
RSVP-TE Extensions to Provide Guarantee
of Service to MPLS 1

Francisco J. Rodriguez-Perez, Jose Luis Gonzalez-Sanchez, Alfonso Gazo-Cervero
University of Extremadura - Escuela Politecnica, Avda. Universidad s/n

10071 Caceres, Spain
{fjrodri, jlgs, agazo}@unex.es

Abstract. Independent Quality of Service (QoS) models need to be set up in IP
and ATM integration and they are difficult to coordinate. This gap is bridged
when MultiProtocol Label Switching (MPLS) is used for this purpose. We
propose Guarantee of Service (GoS) to improve performance of privileged
flows in congested MPLS networks. We first discuss the GoS requirements for
the use in conjunction with MPLS. Then we propose a minimum set of
extensions to RSVP-TE that allow signaling of GoS information across the
MPLS domain.

Keywords: Guarantee of Service, MPLS, RSVP-TE, local recoveries.

1 Introduction

Multiprotocol Label Switching (MPLS) is currently mainly used to provide Virtual
Private Networks (VPNs) services or in IP-ATM with QoS integration purposes [1],
also combining ATM traffic engineering capabilities with flexibility of IP and class-
of-service differentiation. MPLS bridges the gap between IP and ATM avoiding the
need of setting up independent QoS models for IP and for ATM, which are difficult to
match. ATM switches can dynamically assign Virtual Path Identifier/Virtual Channel
Identifier (VPI/VCI) values which can be used as labels for cells. This solution solves
the problem without the need for centralized ATM-IP integration servers.

Like ATM Virtual Circuits (VCs), MPLS Label Switched Paths (LSPs) let the
headend Label Edge Routers (LER) to control the path that traffic uses towards a
specific sink. LSP tunnels also allow a variety of policies related to network
performance optimization [2]. Resource ReSerVation Protocol (RSVP) is a signaling
mechanism used to reserve resources for these LSP tunnels. MPLS can reserve
bandwidth on the network when it uses RSVP to build LSPs. Unlike ATM, there is no
forwarding-plane enforcement of the reservation. A reservation is made in the control
plane only, which means that if a Label Switch Router (LSR) makes an RSVP
reservation and later it needs a bigger bandwidth, it will congest that LSP, damaging
performance of other flows which can have even more priority, unless we attempt to
police the flows using QoS techniques. Although RSVP with Traffic Engineering
(RSVP-TE), is expected to be an important application in such problematic [3], an
extended RSVP-TE protocol can be used in a much wider context for performance

improvement. MPLS-TE is providing fast networks, but assuming that devices are not
going to fail and without data loss. However, resource failures and unexpected
congestions cause a great part of lost traffic. In these cases, upper layers protocols can
request lost data retransmissions at end points, but the time interval to get
retransmitted data can be significant. For some types of services with high
requirements of delay and reliability, as stock-exchange data or medical information,
MPLS is not able to ensure that performance will not be worse due to lost traffic end-
to-end (E2E) retransmissions.

In this work we describe a set of extensions to MPLS RSVP-TE signaling to
provide GoS over MPLS. Thus, we will allow to offer GoS to privileged data flows
[4][5], making discarded packets due to congestion to be locally recovered, avoiding
in this way, as far as possible, E2E retransmissions requested by upper layers.

Following section shows how GoS can be applied to privileged MPLS flows. In the
third section we study the RSVP-TE extensions to transport GoS information through
the domain. In fourth section an analysis of the proposal is shown and finally this
article concludes indicating the contributions of the research.

2 GoS over MPLS

The GoS capabilities for a MPLS privileged data flow is the capacity of a specific
node to local recovering of discarded packets belonging to such flow. This work
proposes up to four GoS levels (see Table 1), codified with two bits; so each packet
can be marked with this information throughout all the route. A greater GoS level
implies a greater probability that a packet can be found in the GoS buffer of any node
of its LSP. Thus the need of end to end retransmissions is avoided, recovering lost
data in a much rather local environment.

Implementation of GoS levels is carried out by means of the MPLS packet header,
in the network level header and upper layers headers too. The main implied levels in
an MPLS communication are Network, Link and level 2+ or MPLS. However, we
have to bear in mind the possibility of marking GoS levels in Transport layer for
Application level packets. Thus, following the TCP/IP model, data is marked with
GoS at Application level directly by user and after that, the process would mark the
TCP segments to be encapsulated in IP packets, which finally would receive a label to
be switched across the MPLS domain.

