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Abstract. Independent Quality of Service (QoS) models need to be set up in IP 
and ATM integration and they are difficult to coordinate. This gap is bridged 
when MultiProtocol Label Switching (MPLS) is used for this purpose. We 
propose Guarantee of Service (GoS) to improve performance of privileged 
flows in congested MPLS networks. We first discuss the GoS requirements for 
the use in conjunction with MPLS. Then we propose a minimum set of 
extensions to RSVP-TE that allow signaling of GoS information across the 
MPLS domain. 
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1   Introduction 

Multiprotocol Label Switching (MPLS) is currently mainly used to provide Virtual 
Private Networks (VPNs) services or in IP-ATM with QoS integration purposes [1], 
also combining ATM traffic engineering capabilities with flexibility of IP and class-
of-service differentiation. MPLS bridges the gap between IP and ATM avoiding the 
need of setting up independent QoS models for IP and for ATM, which are difficult to 
match. ATM switches can dynamically assign Virtual Path Identifier/Virtual Channel 
Identifier (VPI/VCI) values which can be used as labels for cells. This solution solves 
the problem without the need for centralized ATM-IP integration servers. 

Like ATM Virtual Circuits (VCs), MPLS Label Switched Paths (LSPs) let the 
headend Label Edge Routers (LER) to control the path that traffic uses towards a 
specific sink. LSP tunnels also allow a variety of policies related to network 
performance optimization [2]. Resource ReSerVation Protocol (RSVP) is a signaling 
mechanism used to reserve resources for these LSP tunnels. MPLS can reserve 
bandwidth on the network when it uses RSVP to build LSPs. Unlike ATM, there is no 
forwarding-plane enforcement of the reservation. A reservation is made in the control 
plane only, which means that if a Label Switch Router (LSR) makes an RSVP 
reservation and later it needs a bigger bandwidth, it will congest that LSP, damaging 
performance of other flows which can have even more priority, unless we attempt to 
police the flows using QoS techniques. Although RSVP with Traffic Engineering 
(RSVP-TE), is expected to be an important application in such problematic [3], an 
extended RSVP-TE protocol can be used in a much wider context for performance 



improvement. MPLS-TE is providing fast networks, but assuming that devices are not 
going to fail and without data loss. However, resource failures and unexpected 
congestions cause a great part of lost traffic. In these cases, upper layers protocols can 
request lost data retransmissions at end points, but the time interval to get 
retransmitted data can be significant. For some types of services with high 
requirements of delay and reliability, as stock-exchange data or medical information, 
MPLS is not able to ensure that performance will not be worse due to lost traffic end-
to-end (E2E) retransmissions. 

In this work we describe a set of extensions to MPLS RSVP-TE signaling to 
provide GoS over MPLS. Thus, we will allow to offer GoS to privileged data flows 
[4][5], making discarded packets due to congestion to be locally recovered, avoiding 
in this way, as far as possible, E2E retransmissions requested by upper layers. 

Following section shows how GoS can be applied to privileged MPLS flows. In the 
third section we study the RSVP-TE extensions to transport GoS information through 
the domain. In fourth section an analysis of the proposal is shown and finally this 
article concludes indicating the contributions of the research. 

2   GoS over MPLS 

The GoS capabilities for a MPLS privileged data flow is the capacity of a specific 
node to local recovering of discarded packets belonging to such flow. This work 
proposes up to four GoS levels (see Table 1), codified with two bits; so each packet 
can be marked with this information throughout all the route. A greater GoS level 
implies a greater probability that a packet can be found in the GoS buffer of any node 
of its LSP. Thus the need of end to end retransmissions is avoided, recovering lost 
data in a much rather local environment. 

Implementation of GoS levels is carried out by means of the MPLS packet header, 
in the network level header and upper layers headers too. The main implied levels in 
an MPLS communication are Network, Link and level 2+ or MPLS. However, we 
have to bear in mind the possibility of marking GoS levels in Transport layer for 
Application level packets. Thus, following the TCP/IP model, data is marked with 
GoS at Application level directly by user and after that, the process would mark the 
TCP segments to be encapsulated in IP packets, which finally would receive a label to 
be switched across the MPLS domain. 

