6 research outputs found

    Assessment of Small Unmanned Aircraft Systems for Pavement Inspections

    Get PDF
    692M15-20-T-00034Pavement inspections play an integral role in ensuring airport safety. The FAA Airport Technology Research and Development (ATR) branch performed research to assess the integration of small Unmanned Aircraft Systems (sUAS) into an airport\u2019s Pavement Management Program (PMP). To conduct sUAS-based pavement inspections, the research team tested across five different airports between 2020 and 2022. The objective was to provide a repeatable set of processes and procedures for data collection, analysis, and reporting for sUAS-based pavement inspections. This report presents sUAS data collection parameters, data processing techniques, and data analysis, as well as workflows associated with each inspection. A summary of distresses identifiable via sUAS is also provided

    Development of a pavement life cycle assessment tool for airfield rehabilitation strategies

    Get PDF
    The demand to provide more sustainable facilities and infrastructure has increased over the past ten years. The ability to measure and quantify the environmental impacts of infrastructure projects like life cycle costs is in higher demand. Life cycle assessment (LCA) studies/tools are developed for highway infrastructure and pavements with a limited number of studies developed for airports and even fewer for the airport pavement infrastructure. A pavement LCA tool called LCA-AIR 1.0 is introduced to fill the necessary gap in quantifying sustainability strategies for airfield pavements. LCA-AIR incorporates the material production, construction/maintenance and rehabilitation, and use phases in the analysis. Standard indicators from TRACI are used to quantify these impacts based on two functional units (square yard and pounds-mile traveled). To assess and evaluate the viable rehabilitation strategies, comprehensive and accurate field data must be collected. A summary of LIDAR and laser scanning technology and projects for highway and airport infrastructure is presented. An LCA case study was performed for three candidate rehabilitation strategies on Taxiway A and B at O’Hare International Airport in Chicago, IL: rubblization with mill/asphalt inlay, precast concrete panel replacement, and full depth reconstruction of existing concrete pavement structure. An extensive literature review and investigation into the use of precast concrete pavement on airports in the US and abroad is documented for application to rapid rehabilitation. LCA-AIR showed that each phase contributed at different magnitudes to the environmental impact with the use phase producing the greatest LCA impact factors. The LCA analysis focused on the construction/maintenance and rehabilitation (CMR) phase, as the material production (MP) phase for initial construction and use (U) phase were the same for all cases. The GWP potential for PCP was 2,395 kg CO2/yd2 (4.700x10-10 kg CO2/lb-mile), for rubblization was 2,395 kg CO2/yd2 (4.310x10-10 kg CO2/lb-mile), and for reconstruction was 2,395 kg CO2/yd2 (4.701x10-10 kg CO2/lb-mile). The energy consumed for rubblization was 0.18612 TJ/ yd2 (3.576x10-8 TJ/lb-mile), for PCP was 0.18617 TJ/ yd2 (3.654x10-8 TJ/lb-mile) and for reconstruction was 0.18628 TJ/ yd2 (3.656x10-8 TJ/lb-mile)

    United States Air Force Applications of Unmanned Aerial Systems: Modernizing Airfield Damage Assessment

    Get PDF
    Modernizing airfield damage assessment has long been a priority mission at the Air Force Civil Engineer Center (AFCEC). Previously, AFCEC has made advances to expedite unexploded ordnance (UXO) neutralization and pavement repair. Missing from these initiatives is the initial assessment component. This thesis expands the idea of using Small Unmanned Aerial Systems (SUAS), applies it to the Air Force mission, and provides SUAS vehicle configuration and sensor recommendations. In this study, 25 civil engineer officers reviewed airfield imagery gathered using two small air vehicles. For the first review, participants attempted to identify UXOs and foreign object debris (FOD) in a computer interface that leverages images collected by a fixed-wing air vehicle. The second review uses a two-dimensional map created using a hex-rotor. The results of both systems were then compared to the status quo. Resulting statistics indicate that, irrespective of image resolution, additional analysis time does not result in greater object detection or correct identification. Overall, this thesis concludes that SUAS use for afield damage assessment shows promise. Moreover, they can provide the Air Force improved precision for locating UXOs and FOD, as well as estimate dimensions of damage. Dedicating resources to developing this technology will also assist with improving object detection and manpower efficiency. Further research is required for optimal image characterization requisite for reducing and/or eliminating the occurrence of false negative events

