnalo07] M. Bugnalo, “Hash Based Addresses (HBA)”, IETF, draft-ietf-shim-hba-05,
December2007 (work in progress)

 180

[Castro06] G. Castro, K. Larsen, H-P. Schwefel, “Quality of Service Provisioning for
Macro-Mobility in IMS-based Networks,” 9th International Symposium on Wireless
Personal Multimedia Communications (WPMC 06), September 2006

[Chen07] X. Chen, J. Rinne, J. Wiljakka, “Problem Statement for MIPv6 Interactions
with GPRS/UMTS Packet Filtering,” IETF, draft-chen-mip6-gprs-07.txt, January 2007
(work in progress)

[Degermark99] M. Degermark, B. Nordgren, S. Pink, “IP Header Compression,” IETF,
RFC2507, February 1999

[Dreibholz03] T. Dreibholz, A. Jungmaier, M. Tuexen, “A New Scheme for IP-based
Internet Mobility,” 28th IEEE Local Computer Networks Conference (LCNC 03),
November 2003

[Durham00] D. Durham (Ed.) et al., “The COPS (Common Open Policy Service)
Protocol,” IETF, RFC2748, January 2000

[Faccin04] S. Faccin, P. Lalwaney, B. Patil, “IP Multimedia Services: Analysis of Mobile
IP and SIP Interactions in 3G Networks,” IEEE Communications Magazine, pp.113-120,
January. 2004

[Faizan04] J. Faizan, H. El-Rewini, M. Khalil, “Problem Statement: Home Agent
Reliability,” IETF, draft-jfaizan-mipv6-ha-reliability-01.txt, February, 2004

[Fathi06] H. Fathi, Real-Time Services in IP-based Wireless Heterogeneous Networks,
Ph.D. dissertation, Aalborg University, Denmark, March 2006

[Feng04] F. Feng, D. S. Reeves, “Explicit Proactive Handoff with Motion Prediction for
Mobile IP,” IEEE Wireless Communications and Networking Conference (WCNC 2004),
March 2004

[FSC03] Fujitsu Siemens Computers, “RTP Overview and Programmer's Guide”,
Resilient Telco Platform V2.0, March 2003

[Groenbaek07] J. Grønbæk, H.P. Schwefel, T. Renier, H.P. Frejek, “Client-Centric
Performance Analysis of a High-Availability Cluster,” 4th International Service
Availability Symposium (ISAS 2007), 2007

[Hamer03] L-N. Hamer, B. Gage, H. Shieh, “Framework for Session Set-up with Media
Authorization”, IETF, RFC3521, April 2003

[Handley98] M. Handley, V.Jacobson, “SDP: Session Description Protocol,” IETF,
RFC2327, April 1998

 181

[Heddaya96] A. Heddaya, A. Helal, “Reliability, Availability, Dependability and
Performability: A User-centered View,” Tech. Rep. BU-CS-97-011, Boston University,
December 1996

[Helal96] A. Helal, A. Heddaya, B. Bhargava, Replication Techniques in Distributed
Systems. Kluwer Academic Publishers, 1996.

[Herlihy90] M. Herlihy, J. Wing, “Linearizability: a Correctness Condition for
Concurrent Obejcts,” ACM Transactions fo Programming Languages and Systems,
vol.12, no.3, pp.463-492, July 1990

[IEEE_web] http://www.ieee802.org/11/

[ITU93] ITU-T, “Introduction to CCITT Signalling System No. 7”, Recommendation
Q.700, March 1993

[Johnson04] D. Jonhson, C. Perkins, J. Arkko, “Mobility Support in IPv6,” IETF,
RFC3775, June 2004

[Kim03] P. Kim, W. Boehm, “Support for Real-Time Applications in Future Mobile
Networks: the IMS Approach,” 6th Wireless Personal Multimedia Communications
(WPMC 03), October 2003

[Kohler06a] E. Kohler, M. Handley, S. Floyd, “Datagram Congestion Control Protocol
(DCCP),” IETF, RFC4340, March 2006

[Kohler06b] E. Kohler, “Generalized Connections in the Datagram Congestion Control
Protocol,” IETF, draft-kohler-dccp-mobility-02.txt, June 2006 (work in progress)

[Kwon02] T.T. Kwon, M. Gerla, Sa. Das, Su. Das, “Mobility Management for VoIP
Services: Mobile IP vs. SIP,” IEEE Wireless Communications, pp.66-75, October 2002

