140 research outputs found

    SimulCity: Planning Communications in Smart Cities

    Full text link
    [EN] Communication networks have become a critical element in the development of smart cities. The information flows generated by thousands of sensors and systems must be managed to assure the adequate guarantees of quality, availability, and security. This paper introduces the SimulCity tool, which assists in the design of a smart city's communications convergent network. SimulCity allows a flexible simulation of different scenarios where multiple heterogeneous sources of human type communications (HTCs) and machine type communications (MTCs) compete for limited bandwidth resources. SimulCity evaluates the impact of new services on the performance of a municipal communications network and, consequently, assists the modification of network values to optimize bandwidth and reduce costs. Several network characteristics can be easily configured in SimulCity, such as the definition of traffic sources, the parametrization of different network mechanisms, access admission control, quality of service (QoS), and traffic in the multiprotocol label switching (MPLS) network. SimulCity was used to simulate different projects in the smart city of Valencia (Spain). Specifically, SimulCity was used to study the impact on the Valencia City Council's communications network of several new services: the solid waste collection supervision, the street lighting management, the control of regulated parking areas, and the upgrade of voice and video communications systems of the city government buildings. The results obtained have allowed the analysis of the impact that these new services have on the existing network and to perform an adequate dimensioning of the future municipal communications network.This work was supported in part by the Spanish Government under Project TIN2013-47272-C2-1-R and Project TEC2015-71932-REDT, and in part by the ITACA Institute Ayudas 2019Rodríguez-Hernández, MA.; Gomez-Sacristan, Á.; Gomez-Cuadrado, D. (2019). SimulCity: Planning Communications in Smart Cities. IEEE Access. 7:46870-46884. https://doi.org/10.1109/ACCESS.2019.2909322S4687046884

    View on 5G Architecture: Version 1.0

    Get PDF
    The current white paper focuses on the produced results after one year research mainly from 16 projects working on the abovementioned domains. During several months, representatives from these projects have worked together to identify the key findings of their projects and capture the commonalities and also the different approaches and trends. Also they have worked to determine the challenges that remain to be overcome so as to meet the 5G requirements. The goal of 5G Architecture Working Group is to use the results captured in this white paper to assist the participating projects achieve a common reference framework. The work of this working group will continue during the following year so as to capture the latest results to be produced by the projects and further elaborate this reference framework. The 5G networks will be built around people and things and will natively meet the requirements of three groups of use cases: • Massive broadband (xMBB) that delivers gigabytes of bandwidth on demand • Massive machine-type communication (mMTC) that connects billions of sensors and machines • Critical machine-type communication (uMTC) that allows immediate feedback with high reliability and enables for example remote control over robots and autonomous driving. The demand for mobile broadband will continue to increase in the next years, largely driven by the need to deliver ultra-high definition video. However, 5G networks will also be the platform enabling growth in many industries, ranging from the IT industry to the automotive, manufacturing industries entertainment, etc. 5G will enable new applications like for example autonomous driving, remote control of robots and tactile applications, but these also bring a lot of challenges to the network. Some of these are related to provide low latency in the order of few milliseconds and high reliability compared to fixed lines. But the biggest challenge for 5G networks will be that the services to cater for a diverse set of services and their requirements. To achieve this, the goal for 5G networks will be to improve the flexibility in the architecture. The white paper is organized as follows. In section 2 we discuss the key business and technical requirements that drive the evolution of 4G networks into the 5G. In section 3 we provide the key points of the overall 5G architecture where as in section 4 we elaborate on the functional architecture. Different issues related to the physical deployment in the access, metro and core networks of the 5G network are discussed in section 5 while in section 6 we present software network enablers that are expected to play a significant role in the future networks. Section 7 presents potential impacts on standardization and section 8 concludes the white paper

    Syringa Networks v. Idaho Department of Administration Clerk\u27s Record v. 1 Dckt. 38735

