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Abstract 
Dependability has been extensively investigated in the industry for decades. Now that 
telecommunications markets are getting more competitive than ever, making 
telecommunications networks dependable has become another critical commercial 
argument for operators. At the same time, telecommunication networks are converging 
towards the all-IP paradigm. Despite the undeniable advantages brought by IP-based 
architectures, the openness of the IP paradigm has forced operators to devise control 
mechanisms such as access and service control in order to limit the access to their 
resources to authorized users only. The IP Multimedia Subsystem (IMS) is an access 
technology-independent implementation of IP-based (1) access, (2) service and (3) 
session control platform. The IMS was originally designed by 3GPP for mobile access 
networks, namely UMTS, but its specifications were extended so that it can be deployed 
with any IP-based access network and also support communications with non-IP 
networks like PSTN telco networks. 
Such control platforms add complexity and introduce new points of failures into the 
systems they are deployed with. Potentially poor dependability levels in the IMS should 
not cancel the considerable efforts made in the area of dependable end-user applications. 
It is therefore crucial that faults occurring in the IMS do not impact the overall 
dependability levels of the system, which means that the IMS needs to be at least as 
dependable as the applications it controls. Meanwhile, the IMS performance as perceived 
by the end-user should not be degraded either, since it is undeniably an important 
criterion for user satisfaction. Fault tolerance mechanisms tend to decrease performance; 
hence, it is a real challenge to improve both dependability and performance of a service 
simultaneously. The goal of this thesis is to analyze the performance capabilities of 
dependable, IMS-controlled UMTS access networks and suggest optimizations of the 
fault tolerance mechanisms in order to control the dependability/performance tradeoff to 
meet given sets of dependability and performance requirements. The main fault tolerance 
solutions considered to raise the IMS dependability are (1) request retransmissions to 
cope with temporary network faults and (2) IMS server replication to support failover 
when a server is no longer reachable.  
 
Both the standard and replicated IMS architectures are modeled with Stochastic Activity 
Networks in order to evaluate the tradeoff between dependability, performance (IMS 
service access time) and additional costs (overall IMS load). Some of the parameters of 
the failure detection and recovery mechanisms are tuned to analyze which parameters the 
tradeoff is more sensitive to. This way, an optimal fault tolerance configuration can be set 
in a given system with specific requirements. Optimal configuration selection strategies 
(at design time and at run time) are discussed and a selection example illustrates how to 
use the simulation results to do so. 
Most IMS servers are distributed stateful entities that keep track of several states (e.g., 
session state, charging state). Thus, state inconsistency can affect dependability when the 
traffic is switched from one server to another during failovers or to support a new 
transaction (server selection policies). Existing techniques propose to control the tradeoff 
between performance and dependability by dynamically delaying the processing of a 
service request accordingly to the current inconsistency level. The efficiency of such 
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algorithms is greatly dependent on the accuracy of the inconsistency metric that they use 
as input. Therefore, a new inconsistency evaluation framework for Internet-like services 
is introduced and validated experimentally. This framework can be used at system design 
time and run time in order to evaluate the probability of reading a stale state replica at a 
given server.  
Finally, when non-replicated components of a system fail, failovers and retransmissions 
to the replicated IMS servers cannot overcome the faults occurring at these non-replicated 
components. Then, the best strategy for a client is to switch to another access network, 
which requires macro mobility support. While standard mobility solutions support intra-
domain handovers, the IMS specifications do not allow for mid-session inter-domain 
handover (i.e. the IP address of the user equipment changes during ongoing sessions) yet. 
In this thesis, a Mobile IP-based solution for mid-session macro mobility is investigated 
in two steps. First, interoperability problems between Mobile IP and SIP operations are 
highlighted and the adequate protocol and functionality adjustments are proposed to 
make the deployment of Mobile IP possible in IMS-controlled access networks. Then, 
Mobile IP-based handover optimizations are introduced that dramatically decrease the 
mid-session inter-domain handover time. The handover times are evaluated analytically 
for several scenarios of network delays and number of media streams in the moved IMS 
session. Finally, it is analytically analyzed under which conditions—on network delays 
and number of media streams—the SIP operations are faster than the novel enhanced 
MIP-based solution. This analysis proves that the SIP solution can perform better than 
MIP in a very few cases.  
 
The original contributions of the thesis are the following: 
• SAN models and Möbius implementations of the standard IMS and replicated IMS 

scenarios 
• Parametric analysis of relevant input system-state variables and fault tolerance 

configuration settings 
• Strategies for the selection of the optimal fault tolerance configuration 
• Novel inconsistency evaluation framework 
• Strategies for network architecture design based on inconsistency/performance 

requirements 
• MIP and IMS function/protocol extensions for MIP-based network layer macro 

mobility in IMS environments—to support session continuity 
• Novel enhanced MIP-based macro handover 
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SACK Selective ACKnowledgment 
SAN Stochastic Activity Network 
SAT Service Access Time 
SBLP Service-Based Local Policy 
SCTP Stream Control Transmission Protocol 
SDP Session Description Protocol 
SGSN Service GPRS Support Node 
SIP Session Initiation Protocol 
SLA Service Level Agreements 
SMS Short Message Service 
SMTP Simple Mail Transfer Protocol 
SOM State Ordering Metric 
SPI IPSec Security Parameter Index 
SS7 Signaling System 7 
SSA State Sharing Algorithm 
SSP Server Selection Policy 
SUM State Update Message 
 
TCP Transmission Control Protocol 
TFT Traffic Flow Template 
ToS Theft of Service 
TSN Transport Sequence Number 
TTF Time To Failure 
TTR Time To Repair 
 
UAC/UAS User Agent Client/Server 
UDP User Datagram Protocol 
UE User Equipment 
UMTS Universal Mobile Telecommunication System 
URI/URL Uniform Resource Identifier/Locator 
USRR Unsuccessful State Replication Rate 
UTRAN UMTS Terrestrial RAN 
 
VoIP Voice over IP 
 
WLAN Wireless Local Area Network 
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1. Introduction & Problem Definition 
 
 
 
 
 

1.1. Background 
After more than a decade of operation, second generation (2G) mobile systems such as 
the Global System for Mobile communications (GSM) have eventually reached their 
limits in terms of penetration rates and average revenue per user. Based on circuit-
switched technologies, 2G systems provide the users with wireless access to voice 
communications and a restricted set of data services such as short message service (SMS) 
and fax. In order to increase revenues, mobile operators had to plan the evolution of their 
aging 2G infrastructures and services. 
Until then, the jump to a new generation of mobile network was characterized by the 
deployment of a new access technology that would offer higher wireless access 
bandwidth and capacity to cope with the constantly rising number of subscribers and the 
more complex network management and operations. Such upgrades typically improved 
availability and quality of service (QoS). As availability and QoS have became 
consistently satisfactory, users start taking these two essential aspects of personal mobile 
communications for granted and now expect more in terms of range of applications, 
performance, and ease of use. Thus, services are becoming one of the key factors to 
create new revenues for mobile operators. 
 
Driven by this new demand from the users, system designers introduced a critical change 
in 2.5G systems (e.g., General Packet Radio Service (GPRS) [3GPP04b]) as compared to 
2G systems: the transport of data in the core network of these systems is IP-based (i.e. 
packet-based). The change to IP-based transport has been further extended to the radio 
access network (RAN) from 3G systems, whose deployment examples include the 
Universal Mobile Telecommunications Systems (UMTS) [3GPP04a].  
In 2G systems, services were proprietary solutions and were solely managed and 
upgraded by the mobile operators. By building on top of the IP principles and the Internet 
for 2.5G and beyond, (1) applications are not bound to a legacy access technology 
anymore and, thus, they can be maintained even as the underlying access networks 
change and evolve and (2) independent parties can also provide services to mobile 
systems. The shift to IP introduces a flexible platform for service development and 
deployment, and encourages the provisioning of innovative mobile multimedia services. 
Also, many of the existing services available in the fixed IP world can be quickly adapted 
to fit the mobile devices capabilities and, then, be offered to mobile users. Finally, by 
allowing multiple network technologies to coexist, the IP paradigm is able to provide 
ubiquitous connectivity and to achieve enormous economies of scale. 
 
The support of IP-based services—especially real-time services—raises new challenges 
for the mobile operators though.  
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IP is a connectionless protocol that transmits its packets on a best effort basis; therefore, 
QoS is not supported by default in IP-based systems. On the other hand, real-time 
services have strict performance requirements in order to meet the user demands in terms 
of QoS. One solution is to deploy additional mechanisms in order to organize multimedia 
communications into sessions that can be managed individually. A session consists in (1) 
separating the communications of a given multimedia application into independent IP 
data streams—e.g. for a videoconference: one stream for the voice and one stream for the 
video—and (2) setting the expected end-to-end (E2E) QoS levels for each stream, which 
requires special QoS support in the operators’ networks (e.g. PDP contexts associated to 
TFT and SBLP filters, see Section 2.3.2) and in the networks interconnecting remote 
access networks (e.g. MPLS [Rosen01], RSVP [Braden97]). Relevant examples of IP-
based sessions are Internet phone calls and instant messaging (e.g. Skype, MSN 
messenger), multi-party multimedia conferences and online gaming. 
Users are getting used to accessing the Internet on the move thanks to the success of 
novel wireless access technologies such as WLAN [IEEE_web] and Bluetooth 
[Bluetooth_web]. These access technologies were originally designed for high bandwidth 
and short-range communications in hot spots and home/personal networks 
[MAGNET_web][Prasad06]. Also, with the promise that IP-based systems will be the 
basis for cross-network service provisioning, users should have the possibility to connect 
to a variety of wireless access networks on-demand in order to be “always best 
connected” to the services of their choice. The possibility to switch between access 
technologies will (1) extend the coverage of the traditional mobile cellular systems in low 
density areas where it would be too expensive to deploy cellular equipment, and (2) allow 
to select the most appropriate access network to meet the users’ preferences (e.g. cost, 
QoS). Therefore, inter-domain mobility, so-called macro mobility, is a critical challenge 
to address when designing 3G and beyond 3G (B3G) systems. With users frequently 
switching from one access network to another, mobile operators have to control the 
access to their scarce radio resources by deploying: 
• Access and service controls, to block unauthorized users, prevent theft of services, 
• session control, to map users’ subscription profiles to authorized QoS levels in the 

access network.  
 
The standardization bodies took those important aspects of 3G and B3G systems into 
account and specified an IP-based platform for access, service and session control in 
cellular settings—the so-called IP Multimedia Subsystem (IMS), which was introduced 
by 3GPP in Release 5 of the UMTS specifications [3GPP02a][3GPP02b]. Even though 
the IMS was originally designed exclusively for UMTS networks, 3GPP quickly made it 
network-independent by designing a set of required interfaces between the IMS platform 
and the access network it should control. IMS procedures rely on modified versions of 
SIP [Rosenberg02] mechanisms and servers. The IMS is now considered as the platform 
of choice for providing unified session control on top of multiple access technologies and 
for supporting flexible multimedia applications. 
 
In summary, the need for a wider diversity of services accessible from mobile devices has 
encouraged the transition to IP-based mobile networks, as IP seems to be an excellent 
paradigm for fast and flexible development and deployment of mobile services. In 
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parallel, the convergence of several access technologies will considerably improve the 
user’s experience. Therefore, roaming between different access technologies—even 
during ongoing sessions—is becoming one of the main challenges considered in the 
definition of 3G and B3G systems. Ultimately, the goal is to provide users with any 
content, anytime, anywhere.  
To make this possible, a major step is the deployment of the IMS, which acts as the 
common platform for access/service control and multimedia session control in IP-based 
networks. 
 
 

1.2. Problem Statement  
As discussed in the previous section, the deployment of new services and support for 
macro mobility are essential characteristics of upcoming mobile IP-based networks. 
Nonetheless, the quality and the dependability of multimedia sessions remain constant 
requirements from users that mobile operators must meet consistently for fear of losing 
market shares. For years, considerable efforts have been made in order to raise the 
dependability levels in communications networks, which lead in turn to the dramatic 
improvement of the availability and reliability of end-user services and network 
operations. This evolution was made possible by developing stable software (e.g., 
systematic testing, efficient programming languages, and software and operating systems 
design), robust hardware (e.g., better materials and architectural designs), and 
dependability solutions (e.g., redundant subsystems). Nowadays, users expect that almost 
every request to access a mobile service is successful and the required QoS for that 
service can be sustained QoS during the whole service provisioning. In other terms, end-
user services should be available at any time and, once initiated, multimedia sessions 
should not be interrupted due to faults occurring in the system (cf. Section 1.3 for the 
fault model and other limitations chosen in this report) or degraded QoS.  
The IMS relies on extensive procedures involving multiple entities, which adds 
complexity and introduces new points of failures into the overall system. If SIP requests 
are lost during the session initiation procedures, the session setup delays can significantly 
increase [Fathi06] and some sessions may not even be initiated at all, which means that 
the SIP service is unavailable. Potentially poor dependability levels in the IMS should not 
cancel the productive efforts made in the area of dependable end-user services and 
network operations. It is therefore crucial that faults occurring in the IMS do not impact 
the dependability levels of the overall system; so, the IMS needs to be at least as 
dependable as the applications it controls.  
3GPP is only responsible for defining how the IMS interworks with access networks—
and application platforms—through standardized interfaces. In the standard IMS setup, 
fault tolerance mechanisms are limited to the SIP timeouts-per-request and request 
retransmissions; no IMS-specific dependability solution has been specified by 3GPP. 
Thus, it is necessary to consider additional techniques that can improve the IMS 
dependability.  
The integration of dependability solutions in IMS-controlled systems will raise the IMS 
dependability levels closer to those already achieved by some dependable end-user 
services. Unfortunately, the deployment of dependability solutions implies a tradeoff 
between dependability and performance [Heddaya96] so, when addressing fault 
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scenarios, performance needs to be addressed in relation to dependability so that the 
mechanisms that make the IMS dependable should impact its performance as little as 
possible.  
 
In this work, the means considered for improving IMS dependability is redundancy. 
Server replication is a popular approach to mask node failures due to local hardware 
and/or software faults, as well as network failures caused by interferences or packet 
losses [Helal96][Tanenbaum02]. Replicating some parts of a system seems especially 
suited for the dependability/performance tradeoff optimization challenge as it is 
sometimes used to increase the capacity— and therefore increase performance as well—
in heavily loaded systems by offering more resources, whether it be bandwidth, 
processing power, memory, etc.  
The overall goal of this thesis is to investigate the dependability/performance tradeoff in 
IMS-controlled UMTS systems, when using replication techniques in order to support 
dependable and high-performance service provisioning in the following failure+recovery 
scenarios:  
• Part I—IMS Server Replication. Like any other components of the UMTS system, 

IMS servers are expected to fail or to be isolated from other entities because of 
network failures. For coping with temporary network failures (e.g., a random packet 
loss) the solution is to ‘replicate’ the original unsuccessful request and retransmit it to 
the server. If the retransmitted requests are also unsuccessful, either because the 
network failures are not temporary (e.g., a cable breakage that is not detected quickly) 
or because the server contacted is crashed, an interesting alternative to request 
retransmissions is to replicate the IMS servers. Then, the ongoing sessions supported 
by a failed server can be moved altogether to one backup server, or split among 
multiple server replicas, in order to mask the server failure and maintain the IMS 
service provisioning—this is called failover. The right combination of retransmissions 
to one server and number of failovers needs to be looked into to optimize the 
dependability/performance tradeoff. 
Failover procedures rely on the client side; server-local mechanisms such as 
hardware, operating system, or application restarts exist [vanMoorsel06] but they are 
not investigated in this work.  

• Part II—Mid-Session Macro Handover. It is undeniable that replicating servers is 
an effective way to raise dependability; on the other hand, it can be costly to deploy 
multiple servers because of the large expenses this entails (server hardware & 
software, wiring, network configuration, etc.) and because of the increased overhead 
in the system. Therefore, it is rarely possible to replicate all the components that 
would potentially crash.  
A single point of failure is a system component that is not replicated and that prevents 
any level of service provisioning when it has failed. In the IMS-controlled UMTS 
scenario, the UMTS access router is an example of critical entity that prevents any 
traffic between a user equipment attached to this UMTS network and external 
entities, such as an application server or even an IMS server. In this scenario, 
retransmissions are ineffective when the component is permanently faulty or faulty 
long enough to consider another recovery solution. A good option for the user 
equipment is then to connect to another system, where hopefully no single point of 
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failure is currently crashed. Hence, macro mobility between IMS-controlled UMTS 
networks is investigated as a means for fault tolerance against single points of failures 
in the access network or in the IMS. In a way, this scenario is a specific case of 
replication where the access networks would be the replicated component of a 
‘global’ system. 

 
 

1.3. Terminology and Problem Limitation 
In this section, the main dependability- and network environment-related terms that will 
be used throughout the report are defined. The scope of the problem, the level of details 
and the assumptions for the investigation are also specified for both dependability and the 
network environment.  
 

1.3.1. Dependability  

Terminology 
According to [Avizienis04], a function is defined as what a subsystem is intended to do, 
which is described in the subsystem specifications in terms of functionality and 
performance. A service is the functionality provided by a component, as seen by its user. 
An error is a deviation of the function behavior from its functional specifications. Faults 
are what cause errors and they can be verified or hypothesized (e.g., ‘is the remote 
process currently crashed or slow?’). In general, systems are vulnerable to faults of varied 
nature: hardware component crashes, incorrect software behavior, system overload, 
human errors, physically damaged wires and connectors, etc. In communication 
networks, faults can be classified into two distinct high-level classes: 
• Node fault: when a node stops providing the expected service(s), 
• Link fault: when a link stops serving as a medium to convey packets. 
When an error becomes perceivable by the users (or subsystems) that requested the faulty 
service, it is called failure. Sometimes, the service is provided in a degraded mode, and 
the failure is said to be partial; when the user does not have any access to the service, the 
failure is total. 
 
Ideally, dependability is the ability of a system to avoid, or hide, any failure that would 
prevent the service to keep behaving as expected, i.e. as written in the specifications. In 
practice, dependability most often consists in “avoiding service failures that are more 
frequent and/or more severe than is acceptable” [Avizienis04]. Dependability has the 
following attributes: 
• Availability relates to readiness for correct service, i.e. the ability to start the service 

execution when the requests are received by a system; 
• Reliability characterizes the ability to continuously provide correct service execution.  
• Security is the level of trust that can be put in the exchanged information. Security is 

a composite of confidentiality (the information cannot be intercepted by third-parties) 
and integrity (the information cannot be corrupted by third-parties). 



 23 

These attributes sometimes rely on sub-attributes such as consistency, which reflects the 
ability to provide the system with a consistent image of the state information stored over 
multiple replicas. 
 
Dependability can be achieved by implementing the following means: 
• Fault prevention: to prevent the occurrence or introduction of faults. 
• Fault tolerance: to avoid service failures in the presence of faults. 
• Fault removal: to reduce the number and severity of faults. 
• Fault forecasting: to estimate the present number and the likely consequences of 

faults. Sometimes, fault forecasting deals with predicting faults from the current and 
past system state/behavior. The difference with fault prevention is that fault 
prevention is achieved at the system design time, while fault forecasting is done 
during the system run time. 

Fault Model 
Dependability. The only attributes of dependability investigated are availability and 
reliability, which both relate to the readiness and continuity of correct service 
provisioning. Security is accessorily treated in the sense that the design of non-standard 
solutions proposed in this work should not weaken the overall system security, but the 
main intention here is not to investigate additional means to raise the security levels. 
 
Dependability means. As motivated in the previous subsection, replication—or 
redundancy—is the means considered to achieve high dependability in IMS-controlled 
systems. Faults are not prevented, removed, or forecast; instead, the approach taken 
consists in avoiding or minimizing the effects of faulty components by switching over to 
backup resources when faults are suspected. 
In replicated systems, the usual recovery strategy consists in isolating components 
suspected to be failed or unreachable and involving redundant resources to take over the 
ongoing tasks of the failed components. The detailed suite of mechanisms required to 
achieve fault tolerance in a replicated architecture are given in Section 3.2.1, and can be 
summarized as follows: 
• Fault Detection: A faulty component must be detected as quickly as possible so that a 

backup component takes over rapidly and that the faulty component is removed from 
the system until it is repaired (or replaced). Fault diagnostic is the specific ability to 
determine the nature of the faults so as to invoke the most adequate recovery 
mechanism.  

• Failover: A failover is the most common recovery mechanism in redundant systems. 
When a service cannot be delivered by a component, the system should stop using the 
latter and switch to a backup component for future service requests.  

In Part I, SIP server crashes and network faults are detected using (1) a heartbeat 
mechanism involving an independent failure detector and (2) the standard SIP timeout-
per-request. When the failure detector suspects SIP servers to be unavailable, clients stop 
contacting the potentially failed servers for future requests. Also, when a SIP client does 
not receive a request acknowledgement from a seemingly available server, the SIP 
request is retransmitted a given number of times. If the request acknowledgement has not 
been received before the maximum number of retransmissions is reached (seven 
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transmissions total in the standard SIP setting, see Section 3.1.4), the server is considered 
failed by the client, and the latter triggers a failover by contacting a backup SIP server 
instead. 
In Part II, failure detection is outside the problem scope and the investigation assumes 
that the clients are aware of a crash at a single point of failure in the system. The analysis 
starts at the point when the client triggers the necessary recovery action, i.e. a handover 
from the current access network to another access network. 
 
Faults and failures. In Part I, the following assumptions on faults and failures occurring 
in IMS-controlled UMTS systems are made, which provides a framework for the 
analysis: 
• Node faults: Replicating all IMS servers would be highly relevant to provide optimal 

IMS service dependability in a real setting. Nevertheless, the analysis only focuses on 
the IMS Serving Call Session Control Function (S-CSCF) replication because: 
o the S-CSCF is the most critical function for IMS session control; 
o the load on the S-CSCF server is expected to be higher than on other IMS entities, 

which justifies to replicate the S-CSCF both for dependability and capacity 
purposes; 

o it is not likely that all IMS entities can be replicated, e.g. because of the overhead 
and budget limits; 

o the conclusions drawn from the present S-CSCF replication analysis can be 
applied to other IMS redundant server scenarios. 

The S-CSCF fault model is quite simple as it only consists of crash faults, i.e. the 
server stops responding to any request. The S-CSCF crash faults are not permanent; 
they are halt faults modeled by a two-state (ON/OFF) Markov model. This model 
abstracts the nature of the faults and assumes that each fault (e.g. hardware breakage, 
software instability) leads to a complete S-CSCF failure; no partial failure is 
considered here. Also, it is assumed that if any protocol layer of the S-CSCF 
acknowledges a request (e.g. heartbeat request at Layer 4), all the other functions in 
this node are also available. This simplifies the problem because the only diagnostic 
to be made is ‘is the node alive?’, instead of the more refined diagnostic ‘up to which 
layer is the node available?’ that is required in a real setting. 

• Link faults: In general, faults occurring in the communication path are mainly due to 
physical link breakage, wireless link interferences leading to high bit error rate, or 
capacity shortage (e.g. router overload) and typically translate into (1) packets losses 
or (2) complete remote endpoint unreachability due to loss of coverage. In this work, 
all link failures are modeled by a unified packet loss probability. 

• Timing failures: From the SIP application (i.e. service provisioning) point of view, 
the faults assumed here lead to timing failures. Timing failures occur when the 
response to a client request is not received before the request timeout expires. Note 
that communication and processing delays vary over time and may also lead to timing 
failures.  

In Part II, since crashes at a single point of failure are assumed to be already detected and 
the analysis starts when the macro handover mechanisms are initiated, the nature and 
occurrence of the faults that cause the complete access network failure do not matter for 
the analysis. Additionally, the analysis of the macro mobility solution is done with the 
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assumption that no fault affects the new access network or any entity required to support 
mobility mechanisms during the whole handover procedure. 
 
A detailed review of the specific faults considered for each contribution is given in the 
respective contribution chapters. 
 

1.3.2. Network Topology & Service Provisioning 

Terminology 
In this subsection, the network topology-related terms are defined—and illustrated in 
Figure 1.1—as well as several other concepts behind service provisioning in an IMS-
controlled access network: 
 
The term access network (AN) usually refers to a radio access network, i.e. the part of a 
mobile system comprising the access interface (wireless or wired) and the fixed part of an 
operator domain between the access links and the core network. Here, AN corresponds to 
the whole operator domain, which consists of (1) the radio access network and (2) the 
core network, up to its access router (AR) of the operator domain. Note that one operator 
can deploy multiple domains. Also, despite the fact that UMTS access networks can 
connect to heterogeneous external networks (e.g. the Internet, private IP networks or a 
Public Switched Telephone Network (PSTN)), it is assumed that all traffic between a 
user equipment (UE) and any external entity is IP-based; so, all external networks are 
unvaryingly referred to as the Internet. Throughout the whole document, the terms access 
network, mobile network and operator’s domain are interchangeably used to refer to the 
infrastructure between a UE and its current access router to the Internet. In UMTS, the 
AN infrastructure mostly consists of the UMTS Terrestrial Radio Access Network 
(UTRAN) and the UMTS, so-called Packet-Switched Core Network (PS-CN). 
 
 
 
 
  
 
 
  
 
 
 
 
 
 
 
 

Fig. 1.1, High-level network architecture 
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Figure 1.1 shows a high-level network architecture for the example of three access 
networks (AN1 and AN2 are wireless, AN3 is wired) controlled by a unique IMS 
(signaling traffic is represented by the black lines). This scenario corresponds to the case 
when an operator deploys multiple ANs around the Internet and centralizes the session 
control in one ‘remote’ IMS. The actual IMS architecture comprises more entities than 
just the S-CSCF and is fully described in Section 2.3.1. In the present example, the 
operator outsources the whole end-user service provisioning (e.g. web-pages, file 
downloads, emails) to an external third-party provider (red dashed lines). Two UEs (UEA 
and UEB) connected to different ANs communicate (e.g. VoIP phone call) directly via the 
Internet (dashed blue line), as the IMS is not involved in the data traffic. UEA is 
connected to a UMTS AN, namely AN2, for which the internal network architecture with 
the UTRAN and the PS-CN is shown; note that AN1 is identical to AN2 its architecture is 
not detailed. 
 
One of the strengths of IMS-controlled access networks is that applications can be 
deployed outside of the operator domains, e.g. by third-party providers. An application 
platform corresponds to the network where a set of application servers (AS) is deployed 
and managed. 
Access control is the procedure that grants access network connectivity to authorized 
users and block the others. This connectivity is usually given only within the bounds of 
the specific access network the UE attaches to and often only allows signaling traffic to 
and from the control functions of the AN. Service control mechanisms are initiated after 
successful access control and are responsible for authorizing a UE to access a requested 
service only if the user has subscribed to this service. Once a service has been authorized, 
session control solutions may set up a session by negotiating and enforcing some QoS 
session parameters as well as the corresponding charging scheme(s).  
In UMTS, control functions are deployed in the control plane. The access control is 
executed during the GPRS Attach procedure, while both the service and session controls 
are handled by the IMS, which negotiates and reserves the QoS resources during the SIP 
session setup. The QoS policies resulting from the IMS negotiation phase are applied into 
the whole UMTS AN—i.e. between the UE and the GGSN—by reserving resources for 
each IP session flow, which is carried through an individual Packet Data Protocol (PDP) 
context (see Section 2.3.2). 

Problem Scope 
The goal of this work is to provide dependable IMS service provisioning, which relies on 
E2E multimedia session support. In this context, mechanisms at the IP and upper layers 
are the primary focus. Consequently, Layer 2 operations specific to legacy mobile 
networks are not of special interest, except for the QoS allocation and management 
functions in UMTS ANs that interact with the IMS via dedicated interfaces (mainly the 
GGSN). 
 
 



 27 

1.4. Refined Problem Statement and Contributions 
1.4.1. Part I - IMS Server Replication 

In this study, (1) S-CSCF servers are replicated to provide fault tolerance when the active 
S-CSCF goes down and (2) SIP requests are retransmitted to the primary S-CSCF to 
recover from failures caused by random packet losses or temporary long communication 
delays. The replicated S-CSCFs are gathered in a logical group, which is managed by a 
protocol suite implemented at the middleware. Background information on the two main 
paradigms for server replication—a distributed approach and a cluster-based approach—
is given in Section 3.2. The analysis is based on the distributed approach (implemented 
by the RSerPool protocol suite [Lei07]) but the main results are also discussed in terms of 
how using the cluster-based approach would affect them. 

Optimal Fault Tolerance Configuration Selection 
Server replication improves service dependability but it also affects performance and 
adds overhead and complexity, which also worsen performance. It is therefore essential 
to investigate how to minimize the performance degradation introduced by replicating 
servers, while maintaining the improved dependability levels allowed by server 
replication. Two characteristics of replicated systems can be improved in order to 
optimize their performance: failure detection and its relation to failover triggers. The 
failure detection and failover settings are investigated in order to enhance the standard 
fault tolerance mechanisms implemented by RSerPool in a replicated IMS system. 
A critical metric is the service access time (SAT), i.e. the average time to successfully 
complete a SIP transaction. By finding the right compromise between fast and accurate 
failure detection and tuning the failover triggers correspondingly, SAT can be improved 
without affecting the high dependability levels achieved with standard settings. The 
different parameters that should be taken into consideration during the optimization 
process are the following:  
• Heartbeat frequency, 
• Timeout of the heartbeat and SIP requests, 
• Number of failovers and SIP request retransmissions; 
Another important requirement for dependable solutions concerns the costs involved in 
the enhancements brought to the original setting. The goal is to keep the costs as low as 
possible. Examples of costs include: 
• Overhead: additional communications due to the heartbeat mechanism impact the 

network capacity and the nodes’ network interface and processing load; 
• Implementation complexity: computational/memory resources are scarce in most 

handheld mobile devices and communication networks, especially in mobile networks 
with potentially thousands of users attached simultaneously. 

The parameters of replication-based fault tolerance mechanisms are qualitatively 
analyzed in terms of their impact on the tradeoff between dependability, performance 
(IMS service access time) and additional costs (overall IMS load). Also, both the 
standard and replicated IMS architectures are modeled with Stochastic Activity Networks 
in order to evaluate the tradeoff and compare different fault tolerance parameters 
configurations. This way, an optimal fault tolerance configuration can be applied to a 
given system with specific requirements. Optimal configuration selection strategies (at 
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design time and at run time) are discussed and a selection example illustrates how to use 
the simulation results to do so. 

State Consistency 
Many services in communication networks are stateful, requiring that some functions 
collect and maintain states and/or logs about the ongoing communications, network 
operations and the system. In the IMS, the SIP servers are stateful entities that keep track 
of several states (e.g. session state, charging state). The state information is sometimes 
mandatory to process specific incoming requests at a SIP server (c.f. prepaid subscription 
example in Chapter 5). In the replicated IMS system, a backup S-CSCF takes over when 
the active replica crashes and in order to successfully process the next incoming requests, 
the selected backup server must have received a copy of the latest state information 
generated by the primary server before it crashed. This is called state consistency. 
In distributed systems such as RSerPool, communication delays and packet losses may 
lead to state inconsistency, i.e. a backup server receives a SIP request before it has got the 
latest state update message that the primary server sent to its peer after completing the 
previous transaction. Many solutions have been designed to avoid inconsistency (Section 
5.1) and therefore maintain the same dependability levels as with stateless replicated 
servers. The main drawback is that these solutions introduce latency and communication 
overhead that impact the service performance so there is a continuous tradeoff between 
consistency and service access time [Yu00]. In order to minimize the performance 
degradation, dynamic commitment protocols were created that apply the smallest delays 
necessary to reach a target consistency level in a given system [Bozinovski04a]. These 
protocols need to be constantly updated with inconsistency levels to dynamically tailor 
the state commitment delay. 
An inconsistency definition tailored for the replicated IMS scenario is first given. Then, a 
novel inconsistency evaluation framework is proposed, which: 
• permits to estimate inconsistency as previously defined and can also be used for 

inconsistency evaluation with a wide range of replicated entities; 
• is based on contributing factors that are calculated either from the traffic and failure 

models of the system or using direct inputs from network analyzers. This means that 
the framework can be used at design time or at system run time.  

The inconsistency evaluation framework is verified by comparing (1) inconsistency 
values measured in an experimental SIP system and (2) inconsistency values generated 
with the framework, where the impacting factors are calculated from a mix of inputs from 
the system specifications and the experiment. 
The framework can also be used to help the architecture/protocol design of a system by 
determining the expected inconsistency levels. Accordingly, the state dissemination 
protocol that helps meet the predefined target inconsistency/performance tradeoff can be 
chosen. 
 

1.4.2. Part II - Mid-Session Macro Handover 
Macro mobility is expected to enhance the user’s experience in several ways. A handover 
from one access network to another (so-called macro mobility, or vertical handover if the 
two ANs rely on different access technologies) can be triggered in the following cases: 
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• A better suited access network is accessible from the user’s current location—e.g. to a 
cheaper or more energy-efficient access technology, or when more/better services are 
offered by a certain operator, 

• Prolonged service degradation (QoS degradation or loss of connectivity) at the 
current access network.  

In the second example, macro mobility acts as a fault tolerance solution. If failures occur 
on a link or at a node in an access network that does not implement systematic path 
redundancy or node replication, communications to and from this access network are 
greatly impacted, if not interrupted fully. A macro handover from the current access 
network (ANold) to another network (ANnew) can ensure connectivity and potentially the 
desired QoS necessary for maintaining ongoing sessions. In this thesis, it is assumed that 
the QoS levels guaranteed at ANnew are at least as good as in ANold before it crashed. 
Terminal mobility should not be considered independently from other types of mobility 
because providing IP connectivity at ANnew is not the only requirement for a complete 
IMS mid-session macro handover. Indeed, on top of providing connectivity to another 
AN, ongoing sessions should be moved along with their corresponding states in order to 
set the communications in ANnew with similar settings as in ANold—for instance the 
current status of an ongoing online game. This way, the session can be ‘restarted’ in 
ANnew where it was left pending in ANold and with similar characteristics. This is referred 
to as session mobility. A prerequisite to session mobility is session continuity: the control 
mechanisms should support the changes induced by mobility, i.e. they should not prevent 
the session to continue despite these changes. 
In the IMS, the whole session mobility could be supported by performing the standard 
SIP session establishment procedures at ANnew after obtaining connectivity. This option 
unfortunately raises two problems: 
• According to the IMS specifications, any session should be stopped if the IP address 

of one of the endpoints changes during the session. This requirement causes the loss 
of the session states, which is unacceptable to stateful services.  