[Lamport78] L. Lamport, “Time, Clocks and the Ordering of Events in a Distributed
System,” Communications of the ACM, vol.21, no.7, pp.558-565, July 1978

[Larsen06a] K. Larsen, E. Matthiesen, H-P. Schwefel, G. Kuhn, “Optimized Macro
Mobility within the 3GPP IP Multimedia Subsystem,” IARIA International Conference
on Wireless and Mobile Communications (ICWMC 06), July 2006

[Larsen06b] K. Larsen, H-P. Schwefel, G. Kuhn, “Migration of the Security Association
for Fast SIP Mobility within the IP Multimedia Subsystem,” 9th International Symposium
on Wireless Personal Multimedia Communications (WPMC 06), September 2006

[Lei07] P. Lei, L.Ong, M. Tuexen, “An Overview of Reliable Server Pooling Protocols”,
IETF, draft-ietf-rserpool-overview-01.txt, April 2007

 182

[Liu07] Y. Liu, Virtual Backbone and Mobility-based Optimization in Wireless Multi-hop
Networks, Ph.D. dissertation, Aalborg University, Denmark, September 2007

[MAGNET_web] http://www.telecom.ntua.gr/magnet/index.html

[Meyer85] J. F. Meyer, A. Movaghar, and W. H. Sanders, “Stochastic activity networks:
Structure, behavior, and application,” International Workshop on Timed Petri Nets,
pp.106–115, July 1985

[Möbius07] “Möbius, Model-Based Environment for Validation of System Reliability,
Availability, Security and Performance—User Manual,” 2007

[Moskovitz07] R. Moskovtz, P. Nikander, T. Henderson, “Host Identity Protocol”, IETF,
draft-ietf-hip-base-10, October 2007 (work in progress)

[O'Reagan04] E. O'Reagan, D. Pesch, “Performance Estimation of a SIP based Push-to-
Talk Service for 3G Networks,” 5th European Wireless Conference – Mobile and
Wireless Systems beyond 3G, February 2004

[Perkins01] C. Perkins, D. Johnson, “Route Optimization in Mobile IP,” IETF, draft-ietf-
mobileip-optim-11.txt, September 2001 (work in progress)

[Perkins02] C. Perkins, “IP Mobility Support for IPv4,” IETF, RFC3344, August 2002

[Peterson71] W. Peterson, E. Weldon, Error Correcting Codes, Revised 2nd Edition.,
MIT Press, 1971

[Postel82] J. Postel, “Simple Mail Transfer Protocol”, IETF, RFC821, August 1982

[Postel85] J. Postel, J. Reynolds, “File Transfer Protocol (FTP)”, IETF, RFC959, October
1985

[Prasad06] R. Prasad, L. Deneire, From WPANs to Personal Networks – Technologies
and Applications, Artech House, 2006

[Renier06] T. Renier, E. Matthiesen, H.P. Schwefel, R. Prasad, “Inconsistency
Evaluation in a Replicated IP-based Call Control System,” 3rd International Service
Availability Symposium (ISAS 06), May 2006

[Riegel06] M. Riegel, M. Tuexen, “Mobile SCTP,” IETF, draft-riegel-tuexen-mobile-
sctp-07.txt, October 2006 (work in progress)

[Roos03] A. Roos, M. Hartman, S. Dutnall, “Critical Issues for Roaming in 3G,” IEEE
Wireless Communications, pp.29-35, February 2003

 183

[Rosen01] E. Rosen, A. Viswanathan, R. Callon, “Multiprotocol Label Switching
Architecture,” RFC3031, IETF, January 2001

[Rosenberg02] J. Rosenberg et al., “SIP: Session Initiation Protocol,” IETF, RFC3261,
June 2002

[Shand07] M. Shand, S. Bryant, “IP Fast-reroute Framework,” IETF, draft-ietf-rtgwg-
ipfrr-framework-07.txt, June 2007 (work in progress)

[Schulzrinne00] H. Schulzrinne, E. Wedlund, “Application-Layer Mobility Using SIP,”
ACM Mobile Computing and Communications Review, vol.4, no.3, pp.47-57, July 2000

[Schulzrinne03] H. Schulzrinne, S. Casner, R. ,Frederick, V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications,” IETF, RFC3550, July 2003 (includes
RTCP specifications)

[Srivastava05] V. Srivastava, M. Motani, “Cross-Layer Design: A Survey and the Road
Ahead,” IEEE Communications, pp.112-119, December 2005

[Stallings96] W. Stallings, “IPv6: The New Internet Protocol,” IEEE Communications
Magazine, pp.96-108, July 1996

