384 research outputs found

    Neighbour coverage: a dynamic probabilistic route discovery for mobile ad hoc networks

    Get PDF
    Blind flooding is extensively use in ad hoc routing protocols for on-demand route discovery, where a mobile node blindly rebroadcasts received route request (RREQ) packets until a route to a particular destination is established. This can potentially lead to high channel contention, causing redundant retransmissions and thus excessive packet collisions in the network. Such a phenomenon induces what is known as broadcast storm problem, which has been shown to greatly increase the network communication overhead and end-to-end delay. In this paper, we show that the deleterious impact of such a problem can be reduced if measures are taken during the dissemination of RREQ packets. We propose a generic probabilistic method for route discovery, that is simple to implement and can significantly reduce the overhead associated with the dissemination of RREQs. Our analysis reveals that equipping AODV with probabilistic route discovery can result in significant reduction of routing control overhead while achieving good throughput

    An Analysis of DSR, DSDV, AODV and Adv.-AODV Routing Protocols in MANET

    Get PDF
    A mobile Ad-Hoc network is a collection of autonomous wireless nodes without any fixed infrastructure and centralized administration. Mobile ad hoc network (MANET) is an autonomous system of mobile nodes connected by wireless links. Each node operates not only as an end system, but also as a router to forward packets. The nodes are free to move about and organize themselves into a network. These nodes change position frequently. The main classes of routing protocols are Proactive, Reactive and Hybrid. A Reactive (on-demand) routing strategy is a popular routing category for wireless ad hoc routing The design follows the idea that each node tries to reduce routing overhead by sending routing packets whenever a communication is requested. In this paper, we evaluate the performance of reactive routing protocols, Ad hoc On demand Distance Vector (AODV) and Dynamic Source Routing (DSR) and proactive routing protocol Destination Sequenced Distance Vector (DSDV).The major goal of this study is to analyze the performance of well known MANETs routing protocol in high mobility case under low, medium and high density scenario. Unlike military applications, most of the other applications of MANETs require moderate to high mobility. In this paper, we evaluate the performance of reactive routing protocols, Advanced- Ad hoc On demand Distance Vector (Adv.-AODV), Ad hoc On demand Distance Vector (AODV) and Dynamic Source Routing (DSR) and proactive routing protocol Destination Sequenced Distance Vector (DSDV)[7][9].The major goal of this study is to analyze the performance of well known MANETs routing protocol in high mobility case under low, medium and high density scenario. Unlike military applications, most of the other applications of MANETs require moderate to high mobility. In this paper we analyzed the Adv.-AODV, AODV, DSDV and DSR protocols based on the performance metrics such as packet delivery ratio, average end to end delay and throughput in different test environments. DOI: 10.17762/ijritcc2321-8169.15081

    Performance Evaluation of AODV and DSR Routing Protocols in MANET Networks

    Get PDF
    Extensive use of wireless networks in different fields increases the need to improve their performance, as well as minimize the amplitude of loss messages. Device mobility, where there is no standard topology that can be applied or fixed routing that can be designed, is a topic that received recent attention in wireless networks. In a Mobile Ad Hoc Network (MANET), some nodes may join the network while others may leave. In this paper, we analyze a MANET’s performance for two proactive protocols; Ad Hoc On-Demand Distance Vector (AODV) Protocol, and Dynamic Source Routing (DSR) Protocol. By using network simulator NS2, we setup and evaluate the performance of AODV and DSR protocols with respect to the packets’size

    A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST), Pakistan, and the Higher Education Commission, Pakistan

    Low energy consumption in manet network

    Get PDF
    The aim of this paper is design and develop energy efficient MANET network in wireless networks. One of the most significant and effective protocol based on low energy consumption and number of Ad-hoc is MANET as remote directing convention source nodes forward in network simulator. Less number of nodes in the network would give low energy usage or consumption as the nodes in the network exceeds or increases that will also increase the energy consumption in the network. The designed MANET system is tried with 9, 12, 15 and 18 number of nodes in a system using network simulation-2 (NS-2). Henceforth source node needs to restart over and over which brings about low energy consumption use and use, ectiveness is less and packet space is additionally less and throughput is likewise less and more start to finish delay. Arrangement of this issue in MANET convention which is advanced as the node doesn't advance when demand arrived at their first it checked there is low energy consumption (battery lifetime) and until the node energy consumption is more noteworthy than the limit. Designed MANET examinations of the energy consumption and node energy consumption by maintaining a strategic distance from the low number of nodes in a network. By contrasting energy consumption and node it demonstrates that MANET is far superior to existing framework 802.11 protocol convention based on battery lifetime, energy consumption, throughput, and power transmission. We have performed a comparison between EEM and AODV routing protocol considering different measuring parameters