• The standard IMS procedures for session establishment take time. Even though minor 
modifications of the standard IMS implementation would allow for changes of IP 
address during ongoing sessions—i.e. session continuity—the disruption time due to 
session re-establishment is too long not to be perceived by users. 

Consequently, the standard IMS cannot provide seamless mid-session macro handover 
and needs enhancements to meet the users’ expectations. 

IMS-MIP Interworking 
Mobile IP (MIP) [Johnson04] is a mature technology expected to be a standard mobility 
solution in IPv6 networks (cf. Section 2 in [Johnson04]), and it is shown to be faster than 
SIP-based mobility in many systems and scenarios, like in [Kwon02]. MIP is a network 
layer mobility solution whose main characteristic is to hide the handovers to the layers 
above it (SIP and application included) by always showing the same IP address to these 
layers, which makes MIP an excellent candidate to provide session continuity during 
mid-session inter-domain handovers. Therefore, MIP is chosen as the basis for macro 
mobility support in the IMS, and the SIP responsibilities are limited to the IMS session 
management and end-user services (e.g. SIP-based instant messaging). Unfortunately, 
MIP cannot be deployed in the standard IMS due to interoperability issues, so the 
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necessary protocol and function adjustments are proposed to make MIP and the IMS 
interwork smoothly and, ultimately, support session continuity. The implementation costs 
of the suggested adjustments are discussed. It is also shown that applying the standard 
MIP setup into the IMS does not reduce the handover time because MIP only implements 
terminal mobility and the SIP procedures still has to be completed for session mobility 
support from ANold to ANnew. 

Optimized MIP-Based Handover Time  
The most common performance metric for mobility solutions is the service disruption 
time perceived by the user during the handover phase. Because all the standard SIP 
operations have to be successfully completed in ANnew before the UE is granted data 
bearers again, the SIP-based handover is much longer than simple terminal mobility with 
no session layer requirements. Integrating the standard MIP operations in the IMS 
provides session continuity but does not minimize the session disruption time. Hence, an 
enhanced MIP-based macro handover approach that supports session continuity and 
session mobility, and that shortens the standard, purely SIP-based, session mobility, is 
proposed. The solution relies on context transfer so that some secure media-authorization 
information obtained from ANold can be reused at ANnew. This allows the UE to 
temporarily activate a unique signaling/data bearer in ANnew without involving SIP, 
which in turn considerably reduces the disruption time perceived by the user. This novel 
solution is described in detail and the improvements that it achieves, the implementation 
efforts that it implies, and its impact on the standards, are discussed. Finally, the session 
disruption times for the standard SIP mobility and the optimized MIP mobility are 
evaluated analytically and compared for a range of network delays and traffic scenarios. 
 
Most of the contributions in this thesis have been published (cf. the Author’s Publications 
section at the end of this report). To see the list of the  
 
 

1.5. Thesis Outline 
The thesis is organized as follows: 

Chapter 2 gives an overview of the IMS, and introduces the SIP protocol and its original 
signaling mechanisms for multimedia session management, the interfaces between the 
IMS and the UMTS access network, and the IMS-specific signaling mechanisms for 
multimedia session management and resource allocation in association with UMTS 
data bearers. 

 
After presenting the state-of-the-art on the IMS, the thesis is divided into two parts. 
 
PART I__________IMS SERVER REPLICATION______ _____________________ 
 
Chapter 3 presents the background about dependability; follows an overview of the two 

replication paradigms, and the functions and operations of the RSerPool and RTP 
replication platforms are described. A practical strategy for the integration of the 
RSerPool and RTP architectures in the IMS is suggested. 
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Chapter 4 starts with some background about the Stochastic Activity Network (SAN) 

formalism and the Möbius simulation tool. The standard and replicated IMS 
simulation models are defined as well as a set of output metrics. Several environment 
and fault tolerance configuration parameters are qualitatively discussed and also 
analyzed based on the simulation results. Methods for selecting the optimal fault 
tolerance configuration conclude the chapter. 

 
Chapter 5 focuses on IMS state consistency. First, an accurate inconsistency definition 

for replicated IMS services is motivated, and a novel inconsistency evaluation 
framework is proposed and experimentally validated. Finally, the application of the 
evaluation framework to network design and network settings is discussed. 

 
 
PART II__________MID-SESSION MACRO HANDOVER____________________ 
 
Chapter 6 presents the background on macro mobility solutions, which can be used to 

support fault tolerance for single points of failures in the AN. The requirements for 
mid-session macro mobility in IMS environments are discussed. Then, the main 
interworking issues between the IMS and MIP are presented in detail, and a solution 
to overcome these issues is introduced and qualitatively analyzed.  

 
Chapter 7 introduces a novel, optimized, MIP-based solution that shortens the inter-

domain handover time in most network delay scenarios, which allows for faster 
recovery in case of non-replicated subsystem failures. The details about the 
operations that permit to reduce the handover time are given and qualitatively 
discussed. Finally, the new optimized MIP-based handover solution is analytically 
evaluated and compared to the standard SIP-based solution in order to measure the 
gains. 

 
 
Chapter 8 draws the conclusion of this work and shows directions for future work. 



 32 

2.  IMS Background 
 
 
 
 
 
IMS service provisioning is the common ground to the whole thesis. Hence, the 
background on IMS platforms ought to be presented—here, for the deployment scenario 
of UMTS access networks. First, the protocol IMS operations rely on, SIP, is presented. 
Then the IMS entities and architecture are introduced before the standard procedures 
defined by 3GPP for providing multimedia sessions to mobile users are explained in 
details. The standard IMS mechanisms for fault tolerance and macro mobility are 
summarized in Chapter 3 and Chapter 6 respectively. 
 
 

2.1. IMS Paradigms 
It is critical for mobile operators to control the access to their scarce radio resources. This 
is done by pushing towards the deployment of access and session control in order to 
block unauthorized users, prevent Theft of Services (ToS), and map users’ subscription 
profiles to authorized QoS levels and the corresponding charging policies. The IMS was 
originally introduced in Release 5 of the UMTS specifications and provides an overlay 
architecture on top of access networks to support and control IP-based multimedia 
sessions. The IMS relies on the Session Initiation Protocol (SIP) [Rosenberg02] at the 
session layer to establish, modify and terminate IP multimedia sessions and to participate 
in the E2E session resource reservation. Therefore, the IMS is regarded as an enabler for 
integrating voice, multimedia, and Internet services in mobile systems.  
 
The definition of the IMS follows three main axes: 

1. The IMS was originally defined for UMTS systems but has evolved to become access 
independent (from Release 6), i.e. not restricted to any type of access network and can 
consequently be associated to fixed and mobile networks. Despite its exclusive use of IP, 
the IMS can nonetheless interwork with circuit-switched external networks such as 2G 
mobile networks and telco systems like PSTN and Integrated Services Digital Network 
(ISDN) via gateway functions, namely the media gateway (MGW) and media gateway 
control function (MGCF). 
 
2. The IMS provides several service enablers that can be commonly used by all 
applications: 
• Authentication and authorization 
• Naming and addressing 
• Control of QoS and charging 
• Session management 
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A driver for operators to adopt the IMS is the increased probability of successful 
communications and guaranteed QoS via the preliminary negotiation of the capabilities 
supported by the networks and the end-user devices involved in the session.3GPP has put 
significant efforts into standardizing means for guarantying the required QoS levels for 
the session signaling and data traffics. The IMS provides authorization, reservation and 
final approval of QoS resources in the access network, and the interfaces with the 
functions for guarantying QoS in external IP networks (from Release 6). Service-based 
charging is also included in the IMS specifications. 
 
3. The IMS provides the means for application deployment based on open standards and 
application programming interfaces (API). Therefore, UEs can now access applications 
deployed in their operator domain, in a visited domain (when roaming) or from an 
independent third-party application platform. The interactions between ANs and 
independently owned and managed application platforms assume (1) preliminary 
commercial agreements between operators and service providers, and (2) the mapping of 
these agreements into control policies (e.g. for QoS and charging). Examples of IMS 
services include VoIP, multi-party conferencing, audio and video streaming, push-to-talk, 
push-to-show, instant messaging and person-to-person gaming [O’Reagan04][Kim03].  
 
 

2.2. Original IETF Session Initiation Protocol 
Originally designed by the Internet Engineering Task Force (IETF) for multi-party phone 
conferences over the IP-based networks, SIP has been reused and extended (mainly, the 
INVITE session setup procedure, cf. Section 2.3.3) by 3GPP for service and session 
control in IMS-controlled access systems. In this section, the main characteristics of the 
original IETF SIP are presented: session management protocol stack, entities, messages 
and mechanisms. The IMS-specific SIP procedures are described in the next section. 
 

2.2.1. SIP Overview 
The Session Initiation Protocol (SIP) was defined by the IETF in RFC3261: “SIP is an 
application-layer control protocol that can establish, modify and terminate multimedia 
sessions or calls” [Rosenberg02]. SIP can be used to initiate sessions as well as invite 
members to sessions that have already been established so it can manage multi-party 
conferences. 
SIP inherits features from two protocols: (1) the text-encoding scheme and header style 
(To, From, Date, Subject, etc.) from Simple Mail Transfer Protocol (SMTP), which is 
used for email and (2) the client-server design and use of Uniform Resource Locators 
(URLs) from Hyper-Text Transfer Protocol (HTTP), which is used for web browsing. In 
SIP, URLs are referred to as Uniform Resource Identifiers (URI).  
Most of SIP is about the session initiation phase: initiating a session requires to determine 
where the user to be contacted is located at a particular moment. Once the user is located, 
SIP delivers a description of the session to be initiated. The most common protocol used 
to describe the session content is the Session Description Protocol (SDP) [Handley98]. In 
summary, SIP implements five major features to support the requirements for 
establishing and managing sessions: 
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• user location: localize the user equipment(s) to be added to a session; 
• user capabilities: assess the possible media parameters for a session based on the 

capabilities of the user equipments involved in the communications; 
• user availability: determine (beforehand) the willingness of the called users to accept 

the call; 
• call setup: establish the session parameters at the user equipments (at both called and 

calling parties);  
• call handling: manage call transfer, modification of session parameters, and 

termination. 
 

2.2.2. SIP Protocol Stack 
SIP messages can be carried over any transport protocol, such as UDP, TCP and SCTP. 
In order to manage the media of a session, SIP interacts with other protocols at the 
session layers, as shown in Figure 2.1. It is designed to collaborate with protocols such as 
RSVP for reserving network resources [Braden97], Real-time Transport Protocol (RTP) 
for transporting real-time data [Schulzrinne03], which is augmented by the RTP Control 
Protocol (RTCP) for providing feedback on QoS levels [Schulzrinne03]. 
SDP is tightly coupled with SIP for describing the multimedia sessions. The SDP 
message body is encapsulated in the SIP messages and carries the information needed for 
QoS negotiations (e.g. to select appropriate media codecs) and charging, and to send the 
RTP packets to the right location. Here is a non-exhaustive list of the information 
available at SDP: 
• time(s) the session is active; 
• information in order to receive data correctly (addresses, ports…); 
• the transport protocol (UDP, RTP, H.320…); 
• information about the bandwidth to be used for the session; 
• the type of media (video, audio…); 
• the format of the media (H.261 video, MPEG video, G.711 voice …). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.1, SIP protocol stack 
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2.2.3. SIP Entities 
The basic SIP architecture is based on the client-server paradigm. Its main entities are the 
user agents, the SIP gateway, and the proxy, location, redirect and registrar servers. 
• A user agent (UA), or SIP endpoint, contains both a client function and a server 

function. These two functions are respectively (1) the user agent client (UAC), which 
initiates the SIP requests and (2) the user agent server (UAS), which generates the 
correct responses.  

• A SIP gateway provides a SIP architecture with the necessary interfaces to connect to 
external networks utilizing different transport/signaling protocols (e.g. SS7 [ITU93] 
or PSTN).  

• A proxy server receives requests, determines which server to forward them to, and 
then forwards them possibly after modifying some of the headers. A proxy is different 
from a user agent as the former does not issue requests itself. 

• Redirect servers only respond to clients’ requests and indicate—typically, to a proxy 
server—the next server to contact. 

• The location server consists of a database that stores the current locations of users 
when they register (at the SIP level). The database can then be interrogated (e.g. by 
redirect servers) to provide the current address information of users. 

• Registrar Servers are in charge of registering SIP entities by storing the registration 
information (entity’s SIP addresses and the associated IP addresses) in a location 
server. 

Figure 2.2 illustrates an example of SIP architecture where the SIP servers and a few user 
agents are deployed in the same IP network. Note that the SIP servers can be deployed in 
different networks. Other user agents can access the SIP services from external networks 
via a router (IP networks) or a gateway (fixed telco systems). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.2, SIP architecture 
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2.2.4. SIP Messages 
SIP is a transactional protocol; a transaction corresponds to a request, optional 
provisional responses, and a final response. 

SIP Requests 
Among the several types of SIP requests, the most important are the REGISTER, 
INVITE, ACK, BYE, and CANCEL transactions: 
• The REGISTER request is used by a user agent to notify a SIP network of its current 

IP address(es) and the possible URIs at which it can receive calls.  
• The INVITE transaction is used to establish media sessions between user agents. 

Success responses (cf. next subsection) to INVITE requests are always acknowledged 
back with a final ACK request (i.e. from UAC to UAS).  

• ACK is used to acknowledge the response to an INVITE request. It confirms that the 
caller has received the success response to its INVITE request and that the call can 
start.  

• The BYE request is used to terminate sessions. It can only be sent any user agent 
participating in the session, never by proxies or other third parties.  

• The CANCEL request cancels a pending request from another transaction but cannot 
affect completed transactions. A request is considered pending if the server side has 
not issued a final response yet; otherwise, the request is completed. CANCEL 
requests can be issued either by any user agent.  

 
A SIP session is defined by the sequence of SIP transactions and application level 
communications within the time interval between the successful completion of an 
INVITE transaction and the terminating BYE transaction. 

SIP Responses 
A SIP response is a message generated by a UAS or a SIP server to reply to a request sent 
by a UAC. The different classes of SIP responses are listed in Table 2.1. A provisional 
response can provide information about the current status of a transaction, while a final 
response ends a transaction, whether it is successfully completed or not. 
All SIP responses are listed in Appendix A.1. 
 

Table 2.1, SIP response classes 

 

Example Meaning 

180 Ringing 
200 Success 
302 Moved temporarily 
401 Unauthorized 
502 Bad gateway 

600 Busy everywhere 

Class Description Response 

1xx Informational Provisional 
2xx Success Final 
3xx Redirection Final 

4xx Client error Final 

5xx Server error Final 
6xx Global failure Final 
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SIP Headers 
There are four types of SIP headers: general headers, request headers, response headers 
and entity headers. 
• The general headers are all the required headers in a SIP message. General headers 

can be present in requests and responses. These headers are created by user agents 
and cannot be modified by proxies. 

• The request headers allow the client to give the server some additional information 
about the request and about the client itself. 

• The response headers allow the server side to add information about the response. 
• The entity headers provide information about the message body.  
All the SIP headers and their definitions are available in Appendix A.2. 
 

2.2.5. SIP Mechanisms 

Addressing 
UAs are reached with their SIP addresses, which are identified by SIP URIs in the To, 
From, and Contact headers.  
A SIP URI has the following format ‘sip:user@host’, where the user part is a username 
or a telephone number and the host part is either a domain name or a numerical network 
address. In many cases, users’ SIP URIs can be guessed from their email address. 

Routing and Locating SIP Entities  
SIP messages are routed from one SIP entity to the next on the E2E path between UAC 
and UAS. This means that each SIP entity attaches a new IP header before forwarding the 
SIP message to the next intermediate SIP hop.  
When a UAC sends a request to the SIP URI of a UAS, the first SIP node contacted is 
usually a pre-configured proxy in UAC’s domain. This proxy is in charge of forwarding 
the request to a proxy in UAS’s domain and the latter finally forwards the request to the 
UAS. In case a SIP node does not know about the IP address(es) currently mapped to the 
SIP URI of a UAS, it can interrogate a redirect/location server that will return a list of 
plausible networks or specific IP addresses where to find the SIP entity. The location 
server updates this information from static lists (e.g. for proxy servers locations) or 
during user registration procedures (a UA registers its current IP address(es)).  

Changing a Media in an Existing Session 
During a session, a UA may want to change the media transmitted or other session 
parameters. This is done by re-issuing an INVITE request, so-called re-INVITE. This 
request uses the same Call-ID as the ongoing session, but carries the new set of 
parameters to be used. 

SIP Mobility and Fault Tolerance 
SIP also provides means for fault tolerance and several types of mobility. They are 
addressed respectively in Chapter 3 and Chapter 6. 
 
  



 38 

2.2.6. SIP Session Example 
A SIP session example is shown in Figure 2.3. In the depicted scenario, the UAC initiates 
a SIP session and sends the INVITE request to its proxy server first. Here, it is assumed 
that the proxy server already knows from the SIP URI—put in the To header of the 
INVITE by the UAC— which actual IP address the INVITE request should be forwarded 
to; this is the case for instance when the proxy server has previously forwarded a request 
to this specific UAS on behalf of another UAC. If the proxy server did not know the 
current IP address of the UAS, it would have to request this information from a location 
server. When the UAC receives the 200OK response from the UAS, it immediately sends 
the final ACK back and the two endpoints can start: 
• interacting directly at the SIP level, i.e. without contacting intermediate proxy 

servers; 
• exchanging data packets at the application level. When data packets are exchanged, 

the SIP layer is not involved in the communications; other session layers such as RTP 
might be involved though, e.g. to provide QoS support to IP packets.  

When any of the UAs wants to terminate the session, it initiates a BYE transaction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.3, Simple example of original IETF SIP session 
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IMS-specific SIP transactions are different than in the IETF SIP setting (c.f. Section 
2.3.3), and the IMS defines a different set of signaling servers, the CSCF servers. 
 

INVITE
180 Ringing 

200 OK

Data Traffic

BYE
200 OK

ACK

INVITE
180 Ringing 

200 OK

UAC  UAS
Proxy 
Server 



 39 

2.3.1. The IMS Architecture 
The basic IMS architecture consists of three different types of CSCF servers [3GPP02a] 
plus an additional supporting database: 
• Home Subscriber Server (HSS) is the integrated database that consists of a location 
server, which stores information on the location of users, and a profile database, which 
stores security and service profile information about subscribed users. 
• Proxy CSCF (P-CSCF) is the server initially contacted by the SIP devices. All SIP 
requests are sent from the client to a P-CSCF first. The P-CSCF is usually associated to a 
Policy Control Function (PCF)—see next subsection—that interacts with the access 
router to apply operator’s access control policies to each bearer in the access network. 
The  
P-CSCF controls the access network, while being detached from the access network. 
• Interrogating CSCF (I-CSCF) acts as first contact point from/to other IMS networks 
and has the additional task of selecting an appropriate S-CSCF with the help of the HSS 
during a user IMS registration. 
• Serving CSCF (S-CSCF) is mainly responsible for managing user profiles and the call 
states. It performs service control and assists the billing functions by maintaining 
charging states. Furthermore, it provides interfaces to application servers.  
 
Figure 2.4 illustrates an IMS providing control to UMTS access networks and it shows 
that the IMS can be deployed remotely from the UMTS ANs so long as they are 
connected across the Internet. Outside the UMTS, signaling flows always go via a P-
CSCF before reaching the IMS. Note that after contacting the IMS for registration 
purposes, a UE’s signaling messages can be routed directly from the P-CSCF to the S-
CSCF, shortcutting the I-CSCF.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.4, UMTS+IMS architecture 
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A stateless server is an entity that does not maintain any state of the ongoing sessions or 
transactions when it processes SIP messages; it simply forwards each request and 
response it receives. A transaction stateful server is an entity that maintains states for the 
duration of a transaction only (e.g. when forking a request to several destinations). A call 
stateful or session stateful, server retains the global state of a session from the initiating 
INVITE transaction to the terminating BYE transaction. In common implementations, the 
session state is updated after the (successful or failed) completion of a transaction. 
Even though this functional aspect is left open in the IMS specifications and is therefore 
implementation-specific, some CSCF servers may need to maintain states. This is at least 
mandatory at the S-CSCF, e.g. for billing and for failover purposes—in order to pick up 
the session at a backup S-CSCF with the same session settings and in the same state as 
when the session was before the active S-CSCF failure. 
 

2.3.2. IMS Control Functions in UMTS  
The UMTS specifications define all the necessary interfaces in order to apply in the 
access network the control policies negotiated during the IMS session setup phase. When 
a UE wants to send packets through a UMTS AN, it must activate a PDP context. This 
creates a PDP context data structure in the SGSN that the user is visiting and the GGSN 
serving the access point. A PDP context contains information about the session such as 
UE IP address, QoS parameters, Tunnel ID (i.e. routing information), etc. PDP contexts 
allow for QoS differentiation of IP traffic in the UMTS by using independent UMTS 
bearers. 
For IMS services, at least two PDP contexts are created for each UE. The first PDP 
context allocates resources dedicated to the SIP signaling flow. The other PDP contexts 
are created on request for each active media stream the UE is participating to, with their 
respective resource reservations.  
In the following, we describe the IMS functions and corresponding entities that are 
involved in access and session control in the access network. 

Policy Control Architecture 
Figure 2.5 shows the different entities that participate in access and session control.  
• SGSN (Serving GPRS Support Node): The SGSN performs the necessary functions 

in order to handle the packet transmission to and from the UE, including mobility 
support within the operator domain (i.e. micro mobility). 

• GGSN (Gateway GPRS Support Node): The GGSN is the network element 
connecting the UE to the external network. The GGSN contains a PEP to enforce 
policies. It also contains a UMTS BS Manager for handling resource reservation 
requests from the UE (e.g. through PDP context signaling). 

• UMTS BS (Bearer Service) Manager: The UMTS BS Manager handles resource 
reservation requests from the UE during the PDP context activation procedure. 

• PEP (Policy Enforcement Point): The PEP is a logical entity that enforces in the 
UMTS AN the policy decisions made by the PCF. 

• PCF (Policy Control Function): The PCF is a logical policy decision element which 
implements policies in the IP media layer. The PCF makes decisions in regard to 
network-based IP policy using policy rules, and communicates these decisions to the 
PEP in the GGSN via the standard Go interface for PDP contexts setting. 
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Fig. 2.5, Policy control model for UMTS 

 

Access Control 
The access to IMS services is granted after a UE successfully completes sequentially the 
following steps: 
• GPRS Attach procedure: during this procedure (see Section 6.5 in [3GPP04b]), the 

UE connects to the UMTS services by authenticating itself, updating its location 
information in the UMTS AN and creating a security association up to the SGSN. 

• PDP context activation: the PDP context creates a logical connection between the UE 
and the GGSN that has its specific QoS settings and is used exclusively for signaling 
purposes (see Section 9.2.2 in [3GPP04b]). Upon completion, the UE gets a P-CSCF 
IP address(es) and can then start contacting the IMS. 

• SIP REGISTER transaction: the UE has to be authenticated by the IMS and does so 
with the REGISTER transaction (Section 5.2.2.3 in [3GPP02a]).  

 
The UE is now able to request the setup of multimedia setup by calling the IMS/UMTS 
service and session control functions. Note that if a UE’s profile does not allow it to be 
authenticated or authorized (typically when roaming in a visiting network or when the 
account is out of credits), no further operations are possible as no IP bearer is created. 

Service Control and Session Control  
The PCF is the logical entity co-located with the P-CSCF that enables general policy 
control over IP bearer resources and SIP services to evolve separately in the UMTS 
UTRAN and PS-CN. This logical policy decision element uses standard IP mechanisms 
to implement Service-based Local Policy (SBLP) in the bearer level. Its task is to enable 
the coordination between events in the SIP session level and access network resource 
management by authorizing QoS requests based on the user’s profile. The PCF 
communicates with the GGSN via the Go interface to transfer information and policy 
decisions (following the COPS framework [Durham00]). Therefore, the GGSN is the 
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policy enforcement point for Service-based Local Policy control. The QoS level 
authorized by the PCF applies only to a specific media stream, which is defined by a 
unique PDP context in the UMTS. Here is some of the information that can be sent to the 
GGSN from the PCF: 
• Destination IP address, 
• Destination port number, 
• Media type information, 
• Bandwidth parameter. 

PDP Contexts Differentiation 
In UMTS, when packets are delivered over the air interface, a packet filtering function 
operates using a TFT (Traffic Flow Template), which is located at the GGSN and is 
established when configuring the radio bearer. A TFT classifies incoming packets from 
external networks into proper PDP contexts. In other words, the TFT filters the incoming 
packets received at the GGSN and selects the appropriate PDP context. The TFT hence 
specifies the profile of the data that should be carried by the radio bearer. A TFT can 
contain the following data: 
• Source IP address, 
• Destination port range, 
• Source port range, 
• IPsec Security Parameter Index (SPI) 
• Traffic class 
• Flow label 
 

2.3.3. Complete Standard Service Provisioning Operations Sequence 

From L2 Connectivity to IP and SIP Connectivity 
Before a UE can access IP-based communications with external nodes, the legacy UMTS 
layer 2 (L2) mechanisms have to be performed. After gaining connectivity on the UMTS 
air interface, the UE triggers the GPRS Attach procedure in order to establish a logical 
connection in the UMTS IP core, up to the SGSN, and to set security functions. 
With respect to multimedia service provisioning, the most important is the primary PDP 
context activation, which provides the UE with an IP address, extends the connection 
from the UE to a GGSN, which is in charge of managing the access to external IP 
networks, and allocates a dedicated P-CSCF that forwards all SIP messages from or to 
this UE. Ultimately, the primary PDP context is intended to act as a signaling bearer 
through the UMTS UTRAN and PS-CN, i.e. the primary PDP context is used for 
SIP/IMS signaling only and additional PDP contexts should be created for each media 
flow (see next subsection). Thus, the primary PDP context activation request includes 
information about the desired level of QoS that the UE-GGSN tunnel should guarantee 
for signaling traffic. If allowed by the operator, a general PDP context can be created 
instead that carries both signaling and data traffic.  
In terms of UMTS security, UE and access network are mutually authenticated during the 
GPRS Attach procedure with the Authentication Key Agreement (AKA) procedure 
[3GPP00] and security associations are created to secure the path between UE and SGSN.  
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After the UE has obtained IP connectivity, it should register at the SIP level (REGISTER 
transaction) to be IMS-authenticated, to set security associations with the IMS, and to 
update its location information at the HSS (e.g. for future incoming calls). Both UMTS 
AKA and IMS AKA authentication procedures are explained in detail in [Zhang06]. Note 
that the P-CSCF maintains a security list that defines the range of IP addresses authorized 
for the REGISTER. 

Multimedia Session Setup 
The actual trigger for a multimedia session setup is the SIP INVITE transaction. Figure 
2.6 shows in detail the whole INVITE message flow as defined by 3GPP. During this 
extensive message exchange, the UE initiates a new session whose media parameters are 
negotiated in UEA‘s and UEB‘s respective AN in order to activate the so-called UMTS 
data bearers. During this procedure, the E2E signaling allows for E2E QoS provisioning; 
the IMS defines the procedures to guarantee QoS in the UMTS and provides the 
necessary interfaces for QoS reservation in the Internet (out of scope in this thesis). 
 
 

 
Fig. 2.6, IMS session setup flow [Kim03] 

 
First, the two endpoints (UEA and UEB) negotiate the QoS level they require for the 
multimedia session with SDP content descriptions that are included in the body of the SIP 
messages (Messages 1-2). When Message 2 reaches the P-CSCF, the PCF authorizes the 
resources requested by the users, based on the user’s subscription profile, and adds a 
Media Authorization Token (AuthToken) in the 183 SIP message (cf. ‘TG’ in the figure). 
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AuthToken is used to identify the PCF that authorized the resources requested by the UE. 
As long as the AuthToken lifetime has not expired, the UE can reuse this token in 
subsequent secondary PDP context activation requests it addresses to its GGSN. Based 
on this information, the GGSN retrieves the PCF identity and uses COPS over the Go 
interface to authorize the required resources from the PCF. Then, the PCF makes sure 
that the resources requested were authorized for this particular UE. After receiving 
confirmation from the PCF, the GGSN allocates the resources in the access network by 
activating one secondary PDP context for each media stream. The next messages 
(Messages 5-11) are exchanged to set the filtering functions implemented at the GGSN, 
namely the TFT and SBLP filters. TFT dispatches incoming packets to their respective 
PDP context based on the source address and SBLP is used to block outgoing and 
incoming packets whose destination addresses were not included in the PDP context 
negotiation. 
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3. Fault Tolerance – State-of-the-Art 
 
 
 
 
 
As motivated in Chapter 1, this work focuses on IMS services and the necessary means to 
make them more dependable. In this chapter, the background on fault tolerance 
techniques for communication networks is presented, with the emphasis on redundancy, 
namely server replication, as the main solution to handle node crash faults and link faults. 
‘Replicating’ and retransmitting requests is another technique that can prove effective 
against short-term faults (e.g. bursty server or network overload). The two main 
architectures to manage server replication, namely distributed- and cluster-based 
replication, are thoroughly described. Finally, an integration/mapping scenario of these 
two solutions into the IMS is proposed. 
 
 

3.1. Fault Tolerance Schemes Overview 
Fault tolerance is the ability to avoid service failures in the presence of faults. This ability 
usually relies on error/failure detection and system recovery, which can both be provided 
at several layers of the protocol stack. Some protocols of the protocol stack implement 
their own standard fault tolerance solutions; others do not offer any means to hide failures 
to the end-user: e.g. at the transport layer, UDP only provides transport functions while 
TCP additionally supports congestion control. 
Here is a summary—layer by layer—of the fault tolerance solutions implemented at the 
most commonly used communication protocols in the TCP/IP model. 
 

3.1.1. Fault Tolerance at Layer 2 
Fault tolerance at layer 2 is implemented by link technologies and aims at detecting and 
correcting erroneous bits in the frames sent over a link. The frames are checked and 
potentially corrected at every single-hop. Note that these techniques are especially 
relevant for wireless links, since wireless channels are particularly prone to bit 
errors/corruption because of noise/interferences, and maintain data integrity to the upper 
layer functionalities. 
The most common bit error detection mechanisms rely on a piece of redundant 
information to validate the information integrity and examples include parity bit check 
and Cyclic Redundancy Check (CRC) [Peterson71].  
To cope with corrupted information in a frame, the receiving side may have two options: 
• Forward Error Correction (FEC) employs error correcting codes at the sender side so 

that the receiver can correct bit errors. One way of doing FEC is to add redundant 
parity bits at the sender side, and these parity bits are then used by the receiver to 
detect and correct errors. The extent to which a FEC scheme impacts the system 
performance highly depends on the amount of redundant bits. The more redundant 
bits appended to the original data, the more error bits in a single packet can be 
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corrected. Even though this technique induces overhead, the fact that fewer frames 
are corrupted also means that fewer retransmissions occur (see next point). In most 
scenarios, this translates into better overall goodput than when FEC is not 
implemented. 

• Automatic Repeat reQuest (ARQ) is used to detect bit errors and trigger Layer 2 
retransmissions (i.e. only over the link where the error was introduced)—the trigger 
can be a timeout or a request sent by the frame receiver. Compared to FEC, ARQ is 
simple and achieves reasonable throughput when the channel error rate is not very 
high, i.e. when few retransmissions are triggered. However, ARQ quite often leads to 
longer E2E transmission delays due to the additional time of retransmissions. 
Motivated by this observation, Hybrid ARQ (HARQ)—the combination of FEC and 
ARQ—was developed, where ARQ is only used when an error has been detected in 
the received frame that cannot be corrected by an error correction scheme at the 
receiving side. More advanced implementations of HARQ can also reuse erroneous 
packets to rebuild the correct info when receiving retransmitted packets. 

 
3.1.2. Fault Tolerance at Layer 3 

As opposed to the fault tolerance techniques at Layer 2, fault tolerance at Layer 3 mainly 
deals with relatively long-term errors due to link breakage caused by (physical) link 
failures and network topology changes.  
Depending on the type of routing protocol, different fault tolerance techniques should be 
considered. For unicast communications, fast rerouting (see e.g. [Shand07]) and multi-
path routing are two example techniques. Fast rerouting addresses the problem of finding 
an alternative route to a broken route; in multi-path routing, multiple routes are deployed 
and the traffic can be selectively sent over a specific route in order to increase 
dependability when other routes are highly prone to errors. For broadcasting, the problem 
is about achieving the right balance between reliability and efficiency. Examples of 
dependable broadcasting techniques are analyzed in [Liu07].  
Layer 3 can also make use of multi-homing, which makes a node reachable via different 
IP addresses, possibly obtained from different networks. This allows for even more route 
diversity and independence to network failures as compared to the multi-path routing 
scheme. L3 multi-homing is implemented by several standardized protocol and protocol 
extensions: Multihomed Mobile IP (M-MIP) [Åhlund03], Hash Based Addresses (HBA) 
[Bugnalo07], and Host Identity Protocol (HIP) [Moskovitz07]. 
 

3.1.3. Fault Tolerance at Layer 4 
While Layer 2 starts retransmissions when bit errors are detected on a hop-by-hop basis, 
reliable transport protocols trigger retransmissions when E2E timing failures occur. At 
Layer 4, retransmissions are handled by connection-oriented protocols like Transmission 
Control Protocol (TCP) and Stream Control Transmission Protocol (SCTP) [Stewart00]. 
To do so, the transport protocol at the sending side activates a timeout when a message is 
sent. If an acknowledgment to this message has not been received before the timeout 
expires, the message is suspected to have not reached the receiving side and is resent. 
Retransmission mechanisms for the different reliable transport layer protocols usually 
follow the same pattern: a default value for the first retransmission timer (T0) is set based 
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on the round trip time between the two endpoints and the timer value exponentially 
increases after each retransmission. The retransmissions stop (and the message is 
definitely discarded) when the timer reaches 64.T0 (i.e. seven unsuccessful transmissions 
in total). 
While common timeout techniques implemented at Layer 4 usually address timing 
failures due to network congestion and packet losses, SCTP brings a new perspective by 
addressing network failures thanks to its heartbeating (for failure detection) and multi-
homing (for failure recovery) features. Each SCTP endpoint—when it implements 
multiple network interfaces—uses a primary IP address for communications and a 
secondary IP address as a backup in case of timing failure. This solution provides 
tolerance to physical network interface failures and also provides access diversity if the 
network interfaces are connected to different networks. 
 