[Stewart00] R. Stewart, et al., “Stream Control Transmission Protocol,” IETF, RFC2960,
October 2000

[Stewart06a] R. Stewart, et al., “Aggregate Server Access Protocol (ASAP),” IETF,
draft-ietf-rserpool-asap-11.txt, June 2006 (work in progress)

[Stewart06b] R. Stewart, et al., “Endpoint Handlespace Redundancy Protocol (ENRP),”
IETF, draft-ietf-rserpool-enrp-11.txt, June 2006 (work in progress)

[Tanenbaum02] A. S. Tanenbaum, M. van Steen, Distributed Systems—Principles and
Paradigms, pp.291-360, Practice Hall, 2002

[Tuexen02] M. Tuexen, et al., “Requirements for Reliable Server Pooling,” IETF,
RFC3237, January 2002

[vanMoorsel06] A. van Moorsel, K. Wolter, “Analysis of Restart Mechanisms in
Software Systems,” IEEE Transactions on Software Engineering, vol.32, no.8, pp.547-
558, August 2006

[Wimax_web] http://www.wimaxforum.org/technology/documents/

[Yu00] H. Yu, A. Vahdat, “Design and Evaluation of a Continuous Consistency Model
for Replicated Services,” 4th Symposium on Operating Systems Design and
Implementation (OSDI 00), October 2000

 184

[Zhang06] Y. Zhang, M. Fujise, “Security Management in the Next Generation Wireless
Networks,” International Journal of Network Security, vol.3, no.1, pp.1-7, July 2006

[Åhlund03] C. Åhlumd, A. Zaslavsky, “Multihoming with Mobile IP”, 6th IEEE
Conference on High Speed Networks and Multimedia Communications (HSNMC 03),
July 2003

 185

Author’s Publications

Peer Reviewed Conference Papers

T. Renier, H. Fathi, H.P. Schwefel, R. Prasad, “MIP-based enhanced mid-session macro-
mobility for IMS-controlled stateful applications,” 10th International Symposium on
Wireless Personal Multimedia Communications (WPMC 2007), December 2007

T. Renier, E. Matthiesen, H.P. Schwefel, “Inconsistency Evaluation in a Replicated IP-
based Call Control System,” 3rd International Service Availability Symposium, (ISAS
2006), May 2006

T. Renier, H. Fathi, G. Kuhn, H.P. Schwefel, “MIPv6 Operations in IMS-based Access
Networks,” 9th International Symposium on Wireless Personal Multimedia
Communications (WPMC 2006), September 2006

T. Renier, M. Bozinovski, K. Larsen, H.P. Schwefel, R. Prasad, R. Seidl, “Distributed
redundancy or cluster solution? An experimental evaluation of two approaches for
dependable mobile Internet services,” 1st International Service Availability Symposium
(ISAS 2004), May 2004

A. Nickelsen, J. Grønbæk, T. Renier, H.P. Schwefel, “Probabilistic Fault-Diagnostic in
Mobile Networks Using Cross-Layer Observations,” to be submitted…

E. Matthiesen, H.P. Schwefel, T. Renier, “A Selection Metric for Backup Group Creation
in Inter-Vehicular Networks : A step in the way of distributed ad-hoc group state
sharing,” 16th IST Mobile and Wireless Communications Summit, 2007 (poster)

J. Grønbæk, H.P. Schwefel, T. Renier, H.P. Frejek, “Client-Centric Performance Analysis
of a High-Availability Cluster,” 4th International Service Availability Symposium (ISAS
2007), 2007

E. Matthiesen, T. Renier, M. Bozinovski, H.P. Schwefel, “Adaptive Partitioning
Algorithms for Optimized State Replication of Highly Available Services,” 8th
International Symposium on Wireless Personal Multimedia Communications (WPMC
2005), 2005

M. Bozinovski, T. Renier, H.P. Schwefel, R. Prasad, “Adaptive, Scalable Framework for
Dependable Peer-to-Peer Distributed Computing,” 8th International Symposiu on
Wireless Personal Multimedia Communications (WPMC 2005), 2005

M. Bozinovski, T. Renier, H.P. Schwefel, R. Prasad, “Transaction Consistency in
Replicated SIP Call Control Systems,” 4th International Conference on Information,

 186

Communications & Signal Processing and Fourth Pacific-Rim Conference on Multimedia
(ICICS-PCM 2003), 2003

P. Popovski, L. Gravilovska, T. Renier, H. Fathi, R. Prasad, “Energy-efficient
Interference Avoidance for Interconnected Bluetooth Personal Area Networks,” 57th
IEEE Semiannual Vehicular Technology Conference (VTC 2003), 2003