At Application level, a GoS capability session can be started selecting a specific 
port when opening a TCP socket.  

Table 1.  GoS Levels Codification. 

 
 
 
 
 
 

GoS1 GoS0 Meaning 
0 0 No GoS packet. 
0 1 Level 1 of GoS. 
1 0 Level 2 of GoS. 
1 1 Level 3 of GoS. 



For example, in order to use email service we access to the port 110 or we use port 22 
to SSH services. In this way, GoS use three ports to open TCP sessions, mapped with 
each one of the three GoS available levels. This will cause the Transport and upper 
levels to be marked with GoS. Moreover, at Network level the GoS mark has been 
implemented in the IP Options field, which has a size of at most 40 bytes. However 
only the first byte of this field is needed to codify the two bits for GoS. Finally, to 
mark a packet with GoS in MPLS level, the label field has value 1, which has been 
defined as a special value for MPLS labels. The EXP field (see figure 1) can transport 
the two bits needed for GoS. This mark can be set by the ingress LER. 

2.1   GoS packets identification 

In GoS nodes, a temporal buffer called NonStop-Forwarding Memory for GoS PDUs 
(NMGP) is needed. Moreover, GoS packets buffered in these nodes must also be 
identified to allow a GoS packet which satisfy a local retransmission request can be 
found. So privileged PDUs will be indexed in these buffers, allowing all sent and 
received GoS packets are globally identified in the MPLS domain, for nodes which 
request local retransmissions recognize each packet whose retransmission is needed 
as well as for upstream nodes to find stored GoS marked packets. 

The IP address from Network layer allows to identify each node in a network 
topology so it can identify data flows, but it can not identify each packet sent by a 
specific node. An id identifier will go with each GoS packet and will be assigned by 
the sender node that generates it. A four octets identifier allows to recognize up to 232 
= 4,294,967,296 packets sent by a node. So Network level address of the sender, and 
this four bytes id will be considered as unique identifier for a GoS packet. This id 
field will also be marked in the Options field, after the GoS level field (see figure 2). 
In case of IPv6, GoS information can be forwarded with the Hop-by-Hop optional 
header, to be processed in every node throughout the LSP. This header also allows a 
No-GoS node to ignore GoS data and to continue processing the IPv6 packet.  
 
 
 

 
 
 
 

 
Fig. 1. MPLS packet header structure. 

 
 
 
 
 

 
Fig. 2. IP Options field format for characterization of GoS packets.  
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2.2   GoS Path Marking and Local Recoveries 

We consider a domain G(U), with a set of nodes U and a data flow ϕ(G)=ϕ(xi, xn) in 
G(U) across a path LSPi,n, with origin in node xi and destination in node xn, with {xi, 
xn} ⊂ U. Node xn only knows incoming port and incoming label of every arrived 
packet of ϕ(G), i.e., xn only knows that xn-1 is the sender of ϕ(xi, xn). It could know 
which node is the sender of a packet basing on label information, but this is not a 
reliable strategy because node xn-1 could use flow aggregation mechanisms to merge k 
flows coming from other nodes into a unique flow, in the form: 
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being pij the traffic volume sent from xi to xj through xn; so node is discarding one or 
more packets. In this case xn cannot find any node to request local retransmissions of 
lost packets. It is very important to know the set of nodes by which a specific GoS 
packet has passed through and this is known as GoS Path Marking. Thus, xn will 
know that discarded traffic can have been stored in upstream GoS nodes in LSPi,n. The 
first node to request a local retransmission will be the starting node of the GoS Plane, 
i.e., its previous GoS neighbor. To get this stack of GoS nodes we have to obtain the 
set of nodes X such that X ⊆ LSPi,n = {(xi, xi+1), (xi+1, xi+2), ..., (xn-1, xn)} ⊆ U, of G(U) 
domain, with maximum diameter d(xi, xn)=n-i such that X are GoS capable. In this 
way, with packet discarding, a local retransmission could be requested to any node 
belonging to X, avoiding requests to the head end and bringing a lesser increment of 
global ϕ(G) in the domain. 