    Building Realistic Mobility Models for Mobile Ad Hoc Networks

    Get PDF
    A mobile ad hoc network (MANET) is a self-configuring wireless network in which each node could act as a router, as well as a data source or sink. Its application areas include battlefields and vehicular and disaster areas. Many techniques applied to infrastructure-based networks are less effective in MANETs, with routing being a particular challenge. This paper presents a rigorous study into simulation techniques for evaluating routing solutions for MANETs with the aim of producing more realistic simulation models and thereby, more accurate protocol evaluations. MANET simulations require models that reflect the world in which the MANET is to operate. Much of the published research uses movement models, such as the random waypoint (RWP) model, with arbitrary world sizes and node counts. This paper presents a technique for developing more realistic simulation models to test and evaluate MANET protocols. The technique is animation, which is applied to a realistic scenario to produce a model that accurately reflects the size and shape of the world, node count, movement patterns, and time period over which the MANET may operate. The animation technique has been used to develop a battlefield model based on established military tactics. Trace data has been used to build a model of maritime movements in the Irish Sea. Similar world models have been built using the random waypoint movement model for comparison. All models have been built using the ns-2 simulator. These models have been used to compare the performance of three routing protocols: dynamic source routing (DSR), destination-sequenced distance-vector routing (DSDV), and ad hoc n-demand distance vector routing (AODV). The findings reveal that protocol performance is dependent on the model used. In particular, it is shown that RWP models do not reflect the performance of these protocols under realistic circumstances, and protocol selection is subject to the scenario to which it is applied. To conclude, it is possible to develop a range of techniques for modelling scenarios applicable to MANETs, and these simulation models could be utilised for the evaluation of routing protocols

    Situation-aware routing for wireless mesh networks with mobile nodes

    Get PDF
    This paper describes a situation-aware algorithm based on the current situation of a mesh network with mobile nodes that improves quality of service. After running laboratory performance tests, we concluded that a situation-aware mesh routing protocol offers potential to address issues pertaining to mobility, congestion and scalability in dynamic mesh networks with mobile nodes. Such networks appear promising to provide connectivity to people living in rural areas in developing regions of Africa, and can be easily interconnected to telco-styled networks through gateways for voice and Internet services. Such services can remain free in the mesh, yet can also be billed for interconnection. Our vision offers an attractive business model for up scaling a rural customer base for telcos, while at the same time offering increased quality of service for mobile users on rural mesh networks.Telkom, Cisco, Aria Technologies, THRI

    Supplementing an AD-HOC Wireless Network Routing Protocol with Radio Frequency Identification (RFID) Tags

    Get PDF
    Wireless sensor networks (WSNs) have a broad and varied range of applications, yet all of these are limited by the resources available to the sensor nodes that make up the WSN. The most significant resource is energy. A WSN may be deployed to an inhospitable or unreachable area, leaving it with a non-replenishable power source. This research examines a way of reducing energy consumption by augmenting the nodes with radio frequency identification (RFID) tags that contain routing information. It was expected that RFID tags would reduce the network throughput, the ad hoc on-demand distance vector (AODV) routing traffic sent, and the amount of energy consumed. However, the results show that RFID tags have little effect on the network throughput or the AODV routing traffic sent. They also increase ETE delays in sparse networks as well as the amount of energy consumed in both sparse and dense networks. Furthermore, there was no statistical difference in the amount of user data throughput received. The density of the network is shown to have an effect on the variation of the data but the trends are the same for both sparse and dense networks. This counter-intuitive result is explained, and conditions for such a scheme to be effective are discussed
    • …
    corecore