Magazine Paper

T. Renier, K. Larsen, G. Castro, H.P. Schwefel, “Mid-Session Macro-Mobility in IMS-
based Networks,” IEEE Vehicular Technology Magazine, special issue on “IMS as
service delivery platform for converged networks,” Vol. 2, No. 1, March 2007

Technical Reports

“HIDENETS D4.1.2: Identification and development of evaluation methodologies,
techniques and tools,” Institut for Elektroniske Systemer, Aalborg Universitet, 2008

“HIDENETS D4.2.1: Application of the evaluation framework to the complete scenario
(preliminary version),” Institut for Elektroniske Systemer, Aalborg Universitet, 2007

“HIDENETS D1.2: Revised reference model,” Institut for Elektroniske Systemer,
Aalborg Universitet, 2007

“HIDENETS D2.1.2: Resilient architecture,” Institut for Elektroniske Systemer, Aalborg
Universitet, 2006

“Mobility Schemes for Future Mobile Network - SIP mobility within the IMS,” Siemens
deliverable, 2005

“RTP integration into 3GPP architecture, evaluation and comparison of RSerPool and
RTP, and dynamic server selection policy,” Siemens deliverable, 2004

“Migration to 3GPP architecture (SIP007++) and concepts of RTP integration and heart-
beat mechanisms,” Siemens deliverable, 2003

“Integration of SIP into RSerPool and implementation of an extended SIP call scenario,”
Siemens deliverable, 2002

	 Abstract
	 Dansk Resumé
	 Acknowledgments Table of Contents
	 List of Figures
	 List of Tables
	 List of Acronyms
	1. Introduction & Problem Definition
	1.1. Background
	1.2. Problem Statement
	1.3. Terminology and Problem Limitation
	1.3.1. Dependability
	Terminology
	Fault Model
	1.3.2. Network Topology & Service Provisioning
	Terminology
	Problem Scope
	1.4. Refined Problem Statement and Contributions
	1.4.1. Part I - IMS Server Replication
	Optimal Fault Tolerance Configuration Selection
	State Consistency
	1.4.2. Part II - Mid-Session Macro Handover
	IMS-MIP Interworking
	Optimized MIP-Based Handover Time
	1.5. Thesis Outline

	2. IMS Background
	2.1. IMS Paradigms
	2.2. Original IETF Session Initiation Protocol
	2.2.1. SIP Overview
	2.2.2. SIP Protocol Stack
	2.2.3. SIP Entities
	2.2.4. SIP Messages
	SIP Requests
	SIP Responses
	SIP Headers
	2.2.5. SIP Mechanisms
	Addressing
	Routing and Locating SIP Entities
	Changing a Media in an Existing Session
	SIP Mobility and Fault Tolerance
	2.2.6. SIP Session Example
	2.3. IMS for 3GPP UMTS Networks
	2.3.1. The IMS Architecture
	2.3.2. IMS Control Functions in UMTS
	Policy Control Architecture
	Access Control
	Service Control and Session Control
	PDP Contexts Differentiation
	2.3.3. Complete Standard Service Provisioning Operations Sequence
	From L2 Connectivity to IP and SIP Connectivity
	Multimedia Session Setup

	3. Fault Tolerance – State-of-the-Art
	3.1. Fault Tolerance Schemes Overview
	3.1.1. Fault Tolerance at Layer 2
	3.1.2. Fault Tolerance at Layer 3
	3.1.3. Fault Tolerance at Layer 4
	3.1.4. Fault Tolerance at Layer 5 and Layer 7
	3.1.5. Motivation for Server Replication in the IMS,
	3.2. Server Replication Paradigms
	3.2.1. Requirements for Redundant Systems
	3.2.2. Distributed Servers Paradigm, RSerPool
	RSerPool Architecture
	RSerPool Protocol Stacks and Functionalities Overview
	RSerPool Fault Tolerance
	3.2.3. Cluster Paradigm, RTP
	RTP Architecture
	Super Node Manager
	RTP Components
	External Communications
	3.2.4. Integration of Replication Platforms in the IMS
	Preliminary Discussions
	IMS-RTP Integration
	IMS-RSerPool Integration