Path marking at MPLS level implies using of several bits from the label, making 
that Non-GoS nodes (LSPi,n – X) do not know how to handle GoS traffic. So working 
at network level is a better strategy, i. e., GoS nodes of LSPi,n mark its network level 
address in the IP Options field of the GoS privileged packets. This stack of network 
address of nodes that have switched the packet is known as GoS Plane and the 
number of elements of this stack is the diameter (d) of the GoS Plane. Maximum 
value of d is max d = ((OS-BU)/BpA), where OS is the IP Options field size (40 
bytes); BU is the number of bytes used in the GoS proposal for packet 
characterization (1 byte for GoS level and 4 bytes for packet identification); BpA 
(Bytes per Address) is the number of bytes needed to codify an IP address (4 bytes). 
The value d = 8 is the maximum supported GoSP diameter. The objective of GoS is 
not to propose the replacement of all the nodes in a MPLS domain but the 
incorporation of several GoS capable MPLS nodes. In this way, in case a local 
retransmission was necessary in a node, there is a GoS Plane of at most 8 nodes to go 
upstream, increasing possibilities of finding lost packet. Moreover, Internet Effective 
Diameter (IED), that is defined as the maximum number of indispensable hops that 
are needed to reach to any other node in Internet [6], shows that rounding to 4, 
approximately 80% of the pairs of nodes in Internet are reachable in this distance. If 



we consider an effective diameter of 5, it covers more than 95% of the pairs of nodes 
so a GoSP diameter of at most 8 nodes is a suitable size.  

The last d GoS nodes which have switched a specific GoS packet is always known. 
This stack will also be marked in the Options field, after the GoS level field and after 
the four bytes packet identifier. So, in order to support GoS, the IP Options field of a 
packet will be formatted like in figure 2 is shown. 

3   GoS Signaling 

The specification of RSVP-TE [7] defines extensions to the Resource reSerVation 
Protocol (RSVP) in order to make network resources reservations and to distribute 
labels, establishing LSPs with traffic engineering capabilities. Among these 
extensions are the ability to specify a strict path to be followed by an LSP or 
supporting of state recoveries.  

RSVP messages are send encapsulated in IP packets and are composed of header 
and a set of objects. For example the Hello Object enables RSVP routers to detect 
when neighbor nodes are not reachable, so this mechanism provides a very local and 
effective failure detection. Thus, the Hello extension is designed in the way that one 
side can use the mechanism while the other side does not and may be initiated at any 
configured failure detection interval and at any time; there are two types of Hello 
objects: Hello Request and Hello Ack. Nodes with no Hello capabilities or not 
configured for it, can ignore this messages, i.e., reception of Hello messages not alter 
the common operation of any node. It is intended for use between immediate 
neighbors, so Time To Live (TTL) IP field must be 1; however, with a TTL>1 it could 
be used as keepalive between non neighbors nodes. 

3.1   RSVP-TE Hello Message Operation 

A node may periodically (default value is 5 ms) generates a Hello message containing 
a Hello Request object for each neighbor who's status is being tracked. For every 
Hello Request, neighbor must send a Hello Ack (see figure 3). If no messages are 
received within a configured number of Hello intervals (default for this is 3.5 
intervals), then a node presumes that it cannot communicate with the neighbor. They 
also compare new received values of Source and Destination Instance fields  with the 
values most recently received from every neighbor and with last values send to them. 
This is used to assume that communication with the peer has been lost too. 

3.2   GoS Extended Hello Operation 

In [7] an extension for Hello message is proposed for handling nodal faults, relates to 
the case where a node losses its control state (e.g., after a restart) but does not loose 
its data forwarding state, as well as for control channel faults, relates to the case 
where control communication is lost between two nodes. The format of  this extended 
Hello message is:  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. GoS extended Hello message format, with common 
 Hello Request and GoS Request objects.  