3.1.4. Fault Tolerance at Layer 5 and Layer 7 
Layer 5 provides means to negotiate and control communication aspects such as the 
application used (i.e. media type description), the codecs required, etc. SIP is currently 
the most popular session management protocol in the IP world and, like the reliable 
transport protocols, it handles E2E timing failures with the same exponential backoff 
mechanism on a request basis. The SIP timer is an estimate of the round trip time and its 
default value is 500ms but it is recommended it be larger in case of high latency access 
links. The request retransmissions cease upon reception of the appropriate response, or 
after a maximum of seven transmissions of the request. When starting the next 
transaction, the SIP resets the timer to the default time interval. 
At Layer 7, a wide range of applications can be deployed. Each application is specific 
and can implement its own fault tolerance solutions. Layer 7 fault tolerance often uses 
time-based failure detection and data retransmissions (e.g. file transfer [Postel85] or  
e-mail application [Postel82]). Additionally, application crashes are potentially detected 
by the operating system at the node where the faulty application is running, which is then 
restarted [van Moorsel06]. The restart operation is called rollback when the application is 
brought back to the same state as before the restart, or a roll-forward when the old 
application state is lost and the application runs with a new state. In some other failure 
scenarios (e.g. memory leak due to erroneous service/application programming), the 
operating system might restart the whole system. 
 

3.1.5. Motivation for Server Replication in the IMS,  
It is crucial to minimize SIP and IMS node failures because they impact the user 
experience. When initiating a phone call or changing some parameters of an ongoing 
session, SIP mechanisms are invoked; if these procedures cannot be completed, a phone 
call cannot be initiated or the parameters of an ongoing session cannot be changed, even 
though the application (running on top of SIP) is operational. 
All the standard fault tolerance solutions introduced so far mainly deal with 
communication aspects and re-attempt to reach the next hop (L2) or network (L3), or the 
other endpoint (L4, L5, L7) when the respective layer suspects that the communications 
are not performing as expected. This approach, despite being beneficial to the system 
dependability, covers only partially the fault spectrum. E.g. when an endpoint undergoes 
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a halt failure, the seven SIP request transmissions will not help as the endpoint is not 
likely to be brought back up during the overall time interval covered by the seven 
timeouts. In this case, multiplying the routes to the failed entity is not the answer either. 
To offer timely service provisioning to the users, backup servers should be available to 
take over the tasks of a failed server(s), whether the service is interrupted because of a 
complete server failure (the machine does not respond) or a partial failure (the machine 
can communicate, e.g. up to the SIP layer but the application is deadlocked). The usage 
of backup resources is referred to as redundancy, or replication. 
Consequently, replication frameworks are investigated in this work in order to mask IMS 
server failures. In the following sections, the background on server replication techniques 
is given, followed by a discussion on the model for integrating the IMS and replication 
platforms.  
 
 

3.2. Server Replication Paradigms 
Redundancy deployment has been one of the most commonly used techniques to provide 
dependability in many industrial areas such as control of production lines and automotive 
industry. In communications networks, crucial system components can be ‘replicated’ for 
dependability and load-balancing purposes. Those components are called peer replicas. 
Typically, multiple server nodes (or processes) that implement the same service are 
deployed so that big computational tasks can be broken down into smaller tasks, each 
allocated to a replicated server, and when one instance of the processes/servers crashes, 
its load can be switched over to another, or several other, peer replica(s) in the given 
system. All the replicated servers form together what is called a server set, or server pool. 
There exist two main paradigms to implement server replication in communication 
networks, namely the cluster approach and the distributed server approach. These two 
solutions are mainly aimed at increasing dependability, but they can alternatively be used 
to increase the capacity of a system by increasing the available computational resources 
(which in turns also favours availability).  
Deploying redundant servers in so-called clusters has been widely applied for dependable 
service provisioning. Clusters provide a single image system to the clients, i.e. clients see 
the cluster as a single server and they are not aware of the internal structure of the cluster. 
The cluster paradigm is implemented in the middleware—between the transport layer and 
the application layer in the protocol stack—and the server set is traditionally deployed in 
the same subnetwork (i.e. in LANs). The Resilient Telco Platform (RTP) [FSC03] is an 
example of a recent commercial cluster solution. In the past few years, an alternative 
approach has emerged that relies on distributing the redundancy over different networks. 
This is not a requirement though and peer servers can be connected to the same network. 
As opposed to the cluster case, distributed server replication moves part of the failure-
detection and failover functionalities into the client. IETF standardized the distributed 
Reliable Server Pooling (RSerPool) protocol suite at Layer 4/Layer 5 [Lei07]. 
Both the RSerPool and RTP schemes are introduced in detail in Sections 3.2.2 and 3.2.3 
respectively. 
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3.2.1. Requirements for Redundant Systems 
Providing dependability requires mechanisms that theoretically hide the impact of all 
system faults to the end user. Therefore, the main challenge is to achieve a seamless 
transition from the faulty state of a system to its correct state. After a fault occurs at any 
component of the system, an operational component should transparently take over the 
functionality of the failed one and the fault tolerant mechanisms should be executed as 
transparently as possible from the end user’s perspective. Note that this requirement 
holds even when the fault(s) occurs during ongoing communications/sessions, which 
makes the requirement even more challenging. To be fault tolerant, a redundant system 
should implement the following crucial services—the first two functions are only 
required for stateful servers, i.e. servers that manage states: 
 
• State-sharing algorithms (SSA): the active server regularly replicates the states 

related to ongoing communications to the set of peer servers deployed in the system. 
The SSA service consists in managing and maintaining the states among the server 
pool so that an incoming state read request returns ‘correct’ state information 
according to the requirements imposed by the service/application that requested the 
state read. Therefore, SSA should encompass state commitment (i.e. correctly update 
the state) and state access (i.e. read the correct state values) mechanisms.  

• Dissemination protocol (DP): the dissemination protocol is the transfer mechanism 
of the state-sharing algorithms and its task is to communicate and distribute state 
updates to all peers that belong to the server set (c.f. [Bozinovski02] for a comparison 
of dissemination protocols for replicated IMS servers). 

• Fault-detection mechanism (FDM): fault detection is essential for efficient fault-
tolerance as it is responsible for providing information about the state of the system to 
the recovery mechanisms. The failure detection should be as fast as possible in order 
to allow for prompt recovery strategies but the faster the failure detection, the less 
accurate. Therefore a compromise should be maintained between short faulty system 
state and potentially costly false alarms due to inaccurate failure detection.  

• Failover mechanism (FM): when a fault or failure is detected, the recovery 
mechanism triggers what it thinks is the appropriate recovery mechanism. The 
recovery mechanism supported in a replicated server set is a so-called failover. Its 
task is to switch the service provisioning to an active server within the server set 
according to the deployed server selection policy. 

• Server selection policy (SSP): it defines the next candidate server(s) in case of 
failover. SSP is similar to load-balancing in the sense that for every request, the load-
balancing policy determines which process the request should be allocated to. As for 
load-balancing, the SSP can be round robin, weighted round robin, backup, persistent 
backup, least used, most used, etc. The SSP function requires access to the list of all 
the active servers in the server set. This list can be (1) statically configured or, (2) 
dynamically obtained and updated. The first option is simpler to implement, but there 
is a major drawback: in systems with frequent dynamic reconfigurations of the server 
set (registration/de-registration and node failures) the list quickly becomes obsolete 
and not representative of the active servers in the set, which lowers dependability. 
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3.2.2. Distributed Servers Paradigm, RSerPool 

RSerPool Architecture  
The goal of RSerPool is to provide the architecture and protocols for management and 
operation of server pools supporting highly available and reliable applications within the 
Internet, and for client access mechanisms to these server pools. An important 
characteristic of distributed architecture like RSerPool is that the peer servers can be 
deployed anywhere in IP networks, even in different subnetworks.  
 
Figure 3.1 depicts the RSerPool architecture and its logical functions. Servers that 
implement the same service are called pool elements (PE) and form a pool that is 
identified by a unique pool handle (i.e. a pool identifier). The users of a server pool are 
referred to as pool users (PU). A third party entity, called name server (NS), or ENRP 
server, is in charge of registering/de-registering PEs, monitoring the pool by keeping 
track of the PEs’ status, and to help the PUs know which PEs the requests can be sent to.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.1, RSerPool architecture for one pool server, where NS1 is the default name server 
and NS2 acts as a backup; NS2 can be the main name server of another pool. 

 

RSerPool Protocol Stacks and Functionalities Overview 
Fault-tolerance in RSerPool is based on two novel protocols: Endpoint Name Resolution 
Protocol (ENRP) [Stewart06b] and Aggregate Server Access Protocol (ASAP) 
[Stewart06a]. IETF also selected SCTP to be an underlying transport layer protocol for 
RSerPool. This means that SCTP is used as the transport protocol for all RSerPool 
signaling, i.e. all messages that carry ASAP or ENRP content.  
The protocol stacks for each RSerPool entity are shown in Figure 3.2. Note the two 
protocol stacks for the PU and PE at the transport layer: the left side shows the transport 
protocol for data packet transmissions—typically UDP, but it could be any transport 
protocol; the right side shows ASAP and SCTP, the protocols used for the RSerPool 
signaling packets. The name server function only implements RSerPool-related services 
so it does not implement several transport protocols or an application.  

ENRP

PE1 PE2 PE3

PU PU PU 

NS2

NS1

ASAP (for PE status monitoring)

ASAP (for name resolutions) 

Server 
Pool 

Application protocol 



 52 

 
 
 
 
 
 
 
 

Fig. 3.2, Protocol stacks in the RSerPool architecture 

 
PUs use ASAP to request name resolutions from the NS, i.e. the translation of a pool 
handle into a set of PEs’ transport addresses (IP addresses and port numbers). In 
RSerPool, ASAP achieves similar services to DNS. As opposed to DNS, which translates 
a domain name in a single IP address, ASAP replies back with a set of transport 
addresses and a suggestion for a server selection policy. Then, the PU can keep the 
information obtained from the NS in a cache and use it later for choosing a server when 
sending future requests. ASAP is also responsible for fault-detection. 
ENRP defines the procedures and message formats of a distributed, fault-resilient registry 
service for storing, bookkeeping, retrieving, and distributing pool membership 
information. Thus, ENRP communications between name servers are mainly used to 
disseminate the status of PEs and to share their knowledge about all server pools. 
Because a PE can belong to more than one pool at a time, this is needed to make sure that 
the information is consistent and up-to-date in every pool. 

RSerPool Fault Tolerance 
• State-sharing: [Tuexen02] requires that the name servers should not resolve a pool 

handle to a transport layer address of a PE that is not in operation. Thus, name servers 
share information about the current status of all the pools they monitor. This allows 
other name servers to act as backups when PUs’ home name server fails and always 
keep the name service available. Details about how name server fault-detection and 
name server failovers are performed can be found in [Stewart06b]. 
Note that the requirements for high availability and scalability defined in RSerPool do 
not imply requirements on shared state. ASAP may provide hooks to assist an 
application in building a mechanism to share state (e.g. a so-called cookie 
mechanism), but ASAP in itself will not share any state between pool elements. 

• Fault-detection: Data loss detection is enabled in SCTP by numbering all data 
chunks in the sender with the so-called Transport Sequence Number (TSN). The 
acknowledgements sent from the receiver to the sender are based on these sequence 
numbers: each received SCTP packet is acknowledged by sending a Selective 
Acknowledgement (SACK) which reports all gaps. The SACK is contained in a 
specific control chunk. Whenever the sender receives four consecutive SACKs 
reporting the same data chunk missing, this data chunk is immediately retransmitted. 
Retransmissions are timer-controlled. The timer duration is derived from continuous 
measurements of the round trip delay. Whenever such a retransmission timer expires, 
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(and congestion control allows transmissions) all non-acknowledged data chunks are 
retransmitted and the timer is started again doubling its initial duration (like in TCP).  
Another interesting feature of SCTP is the support of heartbeat messages to monitor 
the reachability of far-end transport addresses. An SCTP instance monitors all 
transmission paths to the other endpoint of the SCTP association. To this end, 
HEARTBEAT chunks are sent over all paths which are currently not used for the 
transmission of data chunks. Each HEARTBEAT chunk has to be acknowledged by a 
HEARTBEAT-ACK chunk. The number of events where heartbeats were not 
acknowledged within a certain time, or retransmission events occurred is counted on 
a per-association basis, and if a certain limit is exceeded (the value of which may be 
configurable), the peer endpoint is considered unreachable, and the association will 
be terminated.  
ASAP has monitoring capability to test the reachability of PEs. When detecting a 
failure at the ASAP layer, the ASAP endpoint should report the unavailability of the 
specified PE by sending an ENDPOINT_UNREACHABLE message to its home NS. 
When the unavailability of a PE is detected at another layer, it should be reported to 
the ASAP layer via the Transport Failure Primitive. 
Each PE is supervised by one specific name server, called the home NS. Home name 
servers specifically "audit" their PEs by periodically sending unicast 
ENDPOINT_KEEP_ALIVE messages at the ASAP layer. The NS sends this message 
to the PE as a “health” check. E.g., in the case when the transport level heartbeat 
mechanism is insufficient (usually this means that time outs are set too long or 
heartbeats are not frequent enough), the ASAP layer mechanism increases the probing 
frequency. The goal is to determine PEs’ health status in a more timely fashion. The 
ENDPOINT_KEEP_ALIVE_ACK message is sent by the PE to the NS as an 
acknowledgment to the ENDPOINT_KEEP_ALIVE message. 
Using ASAP keep-alive messages also has additional value to the accuracy of SCTP 
fault-detection. While SCTP level heartbeats monitor the end-to-end connectivity 
between the two SCTP stacks, ASAP keep-alive messages monitor the end-to-end 
liveliness of the ASAP layer above it. This level of fault-detection implies that 
failures at the application layer at the PE cannot be detected, unless the application 
also implements a fault-detection mechanism on its own. Section XX investigates 
fault-detection at the application layer in the RSerPool architecture. 

• Failover: The SCTP protocol is selected to be the underlying protocol for RSerPool 
due to its multi-homing capability, i.e., support of multiple IP addresses per host. 
Using this feature enables strong survivability in face of communication path failures, 
by making SCTP-enabled nodes accessible via several paths. When it detects a fault 
on the primary path, SCTP switches the communication over to the secondary path 
between the two endpoints.  
If a PE is found unreachable, ASAP can automatically select another replica in the 
pool and attempt to deliver the message to this particular PE. In other words, ASAP is 
capable of transparent failover amongst application replicas in a server pool. 
Practically, once the PU realizes about the failure, it can start the failover mechanism 
by looking in the PE list cached locally or trigger another name resolution to get an 
updated list from the NS. Then, the PU picks a new PE in this list and starts 
communicating with it. When using the cached list, the failover can be done as soon 
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as the fault is detected, but with some probability that an unavailable server is 
selected; a repeated name resolution on the other hand increases the chance to request 
the service to an active server but also increases the failover time. 

 
3.2.3. Cluster Paradigm, RTP 

RTP Architecture 
The Resilient Telco Platform (RTP) is a middleware platform for developing dependable 
telecommunication applications. RTP is based on a cluster concept, which consists of 
several nodes which are linked together via a cluster interconnect that usually is made of 
simple cross-connect LAN cables. One of the primary objectives of the Resilient Telco 
Platform is to provide the application programmer with a single system image by using a 
unique external communication interface. The physical and software architectures of RTP 
are illustrated in Figures 3.3 and 3.4, respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.3, Physical architecture of the Resilient Telco Platform [FSC03] 

 
 

 
Fig. 3.4, Software architecture of the Resilient Telco Platform [FSC03] 
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Super Node Manager 
The super node manager starts and stops the individual subsystems on the local nodes. 
After successful startup, it monitors them. There are two monitoring methods: 
• The subsystems report themselves when they are in “serious” difficulty via “reliable” 

channels; 
• Using health checks, the super node manager detects when a subsystem, which does 

not react as expected, enters an undefined state. 
The super node manager then attempts to correct the error situation. This takes place in 
two stages: 
• Local recovery, e.g. local restart of a subsystem; 
• Node shutdown. 
The super node manager works together with the operating system to detect the failure of 
another cluster node and determine the new cluster status (which nodes are currently 
active in the cluster and which are inactive). 

RTP Components 

This section describes RTP components that are of most interest for the IMS-controlled 
services in UMTS networks. 
 
• Node manager and inter-process communication 

The node managers contribute to the cluster-global process management. Thus, a 
node manager needs to run on each cluster node. It is responsible for the management 
of all local RTP processes and their communication facilities. The local process 
management covers automatic process startup, process monitoring, automatic process 
restart, and process shutdown. RTP process management should not be confused with 
the process management of the operating system. A node manager maintains only 
information for processes that have attached to it, and the information is much 
different from what the operating system keeps. All node managers in a cluster need 
to have a common view of all active RTP processes, so that an RTP process from any 
node can easily address and communicate to an RTP process on any other node. Each 
node manager puts addressing and status information of its local RTP processes into 
its share of the cluster-global process table. Any change in the local process 
configuration is immediately distributed to all other node managers in the cluster. The 
validity of the global process table is periodically verified, and consistency problems 
are resolved. 
Although RTP processes may be spread over several cluster nodes, they can 
communicate to each other without having to consider the cluster architecture. The 
communication between RTP processes is handled by the RTP communication layer 
(also referred to as messaging layer or IPC layer). This layer is implemented partly in 
an RTP communication library as well as in the node manager. RTP processes 
communicate to each other via messages. Every RTP message contains a type field as 
a unique message identifier. When an RTP process attaches to the node manager, it is 
provided a queue, on which it will receive messages. The queue is established and 
maintained by the node manager, not by the process that owns it. If a process 
terminates, its queue may continue to exist. In this way, no messages are lost if the 
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process is immediately restarted. The address of an RTP process is simply its logical 
name. Since logical names are unique within the cluster, a sender does not need to 
distinguish between a node-local and a remote destination – the RTP communication 
subsystem will route the message to the receiver by the inspecting the cluster-global 
Process table. 

 
• Context manager 

A context is data stored in memory. Contexts may be used to store "consistency 
points" in order to resume the software after a failure. A consistency point is e.g. the 
current status of a job (typically, a process of the application running over RTP). 
The Resilient Telco Platform works with a process pool that enables a large number 
of jobs to be processed in parallel. Before a process can begin a new job or dialog, the 
context of the old job must first be saved. This makes it possible to continue 
processing the next dialog step of the old job at a later point in time. In our case, the 
context manager will copy the state of the last SIP transaction. 
For performance reasons, instead of storing the context in a database, the concept of 
mirroring (replication) context data on another cluster node has been chosen: one 
node holds the master copy of the context and another one the backup copy.  
In the general case, there is a context manager master process running on a node and 
a backup process running on a different node. To achieve good performance, it is 
recommended that any operation on a context always takes place on the node where 
the master copy is located. Any access to a context from any other node will result in 
a remote access to the master and will therefore impact the performance. 
If the node with the master context manager is no longer available, the backup 
context manager will take over its responsibility. If the node will be available again, 
the master context manager synchronizes its context data with the backup context 
manager and then resumes its old role. 
 
 

 

 
Fig.3.5, Context manager master and backup processes [FSC03] 
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External Communications 

• UDP dispatcher 
The task of the UDP dispatcher is to act as a mediator between the RTP internal 
message system and systems outside of RTP using UDP. It will accept UDP 
datagrams on specified ports, analyze these messages and distribute them to RTP 
client applications according to algorithms implemented in the RTP UDP plugin 
library. Furthermore, it will accept special RTP internal messages from the RTP 
clients and send these messages as UDP datagrams to clients on specified ports. 
The UDP dispatcher process is started by the node manager in multiple instances. 
Each instance has a different logical name and command parameter that defines 
which protocol (MGCP, SIP, etc.) the instance handles. 
 
The RTP client applications must attach to a UDP dispatcher in order to use its 
service. Attaching/detaching means that the RTP client applications call an 
appropriate library function that is part of the RTP core. These library functions 
transparently provide the attaching service using other RTP components. The library 
functions also accept certain input parameters that are needed by the plugin for 
processing the UDP messages, which are handed over to the dispatcher. 

 
• Plugin library 

The UDP dispatcher dynamically loads a plugin library, which is responsible for 
analyzing a raw UDP message and returning key values to the dispatcher. The 
dispatcher uses these values to ensure that messages of a certain type are always 
distributed to the same RTP client application. The name of the plugin library 
depends on the protocol name. 
The plugin library is not part of the RTP core and must be provided by the customer. 
Thus, it can be easily modified (e.g. to handle new protocols). The plugin library must 
provide functions for initializing, establishing, and removing special protocol key 
mappings, and preparing outgoing messages. 

 
3.2.4. Integration of Replication Platforms in the IMS 

Preliminary Discussions 

When integrating a replication platform in the IMS, decisions should be made as to how 
the logical and physical components of the replication platform are mapped into the IMS 
architecture. Those decisions are expected to be influenced by the IMS dependability 
requirements and IMS traffic model.  
Ideally, all IMS entities would be replicated in order to provide optimal fault-tolerance 
and to not introduce any single point of failure in the overall dependable architecture. 
Note this is generally not realistic because it is costly to implement all hardware and 
software components multiple times and such scope of redundancy might flood the 
system with pool management overhead and affect the overall performance. In this work, 
only the S-CSCF is replicated; this is motivated by two main reasons: 
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• Among all IMS processes, the S-CSCF is the most vital one since it is the logical 
function responsible for the negotiation and the granting of access, service and 
session control. 

• The S-CSCF is, with the P-CSCF, the only IMS server used in every signaling flow 
between a UE and the IMS, and between the UE and other UE(s). P-CSCF replication 
is not investigated but similar conclusions as those obtained with S-CSCF replication 
(c.f. Chapters 4 and 5) can apply to the P-CSCF. Also, a solution is investigated in 
Part II to get around failures of single points in the system by deploying macro 
handover support. 

IMS-RTP Integration 

In the RTP case, integration is quite straightforward as the presence of multiple S-CSCF 
servers is hidden to the rest of the system. Therefore, nothing is different compared to the 
case without replication, except that the SIP layer in IMS entities tries to contact ‘the S-
CSCF’ at a virtual IP address instead of the IP address of the physical S-CSCF reached. 
The virtual IP address uniquely represents the cluster and messages sent to this address 
are intercepted and parsed by the UDP dispatcher to send the message to the right S-
CSCF process.  

IMS-RSerPool Integration 

Being the replicated entity, the S-CSCF is naturally equivalent to a PE. The NS has no 
direct equivalent in the IMS so it either be an additional independent server, or collocated 
with an existing IMS server if required by the operator. In the latter case, the HSS is 
probably a good candidate as it is occasionally (at SIP registration time) interrogated by 
other IMS entities the list of contactable S-CSCF servers. The PU, i.e. the RSerPool 
client, would be expected to be implemented in the IMS client as well, namely the UE. 
Nevertheless, one of 3GPP premises is “intelligent core network, simple terminals”, to 
save power consumption in the terminals for instance. Thus, moving the intelligence to 
the access network would meet this premise. Since the P-CSCF forwards all SIP 
messages on behalf of the UE, the former can decide which S-CSCF in the pool the SIP 
messages should be sent to, and trigger retransmissions and failovers. This is the 
approach taken in the rest of the thesis. Note that in this setting, the dependability 
parameters at the UE should be tuned properly so that, e.g., there is no concurrent 
retransmissions of the SIP layer at the UE and the ASAP layer in the PU/P-CSCF. 
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4. Optimal Fault Tolerance Configuration 
with Replicated SIP Servers 

 
 
 
 

4.1. Motivation and Problem Statement 
The main goal of fault-tolerant solutions in communication networks is to increase 
transaction dependability. These solutions often rely on intra- and inter-node failure 
detection and recovery mechanisms that affect the overall performance of the systems 
which they are deployed in. Server replication requires that an entity frequently checks on 
the servers states so that service requests are most likely routed to available servers at the 
first attempt. This is typically done by regularly exchanging heartbeats between the 
servers and the monitoring entity, at the cost of traffic overhead and additional 
computational load in the servers. In RSerPool, the pool state information is even 
communicated to the clients, which is another performance impacting factor. Therefore, 
special attention should be given to maintaining high performance in the systems that 
deploy fault tolerance solutions, at design-time and—if possible—also at run-time by 
fine-tuning the dependability tradeoff according to the current network characteristics. In 
this work, dependability and performance are mainly analyzed from the user’s 
perspective, meaning that the output metrics that are evaluated reflect on how the user 
will perceive the quality of the IMS services both in terms of dependability and 
performance. 
The SIP service selected for this research consists of a single transaction and mimics SIP-
based services such as registration (REGISTER transaction), SIP server capability query 
(OPTION transaction) or the Instant Message service (IM transaction). The latter service 
is similar to a chat service and the text sent by the end-users is carried in the payload of 
the SIP packets. For most of these services, UEs can send requests ‘on-the-fly’, i.e. they 
do not need to preliminarily initiate a session to do so. Two remarks: 
• The notion of reliability cannot be applied to the service considered; once the 

transaction is completed, the service has been successfully provided and cannot fail 
anymore. This means that, in this context, dependability is equivalent to availability 
only. 

• This type of services is very similar to other client-server services such as Internet 
services. Therefore, the results derived from this analysis can be reused for server 
replication applied to dependable Internet service deployment scenarios. 

One of the main impact of node failures and network failures on user-level performance 
is longer transaction completion time—here referred to as service access time (SAT)—
because they cause request retransmissions. Thus, SAT can be minimized if clients 
ideally contact an available server every time they send a request. This can be done only 
if the system accurately suspects which servers are down and quickly notifies the clients. 
Another important performance-related aspect to consider with fault-tolerant services is 
the overall load in the system generated by the service platform. Even though, server 
replication is expected to increase dependability and reduce the number of 
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retransmissions, additional communications are required to support the necessary failure 
detection and recovery functions and it is therefore often the case that the overall load of 
dependable services exceeds that of the non-replicated scenario. Telco systems in general 
and wireless systems in particular, have limited bandwidth and perform worse with 
heavier loads, which in turn slows the end-user service. The goal here is not to analyze 
the impact of the load on the service performance, so only the overall load will be 
evaluated; no existing model was used—or new model derived—in order to map load 
levels into corresponding performance levels. 
The complexity of the system modeled—including fault tolerance, traffic and failure 
models—is too high to compute the output metrics analytically; instead, Möbius 
[Möbius07] is used to model, and simulate, our system. Möbius is a tool that supports 
many formalisms, but was originally designed for stochastic activity networks (SAN) 
[Meyer85], to model communication systems and many other types of systems. 
 
In this chapter, the theory on SAN and Möbius is introduced first. Next, the three output 
metrics, dependability, SAT, and load, are evaluated in the standard SIP scenario for 
different combinations of server and network failures. This gives a reference to 
subsequently evaluate the impact of server replication on the end-user experience. Then, 
the RSerPool-like Möbius model is explained at high-level – the detailed Möbius models 
and code are shown in Appendices B.1, B.2 and B.3. The fault tolerance parameters and 
schemes that can be tuned are presented and qualitatively discussed in order to get a first 
feeling about which are expected to have a bigger impact on the output metrics and 
should therefore be investigated more thoroughly. The most relevant results are shown 
and analyzed in order to draw the first conclusions on which fault tolerance settings are 
more appropriate to specific failure scenarios.  
Because the analysis is based on three output metrics, it is not likely to find a setting for 
which all output metrics values are optimal. Hence, when it comes to selecting a fault 
tolerance setting for a real system, the best tradeoff between the output metrics should be 
selected. The definition of ‘best tradeoff’ is subjective and depends on the requirements 
specific to the system and end-user service. It is discussed how requirements on 
dependability, SAT and load allow to construct a score function that returns a unique 
metric, which quantifies the ‘quality’ of the tradeoff for each setting/scenario. A score 
function example is provided to illustrate how to choose one particular setting in a given 
deployment scenario.  
 
 

4.2. Background on SAN Modeling and Möbius  
As SAN models and the associated Möbius tool made the evaluation of the complex 
RSerPool-IMS system possible, it is crucial to understand the principles behind SAN 
modeling. 
 

4.2.1. Möbius Overview 
Möbius is a software tool for modeling the behavior of complex systems. The first step in 
the model construction process is to generate a SAN model (cf. summary in next section 
or more details in [Meyer85]). The most basic model in the framework is called an 
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atomic model, and is built with state variables and actions: state variables hold state 
information about a model, while actions provide the mechanism for changing model 
states—so-called activities in SAN. 
If the model being constructed is intended to be part of a larger model, then the next step 
is to compose it with other models to form a larger model. This is sometimes used as a 
convenient technique to make the model modular and easier to construct. Although a 
composed model is a single model with its own state space, it is not a ‘flat’ model; it is 
hierarchically built from submodels. 
After a composed model is created, the next step is to specify some measures of interest 
on the model using some reward specification formalism: the Möbius tool captures this 
pattern by having a separate model type, called reward model, which augments composed 
models with reward variables. 
The next step is typically to create a solver to compute a solution to the reward model: a 
solver is any mechanism that calculates the solution to reward variables. The computed 
solution to a reward variable is called a result: since the reward variable is a random 
variable, the result is expressed as some characteristic of a random variable (this may be, 
for example, the mean, variance, or distribution of the reward variable). 
  

4.2.2. Atomic SAN Models 
This section contains a brief recall of the SAN primitive objects: places, activities, input 
gates, and output gates. These objects and their usage is illustrated in Appendix B.1. 
Places represent the state of the modeled system; they are represented graphically as 
circles. Each place contains a certain number of tokens, which represents the marking of 
the place. Note that tokens in a place are homogeneous, in that only the number of tokens 
in a place is known; there is no identification of different kinds of tokens within a place. 
Activities represent actions in the modeled system that take some specified amount of 
time to complete. There are two types of activities: timed and instantaneous. Timed 
activities have durations that impact the performance of the modeled system (such as a 
communication delay or the time associated with a retransmission timer); they are 
represented graphically as thick vertical lines. Activity time distribution functions can be 
generally distributed random variables, where each distribution can depend on the 
marking of the network. Instantaneous activities represent actions that complete 
immediately when enabled in the system; they are represented graphically as thin vertical 
lines. 
Case probabilities, represented graphically as circles on the right side of an activity, 
model uncertainty associated with the completion of an activity; each case stands for a 
possible outcome (e.g. a routing choice in a network, or a failure mode in a faulty 
system). Each activity has a probability distribution, called the “case distribution”, 
associated with its cases; this distribution can depend on the marking of the network at 
the moment of completion of an activity. If no circles are shown on an activity, one case 
is assumed with a probability of one. Each activity has also a reactivation function; this 
function gives marking dependent conditions under which an activity is reactivated. 
Reactivation of an activated activity means that the activity is aborted and that a new 
activity time is immediately obtained from the activity time distribution.  
Input gates control the enabling of activities and define the marking changes that will 
occur when an activity completes. Input gates are represented graphically as triangles; an 
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arc is connected to the controlled activity, other arcs are connected to the places upon 
which the gate depends, also called input places. Each input gate is defined with an 
enabling predicate and a function. The enabling predicate is a Boolean function that 
controls whether the connected activity is enabled; it can be any function of the markings 
of the input places. The input gate function defines the marking changes that occur when 
the activity completes. If a place is directly connected to an activity with an arc, it is 
equivalent to an input gate with a predicate that enables the activity whenever the place 
has more than zero tokens along with a function that decrements the marking of the place 
whenever the activity fires. 
Output gates define the marking changes that will occur when activities complete. The 
only difference between output gates and input gates is that the former are associated 
with a single case of the activity. An output gate is represented graphically as a triangle 
with its flat side connected to an activity (or a case of an activity); on the other side of the 
triangle is a set of arcs to the places affected by the marking changes. An output gate is 
defined only with a function: the function defines the marking changes that occur when 
the activity completes. There is also a default scenario for output gates; if an activity is 
directly connected to a place, it is equivalent to an activity in which an output gate has a 
function that increments the marking of the place whenever the activity is fired. 
 

4.2.3. Composed Models 
The Möbius framework allows the construction of composed models from previously 
defined models, which allows the modeler to adopt a hierarchical approach to modeling 
by constructing submodels as meaningful units and then placing them together to 
construct a model of a system.  
Model composition is accomplished by the state-sharing approach, which links 
submodels together by identifying sets of state variables. Then, interactions between the 
submodels are possible, since both can read from and write to the identified common 
state variable. This form of state-sharing is known as equivalence sharing, since both 
submodels have the same relationship to the shared state variable. 
The composed model formalism used by Möbius for SAN models is ‘Replicate/Join’: this 
formalism permits to define a composed model in the form of a tree, in which each leaf 
node is a predefined atomic or composed model, and each non-leaf node is classified as 
either a Join node or a Replicate node. A Join is used to compose two or more submodels 
using equivalence sharing; a Replicate is used to construct a model consisting of a 
number of identical (indistinguishable) copies of its single child—note that in the server 
replication scenario, a special function was created in the replicated atomic model used 
for the IMS servers in order to give each replica a unique ID. Each child node of a 
Replicate or Join node can be a Replicate, a Join, or a single atomic or composed model. 
  

4.2.4. Reward Models 
Reward models are built upon atomic and composed models, equipping them with the 
specification of performance measures. Möbius implements a reward model called a 
performance variable, which allows for the specification of a measure on one or both of 
the following: 
• the states of the model, giving a rate reward performance variable; 
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• action completions, giving an impulse reward performance variable. 
A rate reward is a function of the state of the system at an instant of time. An impulse 
reward is a function of both the state of the system and the identity of an action that 
completes; an impulse reward is evaluated when that particular action completes. A 
performance variable can be specified to be measured at an instant of time, to be 
accumulated over a period of time, or to be time-averaged over a period of time. 
Once the rate and impulse rewards are defined, the desired statistics on the measure must 
be specified. Möbius includes solving for the mean, variance, distribution of the measure, 
or the probability that the measure will fall within a specified range. 
 