	4. Optimal Fault Tolerance Configuration with Replicated SIP Servers
	4.1. Motivation and Problem Statement
	4.2. Background on SAN Modeling and Möbius
	4.2.1. Möbius Overview
	4.2.2. Atomic SAN Models
	4.2.3. Composed Models
	4.2.4. Reward Models
	4.2.5. Solver
	4.3. IMS Server Replication - Model Definition
	4.3.1. Topology
	Remark on Communications Modeling Approach
	4.3.2. Traffic Model
	4.3.3. Fault Model
	4.3.4. Failure Detection and Reports
	4.3.5. Failover Management and Server Selection Policy
	4.3.6. Output Metrics
	Dependability
	SAT
	Load
	4.4. Input Variable Selection – Parametric Analysis
	4.4.1. Influence of the System State
	Traffic Load Parameters
	
	Fault Model Parameters
	4.4.2. Reference Output Values – Standard IMS Scenario
	Model Definition
	Results and Analysis
	4.5. Fault Tolerance Configuration – Parametric Analysis
	4.5.1. Recovery Parameters
	Preliminary Analysis
	Tests Selection
	Results and Analysis
	4.5.2. Failure Detection Parameters
	Heartbeat Frequency
	Heartbeat and SIP Request Timeouts
	4.5.3. Outlook on Report Schemes Analysis
	4.6. Model Application
	4.6.1. Configuration Selection Time
	Design Time
	Run Time
	4.6.2. Configuration Selection Criteria
	Output Metric Thresholds
	Score Function
	4.6.3. Selection Examples
	4.7. Conclusions
	Summary
	Discussion about RTP

	5. State Replication and Consistency
	5.1. Consistency Model in the IMS
	5.2. Inconsistency Evaluation Framework
	5.2.1. Motivation
	5.2.2. New Evaluation Framework
	5.3. Quantitative Inconsistency Evaluation
	5.3.1. Experimental System
	5.3.2. Measurement Approach
	5.3.3. Factor Evaluation
	State Ordering Metric (SOM)
	Server Selection Policy (SSP)
	Unsuccessful State Replication Rate (USRR)
	5.3.4. Results and Model Validation
	Results
	Analysis
	5.3.5. Framework Application Example
	5.4. Conclusions

	
	6. Mid-Session Macro Mobility in the IMS
	6.1. Introduction and Motivation
	6.2. Related Work and Problem Statement
	6.3. Macro Mobility Protocols in IP Networks
	6.3.1. Mobility Definitions
	Terminal Mobility
	Personal Mobility
	Session Mobility
	6.3.2. Macro Mobility Protocols Overview
	6.3.3. Mobile IP
	6.3.4. SIP Mobility
	Terminal Mobility
	Session Mobility
	6.4. Scenario Description and Assumptions
	6.5. MIP-IMS Interoperability Issues
	6.5.1. Delayed MIP Registration
	6.5.2. Addressing Scheme Conflicts
	P-CSCF
	GGSN
	6.6. Solution for MIP-IMS Interoperability
	6.6.1. Assumptions
	6.6.2. Solution Overview
	6.6.3. Detailed Operations
	6.6.4. Analysis
	Handover Times
	Signaling Overhead
	Implementation Efforts
	6.6.5. Conclusions

	7. Enhanced MIP-based Mid-Session Macro Mobility
	7.1. Solution Overview
	7.2. Detailed Solution Description
	7.2.1. Data Bearer Setup
	7.2.2. IP Reachability
	7.2.3. Back to Standard Operations
	7.3. Analysis
	7.3.1. QoS Resource Release at ANold
	7.3.2. Security Issues
	7.4. Quantitative Analysis
	7.4.1. Assumptions and Methods
	7.4.2. Results and Analysis
	7.5. Conclusion

	8. Conclusions and Outlook
	8.1. Summary
	8.2. Outlook
	8.2.1. Optimal Fault Tolerance Configuration
	8.2.2. State Consistency
	8.2.3. MIP+IMS Macro Mobility

	A. SIP Specifics
	A.1. SIP Responses
	A.2. SIP Headers
	A.2.1. General Headers
	A.2.2. Request Headers
	A.2.3. Response Header
	A.2.4. Entity Headers

	B. SAN/Möbius Models
	B.1. Atomic Models
	B.1.1. NS Model
	B.2. Atomic Models
	B.2.1. PE Model
	B.2.2. PU Model
	B.2.3. PR Model
	B.3. Reward Model – Performance Variables
	B.4. Simulation Results
	B.4.1. Output Metrics Calculation
	Dependability
	SAT (successful transactions only)
	Dependability
	B.4.2. Result Graphs

	 References
	 Author’s Publications
	Peer Reviewed Conference Papers
	Magazine Paper
	Technical Reports