At Application level, a GoS capability session can be started selecting a specific
port when opening a TCP socket.

Table 1. GoS Levels Codification.

GoS1 GoS0 Meaning
0 0 No GoS packet.
0 1 Level 1 of GoS.
1 0 Level 2 of GoS.
1 1 Level 3 of GoS.

For example, in order to use email service we access to the port 110 or we use port 22
to SSH services. In this way, GoS use three ports to open TCP sessions, mapped with
each one of the three GoS available levels. This will cause the Transport and upper
levels to be marked with GoS. Moreover, at Network level the GoS mark has been
implemented in the IP Options field, which has a size of at most 40 bytes. However
only the first byte of this field is needed to codify the two bits for GoS. Finally, to
mark a packet with GoS in MPLS level, the label field has value 1, which has been
defined as a special value for MPLS labels. The EXP field (see figure 1) can transport
the two bits needed for GoS. This mark can be set by the ingress LER.

2.1 GoS packets identification

In GoS nodes, a temporal buffer called NonStop-Forwarding Memory for GoS PDUs
(NMGP) is needed. Moreover, GoS packets buffered in these nodes must also be
identified to allow a GoS packet which satisfy a local retransmission request can be
found. So privileged PDUs will be indexed in these buffers, allowing all sent and
received GoS packets are globally identified in the MPLS domain, for nodes which
request local retransmissions recognize each packet whose retransmission is needed
as well as for upstream nodes to find stored GoS marked packets.

The IP address from Network layer allows to identify each node in a network
topology so it can identify data flows, but it can not identify each packet sent by a
specific node. An id identifier will go with each GoS packet and will be assigned by
the sender node that generates it. A four octets identifier allows to recognize up to 232
= 4,294,967,296 packets sent by a node. So Network level address of the sender, and
this four bytes id will be considered as unique identifier for a GoS packet. This id
field will also be marked in the Options field, after the GoS level field (see figure 2).
In case of IPv6, GoS information can be forwarded with the Hop-by-Hop optional
header, to be processed in every node throughout the LSP. This header also allows a
No-GoS node to ignore GoS data and to continue processing the IPv6 packet.

Fig. 1. MPLS packet header structure.

Fig. 2. IP Options field format for characterization of GoS packets.

Label: (20 bits)

TTL: (8 bits)

S: (1 bits)

EXP: (3 bits)

GoS Plane, up to 8 addresses

1 oc. 4 octets 4 octets 4 octets

Packet
Identifier

GoS
Level

Address of
GoS node 1

(GoSP1)

 Address of
GoS node d

(GoSPd)

2.2 GoS Path Marking and Local Recoveries

We consider a domain G(U), with a set of nodes U and a data flow ϕ(G)=ϕ(xi, xn) in
G(U) across a path LSPi,n, with origin in node xi and destination in node xn, with {xi,
xn} ⊂ U. Node xn only knows incoming port and incoming label of every arrived
packet of ϕ(G), i.e., xn only knows that xn-1 is the sender of ϕ(xi, xn). It could know
which node is the sender of a packet basing on label information, but this is not a
reliable strategy because node xn-1 could use flow aggregation mechanisms to merge k
flows coming from other nodes into a unique flow, in the form:

∑
=

−− =
k

i
nninn xxxx

1
11),(),(ϕϕ . (1)

On the other hand, if xn, due to congestion, do not keep Flow Conservation Law:

∑∑
==

<
k

i
in

k

j
nj pp

11

, (2)

being pij the traffic volume sent from xi to xj through xn; so node is discarding one or
more packets. In this case xn cannot find any node to request local retransmissions of
lost packets. It is very important to know the set of nodes by which a specific GoS
packet has passed through and this is known as GoS Path Marking. Thus, xn will
know that discarded traffic can have been stored in upstream GoS nodes in LSPi,n. The
first node to request a local retransmission will be the starting node of the GoS Plane,
i.e., its previous GoS neighbor. To get this stack of GoS nodes we have to obtain the
set of nodes X such that X ⊆ LSPi,n = {(xi, xi+1), (xi+1, xi+2), ..., (xn-1, xn)} ⊆ U, of G(U)
domain, with maximum diameter d(xi, xn)=n-i such that X are GoS capable. In this
way, with packet discarding, a local retransmission could be requested to any node
belonging to X, avoiding requests to the head end and bringing a lesser increment of
global ϕ(G) in the domain.