4.2.5. Solver 
Möbius supports two classes of solution techniques: discrete event simulation and state-
based, analytical/numerical techniques. Any model specified using Möbius may be 
solved using simulation, whilst only models having delays that are all exponentially 
distributed, or having no more than one concurrently enabled deterministic delay, may be 
solved using a variety of analytic techniques applied to a generated state space. 
Möbius simulation supports two modes of discrete event simulation: transient and steady-
state. In the transient mode, the simulator uses the independent replication technique to 
obtain statistical information about the specified reward variables. In the steady-state 
mode, the simulator uses batch means with deletion of an initial transient period to solve 
for steady-state, instant-of-time variables. Estimates available during simulation include 
mean, variance, interval, and distributions. Confidence intervals are computed for all 
estimates. 
 
 

4.3. IMS Server Replication - Model Definition 
In this section, the different functions of the IMS replicated server scenario that were 
modeled and the assumptions made are defined. 
 

4.3.1. Topology  
In the scenario considered here, multiple clients want to access an IMS service from a set 
of replicated S-CSCF servers. The replication platform is assumed to be RSerPool, which 
requires the presence of an additional entity, namely the name server (NS). The NS is 
mainly in charge of managing the (de-)registration of the S-CSCF servers (PEs), 
regularly checking on the S-CSCF for failure detection, and reporting the pool status to 
the pool users (PUs). In order to avoid state space explosion: 
• The E2E communications are between the PUs and S-CSCF servers—in the instant 

message application scenario, E2E communications would be between the PU and 
another UE, but all requests and responses would still go through the S-CSCF. 
Therefore, the model designed for this work can be easily adapted to model UEs as 
endpoints instead of the S-CSCF by simply increasing the communications delays 
between the PU and the other endpoint, and potentially increase the packet error/loss 
rate because there are more hops on the PU/UE route than there are on the PU/S-
CSCF route. 

• Intermediate entities between PUs and S-CSCFs, such as the I-CSCF, are abstracted. 
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• (and also because only the entities assumed faulty are the PEs/S-CSCF) The NS is not 
replicated, even though the RSerPool supports NS replication for increased 
dependability and more accurate pool status monitoring (cf. Section 3.2.2 on NS 
replication background). 

 
The network architecture modeled with SAN/Möbius is illustrated in Figure 4.1 for m 
PUs and n PEs.  
 
 
 
 

 
 
 
 
 

Fig. 4.1,   Network topology of the RSerPool-based replicated IMS model.  

 
The transposition of the network architecture into a SAN composed model is shown in 
Figure 4.2 for the example of the Regular report scheme (cf. Section 4.5.3 on report 
schemes) but the composed models for other report schemes would look just the same. 
For more details on the SAN models, see Appendices B.1, B.2 and B.3. 
 
 

 
 

Fig. 4.2,   Complete composed model for the replicated IMS 
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Remark on Communications Modeling Approach 
When a heartbeat or a SIP request/response is generated, it is discarded before the next is 
sent; so at any time there are no multiple parallel pending messages between each PE and 
the NS (for heartbeats), and between each PU and the serving PE (for SIP transactions). 
Also, the link characteristics for all PE/NS and PU/PE pairs are the same – uplink and 
downlink are modeled by: 
• Exponentially distributed communication delays, with mean value Delay ms, 
• Packet loss probability PER 
Because of the aforementioned traffic model, the SIP and heartbeat ‘communication 
channels’ are directly implemented by a single submodel within each replica of the PE 
and SIPclient atomic models.  
With respect to the pool status reports, multiple messages between the NS and a given PU 
could co-exist simultaneously as there is no report timeout. To model this behavior, each 
report is allocated a specific Pending_Report replica.  
 

4.3.2. Traffic Model 
Each PU sends a new SIP request to the S-CSCF a few seconds after the last transaction 
initiated has been successfully completed or dropped because the maximum number of 
retransmissions has been reached. The inter-transaction time follows an exponential 
distribution, with mean value InterSIP seconds. 
Like in the real setting, a PU can start SIP requests only after it has received a first pool 
status report, so-called name resolution in RSerPool. Without a report, the PU does not 
know which IP address(es) it should send the SIP requests to. 
Note that all characteristics of the SAN model are static in the sense that they do not vary 
with the current state of the composed model. For instance, the current load in the system 
does not affect the PER or the one-way time distribution and mean. Also, processing 
times at the network entities were not modeled, which is not a problem because the one-
way time distribution could account for processing times – from the correlation of the 
actual one-way time distribution and the processing time distribution at the receiver side. 
 

4.3.3. Fault Model 
The model includes three types of faults: 
• Any hardware or software fault at an S-CSCF leads to the node failure (node crash 

faults). These faults follow an exponentially distributed ON/OFF model, with mean 
time to failure of TTF seconds and mean time to repair of TTR seconds. The 
probability that a single PE is OFF or ON is POFF and PON respectively. 

• Network congestion (e.g. router buffer overflow) and bit errors on the wireless links 
both lead to packet losses. It is assumed that each heartbeat, report, and SIP message 
consists of only one packet. This is realistic because most SIP messages, such as 
INVITE and BYE, do not exceed a few hundred bytes (cf. Table 4.5 in [Fathi06]), 
and heartbeats and report messages are expected to be simpler messages than SIP 
requests/responses (e.g. SIP relies on many headers). Therefore, each packet loss 
leads to the loss of the whole message. Packet losses occur with the probability PER 
on both the uplink and the downlink. 
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• Network delays are exponentially distributed with mean value Delay for both the 
uplink and the downlink. Because of the delay distribution, it can happen that some 
heartbeat and SIP messages are delayed for a longer time than their respective 
timeout allows; these messages are discarded because of timing failures. 

PEs are assumed stateless so no inconsistency requirement needs to be considered when 
defining the dependability metric. Also, it is assumed that the information returned by all 
entities in the system is always trusted (e.g. the content of pool status reports sent by the 
NS to the PUs).  
 

4.3.4. Failure Detection and Reports 
SIP provides a timeout-per-request for ‘reactive’ failure detection and an exponential 
backoff retransmission mechanism for recovery: when a PU sends a new request, it also 
starts the timeout-per-request, which is set to T0 first. By default, T0 is equal to the 
current mean round trip time (RTT), i.e. twice as much as the mean one-way time Delay. 
If the response has not been received within T0, the PU sends the request once more but 
this time the timeout is set to 2*T0. Every time the timeout fires, the request is sent again 
and the timeout value doubles; the timeout value is therefore equal to  
2(# request_retrans)

*T0. By default, a SIP client should send the same request up to seven times 
before it discards the transaction, i.e. the transaction is failed. Adding up all the 
successive timeout values, a transaction can live up to 127*RTT. For instance, for an 
estimated round trip time of 500ms, the maximum transaction lifetime is 63.5s. 
On top of the reactive timeout-per-request mechanism of SIP that is implemented locally 
in the PUs, the NS sends ASAP-layer heartbeats to all the registered PEs every InterHB 
seconds to check on their status—the PEs are assumed to be registered when the 
simulation runs start. Once the heartbeat timeout expires, the NS gathers in PElist the 
identities of the PEs that have responded on time to the last heartbeat request and orders 
them according to their respective heartbeat response times (cf. next subsection for 
details on PElist ordering strategies).  
In RSerPool, the recovery mechanism is implemented by the PUs since they are in charge 
of the request retransmissions and the failovers. Therefore, a mechanism to report the 
current pool status to the PUs is needed. Different reporting approaches are discussed in 
Section 4.5.3. 
 

4.3.5. Failover Management and Server Selection Policy 
The recovery functionalities are implemented at the PUs. First, the PUs are in charge of 
triggering the SIP request retransmissions when timeouts expire. After  
[1+max_retrans] unsuccessful transmissions, the PU takes the PE out of the current 
PElist it caches and makes a failover by sending the following request transmission to the 
next server in the PElist. Once max_FO failovers have been made and the 
[max_retrans+1] attempts with the last PE have failed, a transaction is discarded and 
considered failed. In the more likely case when the transaction succeeds, the current 
retrans and FO counters are reset and the same PE is used for the next transaction, unless 
a new report was received during the inter-transaction time and the selected PE now 
appears to be unavailable (i.e. the PE contact information is in the report but an OFF-flag 
shows that the NS suspects it to be down). Even when all PEs left in the list have OFF-
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flags, the PU keeps following the retrans/FO pattern. Only in the rare case when the 
PElist is empty (no PE responded on time to the last heartbeat, or the PU has taken them 
out of the list one by one), the PU stops sending the current request and the number of 
failed transaction is incremented. The PU waits for InterSIP and then, either the PU has 
received a new non-empty report and sends a request to the first PE, or the PU has not 
received a report and it increments the failed transaction counter and waits for another 
InterSIP. 
When a failover is triggered, many strategies for selecting the next PE can be chosen. 
Among them, relevant examples are: round robin, most recently repaired, most available, 
shortest RTT, etc. For replicated servers managed by RSerPool, [Bozinovski04b] has 
shown that the server selection policy (SSP) that offers the highest dependability levels is 
the so-called maximum availability SSP (maSSP): the PE that replied last to the heartbeat 
request is picked first, the PE whose heartbeat response was received by the NS second to 
last is picked next, and so on – this is a LIFO queue. Consequently, maSSP was the only 
server selection policy modeled and the NS orders the PElist accordingly at the end of 
each heartbeat round. 
 

4.3.6. Output Metrics 
Since the goal of this work is to investigate the dependability/performance tradeoff in the 
RSerPool+IMS context, multiple metrics are necessary. 

Dependability 
Dependability is simply defined as the ratio of successful transactions over the total 
number of transactions. This value reflects on how well a level of failure detection, 
associated to a specific combination of max_retrans and max_FO, permits to avoid 
service unavailability for a given amount of node and network failures. 

SAT 
SAT is defined as the average time between the moment a transaction is triggered (i.e. the 
moment when the request is first sent) and the moment the transaction is completed (i.e. 
the moment when the PU receives the response). An important remark is that SAT is 
measured only when transactions are successful. This is because the user’s experience is 
mainly impacted by (1) how likely he/she will get access to the service when requested 
(i.e. dependability) and (2) if the service is obtained, how long it took to access the 
service; if the service is not available, it matters little whether the transaction is dropped 
after X or Y seconds. 
Obviously, SAT is proportional to the RTT value—the longer the communications 
delays, the longer the service access times. Thus, in order to better compare how SAT 
varies with different RTT input values, the SAT results are normalized to RTT=100ms, 
i.e. SATnorm=SAT*(100/RTT). 

Load 
Even though the model does not offer dynamic parameter settings in relation to the 
current system load, it is important to get an idea of how much traffic specific failure 
detection and/or recovery strategy settings produce as compared to other settings. Hence, 
the load is a measure that includes all types of traffic, even failed transactions: it is 
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expected that failure detection decreases the SIP traffic by reducing the number of 
request retransmissions; at the same time, failure detection introduces a lot of overhead so 
it is necessary to evaluate the load in order to see if the overall traffic can be reduced 
when using failure detection.  
Note that once a message has been sent, the load counter is incremented, even if the 
message is lost because of PER before reaching the receiving side. Also, each message 
type is defined by a specific packet size, where: 
• Size_HB = 1 packet unit 
• Size_report = 2 packet units 
• Size_SIP message = 4 packet units 
Since the (n+1)th transaction initiation time does not only depend on InterSIP time—it 
also depends on the nth transaction SAT—all tests do not generate the same total number 
of transactions within a given simulated time. In this context, it would be ‘unfair’ to 
compare the overall load of different settings/scenarios using the total load. Instead, the 
overall load is normalized to one transaction and, thus, the load is given in packet units 
per transaction. 
 
 

4.4. Input Variable Selection – Parametric Analysis 
Now that the output metrics have been defined, it is important to identify the input 
metrics that would most impact the results. In this section, a set of input metrics for the 
RSerPool-based server replication is identified. These input metrics are discussed 
qualitatively in terms of their respective relevance in the testing strategy and how varying 
their values is expected to affect the three output metrics. The summary of this discussion 
is given in Table 4.1. 
 
Each test run was set to last twenty hours (i.e. 72000 seconds) of RSerPool+IMS 
simulated operation time. All setting scenarios evaluated are run a minimum of 6 times. If 
some reward variables have not converged, the scenario is run again, up to 12 times in 
total. Note that the few reward variables that do not converge after the 12 runs are 
variables that only serve testing purposes, such as the number of requests that were not 
sent by the PUs because their respective PElist was temporarily empty. With this 
experiment design, each scenario tested could run up to a whole hour. 
 

4.4.1. Influence of the System State 
The influence the current characteristics of a system have on the output metrics is 
qualitatively discussed first. Then, results obtained for different settings of the fault 
tolerance solution illustrate how changes in the environment characteristics affect the 
output metrics.  

Traffic Load Parameters 
The way the system is modeled, the overall load does not impair the performance of any 
function modeled. Consequently, dependability and service access time are expected to 
be independent from the load levels in the model.  
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Nevertheless, the load-related input settings should be so that there are enough event 
samples to return statistically significant results. The overall load is made up of the 
heartbeat load, the report load and the SIP load: 
• The heartbeat load directly depends on the heartbeat frequency. With frequency 

values typically ranging from 1/60 to 1/2 (cf. Section 4.5.2 for the discussion on 
heartbeat frequency settings), there are respectively between 1200  and 36000 
heartbeats ‘rounds’ during every run – at each round, the NS sends a heartbeat to all 
the PEs in the server pool. 

• The report load depends on the report scheme applied and its associated report 
frequency. Even though the report frequency does not have to follow that of the 
heartbeat mechanism, there are also between 1200  and 36000 report rounds during 
every run – at each round, the NS sends a report to all the PUs. 

• The SIP load depends on the number of PUs (#PU) and the frequency of SIP 
transaction initiations (1/InterSIP). These settings were fixed to 10 PUs and 5s 
InterSIP time for all the runs; a total of more or less 140,000 transactions are 
generated during each run. The fluctuations of total number of transaction from one 
test setting to another are due to the SIP retransmissions, which affect SAT and the 
transaction initiation times distribution. 

The total numbers of sample for each test scenario are actually even bigger than the ones 
given above because each test is run from 6 to 12 times. These numbers show that the 
selected load-related settings generate enough samples to confidently derive conclusions 
from the evaluated results. 
 
The average load per transaction is a function of the SIP traffic load setting. This is 
because for each test scenario, the heartbeat and report frequencies are fixed and, thus, 
their contribution to the total load is fixed too. Since the SIP traffic settings influence the 
number of transactions generated during each run, these settings also influence how much 
the heartbeat and report traffics contribute to the average load per transaction.; the more 
SIP transactions, the lower the load per transaction. Let us verify it analytically: 
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The SIP load is directly proportional to the total number of SIP transactions, therefore: 
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Since heartbeat and report loads are fixed for a given set of fault tolerance settings, 
 

( )3.4
#

αβ
+=

totaltrans
Load  



 70 

Equation (4.3) confirms that the load per transaction is inversely proportional to the total 
number of SIP transaction. Equations (4.4) and (4.5) show how the results from a single 
test can be used to calculate α and β and, then, extrapolate the load per transaction for any 
SIP traffic level—for a given set of other input metrics. 
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Figure 4.3 depicts how the load per transaction varies with the number of SIP 
transactions for the example where α = 10 and β = 450,000. 
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Fig. 4.3,   Load per transaction vs. number of SIP transaction 

 

Fault Model Parameters 
The fault model greatly influences all results. The fault-related factors that can be tuned 
in the model are: 
 
PER affects all communications but the consequences of packet losses change for each 
type of message lost: 
• When heartbeat requests or responses are lost, the NS suspects PEs to be unavailable 

while they might not be—known as false alarm, or false positive—and in turn 
generates inaccurate PElists. Erroneous PElists are expected to lower the probability 
to selecting a currently available PE; hence, dependability decreases as well when 
PER raises. Note that the effects of erroneous PElists are significantly lower when the 
server pool deploys many PEs and especially if there are even more PEs than 
necessary to reach the maximum number of failovers. 
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• The impact of lost reports between the NS and PUs is similar to the impact of lost 
heartbeats. After some time, PElist become stale and do not reflect the current server 
pool status anymore—especially because in the model, the PUs take the PEs that 
failed to provide the IMS service out of the PElist. In the model, reports are sent on a 
best effort basis, i.e. there is no acknowledgement mechanism, so report 
retransmissions are not considered here. Another scheme could be envisaged where 
reports are retransmitted in case of reports are lost. There are two drawbacks to this 
solution. First, acknowledgment would add considerably more network load in the 
system. Second, retransmissions also increase the overall network load and delay the 
report update times. 

• The loss of SIP messages triggers retransmissions. This has limited direct effects on 
dependability. PER is the probability that a message is lost, so the probability q that 
the SIP request or response is lost is: 

 
( ) )6.4(11 2PERq −−=  

 
Typically, a SIP request is transmitted up to 7 times before a transaction is dropped, 
hence the probability Q that a transaction fails solely because of packet losses is: 
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PER is usually comprised between a few percents and 15-20% in wireless networks 
so the chances that PER alone causes failed transactions are low (e.g., for PER=20%, 
less than 0.1% of the transactions would fail because of packet losses). 
Even though very few transactions are lost because of PER, it causes retransmissions 
that increase SAT. Retransmissions are triggered only when the timeout fires and then 
another round trip time needs to be added. This means that each retransmission delays 
the transaction completion time by the timeout duration, which increases with the 
number of retransmissions. 
Higher PER also means higher load per transaction; each retransmission costs 
between 1 and 2 additional messages, depending on whether the PE has received the 
SIP request or not or whether the PE was up when the request reached it. 

 
PE faults are expected to worsen all output metrics because PE unavailability (POFF) 
increases request failures that trigger retransmissions and lead to lower dependability, 
longer SAT and higher load per transaction.  
Additionally, the mean time to repair (TTR) is probably at least as important as the POFF 
value. The reason is that unlike packet losses, PE faults are non-instantaneous events 
because of the node repair process (modeled by TTR), and the longer TTR, the more 
successive retransmissions. Thus, node crashes are more likely to increase the probability 
of transaction failures than random packet losses. 
Because of the SAT definition it is difficult to predict how SAT varies with TTR. On one 
hand, the PE crashes cause retransmissions and, hence, longer SAT is expected when 
TTR raises. On the other hand, the longer TTR, the more likely retransmissions are 
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successive and dependability drops. This phenomenon pulls SAT values down—only 
successful transactions are used for SAT calculation. 
 
RTT has effects correlated with those of TTR. It was explained in Section 4.3.3 that the 
transaction lifetime is proportional to RTT. If the transaction lifetime increases, the 
probability that an unavailable PE repeatedly contacted by a PU is repaired before the 
transaction is discarded increases as well. In conclusion, a bigger [RTT/TTR] ratio means 
higher dependability, but also longer SAT (cf. analysis in PE faults), less load (mainly 
because in the model the longer RTT, the less transactions). 
 

Table 4.1, Summary of the parametric analysis for the system settings 

 dependability SAT load relevance 
Load_SIP 0 0 – 0 
PER_HB – +(?) +/– (?) + 

PER_report – + +/– (?) + 
PER_SIP – ++ ++ +++ 

POFF – + + ++ 
TTR – – +/– (?) + ++ 

RTT/TTR + + – + 
 
 
Table 4.1 summarizes the preliminary analysis of the impact of the load and fault models, 
where the predicted variations of each output metric due to the increase of the 
corresponding input variable. For instance, when the number of packet losses affecting 
heartbeat (PER_HB) increase, it is expected that dependability moderately goes down, 
SAT will probably lengthen and it is difficult to project the effects on the overall load. 
Based on these observations, the relevance of each input variable is established, 
motivating that each set of fault tolerance settings should be tested against different PER, 
POFF, and TTR levels. Because of the large fault tolerance setting space, each input metric 
is set to only 2 levels. 
Both PER and POFF vary between Low (1%) and High (10%). Each test scenario is 
systematically evaluated for the four input scenarios—so-called X_ticks—resulting from 
the combinations of PER and PE fault as shown in Table 4.2. 
 

Table 4.2, Fault model settings used as input parameters for each test 

 X_tick1 X_tick2 X_tick3 X_tick4 
PER L L H H 

OFF L H L H 
 
 
The third and last system input variable expected to significantly influence the output 
results is TTR. Instead of using 3-D graphs, which would make them difficult to read and 
analyze, each test scenario is depicted with two independent graphs, one for each input 
RTT-related value. 
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The mean of the sum [TTF+TTR]—so-called cycle length (CL)—is the mean frequency 
of crash faults at a single PE. A given combination of CL and POFF permits to determine 
the mean duration of the failures resulting from the PE faults, which is shown in Table 
4.3. In the model, CL is either fixed to 100 or 1000 seconds, so a fault approximately 
occurs every 1.5 and 16.5 minutes respectively. These values seem quite small because in 
real environments, faults are rarely so frequent; in some systems, certain failures even 
appear as rarely as once a month or every few months.  
Longer CLs would model a wider range of real systems. Unfortunately, the simulated 
system operation time is fixed to 20hrs to keep the simulation time reasonable so, if CL 
values are increased, TTR and TTR are so large at the scale of the simulated time that 
there are not enough fault occurrences to properly get exponentially distributed ON and 
OFF periods with respective mean TTF and TTR. In order to ‘compensate’ the relatively 
short CL settings in the model, RTT is set to 100ms in all fault tolerance tests, which is 
also a small value for a real environment (unless all traffics are in a LAN). 
Another option would be to scale down all the other time-related parameters – especially 
RTT, so that the maximum transaction lifetime is less likely to be close to or longer than 
TTR. Unfortunately, the problem is the same as with lengthening CL. Smaller RTT 
means more frequent state changes, i.e. longer simulation times for a given simulated 
operation time. 
 

Table 4.3, Mean TTR for the different CL and POFF input values 

 CL1 (100s) CL2 (1000s) 
POFF (1%) 1s 10s 
PON (10%) 10s 100s 

 
 

4.4.2. Reference Output Values – Standard IMS Scenario 
In order to evaluate how well each fault tolerance setting performs, it is necessary to 
establish reference output levels from the non-replicated standard IMS scenario.  
In this section, the standard IMS results are presented and analyzed in comparison with 
the foreseen effects of the environment input settings on the output metrics from the 
qualitative analysis made in the previous subsection.  

Model Definition 
In the standard IMS scenario, PUs request the service from a single S-CSCF. Since there 
is no replication implemented, the NS—as well as the heartbeat/report mechanisms—is 
no longer necessary and the network topology modeled becomes very simple, as 
illustrated in Figure 4.4. 
 
The SIP traffic model, the S-CSCF and network fault models, and the SIP timeout and 
retransmission mechanisms are the same as in the RSerPool-based model described in 
Section 4.3. 
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Fig. 4.4,   Network topology of the standard IMS model 

Results and Analysis 
The standard IMS system is evaluated against the four X_tick input settings and the two 
CL settings, and three RTT levels. This way, observations can be made the influence of 
PER, the OFF probability, CL and RTT. 
All the input test values are summarized in Table 4.4 and the corresponding results are 
depicted in Figures 4.5(a) and 4.5(b). 
 

Table 4.4, Standard IMS test settings 

 Test 1 Test 2 
CL(s) 100 1000 

RTT(ms) 100–200–500 100–200–500
InterSIP(s) 5 5 

#PU 10 10 
 
 
As planned in the qualitative analysis – and for all RTT settings – POFF has a significantly 
bigger impact on dependability than it has SAT and the load, while the opposite can be 
observed for PER: 
• PE failures cause multiple successive retransmissions, and therefore worsen 

dependability. As proved by Equation (4.7), random packet losses cause isolated 
retransmissions that rarely lead to transaction failures on their own. Consequently, it 
is not surprising to observe such differences of dependability levels between POFF(L) 
and POFF(H), while the PER hardly makes any difference in terms of dependability. 

• Successive retransmissions often lead to failed transactions so these retransmissions 
are not counted in the SAT calculation. Thus, SAT increases little with POFF. Isolated 
retransmissions hardly ever lead to transaction failures so they almost systematically 
lengthen the transaction completion time; the higher PER, the longer the average 
service access time of successful transactions.  

• Since successive retransmissions are more and more spread out because of the 
exponential backoff retransmission mechanism, SIP request are (re-)sent less 
frequently during OFF periods than during ON periods. This means that for equal 
levels of POFF and PER, random packet losses affect a larger number of SIP requests 
than PE failures. This explains why the load increases much more with PER than with 
POFF. 

 

S-CSCF 
PU2

PUm 

PU1 
SIP 
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Fig.4.5(a), Standard IMS – CL=100s, RTT=[100;200,500]ms 
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Fig.4.5(b), Standard IMS – CL=1000s, RTT=[100;200,500]ms 

 
In both scenarios, the effects of longer RTT for a given CL are roughly the same. 
• Increased RTT significantly improves dependability when the PE crash fault 

probability is high. When RTT increases, so does the maximum transaction lifetime 
and with it, the probability that the S-CSCF will recover before the transaction has 
failed. Hence, it can be consistently seen that for the exponential backoff 
retransmission mechanism and for a given CL, the longer the RTT, the higher the 
dependability. This confirms that the higher the [RTT/TTR] ratio, the more 
dependable the system becomes. 

• SAT hardly changes with RTT for CL1000 and changes for CL100, where it is about 
10% lower for RTT100 as compared to the RTT200 and RTT500 scenarios. The fact that 
SAT slightly increases with RTT is explained by how SAT was defined: SAT 
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accounts for successful transactions only, so the higher the dependability, the more 
likely additional retransmissions have contributed to the increased dependability, 
hence, the longer the average transaction completion time. 

• The load stays almost identical in the CL100 case. For CL1000, the average load per 
transaction decreases for higher RTT values. The reason is that with longer maximum 
transaction lifetimes, fewer transactions fail. Therefore, more transactions trigger less 
than the maximum 6 retransmissions experienced by unsuccessful transactions; 
hence, less load per transaction. 

 
Figures 4.6(a) and 4.6(b) illustrate the same results from a different angle; the goal is to 
highlight the effects of CL variations. For both RTT100 and RTT500, similar conclusions 
can be drawn from the comparison of the CL100 and CL1000 curves: 
• Comparing the respective dependability levels in the two figures further supports the 

observation that the higher the [RTT/TTR] ratio, the more dependable the system 
becomes. With CL1000, dependability is always lower than in the CL100 case, i.e. 
dependability go down when TTR goes up—for a given RTT. 

• The differences in terms of SAT for CL100 and CL1000 mainly concern the scenarios 
when POFF is high (i.e. 10%). This is because, in the CL100 scenario, TTR is shorter 
than the maximum lifetime—10 seconds average against [12.7; 63.5] seconds 
transaction lifetimes for RTT100 and RTT500. In this scenario, retransmissions are 
quite likely to efficiently get around the PE failures. In the CL1000 case, when POFF is 
high (i.e. TTR=100s), retransmissions are not as likely to help keep the transaction 
‘alive’ until the PE is repaired. 

• The load is inversely proportional to CL. The reasoning is the same as for RTT 
variations, where ‘RTT’ should be replaced by ‘TTR’. 
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Fig.4.6(a), Standard IMS – RTT=100ms, CL=[100;1000]s 
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Fig.4.6(b), Standard IMS – RTT=500ms, CL=[100;1000]s 

 
 

4.5. Fault Tolerance Configuration – Parametric Analysis 
In this section, the main fault tolerance parameters of the RSerPool-based replicated IMS 
system are discussed and, for some of them, simulation results are added in order to 
confirm and determine the effects of these parameters more accurately. 
Considering the large fault tolerance setting space that result from the parameter analysis, 
it is crucial to use a limited set of input system parameters so that the test space does not 
explode. By setting all the parameters discussed in Section 4.4 to 2 or 3 values each, the 
combination of all settings would add up to more than a million different tests. The 
following decisions were made in order to drive the design of experiment for the 
replicated IMS test scenarios: 
• As we can see from Figures 4.5 and 4.6, both RTT and CL impact dependability and 

the load similarly and with relatively equivalent magnitude because of the RTT-TTR 
dependency. So both input variables are redundant in a way. Since CL variations 
change SAT much more than RTT variations do, it is preferable to compare the 
effects of the fault tolerance mechanisms on different SAT ‘behaviors’. Hence, CL 
variations are maintained while RTT is fixed. 

• Out of the three pre-selected values, the smallest RTT value (RTT100) is chosen in 
order to have the shortest maximum transaction lifetime because of the short TTR 
settings that the model allow (see Section 4.4.1). 

• For the same reason, the main focus is on CL1000, but results for CL100 will be 
sometimes shown and analyzed when the scenario with frequent PE failures is 
relevant to specific fault tolerance parameter analysis. 

 
4.5.1. Recovery Parameters 

The parameters that directly affect the recovery process are:  
• max_FO, the number of failovers; 
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• max_retrans, the number of retransmissions per PE before a failover; 
• extra_PE, which is determined by the server pool size and max_FO. There must be a 

minimum [max_FO + 1] PEs in a server pool, so the server pool size in each test can 
be expressed as [max_FO + 1 + extra_PE]; 

• SSP, the server selection policy upon failover. This aspect has been extensively 
studied in [Bozinovski04b] so no further investigation is made in this work – the most 
dependable strategy, the so-called maximum availability SSP is assumed and 
implemented in the model. 

Preliminary Analysis 
In terms of dependability, failovers are expected to be effective against PE failures, while 
retransmissions to the same PE mainly help for temporarily long network delays and also 
for lossy communication links – even though failovers do this too. This means that, in 
general, dependability could be greatly improved: 
• by increasing the number of failovers, and keeping the number of retransmissions low 

in comparison, when POFF raises; 
• by increasing the number of retransmissions to the same PE, and inversely triggering 

fewer failovers, when communication delays and packet loss probability get bigger.  
Communication delays and packet losses are modeled as random processes independent 
from the current system state. Therefore, RTT(msg_n) could easily be twice as short as 
RTT(msg_n–1) and RTT(msg_n+1) during the simulation, which is not always the case 
in a real system. Consequently, when RTT values temporarily increase, the exponential 
backoff retransmission mechanism probably has a smaller positive impact on 
dependability than it would have in correlated RTT scenarios.  
The goal of deploying more PEs is to increase the overall availability of the pool. 
Therefore, larger pool sizes should positively impact dependability because PElists offer 
more PEs to pick from and therefore a higher probability to find available PEs to contact.  
Since the timeout exponentially increases with the number of retransmissions, successive 
retransmissions become extremely costly in term of SAT. Also, every time a failover is 
operated, the retrans-counter is reset to ‘0’ and, so, the SIP timeout values stay low. Thus, 
it is expected that high max_FO and low max_retrans configurations provide the IMS 
service much faster than the opposite type of configurations simply because, for a given 
number of retransmissions, the sum of all timeouts is much lower in the ‘failover-
aggressive’ approach than in the ‘retransmission-aggressive’ one. 
Extra_PEs should not have any direct effect on SAT in the model. The SAT variations 
between the different extra_PE settings are more the consequence of different 
dependability outputs. 
The overall load is made up of a fixed amount stemming from the fault tolerance 
mechanisms and a variable part due to the SIP traffic and that greatly depends on the 
number of retransmissions.  
In the standard IMS scenario, it was found that the SIP load is lower for longer 
transaction lifetimes. Since failovers tend to reduce the maximum transaction lifetime, 
the overall load should also increase as compared to settings relying on many 
retransmissions.  
Equation (4.3) showed how the fixed fault tolerance traffic contributes to the overall load 
for a given number of transactions per simulation run. The more PEs, the more heartbeats 
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exchanged with the NS—the amount of reports depends on the number of PUs—so the 
load is naturally expected to grow with extra_PE. 

Tests Selection 
Tests were run for many combinations of max_FO, max_retrans. For each combination, 
the total number of SIP request transmissions is given by: 
 

( ) ( ) )8.4(1max_1max_max_ +⋅+= retransFOrequests  
 
For each max_FO setting, the highest max_retrans is chosen so that max_requests is 
closest to seven, which is the standard SIP setting. In case two settings give two 
max_requests values equidistant from seven, the setting yielding the higher max_requests 
is picked. Table 4.5 shows the list of tests resulting from this choice, and the 
corresponding max_requests is indicated for each test. 
The selected tests are all evaluated for three server pool sizes:  
• 0 extra_PE, the pool deploys just enough PEs to allow all the failovers to be 

supported by different PEs; 
• 2 extra_PEs, the pool has two PEs more than necessary for the failovers; 
• 4 extra_PEs, the pool has four PEs more than needed. 
Each test is referenced by a unique code that specifies the parameters values in this order: 
“max_FO/max_retrans/pool_size”. For instance ‘3/0/5’ refers to the test with 3 FOs 
maximum, no retransmission to the same PE before triggering a failover, and a server 
pool with 5 PEs (i.e. the 2 extra_PEs case). 
 