    Get PDF
    https://digitalcommons.law.uidaho.edu/idaho_supreme_court_record_briefs/1519/thumbnail.jp

    Convergence: the next big step

    Get PDF
    Recently, web based multimedia services have gained popularity and have proven themselves to be viable means of communication. This has inspired the telecommunication service providers and network operators to reinvent themselves to try and provide value added IP centric services. There was need for a system which would allow new services to be introduced rapidly with reduced capital expense (CAPEX) and operational expense (OPEX) through increased efficiency in network utilization. Various organizations and standardization agencies have been working together to establish such a system. Internet Protocol Multimedia Subsystem (IMS) is a result of these efforts. IMS is an application level system. It is being developed by 3GPP (3rd Generation Partnership Project) and 3GPP2 (3rd Generation Partnership Project 2) in collaboration with IETF (Internet Engineering Task Force), ITU-T (International Telecommunication Union – Telecommunication Standardization Sector), and ETSI (European Telecommunications Standards Institute) etc. Initially, the main aim of IMS was to bring together the internet and the cellular world, but it has extended to include traditional wire line telecommunication systems as well. It utilizes existing internet protocols such as SIP (Session Initiation Protocol), AAA (Authentication, Authorization and Accounting protocol), and COPS (Common Open Policy Service) etc, and modifies them to meet the stringent requirements of reliable, real time communication systems. The advantages of IMS include easy service quality management (QoS), mobility management, service control and integration. At present a lot of attention is being paid to providing bundled up services in the home environment. Service providers have been successful in providing traditional telephony, high speed internet and cable services in a single package. But there is very little integration among these services. IMS can provide a way to integrate them as well as extend the possibility of various other services to be added to allow increased automation in the home environment. This thesis extends the concept of IMS to provide convergence and facilitate internetworking of the various bundled services available in the home environment; this may include but is not limited to communications (wired and wireless), entertainment, security etc. In this thesis, I present a converged home environment which has a number of elements providing a variety of communication and entertainment services. The proposed network would allow effective interworking of these elements, based on IMS architecture. My aim is to depict the possible advantages of using IMS to provide convergence, automation and integration at the residential level

    Campus Communications Systems: Converging Technologies

    Get PDF
    This book is a rewrite of Campus Telecommunications Systems: Managing Change, a book that was written by ACUTA in 1995. In the past decade, our industry has experienced a thousand-fold increase in data rates as we migrated from 10 megabit links (10 million bits per second) to 10 gigabit links (10 billion bits per second), we have seen the National Telecommunications Policy completely revamped; we have seen the combination of voice, data, and video onto one network; and we have seen many of our service providers merge into larger corporations able to offer more diverse services. When this book was last written, A CUT A meant telecommunications, convergence was a mathematical term, triple play was a baseball term, and terms such as iPod, DoS, and QoS did not exist. This book is designed to be a communications primer to be used by new entrants into the field of communications in higher education and by veteran communications professionals who want additional information in areas other than their field of expertise. There are reference books and text books available on every topic discussed in this book if a more in-depth explanation is desired. Individual chapters were authored by communications professionals from various member campuses. This allowed the authors to share their years of experience (more years than many of us would care to admit to) with the community at large. Foreword Walt Magnussen, Ph.D. Preface Ron Kovac, Ph.D. 1 The Technology Landscape: Historical Overview . Walt Magnussen, Ph.D. 2 Emerging Trends and Technologies . Joanne Kossuth 3 Network Security . Beth Chancellor 4 Security and Disaster Planning and Management Marjorie Windelberg, Ph.D. 5 Student Services in a University Setting . Walt Magnussen, Ph.D. 6 Administrative Services David E. O\u27Neill 7 The Business Side of Information Technology George Denbow 8 The Role of Consultants . David C. Metz Glossary Michelle Narcavag

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Energy consumption and energy-saving strategies in telecommunication networks

    Get PDF
    corecore