Path marking at MPLS level implies using of several bits from the label, making
that Non-GoS nodes (LSPi,n – X) do not know how to handle GoS traffic. So working
at network level is a better strategy, i. e., GoS nodes of LSPi,n mark its network level
address in the IP Options field of the GoS privileged packets. This stack of network
address of nodes that have switched the packet is known as GoS Plane and the
number of elements of this stack is the diameter (d) of the GoS Plane. Maximum
value of d is max d = ((OS-BU)/BpA), where OS is the IP Options field size (40
bytes); BU is the number of bytes used in the GoS proposal for packet
characterization (1 byte for GoS level and 4 bytes for packet identification); BpA
(Bytes per Address) is the number of bytes needed to codify an IP address (4 bytes).
The value d = 8 is the maximum supported GoSP diameter. The objective of GoS is
not to propose the replacement of all the nodes in a MPLS domain but the
incorporation of several GoS capable MPLS nodes. In this way, in case a local
retransmission was necessary in a node, there is a GoS Plane of at most 8 nodes to go
upstream, increasing possibilities of finding lost packet. Moreover, Internet Effective
Diameter (IED), that is defined as the maximum number of indispensable hops that
are needed to reach to any other node in Internet [6], shows that rounding to 4,
approximately 80% of the pairs of nodes in Internet are reachable in this distance. If

we consider an effective diameter of 5, it covers more than 95% of the pairs of nodes
so a GoSP diameter of at most 8 nodes is a suitable size.

The last d GoS nodes which have switched a specific GoS packet is always known.
This stack will also be marked in the Options field, after the GoS level field and after
the four bytes packet identifier. So, in order to support GoS, the IP Options field of a
packet will be formatted like in figure 2 is shown.

3 GoS Signaling

The specification of RSVP-TE [7] defines extensions to the Resource reSerVation
Protocol (RSVP) in order to make network resources reservations and to distribute
labels, establishing LSPs with traffic engineering capabilities. Among these
extensions are the ability to specify a strict path to be followed by an LSP or
supporting of state recoveries.

RSVP messages are send encapsulated in IP packets and are composed of header
and a set of objects. For example the Hello Object enables RSVP routers to detect
when neighbor nodes are not reachable, so this mechanism provides a very local and
effective failure detection. Thus, the Hello extension is designed in the way that one
side can use the mechanism while the other side does not and may be initiated at any
configured failure detection interval and at any time; there are two types of Hello
objects: Hello Request and Hello Ack. Nodes with no Hello capabilities or not
configured for it, can ignore this messages, i.e., reception of Hello messages not alter
the common operation of any node. It is intended for use between immediate
neighbors, so Time To Live (TTL) IP field must be 1; however, with a TTL>1 it could
be used as keepalive between non neighbors nodes.

3.1 RSVP-TE Hello Message Operation

A node may periodically (default value is 5 ms) generates a Hello message containing
a Hello Request object for each neighbor who's status is being tracked. For every
Hello Request, neighbor must send a Hello Ack (see figure 3). If no messages are
received within a configured number of Hello intervals (default for this is 3.5
intervals), then a node presumes that it cannot communicate with the neighbor. They
also compare new received values of Source and Destination Instance fields with the
values most recently received from every neighbor and with last values send to them.
This is used to assume that communication with the peer has been lost too.

3.2 GoS Extended Hello Operation

In [7] an extension for Hello message is proposed for handling nodal faults, relates to
the case where a node losses its control state (e.g., after a restart) but does not loose
its data forwarding state, as well as for control channel faults, relates to the case
where control communication is lost between two nodes. The format of this extended
Hello message is:

Fig. 3. GoS extended Hello message format, with common
 Hello Request and GoS Request objects.

<Hello Message> ::= <Common Header> + [<INTEGRITY>] +
<HELLO> + [<RESTART_CAP>]
In this work a GoS Hello message is proposed with following format:

<Hello Message> ::= <Common Header> + [<INTEGRITY>] +
<HELLO> + [<GoS>],

which, besides a Hello object, also includes an object with a GoS request or a GoS
ack. GoS nodes will use information of Source and Destination Instances of common
Hello objects to test connectivity with neighbors in GoSP as explained above.
Formats of GoS Request and GoS Ack objects are in figures 3 and 4.