Table 4.5, Summary of all the recovery settings tested and their corresponding 
max_requests values 

max_retrans  
0 1 2 3 4 5 6 

0 1 2 3 4 5 6 7 
1 2 4 6 8    
2 3 6      
3 4 8      
4 5       
5 6       

m
ax

_F
O

 

6 7       
 
 

Results and Analysis 
In order to illustrate the tradeoff between number of retransmissions and number of 
failovers, Figures 4.7(a), 4.7(b) and 4.7(c) show three different configurations: the first 
configuration heavily relies on retransmissions, the second is a compromise between 
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retransmissions and failovers, and the third is all failovers. The input parameters and their 
settings are shown in Table 4.6. 
For comparison, all test results are compared to the standard IMS setting, which is 
illustrated by the black line with diamond markers in all figures.  
In the three tests depicted below, dependability, SAT and the load are always higher than 
the standard IMS levels, especially when POFF is high. E.g., dependability is consistently 
maintained above 99%. This is not the case for all combinations of fault tolerance 
settings that are not shown here though; the results for all fault tolerance combinations 
selected in Table 4.5 can be seen in Appendix B.4 
 

Table 4.6, Replicated IMS test settings – recovery strategies 

 Test 3 Test 4 Test 5 
CL 1000 1000 1000 

RTT 100 100 100 
PU 10 10 10 

InterHB 5 5 5 
HB timeout 5 5 5 

InterSIP 5 5 5 
SIP timeout exp.backoff T0=100 exp.backoff T0=100 exp.backoff T0=100 

max_FO 1 3 6 
max_retrans 3 1 0 

extra_PE 0–2–4 0–2–4 0–2–4 
 
 
The results show that for the given network characteristics and PE fault model it is 
preferable to favor failovers over retransmissions in order to get the highest dependability 
levels in all input fault scenarios. The advantage of using many failovers instead of 
retransmissions-per-PE is that the timeout value always stays low despite 
retransmissions, so SAT becomes much shorter as well.  
Modeling correlated network delays might reduce the differences between the 
configurations in terms of both the output dependability and SAT by permitting to fully 
make use of the exponential backoff mechanism when more retransmissions are used. At 
the same time, modeling correlated PER would probably amplify the differences between 
recovery configurations; unless most packet losses occur in PU’s network, in which case 
it is likely that the request never reaches the PE, no matter which PE is contacted. 
We can see from Figures 4.7 that the load slowly increases with the number of failovers. 
Looking in detail into the results revealed that the SIP contribution is roughly the same in 
the three cases and is similar to that of the standard IMS scenario. What causes such 
difference is the total number of transactions generated during each run, which was 
proven to impact the overall load inversely proportionally (cf. Equation 4.3). 
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Fig.4.7(a), Replicated IMS – max_FO=1, max_retrans=3, extra_PE=[0,2,4] 
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Fig.4.7(b), Replicated IMS – max_FO=3, max_retrans=1, extra_PE=[0,2,4] 
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Fig.4.7(c), Replicated IMS – max_FO=6, max_retrans=0, extra_PE=[0,2,4] 

 



 82 

It is surprising to notice for the fault tolerance configurations depicted, and most of the 
configurations tested in Appendix B.4, that the more extra_PEs, the lower dependability, 
especially when POFF is high. The reason is probably linked with a certain aspect of the 
SSP design, even though this cannot be verified from simulation outputs. Each PU 
deletes the identity of a PE after max_retrans unsuccessful attempts with this PE. When a 
PU has been through all the identities that are suspected by the NS to be available, it 
starts contacting apparently unavailable PEs on the list until a new PElist is received from 
the NS. Therefore, in scenarios with larger pool sizes, PUs are more likely to still have 
PE entries in their current PElist when receiving a new PElist, even when the previous 
PElist was never received or received very late because of longer communication delays. 
This means that in larger pool size scenarios, it is plausible that PUs send a request to 
‘low-ranked’ PEs left in the lists soon—or just—before they receive a new PElist. These 
PEs have less chances to be available than the first rank in the new PElist received. 
This characteristic should degrade the dependability of configurations with fewer 
failovers more because they offer fewer opportunities to recover from contacting the 
unavailable PE before the PElist is refreshed. Comparing Figures 4.7(a), 4.7(b), and 
4.7(c) corroborates this assumption. 
Also, when PER is higher, there are more instances when larger PElists at PUs become 
‘empty’ as well and the behavior is closer in all pool size configurations, hence  the 
dependability values are less sensitive to the pool size parameter for X_tick4. 
Results from the CL100 scenario permit to confirm the aforementioned reasoning. Figure 
4.8 shows the output for a maximum of one failover and three retransmissions per PE. In 
the CL100 case, PE failures are shorter and, therefore, PEs recover more often as PUs send 
the last request before a PElist update. This explains why dependability levels—and thus 
SAT levels—are less sensitive to the pool size setting in the CL100 case than in the CL1000 
one for all X_ticks. 
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Fig.4.8, Replicated IMS – CL100, max_FO=3, max_retrans=1, extra_PE=[0,2,4] 
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4.5.2. Failure Detection Parameters 
The accuracy of the feedback from the heartbeat mechanism can really help the PUs 
make the right choice when it comes to pick a PE for the first request of a transaction or 
for a failover. The heartbeat parameters are the inter-heartbeat (InterHB) time and the 
heartbeat timeout. 

Heartbeat Frequency 
Reducing interHB offers the advantage of refreshing the pool status image at the NS 
more often. Consequently, the fraction of time during which PElists are accurate is higher 
with frequent heartbeats, which should directly improve dependability. The drawback of 
higher heartbeat rates is the additional load that ensues.  
Note that with the regular report technique implemented in the model, every PElist 
update at the NS should trigger the immediate distribution the corresponding report to all 
PUs. This report scheme has compounding effect on both dependability and load 
because: 
• there is no delay between issuing the PElist and sending the corresponding report so 

the pool status information is made available to the PUs before it becomes stale 
(assuming short communication delays). Thus, the accuracy gains from more frequent 
PElist updates at the NS can fully benefit the PUs. 

• when more heartbeats are generated, more reports follow, which further increases the 
load. 

Three InterHB settings are tested. The five seconds InterHB time is compared to a less 
aggressive InterHB setting of ten seconds is used as well in order to evaluate if load-
sensitive that cannot sustain frequent heartbeats. The three test settings are listed in Table 
4.7. 
 
 

Table 4.7, Replicated IMS test settings – failure detection strategies 

 Test 6 Test 7 Test 8 
CL 1000 1000 1000 

RTT 100 100 100 
PU 10 10 10 

InterHB 5–10 2–5–10 2–5–10 
HB timeout 5–10 2–5–10 2–5–10 

InterSIP 5 5 5 
SIP timeout exp.backoff T0=100 exp.backoff T0=100 exp.backoff T0=100 

max_FO 1 3 6 
max_retrans 3 1 0 

extra_PE 0 0 0 
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Fig.4.9(a), Replicated IMS – 1/3/2, interHB=[5,10]s 
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Fig.4.9(b), Replicated IMS – 3/1/4, interHB=[5,10]s 
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Fig.4.9(c), Replicated IMS – 6/0/7, interHB=[5,10]s 
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Figures 4.9(a), 4.9(b) and 4.9(c) show that the effects of heartbeat frequency variations 
on dependability are similar to those of the pool size variations in Figures 4.7. Namely, 
when POFF is high, dependability sometimes becomes better when the heartbeat frequency 
slows down while the opposite is expected. Like for the pool size analysis, this influence 
is artificially caused by the conjunction of the SIP traffic model and SSP definitions when 
PElist. Varying heartbeat frequencies lead to the same discrepancy because, in the model, 
PElist updates and report broadcasts are synchronized so when PUs are sent reports less 
often, they are more susceptible to deal with empty PElists. Hence dependability is 
artificially raised, and SAT lowered, by slower heartbeat rates while the opposite 
influence is expected. Also, it can observed that the impact of this phenomenon diminish 
when increasing max_FO and/or PER, just as in the pool size analysis. 
Nonetheless, the model permits to see consistently the positive effects of sending 
heartbeats less frequently on the overall load; e.g. by reducing the InterHB time by half, 
the gap between the standard IMS load and that of the replicated scenario is at least 
divided by two. 

Heartbeat and SIP Request Timeouts 
Playing with the heartbeat timeout is probably another way of gaining PElist accuracy. 
The heartbeat timeout determines how long before the pool status is updated at the NS a 
heartbeat should be sent. In the model tested, the heartbeat timeout is always equal to the 
InterHB value because the heartbeat sending and PElist update processes are 
synchronized. Instead, the heartbeat timeout could be shortened so that, when the PElist 
is updated, the heartbeat responses from the PEs are more recent; this provides another 
way to make the pool status information more accurate when PElists are populated by the 
NS. For instance, the heartbeat timeout could be set so that it is statistically longer than 
RTT is 90%. This aims at maintaining the heartbeat timeout as low possible while 
avoiding most false positive PE failure detections due to longer communication delays. 
This setting has not been tested.  
 
Failure detection is also done at the SIP layer by implementing SIP request timeout. 
Results from tests 3, 4 and 5 showed that in the model the exponential backoff 
mechanism might not be so relevant. Therefore, a fixed SIP request timeout might lower 
the SAT levels without impacting dependability because, in the fixed timeout case, the 
second retransmission occurs twice as fast as with the exponential backoff, the third 
retransmission four times as fast, etc.  
The same reasoning as for the heartbeat timeout holds when it comes to choosing the 
timeout duration so in the following tests, the SIP timeout value is so that it statistically 
encompasses at least 90% of the communication delays. Assuming exponentially 
distributed RTT, this probability is expressed as: 
 

( ) )9.4(_1exp_Pr ⎟
⎠
⎞

⎜
⎝
⎛ ⋅−=≥ timeoutrequest

RTT
RTTtimeoutrequest  

 
Equation (4.9) gives T90%=230ms. The effects of using a different timeout strategy are 
tested as in Table 4.8. 
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Table 4.8, Replicated IMS test settings – SIP timeout strategies 

 Test 6 Test 7 Test 8 
CL 1000 1000 1000 

RTT 100 100 100 
PU 10 10 10 

InterHB 5 5 5 
HB timeout 5 5 5 

InterSIP 5 5 5 
SIP timeout exp.(100)– fixed(230) exp.(100)– fixed(230) exp.(100)– fixed(230) 

max_FO 1 3 6 
max_retrans 3 1 0 

extra_PE 0 0 0 
 
 
The results in Figures 4.10(a), 4.10(b) and 4.10(c) consistently show that both SAT and 
the load are considerably reduced thanks to the fixed request timeout setting, while 
dependability worsens for fault tolerance configurations with few retransmissions and 
significantly improves for POFF(H) when the number of failover raises. There are several 
reasons behind these observations: 
• The fact that the fixed timeout value encompasses 90% of the communication delays 

greatly reduces the number of ‘early’ retransmissions that occur in the exponential 
backoff scenario where T0 is set to the mean RTT, which explains why the load gets 
considerably closer to the standard IMS with the fixed value. 

• The fixed T90% setting does not help in scenarios favoring SIP retransmissions 
because the ‘transaction lifetime per PE’ becomes shorter, lowering the probability 
that a PE has recovered by the time the last retransmission to that PE is sent. For the 
test settings considered, i.e. T0=100ms and T90%=230ms, the transaction lifetime per 
PE is almost the same for the second retransmission and becomes much shorter from 
the third retransmission in the fixed timeout case (920ms against 1500ms). When the 
number of retransmissions is below three, like in tests 7 and 8, the transaction lifetime 
per PE is actually larger with T90% so dependability increases. 
Dependability improves in scenarios with fewer retransmissions also for the same the 
reason as for the load improvement. 

• By avoiding some of the retransmissions caused by long communications delays, the 
SAT is reduced, especially for configurations with many retransmissions since each 
retransmission costs twice as much as the previous one in the exponential backoff 
scenario. With the 6/0/7 configuration, SAT is even about as good as the standard 
IMS case. 
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Fig.4.10(a), Replicated IMS – 1/3/2, ReqTO=[exp.T0,T90%] 
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Fig.4.10(b), Replicated IMS – 3/1/4, ReqTO=[exp.T0,T90%] 
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Fig.4.10(c), Replicated IMS – 6/0/7, ReqTO=[exp.T0,T90%] 
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4.5.3. Outlook on Report Schemes Analysis 
Ideally, the accurate pool status should be available at each PU before it sends a new SIP 
request. The following schemes for pool status propagation from the NS to the PUs could 
be compared – but this is postponed to future work: 
 
Proactive  the NS decides when to send reports to the PUs. 
• Regular: the NS regularly broadcasts reports to all PUs, which has been thoroughly 

investigated in this work. 
• Change-driven: the NS sends reports (or the relevant subset of the pool information 

only) when the pool status has changed during an update, i.e. when the status of at 
least one PE has changed since last heartbeat round. It is expected that for smaller 
pool sizes the pool status does not change often so it helps keep the report load low. 
The danger with this approach is that the one time each PElist might never be 
received by some PUs because of packet losses and this PElist is not sent again, only 
a different version will trigger the next report round – leaving some PUs with empty 
PElists longer than with the regular scheme. 

 
Reactive  PUs request the latest pool status from the NS, and usually keep 
retransmitting the report request until they receive the report from the NS. 
• Per-request: PUs request the latest pool status just before sending every SIP request. 

The advantage is to consistently provide the PUs with the latest pool status 
information generated by the NS. This solution presents two major drawbacks 
though. First, the report procedure delays the actual beginning of each transaction, 
impacting SAT that much. In scenarios with high PER, the report request would have 
to be retransmitted, which would increase SAT even more. Second, the report 
procedure is a two-way mechanism so load_report is proportionally larger. The 
overall load depends on the SIP traffic load. 

• Cache: the PU caches the PElist for a given time period before it asks the NS for the 
latest version. This is almost equivalent to the regular scheme analyzed in the SAN 
model except that 
o The regular approach is on a best-effort basis, while the cache procedure is a two-

way mechanism that makes it resilient to packet losses. This is not a problem 
though because the regular scheme could be augmented with acknowledgments 
from the PUs that would let the NS know which PUs might have not received a 
report. The NS could trigger the necessary subset of report retransmissions 
accordingly. 

o PUs request reports independently from the heartbeat process, so they are not sure 
they are getting recent pool status information, which seems less efficient in terms 
of failure detection 

 
 

4.6. Model Application 
The model helps understand and evaluate how server replication-based fault tolerance 
influences the IMS system both in terms of dependability and performance. For instance, 
the simulation environment could be used to validate analytical models that evaluate 



 89 

dependability and/or performance metrics in similar network/communications/fault 
scenarios.  
Also, the simulation environment can be used to determine which fault tolerance 
configuration would benefit a system most and at which cost. As it was shown, the 
setting space is very large so the general observations made from the simulation results 
about the influence of fault tolerance parameters can be reused to narrow down the range 
of tests to be conducted to find an optimal configuration. 
In this section, several aspects of configuration selection are analyzed and an example 
based on the replicated IMS model is given to illustrate some of these aspects. 
 

4.6.1. Configuration Selection Time 

Design Time 
Simulations are run for a given set of input parameter settings that can be drawn from 
system specifications or average values measured in the real system. Once the output 
metrics are evaluated for a subset of input variable settings and configuration settings, the 
selection criteria (cf. Section 4.5) should be tested in order to pick the single 
configuration that should be implemented the real system 
This approach becomes limited for systems with dynamic fault models though. If the 
fault model varies with time, it is not ideal to pick the optimal configuration based on 
only one fault model (e.g. X_tickn). One way to include this aspect in the offline process 
is to create aggregate input values. For instance, the overall PER value could be the sum 
of each PER level in a system times the individual fraction of time that the system 
experiences each PER level. The danger with this approach is that the output metrics 
have not been proven to vary linearly with the input variables so the configuration for the 
average PER, POFF and CL values might not be the one that gives optimal average 
dependability, SAT and load. 

Run Time  
In order to cope with dynamically changing fault models, the run time approach should 
be considered whenever possible. Run time fault-tolerance configuration tuning assumes: 
• A database containing the results of the subset of configurations to be used for a 

given set of input variable values corresponding to the current system state. 
• Real-time input metrics measurement techniques 
• Protocol extensions in order to communicate the dynamic input values to the entities 

such as NS and PU that control the configuration parameters. E.g. the NS can adapt 
the reporting scheme (heartbeat timeout values, report frequency, report 
acknowledgements) according to the current PER and RTT levels for NS-PE 
communications; the PU can adapt the recovery strategy, e.g. by increasing the 
number of failovers when PE failures are long or adapt the SIP request timeout 
according to RTT (PU-PE communications). 

 
4.6.2. Configuration Selection Criteria 

Because of the evaluation approach, each configuration tested is evaluated with three 
output metrics. This makes it near impossible to determine which configuration is 
optimal by just looking at the graphs generated because it is very unlikely that a single 
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configuration can return optimal values for the three output metrics simultaneously. 
Therefore, some criteria are necessary to guide the selection process. 

Output Metric Thresholds   
The simplest way to rule fault tolerance configurations out during the selection process is 
to set a threshold value for each output metric. These thresholds should translate some of 
the system requirements. E.g. users might demand that dependability should be above 
99%; the QoS requirements from an end-user application (e.g. online auctions) impose 
that SAT is below 300ms; the bandwidth of the system can only support a maximum load 
of 15 packet units per transaction.  
Note that this technique might still leave several configuration candidates for the final 
choice. If one of the metrics has a higher priority than the other two, such as 
dependability would be in safe-critical systems, only two output metrics are bounded and 
the configuration that gives the best level for the third metric is picked (cf. example in 
Section 4.6.3). 

Score Function 
If no limit is imposed on less than two output metrics, a score function is needed in order 
to rank each fault tolerance configuration by returning a single score value for a given 
combination of output values. The score function is made up of contribution factors 
(CF)—usually one CF per output metric for which a threshold is not required. A 
contributing factor can simply be the ratio between the specific configuration output level 
and the standard output level. Note that for the dependability contributing factor 
definition it is more relevant to consider the ratio between undependability because: 
• the difference between standard and replicated IMS dependability levels can be so 

minute that the magnitude of this ratio is much lower that of the SAT and load ratios 
and, thus, insignificant in the score function; 

• this way, the variations of each contributing factor reflect on  the system behavior 
similarly: CFundep., CFSAT, CFload increase/decrease when the system behavior 
worsens/improves respectively.  

When one threshold is defined, the score function is calculated for the subset of 
configurations that respect the threshold requirement. 
 
In Table 4.9, some score function examples are given. The first example does not favor 
any output metric for the selection process but the next two functions are shaped so that 
CFundep variations have a bigger incidence on the final configuration rankings.  
 

Table 4.9, Score functions examples  

Score function CF priority 
loadSATundep CFCFCF ⋅⋅.  Fair 

( ) loadSATundep CFCFCF ⋅⋅.exp  CFundep. 

( )loadSATundep CFCFCF +⋅.  CFundep. 
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4.6.3. Selection Examples 
Let us use the simulation results discussed earlier to exemplify the selection process. The 
set of configurations considered for the following examples is restricted to the whole set 
of failovers and retransmissions per PE listed in Table 4.5. with the following settings: 
• CL1000, RTT100 
• Exponential backoff SIP retransmissions, T0=100ms 
• InterHB = 5s 
• Extra_PEs = 0 
• Fault model: X_tick2 and X_tick4 scenarios 
The selection process is based on output metric thresholds and is repeated for two sets of 
requirements. Table 4.10 shows the selection criteria and the corresponding optimal 
configurations, which are found by comparing the graphs in Appendix B.4. 
 

Table 4.10, Threshold requirements and optimal fault tolerance configurations  

 Criteria 1 Criteria 2 
Dependability ≥ 99% ≥ 99% 

SAT ≤ 350ms optimize 
load optimize ≤ 17 p.units 

 

Optimal Config. (X_Tick2) 2/1/3 4/0/5 
Optimal Config. (X_Tick4) 2/1/3 5/0/6 

 
 
In the first example, dependability and SAT are bounded; therefore, the optimal 
configuration is the one with the lowest load among the configurations that meet the other 
two requirements. A compromise between failovers and retransmissions (2/1/3) to a same 
PE are best for both fault scenarios. 
When a relatively large amount of load can be sustained by the system, good 
dependability can be achieved with shorter SAT than the 2/1/3 configuration when the 
PUs never send a SIP request twice to the same PE. 
 
 

4.7. Conclusions 

Summary 
The standard IMS and RSerPool+IMS systems were modeled with SAN. These models 
were implemented in Möbius in order to evaluate the dependability/performance tradeoff 
and look for. Output metrics to look at fault tolerance with holistic approach in order to 
highlight the interdependence between dependability and performance. 
 
The influence of input variables such as communication delays and parameters from the 
fault models was analyzed. Simulation results using the standard IMS model showed that: 
• PER raises SAT and load, hardly impacts dependability (SIP messages); 
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• PE faults cause transaction failures, lower dependability, and SAT and load (the both 
because of the SAT definition); 

• RTT/TTR ratio is very important because it determines how likely retransmissions 
can help against PE failures. 

 
The analysis of individual fault tolerance mechanisms (recovery, failure detection) 
revealed that: 
• The interdependency between dependability and load is the opposite of that with the 

standard IMS model; the more load, the better dependability. Here, fault tolerance 
mechanisms improve dependability at a fixed load cost, which depends on the failure 
detection and recovery settings. To significantly improve dependability, the 
additional fault tolerance load (introduced by heartbeats and reports) becomes much 
larger than the gains in terms of SIP load achieved thanks to the failure detection 
mechanism. 

• Recovery and failure detection mechanisms rely on parameters that can be optimally 
tuned for a given fault model and set of dependability/performance requirement. For 
the replicated IMS—and for the specific fault and traffic models, and SSP tested—it 
was shown that  
o when the number of failovers increases (and the number of retransmissions per PE 

correspondingly decreases), both dependability and SAT improve but the load is 
greatly worsened; 

o the server pool should not have more PEs than necessary to execute the maximum 
number of failovers set for the current recovery configuration—when the server 
pool deploys extra PEs, all metrics get worse, especially for configurations with 
fewer failovers allowed; 

o the impact of the heartbeat frequency setting varies greatly for each recovery 
configuration so it is diffucult to draw general conclusions about its influence on 
the tradeoff. It is suggested that once the recovery configuration has been 
selected, a few heartbeat frequency settings are tested in order to optimize the 
output metrics for the given input fault model; 

o finally, having an accurate input model of the communication delay distribution 
permits to ideally set the SIP request timeout, which significantly improves the 
tradeoff, especially with recovery configurations favoring failovers over 
retransmissions per PE.  

 
Directions were given to implement a selection solution at design time and at run time 
that indicates which fault tolerance settings optimize the dependability/performance 
tradeoff in a specific system for a given set of application requirements on the individual 
metric of the tradeoff. One example was used to illustrate how to manipulate simulation 
results to determine the optimal configuration. 

Discussion about RTP  
The high-level modeling approach used for the RSerPool+IMS system permits to quickly 
adapt the SAN model in order to get equivalent results and draw the respective 
conclusions for the RTP-like cluster solutions. The main difference is that in the RTP 
scenario the failure detection and recovery mechanisms are centralized directly within the 
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server set, which means that (1) there is no need for name resolution as in the RSerPool 
architecture (cf. Section 3.2.3 on Reports) and (2). This difference could be simply 
modeled by setting specifically low heartbeat and report communication delays and PER. 
This makes RSerPool look like it can be neither as dependable nor as fast as RTP. 
Nevertheless, it should be kept in mind that RTP is a very complex implementation 
because it relies on the additional cluster platform and shared database so much. This 
level of software complexity significantly affects RTP performance and dependability, 
which has been investigated in [Grønbæk07]. Therefore, it is not granted that RTP will 
outperform RSerPool in most environments. 
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5. State Replication and Consistency 
 
 
 
 
 
When replicating stateful servers, the states held in these servers must be replicated as 
well. If the servers are deployed in distributed networks, state inconsistency may be 
introduced during the state replication process. Inconsistency can impact the system in 
many different ways, which are specific to the usage of the state information in relation to 
the service that uses this information: e.g. charging state inconsistency usually affects 
operators’ revenues, while session state inconsistency might lead to incorrect transaction 
processing and, in turn, unavailability. Several consistency models have been designed 
that permit to address the inconsistency problem and are implemented via state 
dissemination, commitment and concurrency protocols. In addition to decreasing 
inconsistency, these solutions usually have a quite big impact on performance; hence 
newly introduced dynamic approaches attempt to optimize the tradeoff inconsistency-
performance for some sets of inconsistency metrics, assuming that an accurate knowledge 
of the current inconsistency level in the system is known. In this chapter, a new 
inconsistency evaluation framework is presented that is made up of a few contributing 
factors that can be evaluated separately, either from real-time measurements or derived 
from the traffic model, and for a range of consistency models. A thorough discussion on 
IMS consistency shows the requirements on state replication in our system and the 
inconsistency evaluation framework is then validated for the IMS charging state. 
 
 

5.1. Consistency Model in the IMS 
Most of the time, inconsistency is referred to as state sequence disorder, also called 
event-ordering problem. With this approach, possible inconsistency definitions are such 
as the probability that a state update is ordered correctly, or the probability that all the 
state updates of a session are fully ordered, which is especially suited for dependent 
states, i.e. when state update n is a function of the state value resulting from state update 
n+1. Most common models corresponding to this notion are linearizability [Herlihy90] 
and sequential consistency [Lamport78].  
These definitions and requirements originate from distributed computing, where all 
processes must have the same picture of the state (i.e. same data item) that they use as a 
unified input to their computational task. If the perception of the state differs in one 
process, then the logic is affected and it will not execute the correct operation. 
In distributed communication networks, not all the replicated servers need to have the 
same state. For a given IMS session, only one copy of the IMS state is used for each 
transaction at the current master server; this means that at the moment when the master 
server processes the SIP request it does not really matter if the backup servers are 
consistent or not. The only requirement is that their state is consistent when it is needed, 
i.e. when there is failover to a backup server during the ongoing session and then, only 
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the selected backup server needs to hold a correct image of the state. Hence a state 
disorder can sometimes be transparent to the service/system: in our system, inconsistency 
can be observed—and, therefore, can have an impact—only when the state is read.  
Not retrieving the correct state value leads to erroneous behavior of the system. Then, it 
is more relevant to focus on the correctness of the state when a read operation (RO) is 
done, which is called misread probability. This is defined in [Tanenbaum02] as strict 
consistency: “Any read on a data item x returns a value corresponding to the result of the 
most recent write on x”.  
For instance, it is usual to read the state only once for billing purposes, at the end of the 
session, in order to deduct the amount of credits spent by the user from his account. In 
that case, a relevant metric is the distance between the state value read and the expected 
value, which measures the operator’s losses. In the prepaid charging scenario, the 
operator wants to control the access to the network and potentially stop the session when 
all the user’s credits are spent. Then, it is important for the operator to also have access to 
a consistent session state during the life-time of a session. 
 
 

5.2. Inconsistency Evaluation Framework  
5.2.1. Motivation 

Dynamic, adaptive mechanisms have been proposed [Bozinovaki04a][Yu00] to restraint 
the inconsistency level under a certain threshold. For systems implementing such 
solutions, the need for accurate inconsistency evaluation is evident. However, 
inconsistency occurs in distributed systems, which makes it difficult to measure in reality 
(e.g. time stamps are difficult to use because of the clock synchronization problem). 
Here, we suggest an evaluation framework that uses the characteristics of a system in 
order to break the computation of the inconsistency level down to influencing factors that 
can be either measured or approximated from the traffic model and the description of the 
system. This evaluation approach offers the advantage of not requiring any specific, 
additional inconsistency evaluation functions to be implemented in the system. 
 

5.2.2. New Evaluation Framework 
One has to be careful when defining the correctness of the state. With SIP, the state at the 
server(s) where the read is being processed needs to be the same value as the one saved at 
the master server that committed the last state update. In other terms: 
• The master server (local server) should replicate the state of interest to the backup 

servers (remote servers) before a read request is received by any of the remote 
servers. 

• The state held at the local server, which is the most recent state information, should 
not be overwritten by older state information received from a server that was 
previously the master/local server. 

• State update messages (SUM) are sometimes sent over unreliable links and therefore 
state ordering does not fully encompass all the causes for inconsistency to happen; the 
probability that a SUM never reaches a remote server(s) must be included in the 
evaluation. 
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Note that these requirements hold only if the state (or part of the state) of interest has 
been modified since the last read operation. This is because even if the last SUM 
generated is lost or disordered, the value returned by the seemingly stale state at the 
remote server is the same as the expected one and therefore the RO can be processed 
correctly. 
The scenarios (shown in Figure 5.1) that lead to inconsistency in distributed 
communication networks are for the example of strict inconsistency, i.e. the probability 
to access a state that is not the last state committed in the system. The starting point 
corresponds to a read operation; the bold lines represent the paths to inconsistency 
instances, which occur when the last event of a path actually happens (shown in the grey 
text boxes). This evaluation approach can be generalized to any inconsistency definition 
that looks at the probability to read a correct state from the strict consistency point of 
view.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.1, Events sequentially leading to inconsistency, and their respective probabilities 

 
Because of the server selection policy (or load balancing scheme) implemented in a 
system, a RO can occur at the server where the last state update was committed, the local 
server, or at another server of the system, a remote server. When a RO is done at a remote 
server, the state update message (SUM, see next section) carrying the last state update of 
the system must be received at this server; this message might never get to this server, 
especially for connectionless communications (e.g. over UDP), and the state would never 
be updated. Fulfilling only this requirement does not guarantee consistency: also, the 
latest SUM must be processed/committed at the remote server before the next RO arrives. 
The local server has already committed the last state update when the next RO arrives 
and, therefore, cannot be impacted by a SUM loss. However, if a SUM carrying the n-1th 
state update is received after commitment of local state update n, the correct value might 
be overwritten and corrupt the correctness of the state before the RO is processed. 
Usually a simple sequence number can prevent any local disorder to occur. 
This discussion shows that the overall inconsistency depends on three factors: 
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• State Ordering Metric (SOM): the probability that the last state update in the system 
is committed at the server where the RO request is received, before this RO request is 
received. One should be careful when evaluating the SOM as it is expected to be 
different for the local server (SOML) and a remote server (SOMR). 

• Server Selection Policy (SSP): the probability of reading a state in a remote server. 
This probability depends on three system characteristics: 
o the server selection policy, which chooses the server where the next transaction 

will be processed; 
o the failure model; 
o the fail-over mechanism, which chooses the server where a retransmitted request 

should be sent to after a failure was detected (there are many existing policies that 
determine the destination server for request retransmissions). 

• Unsuccessful State Replication Rate (USRR): the probability that the state replication 
is failed, i.e. that the SUM is not processed at the remote server, either because of 
packet loss or buffer overflow. 

Those factors permit to devise a new measurement approach for the misread probability, 
directly derived from the probabilities illustrated in Figure 5.1: 
 
 
 
 
 
 

5.3. Quantitative Inconsistency Evaluation 
In this section, inconsistency in the IMS as defined in the previous sections is evaluated 
experimentally and compared to the new analytical approach in order to validate the 
evaluation framework. This work also gives the opportunity to foresee the expected 
inconsistency levels in the IMS. 
 

5.3.1. Experimental System 
We want to investigate inconsistency in the call control part of the IMS, whose 
experimental logical architecture is shown in Figure 5.2. We use the RSerPool example 
as state-sharing is not part of the standardization effort and therefore, this aspect needs to 
be investigated with special attention for this replicated architecture. More details about 
this experimental system are given in [Renier06]. 
In the RTP case, two options for state-sharing, or context management, are offered: 
• the context management is distributed over the cluster and each server manages its 

own context manager, which in turn replicates the state to the other context managers 
on other nodes when an update occurs. This option is equivalent to the RSerPool case 
and similar conclusions will hold for both architectures 

• the context management is centralized and the same context manager is accessed for 
all read operations, i.e. even from remote servers. This option ensures that there is no 
commitment or concurrency problem but it introduces a delay (to retrieve the state in 
the context manager) that impacts service performance more than the previous option. 
This will not be investigated specifically here.  

( ) ( ) ( ) ( )[ ] )1.5(1111 RL SOMUSRRUSRRSSPSOMSSPncyInconsiste −⋅−+⋅+−⋅−=



 98 

 
The logical entities implement the IMS-like SIP call control servers (CSCFs) 
standardized by the 3GPP as defined in Section 2.3.1. The grey shaded entities represent 
the RSerPool components. The two redundant S-CSCFs form a server pool of Pool 
Elements and the P-CSCF was implemented as Pool User (see Section 3.2.4 for 
motivation). Every time a P-CSCF receives an INVITE request, it uses ASAP to request a 
name resolution from the name server in order to get the list of available servers to 
forward the requests to. The P-CSCF keeps this list in its cache for the whole duration of 
the session, a new session triggering a new name resolution request. The other 
communications during the session are made over UDP.  
 

 
Fig. 5.2, Testbed logical topology for the IMS/RSerPool system. SUM is the message 

that contains the state information is sent from the local server to the remote server after 
every transaction completion 

 
CSCF servers usually maintain a large number of session states simultaneously. In our 
example, the session state is only influenced by the transactions of its own session. 
Hence, parallel sessions are not required for the evaluation of inconsistency. UEA follows 
a simple session/transaction generation pattern. Between the INVITE and BYE 
transactions, UEA generates instant message transactions with the MESSAGE request. 
The inter-transaction time is the time between the moment when a transaction ends 
(completion or abortion) and the moment when the request for the next transaction is 
sent. In the testbed, the inter-transaction time is exponentially distributed, with mean 
value 1/λ set to one second. The server selection policy is round robin at the scale of the 
transaction, meaning that each request is sent alternatively to either S-CSCF, and the 
response(s) is sent back via the same S-SCSF (according to the SIP specifications, all 
messages in the same SIP transaction must be processed by one S-CSCF server only). 
Because RSerPool does not specify any state-sharing functionality, we had to implement 
our own solution in the system. Our state-sharing mechanism is a best effort, message-
based solution, over the connectionless transport protocol, UDP. When a transaction is 
completed at a server, the call state is updated in this server and the state update is 
replicated to its peer in a file sent with what we call a state update message (SUM), using 
the direct link between the two servers shown with the dashed line in Figure 5.2. The 
simplest models for state commitment and concurrency are used in our system. When the 
replicated servers receive the SUM, they extract the state information and immediately 
commit it, i.e. update the state. Also, when a read operation request is processed by a 
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server, the state is immediately accessed and no delay is introduced in order to ensure the 
correctness of the values read. The characteristics of the link (packet error rate, delay, 
etc.) between the replicated servers impact the time needed to propagate the SUM; their 
specific settings in the experimental system are given in Section 5.3.4. 
There are no artificial server failures implemented in the testbed since the focus is not on 
the capability of the system to cope with failures of the SIP servers. The prototype SIP 
implementation used is not fully reliable though and failures can be observed at all SIP 
servers. Therefore, the fault-tolerant properties of RSerPool are used for fault recovery. 
When a failure/error is detected (timeout per SIP request set to 0.5 second), the P-CSCF 
retransmits the request to the back-up S-CSCF. The transaction is dropped if the timeout 
also expires when trying with the second server. 
 

5.3.2. Measurement Approach 
In this Section, we explain how we evaluated inconsistency (1) by implementing a 
solution in the experimental system, called experimental evaluation, and (2) by analyzing 
the influencing factors introduced previously, called factor evaluation. The goal is to 
compare the experimental and factor evaluations results in order to verify the validity of 
the proposed formula (c.f. Equation (5.1)).  
 