<Hello Message> ::= <Common Header> + [<INTEGRITY>] +  
<HELLO> + [<RESTART_CAP>] 
In this work a GoS Hello message is proposed with following format:  

<Hello Message> ::= <Common Header> + [<INTEGRITY>] + 
<HELLO> + [<GoS>], 

which, besides a Hello object, also includes an object with a GoS request or a GoS 
ack. GoS nodes will use information of Source and Destination Instances of common 
Hello objects to test connectivity with neighbors in GoSP as explained above. 
Formats of GoS Request and GoS Ack objects are in figures 3 and 4. 

The usual state of a GoS MPLS node is data forwarding state, switching labels and 
forwarding data packets to the next node (see figure 3). There are only two events that 
change this state in the GoS node (see figure 5). One of them is detection of a 
discarded GoS packet. In this case node is able to capture GoS characterization 
information of discarded packet (see figure 2) and change its state to request of local 
retransmission, to send a extended Hello message with a GoS Request to the first 
node of GoSP (GoSP1) (see figure 6). When a GoS Ack object is received from 
GoSP1, it changes to the forwarding state again. The other event that make state 
changing is receiving from any downstream GoS node an extended Hello message 
with a GoS Request for a local retransmission. Here the node changes its state to 
NMGP search, to accede to its temporal buffer trying to find the requested packet, 
according to the characterization information received in the GoS request.  
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Fig. 4. GoS extended Hello message format, with common  
Hello Ack and GoS Ack objects.  

If it finds in NMGP the requested packet, it send a GoS Hello message with a GoS 
Ack object indicating that packet was found and it will be locally retransmitted. After 
this, it changes to local retransmission state, to get the GoS packet from NMGP and 
retransmit it. After this it will return to initial forwarding state. In case of not find the 
packet in NMGP buffer, it will send a GoS Ack object indicating that packet was not 
found, changing to request of local retransmission state and sending a GoS Hello 
message with the GoS request to the next GoSP node, if it is not the last one. This 
new GoS request message to the next node in GoSP is shorter than previous one, 
since that if a node does not find the requested GoS packet in the NMGP and it has to 
request it to next node of GoSP, it first will remove its address of GoS Request object, 
to simplify the message (see figure 3). So with a bigger used diameter in the plane 
GoS, the GoS messages to send will be shorter. 

4   Analysis and Evaluation of the Proposal 

In this section we will show an analysis of GoS benefits in the delay of packets 
belonging to privileged flows. We consider an MPLS domain G(U) network with a 
set X of n nodes and a set U of links. Let δij the delay of link (xi, xj) ∈ U and let δ(xi, 
xj) the delay of a path between two nodes xi and xj which can be non-neighbors. Our 
objective is to minimize the delay used by packets when are transmitted between two 
any nodes of the path LSPi,n of U(G): 
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Fig. 5. GoS extended Hello message format, with common 
 Hello Request and GoS Request objects.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Operation after a packet discard in intermediate node X4, using 3 available GoSP 
diameters to get a local retransmission. It is compared with a case of end to end recoveries ( δ: 
links delay; Fw: packet forwarding; E2ER: end to end retransmission request time; LRP: locally 
recovered packet; E2ERP: end to end recovered packet). 
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4.1   End to End Retransmissions 

Let xn a non-GoS congested end node. In case of packet discarding by xn, then 
function Discarding Detection Time (DDTe2e) between two nodes of LSPi,n is: 
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Minimal delay of the end to end (e2e) retransmission is: 
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So total delay ),(2 niee xx∆  to get discarded flow in xn is got from (7) and (8): 
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4.2   If Congested End Node xn is GoS Capable 

Let xn a GoS congested end node. In case of packet discarding by xn, then Discarding 
Detection Time (DDTd) between source and sink nodes of path LSPi,n is: 
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Minimal delay of local retransmission using a GoSP with diameter d (δd) is: 
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subject to:  0 < d < n – i (12) 