The usual state of a GoS MPLS node is data forwarding state, switching labels and
forwarding data packets to the next node (see figure 3). There are only two events that
change this state in the GoS node (see figure 5). One of them is detection of a
discarded GoS packet. In this case node is able to capture GoS characterization
information of discarded packet (see figure 2) and change its state to request of local
retransmission, to send a extended Hello message with a GoS Request to the first
node of GoSP (GoSP1) (see figure 6). When a GoS Ack object is received from
GoSP1, it changes to the forwarding state again. The other event that make state
changing is receiving from any downstream GoS node an extended Hello message
with a GoS Request for a local retransmission. Here the node changes its state to
NMGP search, to accede to its temporal buffer trying to find the requested packet,
according to the characterization information received in the GoS request.

HD
R .

HD
R.

BO

DY

BO
DY

HE
LL

O
RE

QU
ES

T
OB

JE
CT

CO
MM

ON

HE
AD

ER

Go
S

RE
QU

ES
T

OB
JE

CT

Flags
(4 bits)

Message Type
(1 octet)

RSVP Checksum
(2 octets)

TTL
(1 octet)

Reserved
(1 octet)

RSVP Message Length
(2 octets)

Object Length
(2 octets)

Class-Num
(1 octet)

C-Type
(1 octet)

Version
(4 bits)

Object Length
(2 octets)

Class-Num
(1 octet)

C-Type
(1 octet)

Flow Identifier
(4 octets)

Packet Identifier
(4 octets)

Source Instance
(4 octets)

Destination Instance
(4 octets)

GoSP1
(4 octets)

GoSP2
(4 octets)

GoSP8
(4 octets)

Fig. 4. GoS extended Hello message format, with common
Hello Ack and GoS Ack objects.

If it finds in NMGP the requested packet, it send a GoS Hello message with a GoS
Ack object indicating that packet was found and it will be locally retransmitted. After
this, it changes to local retransmission state, to get the GoS packet from NMGP and
retransmit it. After this it will return to initial forwarding state. In case of not find the
packet in NMGP buffer, it will send a GoS Ack object indicating that packet was not
found, changing to request of local retransmission state and sending a GoS Hello
message with the GoS request to the next GoSP node, if it is not the last one. This
new GoS request message to the next node in GoSP is shorter than previous one,
since that if a node does not find the requested GoS packet in the NMGP and it has to
request it to next node of GoSP, it first will remove its address of GoS Request object,
to simplify the message (see figure 3). So with a bigger used diameter in the plane
GoS, the GoS messages to send will be shorter.

4 Analysis and Evaluation of the Proposal

In this section we will show an analysis of GoS benefits in the delay of packets
belonging to privileged flows. We consider an MPLS domain G(U) network with a
set X of n nodes and a set U of links. Let δij the delay of link (xi, xj) ∈ U and let δ(xi,
xj) the delay of a path between two nodes xi and xj which can be non-neighbors. Our
objective is to minimize the delay used by packets when are transmitted between two
any nodes of the path LSPi,n of U(G):

min δ(xi, xj) = ∑ ∑
= =

n

i

n

j
ijij x

1 1
δ , (3)

subject to: 1
2

1 =∑
=

n

l
lx , (4)

HD
R

HD
R.

BO

DY

BO
DY

HE
LL

O
AC

K
OB

JE
CT

CO
MM

ON

HE
AD

ER

Go
S

AC
K

OB
JE

CT

Flags
(4 bits)

Message Type
(1 octet)

RSVP Checksum
(2 octets)

TTL
(1 octet)

Reserved
(1 octet)

RSVP Message Length
(2 octets)

Object Length
(2 octets)

Class-Num
(1 octet)

C-Type
(1 octet)

Version
(4 bits)

Object Length
(2 octets)

Class-Num
(1 octet)

C-Type
(1 octet)

GoS Ack
(4 octets)

Source Instance
(4 octets)

Destination Instance
(4 octets)

 1,...,3,2,0
11

−==−∑∑
==

nlxx
n

j
lj

n

i
il , (5)

 1
1

1
=∑

−

=

n

l
nlx (6)

where Niii ∈∀= ,0,δ ; nijiji LSPxxx ,,),(,1 ∈∀= and

nijiji LSPxxx ,,),(,0 ∉∀= .

Fig. 5. GoS extended Hello message format, with common
 Hello Request and GoS Request objects.

Fig. 6. Operation after a packet discard in intermediate node X4, using 3 available GoSP
diameters to get a local retransmission. It is compared with a case of end to end recoveries (δ:
links delay; Fw: packet forwarding; E2ER: end to end retransmission request time; LRP: locally
recovered packet; E2ERP: end to end recovered packet).