We implemented an algorithm in the testbed to directly, and experimentally, measure the 
inconsistency level of the SIP fault-tolerant system. The (distributed) call state element in 
this example is a charging counter (CSeq_server) in the S-CSCF that keeps track of the 
cumulative number of successful MESSAGE transactions provided to the user. In this 
particular example, the approach to directly measure inconsistency is to also implement 
this counter in UEA (CSeq_msg) and to communicate the UEA’s counter value to the S-
CSCF in every SIP message. 
When UEA is aware that the last transaction is completed, i.e. it receives the 
corresponding final response, CSeq_msg is incremented before it is put in the next 
request UEA sends. At the S-CSCF side, the local CSeq counter, CSeq_server, is saved 
with the call state. We consider that every request received by an S-CSCF initiates a Read 
Operation. Therefore, upon reception of a SIP request at an S-CSCF, we can be sure that 
the state is consistent at this server if the CSeq in the message is the next value in the 
incremental CSeq sequence, compared to the CSeq saved locally at the S-CSCF after the 
last state update (due to local update or SUM). In other words, there is inconsistency iff: 
 

)2.5(1__ >− serverCSeqmsgCSeq  

 
When a SUM is disordered (meaning that the SUM arrives at the peer server after the 
request for the next transaction has been received) or when a SUM is missing, the value 
is not up-to-date and the RO increments the inconsistency counter (InconCount) at this 
server. 
As described in the previous section, any server of the system can fail. When a 
transaction is unsuccessful because of a P- or I-CSCF failure, it might happen that the SIP 
messages are blocked on the SIP path before the state has been updated at an S-CSCF. 
Then, it would be unfair to the system to check inconsistency with a CSeq value that the 
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system potentially never saved at any of the S-CSCFs. Therefore, a RO can trigger an 
inconsistency check only after a successful transaction, i.e. only when we are sure that at 
least the local S-CSCF is aware of the last CSeq value generated by UEA.  
The inconsistency level is measured by dividing the inconsistency instance counter 
(InconCount) by the total number of ROs that requested the inconsistency check 
(CheckCount).  
While rather simple to implement in this specific system, this experimental approach to 
evaluate inconsistency proves also to be quite limited. First, it requires dedicated code for 
inconsistency evaluation purposes, which may not be desirable e.g. for systems with low 
computational power. It also assumes that the state is monotonic and, therefore, relies on 
some sense of knowledge about the future state values, mandatory in order to assess the 
correctness of the state. Finally, UEA is involved in the state evaluation, which seems 
against the operators’ philosophy that suggests giving minimum control to the end users 
with respect to critical information, especially when dealing with charging-related 
information. 
 

5.3.3. Factor Evaluation 
In this section, we analyze how to evaluate independently each factor of the evaluation 
framework for the example of strict inconsistency requirement. Many inconsistency 
definitions/metrics can be broken down into influencing factors equivalent to the ones 
proposed here; then, those factors can be directly measured or analytically derived from 
the traffic model and system description. 

State Ordering Metric (SOM)  
In the system considered here, the state to be retrieved has monotonically increasing 
values (incremented by one for each new transaction); it should always be bigger than the 
previous one. Therefore, it does not make sense to update the state with a SUM when its 
CSeq_msg value is smaller than the current CSeq_server where it is received. That way, 
we prevent the propagation of disordered SUMs to several ROs. This would not be the 
case for non-monotonic state values (e.g. location information), which make it impossible 
to detect an out-of-date state value in the SUM and, thus, requires that the state is updated 
every time a SUM is received. Also, with this state update model, inconsistency cannot 
occur at a local server since an old SUM cannot overwrite the latest state at the local 
server, which implies that SOML is equal to one. Consequently, a disordered state update 
can only impact a remote server (SOMR).  
SOMR is the probability that a RO request (i.e. any SIP request in our context) is 
processed by the remote server after the last SUM has been received and committed at 
this remote server. To evaluate this factor, we choose the moment when the state is 
updated at the local server as the reference starting point. Let (1) the Read Operation time 
(RO_time) be the time between the local state update and the next Read Operation, and 
(2) the State Update time (SU_time) be the time for the remote server to get and commit 
the SUM from the local server. Then, SOMR can be expressed as the following 
probability: 
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Figure 5.3 shows all the delays that make up RO_time and SU_time, where: D1 is the 
processing time between the final 200OK response leaves the local server and the 
corresponding SUM is sent to the remote server; Delay is the link delay between the two 
servers; D2 is the processing time to commit the state update at the remote server after 
reception of the SUM. D3 is the processing time at UEA to complete the transaction after 
reception of the final 200OK response; D4 is the inter-transaction time; D5 is the 
processing time between the beginning of the transaction and the moment when UEA 
actually sends the request; D6 is the propagation time of the request from UEA to the 
remote server. Note that the two other propagation times, namely between S1-CSCF and 
UEA, and between the two S-CSCFs, are negligible (the bandwidth is 1Mbps); only this 
propagation time was considered since non-negligible processing times at the P-/I-CSCF 
are to be considered in the calculation of SOMR. D7 is the processing time between 
reception of the read request and the actual checking of the state values. 
Let us break those two times down into their respective delays: 
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Fig. 5.3,   RO_time and SU_time delays.  

 
 
On one hand, according to the traffic model, D4 is exponentially distributed, with mean 
value 1/λ. On the other hand, we can assume that the other delays are deterministic 
because of the light load in the system. Therefore, in order to evaluate SOMR, we can 
isolate D4 and Equation (3) becomes: 
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And in the case of exponentially distributed D4, as defined previously: 
 

( ) ( )( )[ ] )6.5(exp 765321 DDDDDDelayDSOM R +++−++⋅−= λ  
 

Server Selection Policy (SSP) 
Without failures and with the round robin server selection policy at the transaction scale, 
a new remote server is accessed for every successive transaction, i.e. SSP is 100%. 
Because of the inherent SIP failures, and because there are only replicated S-CSCF in the 
example scenario, the first S-CSCF contacted to process a transaction might be 
unavailable and the retransmitted request is finally processed by the local S-CSCF for the 
previous transaction, i.e. the RO is local; therefore, SSP is not equal to 1 anymore. We 
could have approximated SSP at 1, or derive it from the failure model. Instead, we 
measured it by comparing in the tcpdump files the server that processed transaction n 
successfully, noted server(n), and the server that processed the read request for 
transaction n+1, noted server(n+1). SSP equals the ratio between the number of cases 
when server(n) and server(n+1) are different and the total number of comparisons. 
This illustrates that the proposed inconsistency evaluation framework can rely on 
different methods to determine its input values. 

Unsuccessful State Replication Rate (USRR) 
We assume that no state update is dropped due to buffer overflow since the traffic is very 
small compared to the memory and CPU capacities of the machines used in the system. 
Then, the probability that the SUM is not received is directly equal to the Packet Error 
Rate in the link between the two S-CSCFs. 

 
Once the three influencing factors have been evaluated, they can be used in Equation 
(5.1) to directly derive the inconsistency level.  
 

5.3.4. Results and Model Validation 

Results 
The previous section showed that, in our system, inconsistency is a function of the 
characteristics of the link used for the state replication, namely packet error rate and 
delay. These link characteristics were emulated at the S-CSCFs, in the function in charge 
of receiving the SUMs. To emulate delay in the link, the corresponding thread freezes for 
the desired time while the received SUMs are randomly dropped according to the chosen 
PER, before they are processed. The bandwidth was fixed to 1Mbps. We ran six tests 
with different values for those two link parameters, shown in Table 5.1. For each 
scenario, the duration of the test in terms of number of sessions established by UEA is set 
to 1400 sessions. The number of messages per session is geometrically distributed with a 
mean value of 10; hence, the overall number of read requests to the session state (at 
which inconsistency is evaluated) is approximately 14000. 
Although the system was lightly loaded, the measurements of the processing delays DX 
(D1, D2, and D3, D5, D6, D7) showed that they were not deterministic and were distributed 
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with long tails. For example, D7 was around 8ms for most of the RO requests but its 
values ranged from 5-6ms up to 800-900ms. Since the values in the tail of the delay 
distribution are not relevant for inconsistency, but they influence the mean strongly, we 
choose to use the most likely delay values of DX (the modes of the empiric distributions) 
in the calculation of SOMR. 
Table 5.1 gives for each test scenario the final inconsistency results for the experimental 
evaluation (direct measurement of inconsistency) and the factor evaluation (via the right-
hand side of Equation (5.1)), as well as the absolute difference between the two 
approaches. 
 

Table. 5.1, Comparative results for the experimental and analytical evaluations of 
inconsistency 

 

Analysis 
The results show that the inconsistency level evaluated with the factor approach is 
slightly higher than the directly measured inconsistency in our experimental system in all 
scenarios except when there is no delay in the link used for propagating the state update 
(third row 3 in Table 5.1). When the delay is much larger, i.e. 300ms, the absolute gaps 
between experimental and factor results get larger as well: up to 6.17% in the worst case 
(delay=300ms, PER=15%). 
The observation of bigger deviations in settings with higher Delay between the two 
servers can be explained via the empiric distribution of the delays DX. As stated earlier, 
the delays that contribute to RO_time and SU_time are not deterministic and vary 
(sometimes even reaching large values), even though the load on the SIP/RSerPool 
system always stayed low. The variations in the DX values appear to be a consequence of 
the SIP software implementation. Both RO_time and SU_time contain additive delay 
parts with such variation (the ones that are due to processing time); however, there are 
more of those in RO_time. As a consequence, the deterministic assumption used to 
compute SOMR underestimates both RO_time and SU_time, but RO_time more strongly 
(contains four processing delays as opposed to only two in SU_time). Thus, the factor 
approach overestimates inconsistency due to the variation of the processing delays. 
When Delay is null (i.e. resulting in smaller SU_times), the state is almost always 
updated at the remote server before the next RO is received, therefore RO_time is 
expected to be longer than SU_time and then, even longer RO_times do not hide potential 
inconsistency instances caused by disordering (only remaining cause of inconsistency is 

Delay 
(ms) 

PER 
(%) 

Experimental 
evaluation 

Factor  
evaluation 

Absolute 
difference 

20 2 2.76% 3.80% +1.04% 
20 2 3.45% 3.92% +0.47% 
0 15 13.77% 13.38% -0.39% 

300 0 19.51% 23.38% +3.87% 
300 15 29.09% 33.77% +4.68% 
300 15 27.45% 33.62% +6.17% 
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packet loss). Hence, much higher accuracy is obtained with the factor evaluation in the 
scenarios with low or no Delay between the two servers. 
Note that for the purpose of validation, we picked extreme settings for our tests that lead 
to very high inconsistency levels; it is rare to reach 15% PER, especially in the wired 
core network between two servers.  
 

5.3.5. Framework Application Example 
After discussing how to map the influencing factors to our IMS system, we concluded 
that SOML  is equal to 1. Then, Equation (5.1) becomes: 
 

( ) ( )[ ] )7.5(11 RSOMUSRRUSRRSSPncyInconsiste −⋅−+⋅=  

 
In Figure 5.4, we draw the inconsistency level as a function of the delay in the link 
between the replicated servers, for different given PER values; respectively 0%, 2%, 5%, 
10%, and 15% from the upper curve to the lower curve. We assume SSP to be equal to 1 
from the round robin setting, and that USRR is the PER. As stated earlier, when Delay is 
null, RO_time and SU_time are almost equal, and SOMR is equal to 1. Note that in our 
system, for scenarios with no link delay between the replicated servers, inconsistency has 
the product of SSP and PER as lower-bound. 
 
 

 
Fig. 5.4, Influence of Delay and PER on the inconsistency level. Each curve is the 

inconsistency level for a given PER (from bottom to top: 0%, 2%, 5%, 10%, and 15%) 

 
The figure proves useful when analyzing the requirements on the system so that the 
inconsistency level stays below a given threshold. For example, it shows that no more 
than 10% PER (when no Delay) OR no more than 100ms Delay (when no PER) can be 
tolerated in our system to keep the inconsistency under 10%. Within those two bounding 
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ranges, all pair values Delay-PER allow inconsistency levels under 10%. This analysis 
highlights the need to consider the tradeoff between Delay and PER, which can be critical 
when designing a system. The type of protocol used to propagate the SUMs influences 
those two link characteristics and, consequently, influences also the inconsistency level. 
Reliable, TCP-like protocols ensure that fewer SUMs are lost when being propagated 
(lower PER) at the cost of longer delays while connectionless, UDP-like protocols offer 
lower delays but poor reliability to the SUMs. The impact of the protocol used can be 
analyzed analytically, based on its retransmission and congestion control models applied 
to the system of interest. 
 
 

5.4. Conclusions 
In this chapter, we introduced a framework for evaluation inconsistency in a replicated 
IMS. Direct measurements of inconsistency are deployed for model validation but in 
most cases they are not feasible in practical systems. The introduced new approach is 
based on an analysis of contributing factors, related to the Server Selection Policy, the 
packet drop rate between server replicates, and the disordering probability of state update 
messages. The first two factors are either known from system properties or can be 
estimated efficiently from the running system. The last factor is derived from parameters 
of the traffic model and different delay parameters in the system. The comparison of the 
evaluation approach via the contributing factors with a dedicated direct inconsistency 
measurement approach in an experimental prototype of IMS call control shows a close 
match despite simplifications on assumptions on processing delays. The relation between 
inconsistency and the contributing factors can also be used for network planning 
purposes. 
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6. Mid-Session Macro Mobility in the IMS 
 
 
 
 
 

6.1. Introduction and Motivation 
As discussed in the previous chapters, fault tolerance often relies on replication 
architectures that permit to shift the current load and communications of a failed entity to 
an available backup replica. So far, it has been assumed that the IMS functions could be 
replicated, and important aspects related to replication for the most critical function, 
namely the S-CSCF, were analyzed. 
In some systems, replication is not a desirable option to cope with failures for several 
potential reasons: 
• Replicating physical nodes and software can be expensive, 
• Replication increases the overall load of a system, limiting its capacity, 
• Replication can cause serious performance degradations. 
Therefore, it is important to investigate scenarios where single points of failures are 
unavailable and block all traffic at an access network or IMS and discuss the potential 
options to mask these fault scenarios.  
One trivial way to deal with timing failures perceived by the UE is the simple 
retransmission mechanism. Nevertheless, this assumes that the failed part of the system 
can be rebooted or replaced quickly enough to minimize the impact on the users’ 
experience. When these two options do not work, the users lose/do not get access to the 
desired services either (1) because some access network failure prevents any 
communications with external network and isolate the users or (2) because the failure has 
happened at a non-redundant component, which makes the service unavailable. When 
this happens, connecting to another access network is the only active approach left not to 
lose the ongoing sessions. Also, in case of macro mobility, i.e. a handover that involves a 
change of access network, the QoS settings guaranteed in ANnew should be at least as 
good as those granted in ANold before the failure so that the service keeps performing as 
expected. 
Also, B3G systems will be characterized by a collection of radio and fixed networks 
providing access to IP-based services. Thus, providing mobility management across 
different access technologies will become a crucial task in B3G networks, not only for 
fault tolerance but also, e.g., for providing extended coverage or faster and/or cheaper 
connections.  
 

6.2. Related Work and Problem Statement 
While macro mobility is becoming an important feature of IP-based multimedia sessions 
as it is expected that mobile terminals will often switch between heterogeneous networks, 
operators want to control the access to their scarce radio resources by deploying access 
control and session control in their systems. The IMS can provide the desired control 
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levels but its current specifications do not allow for any change of the UE’s IP address 
during an ongoing session; when a user moves to another access network (ANnew), all 
ongoing sessions have to be terminated and the corresponding session states are 
processed and then discarded. Additionally, the long SIP session setup procedures have to 
be performed once more at ANnew, which causes unacceptable disruptions for delay-
sensitive, real-time services. Consequently, the standard IMS cannot provide seamless 
mid-session macro mobility. 
Some enhancements have been recently proposed that reduce the disruption time during 
mid-session macro handovers in IMS environments [Larsen06a][Larsen06b][Castro06]. 
These SIP-based approaches (1) assume that the SIP session states can be kept (despite 
the session termination) and, then, use (2) context-transfer and (3) new signaling 
procedures in order to reduce the overall number of signaling messages that have to be 
exchanged for session establishment and resource allocation at ANnew. Even though these 
efforts achieve greatly improved disruption times, stateful applications running on top of 
SIP would still lose their session states and could not continue the service provisioning at 
ANnew where it got interrupted at ANold without changing the implementation of both the 
SIP and application layers Lack of session continuity is not acceptable for stateful 
applications such as online gaming and auctions. 
Ideally, application implementations should be kept as simple and standardized as 
possible, which helps the fast deployment of new services. So, another approach for 
macro handovers consists in using Mobile IP (MIP) instead. MIP is a network-layer 
protocol that provides session continuity to the upper layers by hiding UE’s changes of IP 
address and therefore the session does not have to be terminated as the SIP layer is 
unaware of the change of IP address. Nevertheless, [Roos03][Faccin04][Chen07] have 
shown that several interoperability issues compromise the deployment of MIP in the 
IMS. These issues, plus some new issues raised in this thesis, are presented in detail in 
Section 6.5.1.  
 
In this chapter, we first give some state of the art about macro mobility support in IP 
networks. Then, we highlight MIPv6 and SIP/IMS requirements, respectively, in terms of 
addressing scheme and their interaction with the application layer. Then, we analyze how 
these requirements are conflicting and lead to limitations when MIPv6 is used 
simultaneously with SIP in an IMS-controlled environment. Consequently, we introduce 
a MIPv6-based solution for supporting macro mobility in IMS that permits to respect the 
MIPv6 and IMS paradigms at the cost of a few additional non-standard operations and 
functionalities. We also discuss the impact of our solution on the standards, the 
implementation efforts that it implies, and the improvements that can be achieved. 
 
 

6.3. Macro Mobility Protocols in IP Networks 
6.3.1.    Mobility Definitions 

There is a set of mobility definitions that can be often found in the literature, e.g. 
[Schulzrinne00]. Here are the definitions used in this work. 
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Terminal Mobility 
Terminal mobility allows a device to change its point of attachment to IP subnets, while 
continuing to be reachable for incoming requests and maintaining ongoing sessions 
across subnet changes.  
• Pre-session mobility: the user device can be reached anytime at its current point of 

attachment, 
• Mid-session mobility: the user can roam across networks, changing the point of 

attachment during an ongoing session. 

Personal Mobility 
Personal mobility allows a user to be contacted at multiple devices via the same logical 
address or to change the device used during ongoing stateless communications.  
• Pre-session mobility: the user can be reached at several devices (but often times only 

one device is used once the user picks up), 
• Mid-session mobility: the user can switch the ongoing session from one terminal to 

another. 

Session Mobility 
In addition to the two previous fundamental types of mobility, session mobility can 
provide mobility-related functionalities when UEs are on the move. This is not a ‘core 
mobility feature’ in the sense that it is not meant to make the UE reachable at the IP level, 
i.e. it does not deal with network layer connectivity. Nevertheless, session mobility is 
essential for stateful applications to handover as transparently as possible from the user’s 
perspective. 
Session mobility, also called service migration, is the ability to suspend an ongoing 
session and to resume it at another device with the same session state. This implies that 
the same settings should be allocated to the session after connecting to the new access 
point or changing the device. The user may want to move only a part of the session, e.g. 
in the case when a specialized device is more suited for handling one of the session media 
streams. This special feature is also referred to as component mobility or partial service 
migration. 
Note that session mobility can be done only if session continuity allowed. Session 
continuity is ability of a system or application to maintain the session state despite 
mobility. 
 

6.3.2. Macro Mobility Protocols Overview 
Mobility solutions have been proposed that can be implemented at several layers of the 
protocol stack:  
• Legacy networks (GSM, UMTS…) mobility is usually implemented at the link layer 

and is restricted to homogeneous networks, i.e. it allows the UE to change its point of 
attachment in the subnetwork. This means that the UE keeps its global IP address, 
which allows only for micro mobility (i.e. intra-domain handovers); E.g., in UMTS, 
micro mobility is within a given GGSN domain. 
Macro mobility has to be supported at higher layers. 
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• Network-layer mobility (Mobile IP, see Section 6.3.3) is provided for any kind of 
networks without regard to the link layer techniques deployed underneath and hides 
the mobility to the application by always showing a fixed global IP address.  

• More recent research has brought mobility to the transport-layer, via mobility 
extensions of the newly introduced transport protocols, SCTP [Stewart 00][Riegel 06]  
and DCCP [Kohler 06a][Kohler 06b]. This solution moves the mobility support into 
the end nodes and keeps the network stateless. 

• Mobility can also be implemented at the session/application layer with SIP (see 
Section 6.3.4). Moving the mobility management to the application layer means that 
mobility functions can be easily downloaded and installed on a device—the mobility 
software is needed at both ends though..  

• Protocols originally designed for other purposes may support some aspects of 
mobility management. This is the case with RSerPool that completes mobile SCTP 
[Dreibholz03]. 

 
6.3.3. Mobile IP 

MIP was first specified in [Perkins02] for IPv4 networks. MIP is intended to provide 
terminal mobility only.  
A MIP handover consists of a movement detection and registration, called Binding 
Update (BU), with the Home Agent (HA). The UE, called Mobile Node (MN) in the MIP 
architecture, registers with a HA in its home domain. Each MN is given a permanent 
Home Address (HoA) in the home domain. When the MN visits a foreign domain, it gets 
a Care-of-Address (CoA) with DHCP or PPP. After it gets a CoA, the MN registers the 
new address with the HA. When a packet is received in the home domain, the HA 
forwards it to the MN through a tunnel using to IP-in-IP encapsulation, as illustrated in 
Figure 6.1. On the other hand, the MN communicates directly with the other endpoint, so-
called Correspondent Node (CN). This leads to what is referred to as triangular routing. 
 
 
 
 
 
 

Fig. 6.1, Care-of Address encapsulation mechanism 

 
The intrinsic problems of MIP are: 
• Overhead due to IP-in-IP encapsulation, which impacts the overall application 

goodput. This is partly solved with header compression [Degermark99]. 
• Long process to detect movement (agent solicitation messages sent by MN after 

connecting to ANnew). Many novel solutions have been and still are proposed 
proactive mechanisms in order to reduce the handover latency (e.g. see [Feng04]). 

• The MIP registration delays might be long if the MN and HA are far apart. 
• Triangular routing introduces communication delays. To prevent this drawback, route 

optimization was designed to allow for direct communications from the CN to the 

Care-of Address Home Address Information 

Home Address Information 
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MN [Perkins01]. After receiving an a BU containing MN’s CoA, the CN can start 
using the binding entry from its routing table to sends encapsulated packets directly to 
the MN. 

 
With MIPv6 [Johnson04], the system benefits from the IPv6 neighbor discovery and 
stateless address auto-configuration for faster IP connectivity and movement detection. 
The route optimization support is implemented by MIPv6 by default but requires a new 
method called return routability procedure. It consists of two checks (i.e. four messages 
between the MN and the CN) to guarantee MN’s identity, thus ensuring a secure BU at 
the CN. 
 

6.3.4. SIP Mobility 
SIP is capable of supporting all mobility types. Here we only detail the operations for 
terminal and session mobility, which are the required mechanisms for mid-session macro 
mobility in the IMS. To read about all the mobility types supported by SIP, refer to 
[Schulzrinne00]. 

Terminal Mobility 
Terminal mobility impacts SIP at two stages: pre-session and mid-session.  
• For pre-session mobility, the UE simply need to re-REGISTER in order to update its 

current location at the location manager (IETF) or HSS (3GPP). 
• For the mid-session mobility, the UE sends a re-INVITE request to its correspondent. 

This request contains an updated session description with the new IP address, in the 
contact field of the SIP message. In addition, the UE has to register again so it can be 
reached for new incoming SIP messages. 

Session Mobility 
In the standard IETF architecture, the UE uses the REFER method to transfer the session 
to another device. This method is very similar to the re-INVITE and does not transfer 
session states to the new device.  
Note that in the IMS, specifications do not allow session continuity at the SIP layer if the 
IP address of any participating endpoint changes, so the SIP session statea are lost and 
session mobility mechanisms can only achieve the equivalent of terminal mobility.  
 
 

6.4. Scenario Description and Assumptions  
Figure 6.2 shows the scenario considered in our work: a user equipment (UEA) is attached 
to a UMTS access network and communicates with another user equipment (UEB) 
attached to another IMS-based access network. We assume that a multimedia session, e.g. 
video conference, is ongoing between the two users. After some time, UE-A performs a 
handover from the old access network, ANold, to the new access network, ANnew.  
In case of stateful sessions, e.g. video gaming, session continuity is crucial since the users 
do not want to lose the history (i.e. the session state) of the ongoing session. Therefore, 
this work focuses on providing means for macro mobility support in IMS environments at 
the IP layer, which will hide the mobility to the higher layers and keep the session alive, 
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while respecting the standard resource allocation mechanisms specified at the session 
layer by the IMS.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.2, Mobility scenario 

 
 

6.5. MIP-IMS Interoperability Issues 
In this section, we present the main problems related to MIPv6 integration in the IMS 
platform.  
 

6.5.1. Delayed MIP Registration 
Whenever a UE connects to a new access network (when switching the device on or after 
pre-/mid-session handover), it activates a primary context and gets its new IP address 
(CoA). The primary PDP context is designed to carry SIP messages only and, therefore, 
the access router will block other packet types such as MIPv6 registration packets; the 
MIP signaling is only possible after a secondary PDP context is created. This means that 
the UE cannot become reachable at the IP layer until a secondary PDP context is 
activated.  
Before the secondary PDP context activation procedure can be completed, SIP messages 
have to be exchanged between the UE and entities in external networks for (1) SIP 
registration (S-CSCF) and (2) QoS negotiation (UEB). Thus, SIP packets cannot be routed 
back to the UE and this issue leads to a deadlock situation where the UE can never 
complete either SIP or MIP signaling procedures. 
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6.5.2. Addressing Scheme Conflicts 
MIPv6 hides UE’s mobility to layers above IP and therefore requires that those layers use 
its HoA. On the other hand, IMS-based access control and QoS allocation negotiations 
are based on policies that are specific to the access network the UE is currently visiting, 
which is identified by UE’s CoA. Those conflicting requirements impact two critical 
entities that participate to the access and service control, namely the P-CSCF and the 
GGSN. 

P-CSCF 
When the UE registers with the IMS, the P-CSCF checks for the address used in the SIP 
REGISTER request. As defined by the MIPv6 requirements, the UE should register its 
HoA at the SIP level. The P-CSCF will reject the SIP registration request because the 
HoA does not represent the current location of the MN, i.e. the HoA is not in the range of 
IP addresses matching the current access network. To avoid this problem, registering 
UE’s CoA at the SIP layer is problematic because: 
• this would require new interfaces between MIP and SIP at the UE so that the MIP 

communicates the UE’s CoA to the SIP layer instead of the HoA; 
• SIP would have to update the UE’s location information after every handover –then it 

is similar to the SIP mobility case; 
• changes of the IP addresses are not hidden to the SIP and application layers and, thus, 

session continuity cannot be ensured without additional implementation efforts. 

GGSN 
Once the UE is registered at the SIP level, it triggers a secondary PDP context activation 
for each data flow. In the process, the access router sets up the TFT and SBLP filtering 
functions, with the IP addresses of the data flow endpoints: UEB’s IP and UEA’s HoA. 
The addresses used to set the filters and the ones put in the IP header are not consistent in 
all scenarios of MIP communications between UEA and UEB, depending on whether the 
home agent is involved in the data path.  
 
Based on these remarks, the following limitations can occur when MIP is used at the IP 
layer in an IMS environment: 
• Without route optimization (i.e. reverse tunneling is implemented; the packets are 

systematically routed to UE’s HA before being forwarding towards either endpoint): 
o Both GGSNs would block the packets originally sent by either endpoint because 

those packets are forwarded from the HA, which puts its IP address in the source 
IP address field of the outer IP header (TFT only lets through packets with either 
UEB’s IP or UEA’s IP), 

o Both GGSNs block the packets received from the endpoints: the SBLP does not 
allow packets with HA’s IP in the destination field. The destination should be 
UEB’s IP or UEA’s IP, but reverse tunneling requires to send the packet to the HA 
first, i.e. HA’s IP in the IP address header. 

• With route optimization: 
o GGSNB blocks the packets from UEA because the latter sends IP packets with its 

CoA in the source address field while the TFT at the GGSN is expecting the HoA, 
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o GGSNB blocks the packets from UEB because the SBLP that has been set at the 
GGSN expects UEA’s HoA in the destination IP address field while UEB uses the 
CoA. 

o Incoming packets received from the UE-B are blocked at GGSNA by the SBLP 
because instead of UEA’s HoA in the destination IP address field, the CoA 
appears.  

The address conflicts at the GGSN are also detailed in [Chen07] and summarized in 
Figure 6.3 for both the MIP bidirectional tunneling and route optimization modes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.3, Summary of address conflicts at the GGSN filtering functions 

 
 

6.6. Solution for MIP-IMS Interoperability 
We describe a solution that respects MIPv6 and IMS paradigms by adding functionalities 
to the access router and P-CSCF and exchanging a few additional MIPv6 messages. 
 

6.6.1. Assumptions  
The following assumptions on the system were made prior to designing the MIP-IMS 
interoperability solutions: 
• The MIP HA is deployed in the Internet (it could be at the edge of the access network 

though) and, therefore, UE-A is in a foreign network in every access network from 
the IP point of view.  
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• Each access network is connected to a unique P-CSCF so macro mobility implies the 
change of P-CSCF as well. 

• The IMS requires IPv6 for transport; so we assume that IPv6 is also deployed in the 
other domains considered in this work (Internet, UMTS core network, etc.). 

• In terms of failure detection, UEA is aware that the sessions are being dropped (forced 
by operator’s policies) or that the communications are not reaching UEB due to 
failures in its access network. If a communication path exists between the user 
equipment and the network monitoring entities, the latter can send a status report to 
the user equipment with the nature of the error/failure and a recommendation about 
the best recovery strategy; this is a network-initiated handover. 

• Because of the scarce resources on the air interface, we assume that the resources in 
the Internet exceed those that are available in the access network. This means that we 
only need to focus on the resource allocation and control in the access networks. For 
simplicity, we also assume that the resources available to the UE at ANnew are at least 
as good as at ANold. If that was not the case, the UEs would have to re-negotiate new 
QoS levels for the ongoing session and decide whether they want to continue the 
session with downgraded QoS. 

• The two access networks that UEA attaches to can belong to different operators. 
Roaming between different operators’ domains presents inherent challenges 
[Roos03], especially related to security and QoS. We assume that the UEA roams 
between access networks whose operators have signed roaming agreements, which 
establish clear rules about security (encryption, authentication methods and keys) as 
well as QoS compatibility, e.g. user profiles should be mapped to operators' specific 
Service Level Agreements (SLA). 

 
6.6.2. Solution Overview 

In order to allow the MIP registration procedure to take place as soon as UEA has 
obtained a CoA, i.e. after a primary PDP context is activated between the UE and its 
current GGSN, the best solution is to allow MIP signaling through the primary PDP 
context. In general, it is reasonable to assume that the access router should treat MIP 
signaling as part of the signaling flow and not as a specific data stream. This is because 
(1) the high bandwidth available for the primary PDP context should benefit MIP 
mechanisms, (2) MIP signaling packets are not intended to any user application and 
should not be charged the same way as application data. So there is a rationale for 
including the MIP registration in the primary PDP context. For implementation purposes, 
one might argue that a primary PDP context can only carry SIP messages; in that case, a 
general PDP context should be activated instead since it is designed for mixed, signaling 
and data traffic. The same QoS allocation and charging policies can be applied to SIP and 
MIP signaling, while secondary PDP contexts are activated for the different data streams. 
Both types of address conflicts introduced in the previous section can be solved with the 
same approach: by making the GGSN and the P-CSCF aware of both UEA’s addresses 
(HoA and CoA), both entities can look up in their binding table and prevent rejecting 
packets that contain a seemingly wrong IP address. This requires that both the GGSN and 
the P-CSCF are fully MIP-compliant –see next section for details. 
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6.6.3. Detailed Operations 
This section presents the sequence of events that take place after a MN gets connectivity 
in a new access network. Those events are summarized in Figure 6.4. Note that this also 
holds when the user switches its mobile device on. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.4, Macro handover with MIP mobility support in IMS-based networks 

 
After getting connectivity on the air interface in the new access network, UEA activates a 
primary PDP context in order to get IP connectivity with external networks (IMS 
included). Assuming that MIP signaling can be sent over the primary PDP context—or a 
general PDP context—UEA starts the MIP registration procedure immediately after 
primary PDP context activation in order to be reachable at the network layer by external 
nodes. When receiving the MIP registration request—namely, the binding update—from 
UEA, the MIP-aware GGSN recognizes the message thanks to the Home Registration bit 
and the Mobility Header Type field in the Mobility Header. The primary PDP context 
now being improved with MIP signaling support, the access router does not discard the 
MIP request even though it is not a SIP message that is carried through the primary PDP 
context. 
Then, UEA needs to treat its current P-CSCF as a MIP correspondent node so that the 
latter knows about the HoA/CoA correspondence and does not reject the SIP registration 
request from UEA. Concretely, UEA sends a binding update to its MIP-compliant P-
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CSCF, which updates its binding table. When the P-CSCF receives a SIP REGISTER 
with a forbidden address, it can look up the table for a mapping address that belongs to 
ANnew. Only then, can the P-CSCF process successfully the SIP REGISTER request with 
UEA’s HoA. Note that a new interface is needed so that SIP accesses the MIP binding 
information. After UEA has registered with its S-CSCF, it activates a secondary PDP 
context (sending a SIP re-INVITE to UEB) for each data stream that participated in the 
ongoing session(s) at ANold. 
In order to solve the address mismatch in the filtering functions at the GGSN, a similar 
address-mapping database to the one added to the P-CSCF needs to be implemented in 
the GGSN. For instance, the GGSN can extract UEA’s addresses from the MIP 
registration request sent to the HA before forwarding it; subsequently, the GGSN 
commits the address mapping when it receives the binding acknowledgment back from 
the HA. Another approach is to make the P-CSCF communicate both UEA’s addresses 
during the secondary PDP context activation process so that the GGSN sets the filters 
with those two addresses. Also, in Section 6.5.2, we showed that in bidirectional 
tunneling mode (between the two UEs) the GGSN blocks the packets that UEA 
sends/receives to/from its HA. Thus, we suggest that the GGSN decapsulates the data 
packets to/from the HA in order to check for the validity of the destination and/or the 
source address in the inner IP header. 
 