If diameter in Eq. (11) was n-i, then if  l = n–d = n – (n–i) = n – n + i = i, we get: 
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i.e., it would be and e2e retransmission. Moreover, if in Eq. (11) GoSP diameter was 
bigger than n-i, then it would be trying to get a retransmission from a previous node to 
xi, but this one is the source of data flow, so it is unfeasible. Thus, total 
delay ),( nid xx∆ to get discarded traffic from start  is got from (10) and (11): 
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At this point we test if (14) < (9): 
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So according to Eq. (8) and Eq. (11), we only need to verify in Eq. (16) that δd(xi, 
xn) < δe2e(xi, xn). The only condition that distinguishes the members of (16) is the set 
of values of variable l. We only need to demonstrate that l takes a lesser number of 
values in δd(xi, xn) than in δe2e(xi, xn): 

n – 1 –  (n – d)  <  n – 1 –  i;  
n – 1 – n + d < n – 1 – i;  

-1 + d < n – 1 – i; 
-1 + 1 + d < n –  i ⇒ d < n – i 

 (17) 

We get that the problem is kept in feasibility zone, since Eq. (17) is one of the 
restrictions of (12). Thus, it has been demonstrated that ),(),( 2 nieenid xxxx ∆<∆ . 
So, Eq. (14) offers delay benefits: Eq. (14) – Eq. (9) > 0, improving (3): 
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4.3   If a Congested Intermediate Node xDD is GoS Capable 

Let xDD a GoS congested intermediate node. In case of packet discarding by xDD, then 
Discarding Detection Time (DDTd) between source and congested node xDD is: 
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Minimal delay of the e2e retransmission is: 

∑
−

−=
++=

1

1,1,2),(
DD

dDDl
llllDDid xxx δδ , (20) 

subject to:   0 < d ≤  DD - i, (21) 



If diameter in Eq. (20) was bigger than DD - i , then it would be trying to get a 
retransmission from a previous node to xi, but this one is the source of data flow, and 
this is unfeasible. (In this case, retransmission from source node xi (d = DD – i), brings 
improvement with respect to e2e, because xDD is a previous node to xn,, i.e.: if DD < n 
⇒ DD – i < n – i), so it is a local retransmission. So total delay ),( nid xx∆ to get 
discarded traffic from initial instant of transmission is got from (19) and (20): 

=++∆ ∑
−

=
++

1

1,1,),(),(= ),(
n

DDl
llllDDidDDidnid xxxxxDDTxx δδ

),(),(= 2 DDidniee xxxxDDT δ+  
(22) 

At this point we test if (22) < (9): 
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Optimizing, we get: 

∑∑
−

=
++

−

−=
++ <

1

1,1,

1

1,1, 22
n

il
llll

DD

dDDl
llll xx δδ  (24) 

So according to Eq. (8) and Eq. (11), again we only need to verify in Eq. (24) that 
δd(xi, xn)<δe2e(xi, xn). As in Eq. (17) we get that the problem is kept in feasibility zone. 
So Eq. (22) offers delay benefits, i. e., Eq. (22) – Eq. (9) > 0, improving Eq.(3): 
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Consider a congested MPLS domain with a path LSPi,n. The last n-i nodes are 
discarding packets. Figure 7 shows a comparative between no congested traffic, e2e 
case (using e2e retransmissions) and three cases of local retransmissions (with d=1, 
d=2 and d=3). In figure 8 a comparative at different time samples is shown. For 
example, at 3,700 ms only 171 packets have been correctly received in the sink node. 
In GoSP diameter=3 case, sink node has already received 213 packets node, with d=2, 
313 packets and in case of using d=1, sink has received 584 packets. 

 
 
 
 
 
 
 
 
 
 

Fig. 7. Throughput comparative between local retransmissions 
and E2E, with congestion in last n–1 nodes. 
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Fig. 8. Comparative between local retransmissions and E2E at different time samples. 

5   Conclusion 

This work proposes GoS as a traffic local recovery technique in an MPLS domain in 
order to improve performance of privileged data flows. We have first discussed the 
requirements for GoS over MPLS. We have then shown that by introducing a limited 
number of RSVP-TE protocol extensions it is possible GoS signaling to such 
privileged data flows that require reliability. The proposed technique has been 
analysed and demonstrated the benefits due to local retransmissions of discarded 
traffic with respect to end to end retransmissions. 
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