Local retrans.
request

GoS packet
discarded

Next GoS node
response

Hello Request
received

GoS buffer
search

Forwarding
mode

Local
retransmission

Hello Ack:
Not found

Hello Ack:
Found

X1 X5 X2 X3 X4 δ1,2 δ2,3 δ3,4 δ4,5

fw

fw
fw

E2ER

E2ERP

fw

fw

fw

E2ERP

E2ERP

E2ERP

E2ER

E2ER

E2ER

LRP

LRP

LRP

LRP

LRP

LRP

GoS Req.

GoS Req.

GoS Req.

GoS Resp

GoS Resp

GoS Resp

T
IM

E

4.1 End to End Retransmissions

Let xn a non-GoS congested end node. In case of packet discarding by xn, then
function Discarding Detection Time (DDTe2e) between two nodes of LSPi,n is:

∑
−

=
++=

1

1,1,2),(
n

il
llllniee xxxDDT δ (7)

Minimal delay of the end to end (e2e) retransmission is:

∑
−

=
++=

1

1,1,2 2),(
n

il
llllniee xxx δδ (8)

So total delay),(2 niee xx∆ to get discarded flow in xn is got from (7) and (8):

∑
−

=
++=∆

1

1,1,2 3),(
n

il
llllniee xxx δ (9)

4.2 If Congested End Node xn is GoS Capable

Let xn a GoS congested end node. In case of packet discarding by xn, then Discarding
Detection Time (DDTd) between source and sink nodes of path LSPi,n is:

∑
−

=
++=

1

1,1,),(
n

il
llllnid xxxDDT δ (10)

Minimal delay of local retransmission using a GoSP with diameter d (δd) is:

∑
−

−=
++=

1

1,1,2),(
n

dnl
llllnid xxx δδ , (11)

subject to: 0 < d < n – i (12)

If diameter in Eq. (11) was n-i, then if l = n–d = n – (n–i) = n – n + i = i, we get:

∑∑
−

=
++

−

−=
++ =

1

1,1,

1

1,1, 22
n

il
llll

n

dnl
llll xx δδ , (13)

i.e., it would be and e2e retransmission. Moreover, if in Eq. (11) GoSP diameter was
bigger than n-i, then it would be trying to get a retransmission from a previous node to
xi, but this one is the source of data flow, so it is unfeasible. Thus, total
delay),(nid xx∆ to get discarded traffic from start is got from (10) and (11):

∑∑
−

−=
++

−

=
++ +=∆

1

1,1,

1

1,1, 2),(
n

dnl
llll

n

il
llllnid xxxx δδ (14)

At this point we test if (14) < (9):

∑∑∑
−

=
++

−

−=
++

−

=
++ <+

1

1,1,

1

1,1,

1

1,1, 32
n

il
llll

n

dnl
llll

n

il
llll xxx δδδ (15)

∑∑
−

=
++

−

−=
++ <

1

1,1,

1

1,1, 22
n

il
llll

n

dnl
llll xx δδ (16)

So according to Eq. (8) and Eq. (11), we only need to verify in Eq. (16) that δd(xi,
xn) < δe2e(xi, xn). The only condition that distinguishes the members of (16) is the set
of values of variable l. We only need to demonstrate that l takes a lesser number of
values in δd(xi, xn) than in δe2e(xi, xn):

n – 1 – (n – d) < n – 1 – i;
n – 1 – n + d < n – 1 – i;

-1 + d < n – 1 – i;
-1 + 1 + d < n – i ⇒ d < n – i

 (17)

We get that the problem is kept in feasibility zone, since Eq. (17) is one of the
restrictions of (12). Thus, it has been demonstrated that),(),(2 nieenid xxxx ∆<∆ .
So, Eq. (14) offers delay benefits: Eq. (14) – Eq. (9) > 0, improving (3):

∑
−−

=
++=∆−∆

1

1,1,2 2),(),(
dn

il
llllnidniee xxxxx δ (18)

4.3 If a Congested Intermediate Node xDD is GoS Capable

Let xDD a GoS congested intermediate node. In case of packet discarding by xDD, then
Discarding Detection Time (DDTd) between source and congested node xDD is:

∑
−

=
++=

1

1,1,),(
DD

il
llllDDid xxxDDT δ (19)

Minimal delay of the e2e retransmission is:

∑
−

−=
++=

1

1,1,2),(
DD

dDDl
llllDDid xxx δδ , (20)

subject to: 0 < d ≤ DD - i, (21)