6.6.4. Analysis 

Handover Times 
In most scenarios, MIPv6 is expected to achieve shorter handover times than SIP 
mobility [Kwon02]. Nevertheless, in IMS-based networks, providing mobility support is 
not sufficient to perform a complete handover: access and service control functions have 
to be set at ANnew, this is the session mobility aspect of the handover. In the 3GPP 
specifications, the SIP INVITE transaction simultaneously provides location update – for 
mobility support – and enables the negotiation and application of QoS policies at ANnew's 
GGSN with the activation of secondary PDP contexts – for access and service control. 
This means that in our scenario MIP mechanisms will be responsible for the terminal 
mobility at the IP layer and the SIP INVITE for the session signaling. Therefore, MIPv6 
integration in IMS-based networks does not permit to shorten the handover delays when 
following the standard secondary PDP context activation after moving to ANnew. In the 
best case, MIP and SIP signaling (Figure 6.4) can be processed in parallel. The MIP 
registration procedures being shorter than the SIP ones, the MIP mechanisms do not 
impact the handover times, which are consequently expected to be the same as in the pure 
SIP-based handover case. Here, the only impact on the handover time could be the result 
of the computational load that the MIP mechanisms add to the system. This may slightly 
affect the overall performance of the system; e.g. the GGSN and the P-CSCF could slow 
down because of the additional processing and treatment of the MIP signaling. 

Signaling Overhead 
The additional MIP operations used in our solution consist of binding update procedures 
between UEA and its HA, and its P-CSCF. Return routability procedure and binding 
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registration are made up of six small signaling messages (cf. Table 5.2 in [Fathi06]). So 
in total, our solution requires twelve MIP signaling messages.  
Note that if we want to avoid the impact of triangular routing on the data traffic, an 
additional six messages are necessary to complete the whole binding update with UEB. 

Implementation Efforts 
The integration of MIP in IMS-based networks is not straightforward and our solution 
requires some implementation efforts:  
• The primary PDP context should allow for MIPv6 signaling. In the previous 

subsection, we argued why this requirement would not impact the IMS specifications 
much. 

• The GGSN and the P-CSCF should be MIPv6-compliant so they process binding 
update messages and map UEA’s HoA and CoA at the IP layer. Both entities will be 
deployed in IPv6 networks and a particularity of IPv6 nodes is that they implement 
MIPv6 functionalities by default in their kernel. So, again, not much implementation 
costs are introduced here. 

• A specific software architecture should allow the functions in the GGSN and the P-
CSCF to resolve address conflicts by accessing the binding information for UEA's 
addresses. In particular, an interface is needed for the higher layers to call the CoA-
HoA address mapping functions in MIP and for MIP to respond to them accordingly. 
Cross-layer mechanisms [Srivastava05] could easily be an answer to this requirement. 

 
6.6.5. Conclusions 

The concepts that make MIP-IMS interoperability possible mainly rely on the standard 
MIP binding update registration at the P-CSCF and the HA. This is done at the cost of 
reasonable implementation efforts, especially between the MIP and SIP layers in the 
GGSN and P-CSCF. The UE, which implements MIPv6 by default as an IPv6 node, and 
the application do not need to be modified at all. 
As compared to the original SIP procedures, our solution supports transparent session 
mobility. If the same feature had to be provided in the pure SIP scenario, interfaces 
between the SIP and application layers would have to be introduced so that SIP does not 
trigger the session termination and the application does not lose the ongoing session state 
as the UE’s IP address changes. In this scenario, applications would have to be modified, 
which plays against one of the motivations for the IMS: easy and standard application 
development and deployment. 
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7. Enhanced MIP-based Mid-Session 
Macro Mobility 

 
 
 
 
 
The analysis in the previous chapter showed that MIP does not permit to reduce the 
macro handover delays as compared to the original SIP in IMS environments because of 
the session mobility requirements. IMS macro handover optimizations found in the 
literature are SIP-based, which is not an optimal option for the reasons mentioned in 
Section 6.2. In this chapter, a novel mechanism for fast MIP-based mid-session macro 
mobility solution is proposed and the improvements that can be achieved, the 
implementation efforts that it implies, and its impact on the standards are discussed. 
 
 

7.1. Solution Overview 
During a mid-session handover, the most important aspect from the user’s perspective is 
the disruption of the service, i.e. the discontinuity of the data flow at the application level. 
Therefore, emphasis should be put on creating a data path in ANnew as fast as possible in 
order to achieve a low latency handover. Ideally data could be carried in the first bearer 
created in the access network while controlling the resources allocated to this bearer. 
General PDP contexts meet this requirement since their particularity is to carry signaling 
packets and data packets, and to be granted resources by the access network. 
In our scenario, resources have already been authorized and allocated in both UEA’s and 
UEB’s access networks before the handover. Thus, two arguments particularly motivated 
the design of an alternative solution to the complex end-to-end multimedia session setup: 
(1) after the HO, resources do not need to be dedicated to the ongoing session in UEB’s 
access network again, and (2) UEA has stored media-authorization Our solution defines a 
new PDP context type, namely Mid-Session Handover PDP context (MSH PDP context). 
This new PDP context is similar to a general PDP but is activated with specific 
procedures detailed in the next section. The MSH PDP context activation process 
requires:  
• A new interface between PCF/P-CSCFold and PCF/P-CSCFnew so that PCF/P-

CSCFnew can get the session-related information that it uses to allocate resources for 
MSH PDP context and to charge the user appropriately; 

• Additional information: the media authorization token for the ongoing session and P-
CSCFold’s IP address; 

 
Our solution permits the data bearer to be set at ANnew without using SIP mechanisms 
(REGISTER and INVITE) and, therefore, to complete the resource allocation procedure 
much faster. After the unique data bearer is activated, UEA uses MIP mobility 
mechanisms to re-establish IP reachability with UEB and to start exchanging data packets. 
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Once UEA’s and UEB’s application layers can communicate again, UEA transparently 
returns to the standard IMS-based operations (i.e. primary and secondary PDP contexts). 
In summary: 
• MIP and SIP procedures are decoupled 
• MIP provides terminal mobility 
• Session mobility is supported by context transfer 
• Media resources are allocated with new PDP activation methods 
 
 

7.2. Detailed Solution Description 
Figure 7.1 shows the full message flow of our solution and will be explained in the 
following subsections. 
Note that, even though it is not a 3GPP requirement, we assume that P-CSCF and PCF 
are collocated and can commonly access the states of the sessions they control. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 7.1, Enhanced mid-session macro HO procedures 
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7.2.1. Data Bearer Setup 
After UEA looses connectivity at ANold, it triggers the L2 Attach procedure at ANnew and 
authenticates with the network (UMTS AKA). When it detects that a session(s) was still 
ongoing before loosing connectivity at ANold, the UE triggers the MSH PDP activation 
instead of the standard primary PDP context activation.  
When setting the secondary PDP in ANold, UEA obtained a media authorization token, 
which specifies the PCF that generated this token. The token is added into the MSH PDP 
context activation request sent to GGSNnew. This request should be treated by the GGSN 
the same way as for a secondary PDP context so that access control for data packets can 
be set up as well. Therefore, GGSNnew converts the PDP activation request into a COPS 
request that it sends to PCFnew. The latter behaves as a COPS proxy: it recognizes the 
specific MSH request and uses AuthToken to retrieve PCFold’s location, where it 
forwards the request. In case AuthToken is insufficient to retrieve PCFold’s location, e.g. 
when the two access networks are in separate administrative domains, then P-CSCFold’s 
IP address is used to route the request to PCFold. PCFold recognizes AuthToken, accepts 
the request and looks into its database for the corresponding session information. It 
responds to PCFnew with a response that contains the user’s profile, the SIP session state 
and the QoS levels authorized for this session in ANold. When PCFnew receives the 
response from its peer, it (1) maps the old QoS levels into local levels – this depends on 
the roaming agreements between operators, (2) creates a temporary charging state and (3) 
interacts with GGSNnew to finalize the activation of the MSH PDP context and open the 
access control filters. 
 

7.2.2. IP Reachability 
Once the MSH PDP context is activated, UEA is able to communicate with external 
networks from ANnew. The priority at this point is to quickly inform UEB about UEA’s 
new location so that the data packets can be routed properly from the CN to the UE. Note 
that the UE can start sending data packets after it receives the MSH PDP activation 
response because: 
• UEA already knows UEB’s IP address. 
• UEB will not reject those packets since MIP always shows UEA’s HoA at the 

application layer, which was knows by UEB before the handover.  
In our solution, the communications in ANnew are carried via a single PDP context, 
equivalent to a general PDP context. Signaling and data packets sent to UEA are sent 
from different external nodes and make filtering policies difficult to implement for one 
PDP context. Therefore, we assume that the filtering functions that apply to the MSH 
PDP context are limited to checking for UEA’s addresses in the destination address of 
incoming packets (for the TFT filter to redirect packets into UEA’s MSH PDP context) 
and applying the QoS level agreed for the MSH PDP context.  
UEA should start the MIP procedures immediately after the MSH PDP is activated by 
sending a binding update to its HA and UEB. 
 

7.2.3. Back to Standard Operations 
The goal of the MSH PDP context is to provide support in ANnew for IP multimedia 
communications as fast as possible but this PDP should not last until the end of the 
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session. This is because unless packet type differentiation can be implemented at the 
GGSN, the user would most likely be charged for signaling traffic at the same rate as data 
traffic when SIP packets are carried through the MSH PDP context. So whenever 
possible after the multimedia session is re-established, UEA should trigger the necessary 
mechanisms to return to the standard operations defined by 3GPP, i.e. separate signaling 
and data traffic in primary and secondary PDP contexts. Nevertheless, UEA should 
postpone those mechanisms when most of the MSH PDP resources are being temporarily 
used for the data stream(s), e.g., to download packets that had been buffered during the 
handover operations. 
First, the UE sends a REGISTER to its S-CSCF via the MSH PDP context in order to: 
• establish the SIP path between S-CSCF and P-CSCFnew; 
• establish the security association at IMS level (IMS AKA); 
• update HSS location database for future SIP requests addressed to the UE. 
 
Because the mobility is handled at the IP layer, UEB does not need to be updated about 
UEA’s new location information; on the other hand, the SIP re-INVITE is needed by the 
UE to obtain a new AuthToken in order to activate secondary PDP contexts at ANnew. 
After it forwards the final message of the re-INVITE (ACK message) to the UE, P-
CSCFnew logs the charging information related to the traffic in MSH so far and starts a 
new call state representative of the different charging rates of the data streams in their 
respective secondary PDP contexts. After receiving the final ACK message, the UE 
switches the data traffic to those PDP contexts and modifies the MSH PDP context to be 
dedicated to SIP signaling. 
 
 

7.3. Analysis 
7.3.1. QoS Resource Release at ANold 

The main goal of establishing PDP contexts is to allow operators to control their 
resources in the access network. When UEA leaves ANold, PCFold and P-CSCFold need to 
keep the session information to be retrieved later on by PCFnew. Two scenarios are 
possible: 
• GGSNold does not detect UEA’s movement and keeps the PDP contexts active while 

UEA is moving to ANnew. After it responds to the COPS request received from 
PCFnew, PCFold could release the resources in ANold by sending a network-initiated 
PDP release to GGSNold. Because it may happen that the COPS response from PCFold 
to PCFnew is lost, PCF/P-CSCFold keeps AuthToken, the user’s profile and the session 
state for a time Tretrans, set to 60 seconds, after responding to PCFnew. This way, PCFold 
still has the information in case of COPS request retransmission(s).  

• GGSNold detects that UEA has detached and it releases its PDP contexts. Instead of 
deleting all session-related information when GGSNold requests it, PCF/P-CSCFold 
triggers Troam, set to 120 seconds, and keeps the information for that duration. If 
PCFold does not receive a COPS request from another PCF within Troam, then it 
deletes the information. If it receives a COPS request, Tretrans is triggered after sending 
the response.  
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7.3.2. Security Issues 
IETF specifications require that the Media-Authorization header sent by the proxy (i.e. 
the PCF in our 3GPP UMTS environment) should be protected from eavesdropping and 
tampering [Hamer03]. In case AuthToken is intercepted anyway, it is recommended to 
set AuthToken timeout value to a few seconds to protect against replay attacks. In the 
mid-session handover case, we do not know how long the session will last before UEA 
moves and, consequently, how long AuthToken lifetime needs to be. There are two 
solutions to this problem: (1) operators take the risk of replay attacks and allow for long 
AuthToken timeouts or (2) the PCF provides UEA with new, additional specific token, 
that we call AuthTokenRoaming, which UEA can use only when it activates an MSH 
PDP context in a new access network.  
 
 

7.4. Quantitative Analysis 
7.4.1. Assumptions and Methods  

Here the handover times for both the original SIP and the enhanced MIP solutions are 
analytically compared. In both cases, the starting point is just after the UE has completed 
the L2 Attach procedures and is about to start the first bearer activation. Now we discuss 
for both mobility solutions when the handover would be considered completed: 
• In the SIP case, an INVITE needs to be processed to allocate a data bearer for each 

media stream. So the handover finishes when the final response of the last INVITE 
transaction is received at UEA. The SIP handover time is therefore proportional to the 
number of media streams to be created in ANnew. 

• In the enhanced MIP case, all resources are available at ANnew as soon as the MSH 
PDP context is activated, which means that the MIP-based handover time is 
completely independent from the number of media streams that participate in the 
ongoing session moved to ANnew. The MSH PDP context activation is not enough 
from the UE point of view because it is important to consider E2E connectivity. 
Therefore, the MIP-based handover is complete when the BU with the CN/UEB has 
been successfully completed. 

The following analytical discussion abstracts the difference of packet size between SIP 
and MIP messages. 
 
Looking at the message flows in Figures 2.6 and 7.1, we can list the different types of 
message exchanged and their number for the standard SIP and enhanced MIP mobility 
solutions, as seen in Tables 7.1 and 7.2. 
 

Table 7.1, Message requirements for the standard SIP-based mobility 

Operation Messages Number 
primary PDP context activation UEA – GGSNnew 2 

SIP REGISTER UEA – S-CSCF 4 
secondary PDP context activations GGSNnew – PCFnew 2   (per stream) 

resource allocations UEA – UEB 11 (per stream) 
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Table 7.2, Message requirements for the enhanced MIP-based mobility 

Operation Mesages Number 

 
MSH PDP activation 

UEA – GGSNnew 
GGSNnew – PCFnew 

PCFnew – PCFold 

2 
2 
2 

binding update (with HA) UEA – HA 2 
binding update(with UEB, 

(including the 4 route 
returnability messages) 

 
UEA – UEB 

 
6 

 
 
Assumptions on communication delays in the access network and in the Internet have 
been discussed in [Kwon02] and [Fathi06]. The same assumptions are used in this work, 
and are shown in Table 7.3. GGSN-PCF delays are very short because the PCF is 
collocated with the P-CSCF, which, by default, has to be deployed in the same domain as 
the GGSN so few hops should separate them. 
 

Table 7.3, Communication delays assumptions 

Mesage Delay 
UEA – GGSNnew 

(when UEA is in ANnew) 20ms 

GGSNnew – PCFnew 5ms 
PCFnew – PCFold 100ms 

 
 
In the discussion that follows, T[A–B] refers to the communication delay between any 
given node A and node B.  
T[UEA–S-CSCF], T[UEA–UEB] and T[UEA–HA] are used as input variables. 
 

7.4.2. Results and Analysis 
Figure 7.2 represents the handover times for the SIP and MIP solutions together in each 
subplot. Each subplot is generated for a given T[UEA–UEB]—50,150,250ms—while 
T[UEA–S-CSCF] is the input variable for the SIP curves and T[UEA–HA] the input for 
the MIP curves. Both values are varied simultaneously and range from 50ms to 250ms. 
For each T[UEA–UEB] scenario, the SIP handover times are calculated for an ongoing 
session with 1, 2 and 3 media streams respectively. 
It makes sense to compare MIP ans SIP handover time for a fixed T[UEA–UEB] value 
because in a real setting, this delay would be the same whether the UE invokes the SIP or 
the MIP mobility solution. 
These results show that MIP handover is always faster than the SIP handover when 
T[UEA-S-CSCF] and T[UEA–HA] are identical. It can be seen how much the number of 
streams in the session impacts the SIP handover time. The latter is also very sensitive to 
the delays between the UEs. This is because of the extensive number of E2E SIP 
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messages necessary to set the QoS parameters for each media stream in the session in 
both UEs’ access networks.  
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Fig. 7.2, SIP and enhanced MIP handover times 

 
In a real environment, T[UEA-S-CSCF] and T[UEA–HA] would most likely be different. 
The graph clearly indicate that By comparing the handover time equations derived from 
Tables 7.1 and 7.2, it can be easily calculated under which conditions on T[UEA–S-
CSCF], T[UEA–UEB] and T[UEA–HA] the MIP solution becomes slower than the SIP 
one, where n is the number of media streams in the ongoing session to be moved to 
ANnew: 
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Table 7.4 shows some examples of T[UEA–HA] thresholds above which the MIP 
handover times become larger than the SIP handover times. These thresholds are derived 
from Inequation (7.3) for specific combinations of number of media streams, T[UEA–S-
CSCF] and T[UEA–UEB] values. 
Figure 7.2 already showed that when the network delays are the same between UEA and 
its HA and UEA and its S-CSCF are equal, MIP-based mobility outperforms the SIP-
based approach. Table 7.4 highlights how much longer T[UEA–HA] has to be compared 
to T[UEA–S-CSCF] so that SIP performs macro handovers faster than IMS. For example, 
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when the session has only one media stream and the one-way delays delays between the 
UEs are short (50ms) and T[UEA–S-CSCF] is 100ms long, T[UEA–HA] can be up to 2.25 
times bigger than T[UEA–S-CSCF] before it is not worth implementing MIP mobility in 
the IMS—this can also be seen on the first subplot of Figure 7.2.  
Also, remember that the packet size has not been considered in the analytical model. In 
real systems, MIP messages are much smaller than SIP signaling messages cf. Tables 4.5 
and 5.2 in [Fathi06] for detailed SIP and MIP message sizes), which would influence the 
results even more in favor of the MIP solution. Communication delays are especially 
sensitive on the air interface where the frame loss probability is much higher than in 
wired parts of the system. Another factor in relation to frame losses on the air interface is 
the number of messages that exchanged to and from both UEs, which is also much higher 
with the SIP solution. 
 

Table 7.4, Examples of T[UEA–HA] thresholds 

# of 
streams Inequation T[UE–SCSCF] T[UE–UE] T[UE–HA] 

thresholds 

1 1005,22 −⋅+⋅≥ −−− UEUESCSCFUEHAUE TTT 100 
50 

100 
150 

225 
350 
475 

2 9582 −⋅+⋅≥ −−− UEUESCSCFUEHAUE TTT  100 
50 

100 
150 

505 
905 

1305 

3 905,132 −⋅+⋅≥ −−− UEUESCSCFUEHAUE TTT  100 
50 

100 
150 

785 
1460 
2035 

 
 
 

7.5. Conclusion 
Our novel mobility solution is based on a new type of PDP context that can be activated 
quickly and without SIP. It offers the advantages of being simpler and more efficient: 
fewer messages are involved, especially on the air interface, which is prone to longer 
delays and more packet losses, and does not require end-to-end communications between 
UEs. The use of the authorization token given by the IMS in the old access network 
ensures service control in the new access network, while considerably shortening the 
handover times. Except in a very specific scenario, the MIP solution will perform much 
faster than the standard SIP procedures (up to 4.5 times faster in the best conditions). 
The drawbacks of the solution are limited: 
• small standardization and implementation efforts in comparison to the huge gains in 

terms of handover delays; 
• little additional cost for the user until the signaling and data flows are separated again; 
• short period with no SIP services until the UE can re-REGISTER with the IMS. 
The solution proposed assumes that the QoS level granted in ANnew for the MSH PDP 
context matches those in ANold. If the levels in ANold and ANnew differ, UEA needs to 
perform end-to-end QoS negotiation again after the handover. This QoS negotiation 
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would impact handover delays considerably so a fast mechanism needs to be designed in 
order to keep those delays reasonable. In case of proactive handover, the UE could 
perform the negotiation before leaving ANold. 
Future work could also investigate the benefits of using alternative MIPv6-based 
solutions (FMIP, HMIP, etc.) to better improve the handover delays. 
Finally, since the IMS was designed to be network-independent, we need to analyze the 
portability of our solution to other access networks, such as WLAN, using ongoing 
research that focuses on integration of access control functionalities in such access 
networks. 
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8. Conclusions and Outlook 
 
 
 
 
 

8.1. Summary 
The IMS is becoming a key component in IP-based service provisioning. Because of the 
requirements steming from the end-users and the critical involvement of the control 
procedures in multimedia session management, the IMS should be dependable without 
getting slower or invasive for the access network it controls. 
The contributions in this thesis focus on the dependability/performance tradeoff and 
investigate means to improve performance while maintaining the dependability levels 
guaranteed by the fault tolerance mechanisms in their ‘standard’ setup. 
Two main fault scenarios were considered that require appropriate recovery strategies: 
• IMS servers sometimes crash for some periods of time so they are replicated, 

allowing for failovers to mask the servers failures.  
• Sometimes, communications with external entities are made impossible because of 

faults affecting single points of failure. The best option in this case is to attach to 
another access network. 

 
In Chapter 2, the complex IMS procedures and their interactions with access network 
entities are explained, as well as the SIP mechanisms these procedures rely on. 
 
In Chapter 3, two approaches to support server replication are introduced, their 
integration with the IMS platform is shortly discussed and a solution is proposed that 
allocates the recovery decisions to the P-CSCF instead of the service clients themselves. 
 
In Chapter 4, the models used to evaluate the dependability/performance tradeoff in the 
standard and replicated IMS are thoroughly explained, and a set of output metrics suiting 
the models is defined. These metrics are  
• Dependability, the successful transaction probability 
• SAT, the average successful transaction completion time 
• Load, the average load per transaction  
A first analysis of the environment input variables is qualitatively discussed and 
supported by simulation results from the standard IMS scenario, motivating a restricted 
set of input variables for the main ‘optimal fault tolerance configuration’ analysis. It 
shows that the SIP traffic load is not very important and the little effects it has on the 
output metrics can be evaluated analytically. Packet losses are not likely to cause 
transaction failures thanks to retransmissions but they surely increase the service access 
time a lot and also the load, to a lesser extent. The effects of server failures on the system 
are quite different from those of packet losses: dependability can be greatly affected as 
the probability that servers are OFF rises while the service access time does not increase 
by much. Another important measure proved to be the ratio between the round trip time 
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and the average time to repair or, more precisely, the ratio between the maximum 
transaction lifetime and the time to repair. For the rare systems where server failures do 
not last more than a few seconds, the reaction of the three metrics to packet loss and 
server unavailibity are different because the round trip time/time to repair ratio becomes 
abnormally big; so, then, dependability still decreases as packet losses and server 
unavailability increase but service access time and load increase much faster than in 
smaller round trip time/time to repair scenarios.  
Several fault tolerance parameters are considered in the second phase of the analysis, 
where the expected effects of the input parameters on the tradeoff are compared to the 
simulation results. In general, for the model settings considered, fault tolerance 
configurations with more failovers are more dependable and more performant than other 
configurations for which max_request is the same or even higher sometimes. The 
drawbacks of deploying many replicated servers are extra load (but not that much in 
comparison to the dependability and service access time gains) and additional 
deployment costs such the expenses for many servers and all the wiring and maintanance, 
etc. Having even more servers than necessary for the failover, or increasing the heartbeat 
rate both seem like promising tracks to investigate for improvement. Finally, when the 
distribution of network delays is known, it is possible to adapt the SIP timeout by fixing a 
threshold on the percentage of network delays that the timeout should be bigger than. 
This way, many retransmissions due to late responses from available servers could be 
avoided, which provides great best improvements in terms of dependability and maintain 
both are introduced service access time and the load almost at the standard IMS levels. 
Methods that use the conclusions of the analysis to select the optimal fault tolerance 
configuration are suggested and an example illustrates the direct application of the results 
for the replicated IMS system. 
 
In Chapter 5, an inconsistency definition that suits the IMS system is given. Then, a 
framework is presented that can be used to evaluate the metric previously defined. The 
evaluation approach relies on contributing factors that are influenced by the server 
selection policy, traffic model, state replication model, and network characteristics such 
as packet losses and network delays. 
The inconsistency evaluation framework is verified by comparing (1) inconsistency 
values measured in an experimental SIP system and (2) inconsistency values generated 
with the framework, where the impacting factors are calculated with a mix of inputs from 
the system specifications and experimental tests. It is pretty accurate overall but seems to 
perform better with lower network delays. 
The framework was primarily designed to help dynamic commitment protocols to 
determine precisely the delay they should wait before updating a state. The framework 
can also be used to help the architecture/protocol design of a system by determining the 
expected inconsistency levels. Accordingly, the state dissemination protocol that helps 
meet the predefined target inconsistency/performance tradeoff can be chosen. 
 
In Chapter 6, several mobility solutions for macro handovers are presented. Then, it is 
argued that in the IMS environment MIP is best suited to support macro mobility. The 
addressing conflicts between MIP and the IMS are highlighted and a set of 
protocol/function extension is proposed to get around these conflicts. At this stage, the 
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MIP+IMS architecture provides session continuity, which the standard IMS does not, but 
the handover time is not improved. 
 
Chapter 7 proposes a novel MIP-based macro mobility solution for IMS environments 
that shortens the handover times. To do so, secure media authorization information 
generated, and saved, at ANold is transferred to ANnew so that a single, novel PDP context 
is created at ANnew. The advantage of using only one PDP context is that the UE can start 
exchanging data packets much quicker than with a standard SIP handover/session setup. 
Indeed, the handover times with this solution are independent from the number of 
ongoing data streams at ANold before the handover, while the standard IMS solution is 
almost directly proportional to the number of ongoing sessions. Therefore, the new 
mobility design is especially improving the handover time of sessions with multiple data 
stream such as a Skype session where there would simultaneously be voice, video and 
instant messages. 
 
 

8.2. Outlook 
There are a number of open issues raised in the thesis that could be interesting for further 
research.  
 

8.2.1. Optimal Fault Tolerance Configuration 
The average service access time affects the distribution of SIP transaction initiation 
times. By implementing the SIP traffic model at each PU with the possibility to support 
multiple simultaneously pending transactions it would probably cancel the counter-
intuitive results showing that increasing the heartbeat frequency or the pool size yields 
lower dependability. 
This should be done in conjunction with fine tuning the server selection policy so that 
there is a good compromise between dependability and load: e.g. should the clients keep 
sending SIP requests when the PElist is empty (i.e. keep the server address in the list 
upon failover but indicate that the server was actually unavailable when contacted so it 
should be contacted again only after the list has been declared ‘empty’). If the clients do 
keep sending the SIP requests, chances are that dependability slightly increases at a 
higher load cost, in proportions to the dependability gains. 
 
The model should include more realistic network delays and packet loss distributions. 
E.g. a SIP request sent by one client to a given server will experience network delays that 
are completely independent from the network delays experienced by another SIP request 
to the same server sent by a different client, which is not so realistic. Also the 
exponentially distributed network delays can have values close to ‘0’, which once again 
is not realistic. 
Scenarios with more realistic round trip time/time to repair ratios should also be 
investigated. Unfortunately, this would imply much longer simulation times (48hrs per 
test…?). 
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Implementing load-dependent processing times would also make the model more realistic 
because clients implement a server selection policy that makes them all pick the same 
servers in the same order. Therefore, it could be possible that the servers become slower 
or even fully overloaded. The effects of server selection policy are interesting to 
investigate to broaden the holistic view on the inter-relation between dependability and 
performance even more.  
 
Additional failure detection schemes could be tested that would introduce additional 
feedback from the clients to the name server and the SIP servers to the name server about 
SIP servers’ status. 
 

8.2.2. State Consistency 
The validation exercise showed that the processing times of the prototype SIP server had 
a long-tail distribution. So in order to verify the evaluation framework in a more 
‘controlled’ setup, the framework could be implemented in the SAN models and 
compared to simulation inconsistency results. 
 
It would be interesting to develop concrete procedures for run time inconsistency 
evaluation and test it with Möbius to assess the capacity of the framework to fulfil the 
task it was originally designed for 
 

8.2.3. MIP+IMS Macro Mobility 
Experimental setups are always a good option when it comes to provide a proof-of-
concept, e.g. [Larsen06b] proved that security associations can be moved from one P-
CSCF to another. Here, the goal would be to test the feasibility/complexity of the 
interworking approach and find out more in detail the type of constraints that could 
prevent the implementation of the novel MSH PDP context. 
 
In addition to service continuity (important to the user), charging continuity should also 
be considered in our scenario. Even though it greatly depends on operators’ charging 
policies, we suggest that the session state logged at P-CSCFold for the ongoing session is 
transferred to P-CSCFnew in order to create a new charging state at ANnew. More media-
related information is provided at the IMS level than what is specified in the PDP context 
activation requests: the SDP content indicates the codecs used in the session. This allows 
appropriate charging based on the type(s) of media carried in the MSH PDP context. 
 
Potential faults have not been taken into account when designing the fast MIP-based IMS 
macro handover but it would be interesting to extend the macro handover solution to 
consider fault scenarios. Faults would definitely increase the handover time. In more 
severe cases where, say, the MIP home agent is crashed, the handover to ANnew might not 
even be feasible at all. IETF has started a new standardization activity that focuses on 
MIP architectures with multiple home agents [Faizan04] so maybe solutions already exist 
that can be integrated with the mobility solution to make it dependable as well. 
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A. SIP Specifics 
 
 
 
 

A.1. SIP Responses 

Table A.1, SIP response codes and their meaning 

Type Code Meaning 
100 Trying 
180 Ringing 
181 Call is being forward 

Information 

182 Queued 
Success         200 OK 

300 Multiple choices 
301 Moved permanently 
302 Moved temporarily 
303 See other 
305 Use proxy 

Redirection 

380 Alternative service 
400 Bad request 
401 Unauthorized 
402 Payment required 
403 Forbidden 
404 Not found 
405 Method not allowed 
406 Not acceptable 
407 Proxy authentication required 
408 Request timeout 
409 Conflict 
410 Gone 
411 Length Required 
413 Request Entity Too Large 
414 Request-URI Too Large 
415 Unsupported Media Type 
420 Bad Extension 
480 Temporarily not available 
481 Call Leg/Transaction Does Not Exist 
482 Loop Detected 

Client error 
 

483 Too Many Hops 
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484 Address Incomplete 
485 Ambiguous 
486 Busy Here 
500 Internal 
501 Not Implemented 
502 Bad Gateway 
503 Service Unavailable 
504 Gateway Time-out 

Server Error 

505 SIP Version not supported 
600 Busy Everywhere 
603 Decline 
604 Does not exist anywhere 

Global Failure 

606 Not Acceptable 
 
 
 

A.2. SIP Headers 
There are the different headers belonging to the four types of SIP headers. 
 

A.2.1. General Headers 

• Call ID: it is mandatory in all SIP messages. It permits to identify a call between two 
user agents. 

• Contact: it is present in INVITE, ACK, REGISTER requests and 1xx, 2xx, 3xx 
responses. It provides the URL where the user can be called or reached. 

• CSeq: Command Sequence is required in every request. It contains a decimal number 
that increases at each request.  

• Date: it indicates the time when the request or response has been sent. 
• Encryption: it is used to show the portion of the SIP message that has been encrypted. 

Encryption provides privacy for end users. 
• From: it indicates the initiator URL. 
• Organization: it indicates the organization to which the initiator belongs. 
• Retry-After: it indicates when a resource will be available again. 
• Subject: it indicates the subject of the session. 
• Supported: it indicates the options supported by a user agent or server.  
• Time stamp: it is used to mark the exact time when a request was generated. 
• To: it indicates the recipient SIP URL. 
• User Agent: it conveys information about the initiator of the message. 
• Via: it records the SIP path taken by the request and this path is used to route a 

response back to the initiator. 
 

A.2.2. Request Headers 

• Accept: it indicates what type of media is acceptable. 
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• Accept - Encoding: the same function as Accept header, encoding is ensuring that a 
SIP message with a large message body fits inside a single UDP packet. 

• Accept – Language: it specifies in which language the messages are written. 
• Authorization: it is used by a user to authenticate itself in a sever. 
• Hide: it indicates that the client wants the path mentioned in the VIA header field to 

be hidden from subsequent proxies and user agents. 
• Max – Forwards: it indicates the maximum number of hops that the SIP request may 

take. 
• Priority: it indicates the urgency of the request. 
• Proxy – Authorization: it allows the client to identify itself to a proxy which requires 

authentication.   
• Route: it indicates the route taken by the request. 
• Proxy – Require: it lists the features required by the user agent or the proxy in order 

to process request. 
• Record – Route: it imposes all requests to go through a specified proxy. 
• Require: it lists all the features the UAC requires the UAS to support. 
• Response Key: it can be used by a client to request the key that the called user agent 

uses to encrypt the response with. 
 

A.2.3. Response Header 

• Proxy–Authenticate: it is used in the 407 Proxy–Authentication Required response. 
• Server: it contains information about the software used by the UAS to process 

request. 
• Unsupported: it indicates the features not supported by the server. 
 

A.2.4. Entity Headers 

• Content–Encoding: it allows the UAS to know the decoding scheme to interpret the 
message body. 

• Content–length: it indicates the number of bytes in the message body. 
• Content–Type: it specifies the media type in the body message. 
• Expires: it indicates the time within the request is valid.  
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B. SAN/Möbius Models 
 
 
This work was conducted in collaboration with Alessandro Daidone (University of 
Florence, Italy). Thanks for his insights on SAN modelling and Möbius implementation. 
 
 

B.1. Atomic Models 
Each atomic model of the composed model described in Section 4.3 is shown below. 
 