    Opportunistic data collection and routing in segmented wireless sensor networks

    Get PDF
    La surveillance régulière des opérations dans les aires de manoeuvre (voies de circulation et pistes) et aires de stationnement d'un aéroport est une tâche cruciale pour son fonctionnement. Les stratégies utilisées à cette fin visent à permettre la mesure des variables environnementales, l'identification des débris (FOD) et l'enregistrement des statistiques d'utilisation de diverses sections de la surface. Selon un groupe de gestionnaires et contrôleurs d'aéroport interrogés, cette surveillance est un privilège des grands aéroports en raison des coûts élevés d'acquisition, d'installation et de maintenance des technologies existantes. Les moyens et petits aéroports se limitent généralement à la surveillance de quelques variables environnementales et des FOD effectuée visuellement par l'homme. Cette dernière activité impose l'arrêt du fonctionnement des pistes pendant l'inspection. Dans cette thèse, nous proposons une solution alternative basée sur les réseaux de capteurs sans fil (WSN) qui, contrairement aux autres méthodes, combinent les propriétés de faible coût d'installation et maintenance, de déploiement rapide, d'évolutivité tout en permettant d'effectuer des mesures sans interférer avec le fonctionnement de l'aéroport. En raison de la superficie d'un aéroport et de la difficulté de placer des capteurs sur des zones de transit, le WSN se composerait d'une collection de sous-réseaux isolés les uns des autres et du puits. Pour gérer cette segmentation, notre proposition s'appuie sur l'utilisation opportuniste des véhicules circulants dans l'aéroport considérés alors comme un type spécial de nœud appelé Mobile Ubiquitous LAN Extension (MULE) chargé de collecter les données des sous-réseaux le long de son trajet et de les transférer vers le puits. L'une des exigences pour le déploiement d'un nouveau système dans un aéroport est qu'il cause peu ou pas d'interruption des opérations régulières. C'est pourquoi l'utilisation d'une approche opportuniste basé sur des MULE est privilégiée dans cette thèse. Par opportuniste, nous nous référons au fait que le rôle de MULE est joué par certains des véhicules déjà existants dans un aéroport et effectuant leurs déplacements normaux. Et certains nœuds des sous- réseaux exploiteront tout moment de contact avec eux pour leur transmettre les données à transférer ensuite au puits. Une caractéristique des MULEs dans notre application est qu'elles ont des trajectoires structurées (suivant les voies de circulation dans l'aéroport), en ayant éventuellement un contact avec l'ensemble des nœuds situés le long de leur trajet (appelés sous-puits). Ceci implique la nécessité de définir une stratégie de routage dans chaque sous-réseau, capable d'acheminer les données collectées des nœuds vers les sous-puits et de répartir les paquets de données entre eux afin que le temps en contact avec la MULE soit utilisé le plus efficacement possible. Dans cette thèse, nous proposons un protocole de routage remplissant ces fonctions. Le protocole proposé est nommé ACME (ACO-based routing protocol for MULE-assisted WSNs). Il est basé sur la technique d'Optimisation par Colonies de Fourmis. ACME permet d'assigner des nœuds à des sous-puits puis de définir les chemins entre eux, en tenant compte de la minimisation de la somme des longueurs de ces chemins, de l'équilibrage de la quantité de paquets stockés par les sous-puits et du nombre total de retransmissions. Le problème est défini comme une tâche d'optimisation multi-objectif qui est résolue de manière distribuée sur la base des actions des nœuds dans un schéma collaboratif. Nous avons développé un environnement de simulation et effectué des campagnes de calculs dans OMNeT++ qui montrent les avantages de notre protocole en termes de performances et sa capacité à s'adapter à une grande variété de topologies de réseaux.The regular monitoring of operations in both movement areas (taxiways and runways) and non-movement areas (aprons and aircraft parking spots) of an airport, is a critical task for its functioning. The set of strategies used for this purpose include the measurement of environmental variables, the identification of foreign object debris (FOD), and the record of statistics of usage for diverse sections of the surface. According to a group of airport managers and controllers interviewed by