If diameter in Eq. (20) was bigger than DD - i , then it would be trying to get a
retransmission from a previous node to xi, but this one is the source of data flow, and
this is unfeasible. (In this case, retransmission from source node xi (d = DD – i), brings
improvement with respect to e2e, because xDD is a previous node to xn,, i.e.: if DD < n
⇒ DD – i < n – i), so it is a local retransmission. So total delay),(nid xx∆ to get
discarded traffic from initial instant of transmission is got from (19) and (20):

=++∆ ∑
−

=
++

1

1,1,),(),(=),(
n

DDl
llllDDidDDidnid xxxxxDDTxx δδ

),(),(= 2 DDidniee xxxxDDT δ+
(22)

At this point we test if (22) < (9):

∑∑∑
−

=
++

−

−=
++

−

=
++ <+

1

1,1,

1

1,1,

1

1,1, 32
n

il
llll

DD

dDDl
llll

n

il
llll xxx δδδ (23)

Optimizing, we get:

∑∑
−

=
++

−

−=
++ <

1

1,1,

1

1,1, 22
n

il
llll

DD

dDDl
llll xx δδ (24)

So according to Eq. (8) and Eq. (11), again we only need to verify in Eq. (24) that
δd(xi, xn)<δe2e(xi, xn). As in Eq. (17) we get that the problem is kept in feasibility zone.
So Eq. (22) offers delay benefits, i. e., Eq. (22) – Eq. (9) > 0, improving Eq.(3):









+=∆−∆ ∑∑

−

=
++

−−

=
++

1

1,1,

1

1,1,2 2),(),(
n

DDl
llll

dDD

il
llllnidniee xxxxxx δδ (25)

Consider a congested MPLS domain with a path LSPi,n. The last n-i nodes are
discarding packets. Figure 7 shows a comparative between no congested traffic, e2e
case (using e2e retransmissions) and three cases of local retransmissions (with d=1,
d=2 and d=3). In figure 8 a comparative at different time samples is shown. For
example, at 3,700 ms only 171 packets have been correctly received in the sink node.
In GoSP diameter=3 case, sink node has already received 213 packets node, with d=2,
313 packets and in case of using d=1, sink has received 584 packets.

Fig. 7. Throughput comparative between local retransmissions
and E2E, with congestion in last n–1 nodes.

0
100
200
300
400
500
600
700
800

40 26
0

48
0

70
0

92
0

11
40

13
60

15
80

18
00

20
20

22
40

24
60

26
80

29
00

31
20

33
40

35
60

Time (ms)

P
ac

ke
ts

No
discarding d=1

d=2
d=3

E2E

Fig. 8. Comparative between local retransmissions and E2E at different time samples.

5 Conclusion

This work proposes GoS as a traffic local recovery technique in an MPLS domain in
order to improve performance of privileged data flows. We have first discussed the
requirements for GoS over MPLS. We have then shown that by introducing a limited
number of RSVP-TE protocol extensions it is possible GoS signaling to such
privileged data flows that require reliability. The proposed technique has been
analysed and demonstrated the benefits due to local retransmissions of discarded
traffic with respect to end to end retransmissions.

References

1. Taesang Choi.: Design and implementation of an information model for integrated
configuration and performance management of MPLS-TE/VPN/QoS, IFIP/IEEE 8th
International Symposium on Integrated Network Management (2003) 143-146.

2. Fowler, et al.: QoS path selection exploiting minimum link delays in MPLS-based networks,
Proceedings IEEE Systems Communications (2005) 27-32.

3. Suryasaputra, R. Kist, A. A. Harris, R.J.: Verification of MPLS traffic engineering
techniques, 13th IEEE International Conference on Networks (2005) 190-195.

4. Dominguez-Dorado, M., et al.: Guarantee of Service (GoS) support over MPLS using Active
Techniques, WSEAS Transactions on Communications (2004) 1959-1964.

5. Fowler, S. Zeadally, S.: Priority-based congestion control in MPLS-based networks,
Advanced Industrial Conference on Telecommunications. IEEE AICT/SAPIR/ELETE
(2005) 332-337.

6. G. Siganos: Powerlaws and the AS-level Internet topology, ACM/IEEE Transactions on
Networking (2003), vol. 11, 514-524.

7. RFC3473: GMPLS Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-
TE) Extensions (2003).

1 This work is sponsored in part by the Regional Government of Extremadura (Education,

Science and Technology Council) under GRANT Nº PDT05A041

0

100

200

300

400

500

600

700

370 740 1110 1480 1850 2220 2590 2960 3330 3700

Time (ms)

P
ac

ke
ts E2E

d=1

d=2

d=3