B.1.1. NS Model 
 
 

 
 
 

Place Names Initial Markings 
HB_sent  0 
HB_stop  0 
HB_timeoutstart  0 
NS_start  1 
PElist_atNS  Number_PE 
PElisttemp_atNS  Number_PE 
PElisttemp_rank  0 
Report  0 

Timed Activity:  HB_generator  
 

Distribution 
Parameters 

Value 
 
HB_intertime 

Activation Predicate (none) 
Reactivation Predicate (none) 

Timed Activity:  HB_time  
 

Distribution 
Value 
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Parameters HB_timeout 

Activation Predicate (none) 
Reactivation Predicate (none) 

Output Gate: HB_broadcast  

Function 

 
for (int i=0; i<Number_PE; i++) 
{ 
  HB_sent->Index(i)->Mark() = 1; 
} 
 
 
HB_timeoutstart->Mark() ++; 
 
 
NS_start->Mark() = 1; 

Output Gate: HB_expires  

Function 

 
for (int i=0; i<Number_PE; i++) 
{ 
  HB_stop->Index(i)->Mark() = 1; 
} 
 
 
for (int j=0; j<Number_PE; j++) 
{ 
  PElist_atNS->Index(j)->Mark() = PElisttemp_atNS-
>Index(j)->Mark(); 
} 
 
 
for (int h=0; h<Number_PE; h++) 
{ 
  PElisttemp_atNS->Index(h)->Mark() = 0; 
} 
 
 
for (int k=0; k<Number_PU; k++) 
{ 
  Report->Index(k)->Mark() = 1; 
} 
 
 
PElisttemp_rank->Mark() = 0; 

 
 

B.2. Atomic Models 
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B.2.1. PE Model 
 
 

 
 
 
 

Place Names Initial Markings 
Fake_HBsent  0 
Fake_PEup  0 
HB_PEcheck_failure  0 
HB_PEcheck_success  0 
HB_atPE  0 
HB_sent  0 
HB_stop  0 
HBdl_stop  0 
HBdownload_failure  0 
HBul_stop  0 
HBupload_failure  0 
ID_PE_ext  0 
ID_PE_int  Number_PE 
ID_starttoken  1 
Load_HB  0 
PE_down  0 
PE_up  1 
PElisttemp_atNS  Number_PE 
PElisttemp_rank  0 
test_sent  0 
test_stop  0 

Timed Activity:  HB_download  
 

Distribution 
Rate 
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Parameters download_PE_NS 

Activation Predicate (none) 
Reactivation Predicate (none) 

Case Distributions 

case 1 
 
1-PER 
case 2 
 
PER 

Timed Activity:  HB_upload  
 

Distribution 
Parameters 

Rate 
 
upload_NS_PE 

Activation Predicate (none) 
Reactivation Predicate (none) 

Case Distributions 

case 1 
 
1-PER 
case 2 
 
PER 

Timed Activity:  Time_to_failure  
 

Distribution 
Parameters 

Rate 
 
TTF 

Activation Predicate (none) 
Reactivation Predicate (none) 

Timed Activity:  Time_to_repair  
 

Distribution 
Parameters 

Rate 
 
TTR 

Activation Predicate (none) 
Reactivation Predicate (none) 

Instantaneous Activities Without Cases:  
ID_PE_trigger  
Instant_HBsent  
Instant_HBstop  
Instant_PEup  

Input Gate: HBselect_sent  

Predicate 
 
(ID_starttoken->Mark() == 0) && (HB_sent-
>Index(ID_PE_int->Mark())->Mark() == 1) 

Function 

 
//fprintf (stderr, "__INPUT function of 
HBselect_sent__\n"); 
 
int time =  LastActionTime; 
 
//fprintf (stderr, "Time = %i \n", time); 
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//fprintf (stderr, "ID_PE_int = %i \n", ID_PE_int-
>Mark()); 
//fprintf (stderr, "HB_sent = %i \n", HB_sent-
>Index(ID_PE_int->Mark())->Mark()); 
//fprintf (stderr, "__INPUT function of HBselect_sent 
DONE__\n\n"); 
 
HB_sent->Index(ID_PE_int->Mark())->Mark() = 0; 
 

Input Gate: HBselect_stop  

Predicate 
 
(ID_starttoken->Mark() == 0) && (HB_stop-
>Index(ID_PE_int->Mark())->Mark() == 1) 

Function 
 
HB_stop->Index(ID_PE_int->Mark())->Mark() = 0; 
 

Input Gate: ID_alloc  

Predicate  
(ID_starttoken->Mark() == 1) 

Function 

 
ID_PE_int->Mark() = ID_PE_ext->Mark(); 
 
ID_PE_ext->Mark() ++; 
 
ID_starttoken->Mark() = 0; 
 
fprintf (stdout, "____CIAO ID alloc done CIAO____ 
\n"); 

Input Gate: PE_failure  

Predicate 
 
(ID_starttoken->Mark() == 0) && (PE_up->Index(ID_PE_int-
>Mark())->Mark() == 1) && (Fake_PEup->Mark() == 0) 

Function  
; 

Output Gate: HB_flush  

Function 

 
HB_sent->Index(ID_PE_int->Mark())->Mark() = 0; 
 
if (Fake_HBsent->Mark() == 1) 
{ 
  Fake_HBsent->Mark() = 0; 
  HBul_stop->Mark() ++; 
} 
 
if (HB_atPE->Mark() == 1) 
{ 
  HB_atPE->Mark() = 0; 
  HBdl_stop->Mark() ++; 
} 
 
test_stop->Mark() ++; 

Output Gate: HB_success  
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Function 

 
PElisttemp_atNS->Index(ID_PE_int->Mark())->Mark() = 
(Number_PE - PElisttemp_rank->Mark()); 
 
PElisttemp_rank->Mark() ++; 

Output Gate: Load_HBul  

Function 
 
test_sent->Mark() ++; 
Load_HB->Mark() ++; 

Output Gate: PE_check  

Function 

 
if ((Fake_PEup->Mark() == 1) || (PE_down->Mark() == 0))
{ 
  HB_PEcheck_success->Mark() ++; 
  Load_HB->Mark() ++; 
  HB_atPE->Mark() ++; 
} 
 
else 
  HB_PEcheck_failure->Mark() ++; 

Output Gate: PE_repair  

Function 

 
PE_up->Index(ID_PE_int->Mark())->Mark() = 1; 
 
 
// for (int i=0; i<Number_PE; i++) 
// { 
//   (*trout)<< "PEindex_" << ID_PE_int->Mark() << " = " << 
PE_up->Index(ID_PE_int->Mark())->Mark() << endl; 
// } 
 
// (*trout) << endl; 

Output Gate: PEup_clean  

Function 
 
PE_up->Index(ID_PE_int->Mark())->Mark() = 0; 
 
PE_down->Mark() = 1; 

Output Gate: og  

Function  
HBupload_failure->Mark() ++; 

Output Gate: og2  

Function  
HBdownload_failure->Mark() ++; 
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B.2.2. PU Model 
 

 
 
 

Place Names Initial Markings 
Deduct_SAT  0 
ID_PU_ext  0 
ID_PU_int  Number_PU 
ID_starttoken  1 
Load_reports  0 
Load_sip  0 
Number_FO  0 
Number_Reqretrans  0 
PE_up  1 
PE_used  Number_PE 
PElist_atPU  Number_PE 
PR  0 
PR_cseq  1 
PR_overload  0 
Report  0 
Report_first  0 
Req_PEcheck_failure  0 
Req_PEcheck_success  0 
Req_atPE  0 
Req_new  0 
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Req_number  0 
Req_sent  0 
Req_timeoutstart  0 
Reqdl_stop  0 
Reqdownload_failure  0 
Requl_stop  0 
Requpload_failure  0 
SAT  0 
Startup_client  1 
Trans_failed  0 
Trans_new  0 
Trans_success  0 
Trans_total  0 
count_reqNOTsent  0 
count_reqsent  0 

Timed Activity:  Req_download  
 

Distribution 
Parameters 

Rate 
 
download_PE_PU 

Activation Predicate (none) 
Reactivation Predicate (none) 

Case Distributions 

case 1 
 
PER 
case 2 
 
1-PER 

Timed Activity:  Req_time  
 

Distribution 
Parameters 

Value 
 
Req_timeout*(pow(2,(Req_number->Mark()-1))) 

Activation Predicate (none) 
Reactivation Predicate (none) 

Timed Activity:  Req_upload  
 

Distribution 
Parameters 

Rate 
 
upload_PU_PE 

Activation Predicate (none) 
Reactivation Predicate (none) 

Case Distributions 

case 1 
 
PER 
case 2 
 
1-PER 

Timed Activity:  Trans_generator  
 Rate 
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Distribution 
Parameters 

 
Trans_intertime 

Activation Predicate (none) 
Reactivation Predicate (none) 

Instantaneous Activities Without Cases:  
ID_PU_trigger  
InstantPU1  
Instant_req  
Launch_client  

Input Gate: ID_alloc  

Predicate  
(ID_starttoken->Mark() == 1) 

Function 

 
ID_PU_int->Mark() = ID_PU_ext->Mark(); 
 
ID_PU_ext->Mark() ++; 
 
ID_starttoken->Mark() = 0; 

Input Gate: Report_select  

Predicate 
 
(ID_starttoken->Mark() == 0) && (Report->Index(ID_PU_int-
>Mark())->Mark() == 1) 

Function  
Report->Index(ID_PU_int->Mark())->Mark() = 0; 

Input Gate: Startup_test  

Predicate 
 
(Report_first->Mark() > 0) && (Startup_client->Mark() 
> 0) 

Function  
Startup_client->Mark() = 0; 

Output Gate: OG_SAT  

Function 
 
SAT->Mark() ++; 
Trans_total->Mark() ++; 
Req_number->Mark() = 0; 

Output Gate: PE_check  

Function 

 
if (PE_up->Index(PE_used->Mark())->Mark() == 1) 
{ 
  Req_atPE->Mark() ++; 
  Load_sip->Mark() ++; 
  Req_PEcheck_success->Mark() ++; 
} 
 
else 
  Req_PEcheck_failure->Mark() ++; 

Output Gate: PR_alloc  

Function  
int index_PR=0; 
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while (index_PR<Number_PR) 
{ 
  if (PR->Index(index_PR)->Mark() == 0) 
  { 
    PR->Index(index_PR)->Mark() = PR_cseq->Mark(); 
    PR_cseq->Mark() ++; 
    Load_reports->Mark() ++; 
    break; 
  } 
  else  
    index_PR++; 
 
  if (index_PR == Number_PR)  PR_overload->Mark() ++; 
} 
 
 

Output Gate: Req_expires  

Function 

 
if (Req_sent->Mark() > 0) 
{ 
  Req_sent->Mark() = 0; 
  Requl_stop->Mark() ++; 
} 
 
if (Req_atPE->Mark() > 0) 
{ 
  Req_atPE->Mark() = 0; 
  Reqdl_stop->Mark() ++; 
} 
 
if (Number_Reqretrans->Mark() == Max_Reqretrans) 
{ 
  Number_Reqretrans->Mark() = 0; 
  PElist_atPU->Index(PE_used->Mark())->Mark() = 
Number_PE+1; 
  PE_used->Mark() = Number_PE; 
   
  if (Number_FO->Mark() == Max_FO) 
  { 
    Number_FO->Mark() = 0; 
    Deduct_SAT->Mark() += Req_number->Mark(); 
    Req_number->Mark() = 0; 
    Trans_failed->Mark() ++; 
    SAT->Mark() --; 
    Trans_new->Mark() ++; 
  } 
  else  
  { 
    Number_FO->Mark() ++; 
    Req_new->Mark() ++; 
  } 
} 
 
else 
{ 
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  Number_Reqretrans->Mark() ++; 
  Req_new->Mark() ++; 
} 

Output Gate: Req_success  

Function 

 
Req_timeoutstart->Mark() = 0; 
SAT->Mark() --; 
Trans_success->Mark() ++; 
Trans_new->Mark() ++; 
 
// WE CHOSE TO RESET PE_RETRANS VALUES AFTER EVERY 
SUCCESSFUL TRANSACTION... 
Number_Reqretrans->Mark() = 0; 
Number_FO->Mark() = 0; 
Req_number->Mark() = 0; 

Output Gate: SSP  

Function 

 
// we chose to keep using the same PE as for the previous 
transaction if it is still 'up' (from the PU perspective) 
 
 
if ( (PE_used->Mark() == Number_PE) || ( (PE_used->Mark() < 
Number_PE) && (PElist_atPU->Index(PE_used->Mark())->Mark() >= 
Number_PE) ) ) 
{ 
  PE_used->Mark() = Number_PE; 
   
  int rankSSP = 0; 
  while (rankSSP < Number_PE+1)  
  // in this case, SSP also checks for PEs that are 
apparently OFF in the PElist_atPU (i.e. rank=Number_PE) 
BUT... 
  // ...SSP excludes PEs that were tried by the PU but could 
NOT be reached within Max_Reqretrans attempts (i.e. PE for 
which rank=Number_PE+1), see code Req_expires!! 
  { 
    int index=0;  
    while (index < Number_PE)  
    { 
      if (PElist_atPU->Index(index)->Mark() == rankSSP)  
      { 
        PE_used->Mark() = index; 
        break; 
      } 
      else  
        index++; 
    } 
     
    if (PE_used->Mark() == Number_PE)   
      rankSSP++; 
    else  
      break; 
  } 
 
  if (PE_used->Mark() < Number_PE)   
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  { 
    Req_sent->Mark() ++;   
    count_reqsent->Mark() ++; 
    Load_sip->Mark() ++; 
    Req_number->Mark() ++; 
    Req_timeoutstart->Mark() ++; 
  } 
  else 
  { 
    count_reqNOTsent->Mark() ++; 
    Trans_failed->Mark() ++; 
    SAT->Mark() --; 
    Deduct_SAT->Mark() += Req_number->Mark(); 
    Number_Reqretrans->Mark() = 0; 
    Number_FO->Mark() = 0; 
    Req_number->Mark() = 0; 
    Trans_new->Mark() ++; 
  } 
} 
 
else 
{ 
  Req_sent->Mark() ++;   
  count_reqsent->Mark() ++; 
  Load_sip->Mark() ++; 
  Req_number->Mark() ++; 
  Req_timeoutstart->Mark() ++; 
} 

Output Gate: og  

Function  
Requpload_failure->Mark() ++; 

Output Gate: og2  

Function  
Reqdownload_failure->Mark() ++; 
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B.2.3. PR Model 
 
 

 
 
 
 

Place Names Initial Markings 
ID_PR_ext  0 
ID_PR_int  Number_PR 
ID_starttoken  1 
Load_reports  0 
PElist_atNS  Number_PE 
PElist_atPU  Number_PE 
PElist_inPR  Number_PE 
PR  0 
PR_cseq  1 
PR_sent  0 
PR_starttoken  1 
PR_stop  0 
Report_first  0 

Timed Activity:  PR_upload  
 

Distribution 
Parameters 

Rate 
 
upload_NS_PU 

Activation Predicate (none) 
Reactivation Predicate (none) 

Case Distributions 

case 1 
 
1-PER 
case 2 
 
PER 

Instantaneous Activities Without Cases:  
ID_PR_trigger  
Instant_PR  
Instant_PRstop  
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Input Gate: ID_alloc  

Predicate  
(ID_starttoken->Mark() == 1) 

Function 

 
ID_PR_int->Mark() = ID_PR_ext->Mark(); 
 
ID_PR_ext->Mark() ++; 
 
ID_starttoken->Mark() = 0; 

Input Gate: PR_select  

Predicate 
 
(ID_starttoken->Mark() == 0) && (PR_starttoken->Mark() == 
1) && (PR->Index(ID_PR_int->Mark())->Mark() > 0) 

Function  
PR_starttoken->Mark() = 0; 

Input Gate: PRstop_select  

Predicate 
 
(ID_starttoken->Mark() == 0) && (PR_stop-
>Index(ID_PR_int->Mark())->Mark() == 1) 

Function  
PR_stop->Index(ID_PR_int->Mark())->Mark() = 0; 

Output Gate: PR_failure  

Function 

 
for (int i=0; i<Number_PE; i++) 
{ 
  PElist_inPR->Index(i)->Mark() = 0; 
} 
 
 
PR->Index(ID_PR_int->Mark())->Mark() = 0; 
PR_starttoken->Mark() = 1; 

Output Gate: PR_flush  

Function 

 
PR_sent->Mark() = 0; 
PR_starttoken->Mark() = 1; 
PR->Index(ID_PR_int->Mark())->Mark() = 0; 
PR_stop->Index(ID_PR_int->Mark())->Mark() = 0; 
 
for (int i=0; i<Number_PE; i++) 
  PElist_inPR->Index(i)->Mark() = 0; 

Output Gate: PR_ready  

Function 

 
for (int j=0; j<Number_PE; j++) 
{ 
   PElist_inPR->Index(j)->Mark() = PElist_atNS-
>Index(j)->Mark(); 
} 
 
Load_reports->Mark() ++; 
PR_sent->Mark() = 1; 

Output Gate: PR_success  
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Function 

 
Report_first->Mark() ++; 
 
 
for (int i=0; i<Number_PE; i++) 
{ 
  PElist_atPU->Index(i)->Mark() = PElist_inPR->Index(i)-
>Mark(); 
  PElist_inPR->Index(i)->Mark() = 0; 
} 
 
 
if ((PR->Index(ID_PR_int->Mark())->Mark() +1) == PR_cseq-
>Mark()) 
  PR_cseq->Mark() = 1; 
 
 
 
(*trout) << "PR_id_int=" << ID_PR_int->Mark() << endl; 
 
 
 
 for (int j=0; j<Number_PR; j++) 
  { 
    if ((0 < PR->Index(j)->Mark()) && (PR->Index(j)->Mark() 
< PR->Index(ID_PR_int->Mark())->Mark())) 
      PR_stop->Index(j)->Mark() = 1; 
    (*trout) << "PRstop(" << j << ")=" << PR_stop-
>Index(j)->Mark() << endl; 
  } 
 
 
(*trout) <<endl; 
 
 
 
 
PR->Index(ID_PR_int->Mark())->Mark() = 0; 
PR_starttoken->Mark() = 1; 
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B.3. Reward Model – Performance Variables  
Many performance variables were created in order to verify that all the functions 
modeled behave as expected. 
 
 

Performance Variable : avg__PE_ON 
Affecting Models PE_maSSP 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*PE_maSSP->Fake_PEup->Mark())/Number_PE);

Simulator Statistics Type Time Averaged Interval of Time 
Performance Variable : avg__PE_OFF 

Affecting Models PE_maSSP 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return (1.0*(PE_maSSP->PE_down->Mark())/Number_PE);

Simulator Statistics Type Time Averaged Interval of Time 
Performance Variable : Frequency_PE_ONOFFcycles 

Affecting Models PE_maSSP 
PE->Time_to_failure 
(Reward is over all Available Models)
 
return (1.0/(1.0*Number_PE)); 

PE_maSSP->Time_to_repair 
Impulse Functions 

(Reward is over all Available Models)
 
return (1.0/(1.0*Number_PE)); 

Reward Function 
(Reward is over all Available Models)
 
 

Simulator Statistics Type Interval of Time 
Performance Variable : HB_generated 

Affecting Models NS_reg 
NS->HB_generator 
(Reward is over all Available Models)
 
return 1.0; 

NS_reg->HB_generator 
Impulse Functions 

(Reward is over all Available Models)
 
return 1.0; 

Reward Function 
(Reward is over all Available Models)
 
 

Simulator Statistics Type Interval of Time 
Performance Variable : HB_sent_pl 

Affecting Models PE_maSSP 
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Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*PE_maSSP->test_sent->Mark())/Number_PE);

Simulator Statistics Type Instant of Time 
Performance Variable : HB_stop_pl 

Affecting Models PE_maSSP 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*PE_maSSP->test_stop->Mark())/Number_PE);
 

Simulator Statistics Type Instant of Time 
Performance Variable : HBul_success 

Affecting Models PE_maSSP 
PE->HB_upload_case1 
(Reward is over all Available Models)
 
return 1.0; 

PE_maSSP->HB_upload_case1 
Impulse Functions 

(Reward is over all Available Models)
 
return 1.0; 

Reward Function 
(Reward is over all Available Models)
 
 

Simulator Statistics Type Interval of Time 
Performance Variable : HBul_failures_pl 

Affecting Models PE_maSSP 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*PE_maSSP->HBupload_failure->Mark())/Number_PE); 

Simulator Statistics Type Instant of Time 
Performance Variable : HBul_stop_pl 

Affecting Models PE_maSSP 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*PE_maSSP->HBul_stop->Mark())/Number_PE);

Simulator Statistics Type Instant of Time 
Performance Variable : HB_PEcheck_success_pl 

Affecting Models PE_maSSP 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*PE_maSSP->HB_PEcheck_success->Mark())/Number_PE); 

Simulator Statistics Type Instant of Time 
Performance Variable : HB_PEcheck_failures_pl 

Affecting Models PE_maSSP 
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Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*PE_maSSP->HB_PEcheck_failure->Mark())/Number_PE); 

Simulator Statistics Type Instant of Time 
Performance Variable : HBdl_success 

Affecting Models PE_maSSP 
PE->HB_download_case1 
(Reward is over all Available Models)
 
return 1.0; 

PE_maSSP->HB_download_case1 
Impulse Functions 

(Reward is over all Available Models)
 
return 1.0; 

Reward Function 
(Reward is over all Available Models)
 
 

Simulator Statistics Type Interval of Time 
Performance Variable : HBdl_failures_pl 

Affecting Models PE_maSSP 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*PE_maSSP->HBdownload_failure->Mark())/Number_PE); 

Simulator Statistics Type Instant of Time 
Performance Variable : HBdl_stop_pl 

Affecting Models PE_maSSP 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*PE_maSSP->HBdl_stop->Mark())/Number_PE);

Simulator Statistics Type Instant of Time 
Performance Variable : PR_generated_atNS 

Affecting Models NS_reg 
NS->HB_time 
(Reward is over all Available Models)
 
return 1.0; 

NS_reg->HB_time 
Impulse Functions 

(Reward is over all Available Models)
 
return 1.0; 

Reward Function 
(Reward is over all Available Models)
 
 

Simulator Statistics Type Interval of Time 
Performance Variable : PR_sent_byPU 

Affecting Models SIPclient_reg_expTO 
SIPclient->InstantPU1 Impulse Functions 

(Reward is over all Available Models)
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return 1.0; 

SIPclient_reg_expreqTO->InstantPU1
(Reward is over all Available Models)
 
return 1.0; 

SIPclient_reg_expTO->InstantPU1 
(Reward is over all Available Models)
 
return 1.0; 

Reward Function 
(Reward is over all Available Models)
 
 

Simulator Statistics Type Interval of Time 
Performance Variable : PR_overload_atPU_pl 

Affecting Models SIPclient_reg_expTO 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*SIPclient_reg_expTO->PR_overload->Mark())/Number_PU); 

Simulator Statistics Type Instant of Time 
Performance Variable : PR_allowed_atPR 

Affecting Models PR_reg 
Pending_report->Instant_PR 
(Reward is over all Available Models)
 
return 1.0; 

PR_reg->Instant_PR 
Impulse Functions 

(Reward is over all Available Models)
 
return 1.0; 

Reward Function 
(Reward is over all Available Models)
 
 

Simulator Statistics Type Interval of Time 
Performance Variable : PR_success_atPR 

Affecting Models PR_reg 
Pending_report->PR_upload_case1 
(Reward is over all Available Models)
 
return 1.0; 

PR_reg->PR_upload_case1 
Impulse Functions 

(Reward is over all Available Models)
 
return 1.0; 

Reward Function 
(Reward is over all Available Models)
 
 

Simulator Statistics Type Interval of Time 
Performance Variable : PR_failures_atPR 

Affecting Models PR_reg 
Impulse Functions Pending_report->PR_upload_case2 
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(Reward is over all Available Models)
 
return 1.0; 

PR_reg->PR_upload_case2 
(Reward is over all Available Models)
 
return 1.0; 

Reward Function 
(Reward is over all Available Models)
 
 

Simulator Statistics Type Interval of Time 
Performance Variable : PR_stop_atPR 

Affecting Models PR_reg 
Pending_report->Instant_PRstop 
(Reward is over all Available Models)
 
return 1.0; 

PR_reg->Instant_PRstop 
Impulse Functions 

(Reward is over all Available Models)
 
return 1.0; 

Reward Function 
(Reward is over all Available Models)
 
 

Simulator Statistics Type Interval of Time 
Performance Variable : SAT_pl 

Affecting Models SIPclient_reg_expTO 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*SIPclient_reg_expTO->SAT->Mark())/Number_PU); 

Simulator Statistics Type Interval of Time 
Performance Variable : SAT_deduct_pl 

Affecting Models SIPclient_reg_expTO 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*SIPclient_reg_expTO->Deduct_SAT->Mark())/Number_PU); 

Simulator Statistics Type Instant of Time 
Performance Variable : Req_started 

Affecting Models SIPclient_reg_expTO 
SIPclient->Instant_req 
(Reward is over all Available Models)
 
return 1.0; 

SIPclient_reg_expreqTO->Instant_req
(Reward is over all Available Models)
 
return 1.0; 

SIPclient_reg_expTO->Instant_req 

Impulse Functions 

(Reward is over all Available Models)
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return 1.0; 

Reward Function 
(Reward is over all Available Models)
 
 

Simulator Statistics Type Interval of Time 
Performance Variable : Req_sent_pl 

Affecting Models SIPclient_reg_expTO 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*SIPclient_reg_expTO->count_reqsent->Mark())/Number_PU); 
 

Simulator Statistics Type Instant of Time 
Performance Variable : Req_NOTsent_pl 

Affecting Models SIPclient_reg_expTO 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*SIPclient_reg_expTO->count_reqNOTsent->Mark())/Number_PU);

Simulator Statistics Type Instant of Time 
Performance Variable : Requl_success 

Affecting Models SIPclient_reg_expTO 
SIPclient->Req_upload_case2 
(Reward is over all Available Models) 
 
return 1.0; 

SIPclient_reg_expreqTO->Req_upload_case2
(Reward is over all Available Models) 
 
return 1.0; 

SIPclient_reg_expTO->Req_upload_case2 

Impulse Functions 

(Reward is over all Available Models) 
 
return 1.0; 

Reward Function 
(Reward is over all Available Models) 
 
 

Simulator Statistics Type Interval of Time 
Performance Variable : Requl_failures_pl 

Affecting Models SIPclient_reg_expTO 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*SIPclient_reg_expTO->Requpload_failure->Mark())/Number_PU);

Simulator Statistics Type Instant of Time 
Performance Variable : Requl_stop_pl 

Affecting Models SIPclient_reg_expTO 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*SIPclient_reg_expTO->Requl_stop->Mark())/Number_PU); 



 156 

Simulator Statistics Type Instant of Time 
Performance Variable : Req_PEcheck_success_pl 

Affecting Models SIPclient_reg_expTO 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*SIPclient_reg_expTO->Req_PEcheck_success-
>Mark())/Number_PU); 

Simulator Statistics Type Instant of Time 
Performance Variable : Req_PEcheck_failures_pl 

Affecting Models SIPclient_reg_expTO 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*SIPclient_reg_expTO->Req_PEcheck_failure-
>Mark())/Number_PU); 

Simulator Statistics Type Instant of Time 
Performance Variable : Reqdl_success 

Affecting Models SIPclient_reg_expTO 
SIPclient->Req_download_case2 
(Reward is over all Available Models) 
 
return 1.0; 

SIPclient_reg_expreqTO->Req_download_case2
(Reward is over all Available Models) 
 
return 1.0; 

SIPclient_reg_expTO->Req_download_case2 

Impulse Functions 

(Reward is over all Available Models) 
 
return 1.0; 

Reward Function 
(Reward is over all Available Models) 
 
 

Simulator Statistics Type Interval of Time 
Performance Variable : Reqdl_failures_pl 

Affecting Models SIPclient_reg_expTO 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*SIPclient_reg_expTO->Reqdownload_failure->Mark())/Number_PU);

Simulator Statistics Type Instant of Time 
Performance Variable : Reqdl_stop_pl 

Affecting Models SIPclient_reg_expTO 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*SIPclient_reg_expTO->Reqdl_stop->Mark())/Number_PU); 

Simulator Statistics Type Instant of Time 
Performance Variable : Trans_total_pl 
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Affecting Models SIPclient_reg_expTO 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*SIPclient_reg_expTO->Trans_total->Mark())/Number_PU); 

Simulator Statistics Type Instant of Time 
Performance Variable : Trans_success_pl 

Affecting Models SIPclient_reg_expTO 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*SIPclient_reg_expTO->Trans_success->Mark())/Number_PU); 

Simulator Statistics Type Instant of Time 
Performance Variable : Trans_failed_pl 

Affecting Models SIPclient_reg_expTO 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*SIPclient_reg_expTO->Trans_failed->Mark())/Number_PU); 

Simulator Statistics Type Instant of Time 
Performance Variable : load_HB_pl 

Affecting Models PE_maSSP 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*PE_maSSP->Load_HB->Mark())/Number_PE);
 

Simulator Statistics Type Instant of Time 
Performance Variable : load_reports_pl 

Affecting Models SIPclient_reg_expTO 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*SIPclient_reg_expTO->Load_reports->Mark())/Number_PU); 

Simulator Statistics Type Instant of Time 
Performance Variable : load_sip_pl 

Affecting Models SIPclient_reg_expTO 
Impulse Functions  

Reward Function 
(Reward is over all Available Models) 
 
return ((1.0*SIPclient_reg_expTO->Load_sip->Mark())/Number_PU); 

Simulator Statistics Type Instant of Time 
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B.4. Simulation Results  
B.4.1. Output Metrics Calculation  

The three output metrics were calculated from specific Möbius performance variables. 
Here is how they were calculated:  

Dependability 
Dep. = 100*Trans_success_pl/(Trans_success_pl+Trans_failed_pl) 
 

SAT (successful transactions only) 
SAT_per_transaction = 1000*(SAT_pl - SAT_deduct_pl)/Trans_success_pl 
 

Dependability 
Load_total = ((load_HB_pl*sizeHB)+(load_reports_pl*sizeREPORT)+ ... 

...(load_sip_pl_10*sizeSIP)) /Trans_total 
 
 

B.4.2. Result Graphs 
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Fig.B.1, Standard SIP, CL=100s, comparing RTT 
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Fig.B.2, Standard SIP, CL=1000s, comparing RTT 
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Fig.B.3, Standard SIP, RTT=100ms, comparing CL 
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Fig.B.4, Standard SIP, RTT=200ms, comparing CL 
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Fig.B.5, Standard SIP, RTT=500ms, comparing CL 

 
 
 



 161 

L-L L-H H-L H-H
30

40

50

60

70

80

90

100

D
ep

en
da

bi
lit

y 
(in

 %
)

L-L L-H H-L H-H

120

140

160

180

200

220

240

260

280

SA
T 

(in
 m

s)

L-L L-H H-L H-H

7

8

9

10

11

12

13

14

15

16

17

Lo
ad

 (p
er

 tr
an

sa
ct

io
n)

CL100 - RTT100
0/0/1(+),0/0/3(o),0/0/5(*)

 
Fig.B.6, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=0, comparing pool size 
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Fig.B.7, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=1, comparing pool size 
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Fig.B.8, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=2, comparing pool size 
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Fig.B.9, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=3, comparing pool size 
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Fig.B.10, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=4, comparing pool size 
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Fig.B.11, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=5, comparing pool size 
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Fig.B.12, Regular, CL = 100s, RTT=100ms, FO=0, Retrans=6, comparing pool size 
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Fig.B.13, Regular, CL = 100s, RTT=100ms, FO=1, Retrans=0, comparing pool size 
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Fig.B.14, Regular, CL = 100s, RTT=100ms, FO=1, Retrans=1, comparing pool size 
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Fig.B.15, Regular, CL = 100s, RTT=100ms, FO=1, Retrans=2, comparing pool size 
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Fig.B.16, Regular, CL = 100s, RTT=100ms, FO=1, Retrans=3, comparing pool size 
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Fig.B.17, Regular, CL = 100s, RTT=100ms, FO=2, Retrans=0, comparing pool size 
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Fig.B.18. Regular, CL = 100s, RTT=100ms, FO=2, Retrans=1, comparing pool size 
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Fig.B.19, Regular, CL = 100s, RTT=100ms, FO=3, Retrans=0, comparing pool size 
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Fig.B.20, Regular, CL = 100s, RTT=100ms, FO=3, Retrans=1, comparing pool size 
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Fig.B.21, Regular, CL = 100s, RTT=100ms, FO=4, Retrans=0, comparing pool size 
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Fig.B.22, Regular, CL = 100s, RTT=100ms, FO=5, Retrans=0, comparing pool size 
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Fig.B.23, Regular, CL = 100s, RTT=100ms, FO=6, Retrans=0, comparing pool size 
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Fig.B.24, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=0, comparing pool size 
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Fig.B.25, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=1, comparing pool size 
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Fig.B.26, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=2, comparing pool size 
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Fig.B.27, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=3, comparing pool size 
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Fig.B.28, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=4, comparing pool size 
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Fig.B.29, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=5, comparing pool size 
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Fig.B.30, Regular, CL = 1000s, RTT=100ms, FO=0, Retrans=6, comparing pool size 
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Fig.B.31, Regular, CL = 1000s, RTT=100ms, FO=1, Retrans=0, comparing pool size 
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Fig.B.32, Regular, CL = 1000s, RTT=100ms, FO=1, Retrans=1, comparing pool size 
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Fig.B.33, Regular, CL = 1000s, RTT=100ms, FO=1, Retrans=2, comparing pool size 
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Fig.B.34, Regular, CL = 1000s, RTT=100ms, FO=1, Retrans=3 comparing pool size 
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Fig.B.35, Regular, CL = 1000s, RTT=100ms, FO=2, Retrans=0, comparing pool size 
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Fig.B.36, Regular, CL = 1000s, RTT=100ms, FO=2, Retrans=1, comparing pool size 
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Fig.B.37, Regular, CL = 1000s, RTT=100ms, FO=3, Retrans=0, comparing pool size 
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Fig.B.38, Regular, CL = 1000s, RTT=100ms, FO=3, Retrans=1, comparing pool size 
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Fig.B.39, Regular, CL = 1000s, RTT=100ms, FO=4, Retrans=0, comparing pool size 
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Fig.B.40, Regular, CL = 1000s, RTT=100ms, FO=5, Retrans=0, comparing pool size 
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Fig.B.41, Regular, CL = 1000s, RTT=100ms, FO=6, Retrans=0, comparing pool size 
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