us, the wide monitoring of most of these variables is a privilege of big airports due to the high acquisition, installation and maintenance costs of most common technologies. Due to this limitation, smaller airports often limit themselves to the monitoring of environmental variables at some few spatial points and the tracking of FOD performed by humans. This last activity requires stopping the functioning of the runways while the inspection is conducted. In this thesis, we propose an alternative solution based on Wireless Sensor Network (WSN) which, unlike the other methods/technologies, combines the desirable properties of low installation and maintenance cost, scalability and ability to perform measurements without interfering with the regular functioning of the airport. Due to the large extension of an airport and the difficulty of placing sensors over transit areas, the WSN might result segmented into a collection of subnetworks isolated from each other and from the sink. To overcome this problem, our proposal relies on a special type of node called Mobile Ubiquitous LAN Extension (MULE), able to move over the airport surface, gather data from the subnetworks along its way and eventually transfer it to the sink. One of the main demands for the deployment of any new system in an airport is that it must have little or no interference with the regular operations. This is why the use of an opportunistic approach for the transfer of data from the subnetworks to the MULE is favored in this thesis. By opportunistic we mean that the role of MULE will be played by some of the typical vehicles already existing in an airport doing their normal displacements, and the subnetworks will exploit any moment of contact with them to forward data to the sink. A particular characteristic of the MULEs in our application is that they move along predefined structured trajectories (given by the layout of the airport), having eventual contact with the set of nodes located by the side of the road (so-called subsinks). This implies the need for a data routing strategy to be used within each subnetwork, able to lead the collected data from the sensor nodes to the subsinks and distribute the data packets among them so that the time in contact with the MULE is used as efficiently as possible. In this thesis, we propose a routing protocol which undertakes this task. Our proposed protocol is named ACME, standing for ACO-based routing protocol for MULE-assisted WSNs. It is founded on the well known Ant Colony Optimization (ACO) technique. The main advantage of ACO is its natural fit to the decentralized nature of WSN, which allows it to perform distributed optimizations (based on local interactions) leading to remarkable overall network performance. ACME is able to assign sensor nodes to subsinks and generate the corresponding multi-hop paths while accounting for the minimization of the total path length, the total subsink imbalance and the total number of retransmissions. The problem is defined as a multi-objective optimization task which is resolved in a distributed manner based on actions of the sensor nodes acting in a collaborative scheme. We conduct a set of computational experiments in the discrete event simulator OMNeT++ which shows the advantages of our protocol in terms of performance and its ability to adapt to a variety of network topologie

    Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields

    Get PDF
    Innovations in Road, Railway and Airfield Bearing Capacity – Volume 3 comprises the third part of contributions to the 11th International Conference on Bearing Capacity of Roads, Railways and Airfields (2022). In anticipation of the event, it unveils state-of-the-art information and research on the latest policies, traffic loading measurements, in-situ measurements and condition surveys, functional testing, deflection measurement evaluation, structural performance prediction for pavements and tracks, new construction and rehabilitation design systems, frost affected areas, drainage and environmental effects, reinforcement, traditional and recycled materials, full scale testing and on case histories of road, railways and airfields. This edited work is intended for a global audience of road, railway and airfield engineers, researchers and consultants, as well as building and maintenance companies looking to further upgrade their practices in the field
    corecore