22,306 research outputs found

    Voltage Stabilization in Microgrids via Quadratic Droop Control

    Full text link
    We consider the problem of voltage stability and reactive power balancing in islanded small-scale electrical networks outfitted with DC/AC inverters ("microgrids"). A droop-like voltage feedback controller is proposed which is quadratic in the local voltage magnitude, allowing for the application of circuit-theoretic analysis techniques to the closed-loop system. The operating points of the closed-loop microgrid are in exact correspondence with the solutions of a reduced power flow equation, and we provide explicit solutions and small-signal stability analyses under several static and dynamic load models. Controller optimality is characterized as follows: we show a one-to-one correspondence between the high-voltage equilibrium of the microgrid under quadratic droop control, and the solution of an optimization problem which minimizes a trade-off between reactive power dissipation and voltage deviations. Power sharing performance of the controller is characterized as a function of the controller gains, network topology, and parameters. Perhaps surprisingly, proportional sharing of the total load between inverters is achieved in the low-gain limit, independent of the circuit topology or reactances. All results hold for arbitrary grid topologies, with arbitrary numbers of inverters and loads. Numerical results confirm the robustness of the controller to unmodeled dynamics.Comment: 14 pages, 8 figure

    Sustainable organic plant breeding: Final report - a vision, choices, consequences and steps

    Get PDF
    In general, the characteristics of organic varieties - and by extension of organic plant breeding - differ from that of conventional breeding systems and conventional varieties. Realising an organic plant breeding system and subsequently steering it to meet changing demands is no less than a mammoth task. The many actions to be undertaken can be divided into short-term commercial and scientific activities, and longer or long-term commercial and scientific activities. Action must be taken in the short-term to ensure adequate quantities of organically propagated plants and seed. This is vital in consideration of Regulation 2092/91/EC which states that, as of 1 January 2000, all propagating material used in organic production must be of organic origin. Additional measures are needed to accelerate the development of organically propagated varieties. Within the breeding sector, variety groups should be established to streamline communication in the chain. Variety groups should have a large contingent of farmers, as well as representatives from the trade branch and breeders. Members should communicate intensively with each other, share experiences, and participate in trials and variety assessments. Questions, wishes and bottlenecks could be recorded by variety groups and passed on to other parties in the chain. The practical details of the plant health concept which is at the basis of organic breeding must be worked out (operationalised). This will require scientific research, for example on: root development and mineral absorption efficiency weed suppressive capacity in situ versus ex situ maintenance resistance breeding in combination with cultivation measures seed-transmitted diseases adaptive capacity alternatives for growth stimulants, silver nitrate and silver thiosulfate in the cultivation of cucumbers and pickles Such research should be carried out by academic institutions (such as Wageningen University and Research Centre) in collaboration with Louis Bolk Institute, Stichting Zaadgoed and private companies. A platform should be established to make an inventory of problems and priorities and to develop research proposals. Farmers could contribute their ideas to the platform through the variety groups. Conclusion A plant breeding system for organic production should be based on the organic concept of plant health and on the organic position on chain relationships. As the total land area under organic production is still relatively small, it is unlikely that commercial breeders will make large investments to develop organic breeding programmes without financial support from other parties, i.e. the government. In this early stage, it is vital that the government provides generous funding and plays an active enabling role. We hope that the action plan to stimulate organic plant breeding, as requested by Parliament, will dovetail with the activities described above

    Integrative Genomics Reveals the Genetics and Evolution of the Honey Bee’s Social Immune System

    Get PDF
    Social organisms combat pathogens through individual innate immune responses or through social immunity—behaviors among individuals that limit pathogen transmission within groups. Although we have a relatively detailed understanding of the genetics and evolution of the innate immune system of animals, we know little about social immunity. Addressing this knowledge gap is crucial for understanding how life-history traits influence immunity, and identifying if trade-offs exist between innate and social immunity. Hygienic behavior in the Western honey bee, Apis mellifera, provides an excellent model for investigating the genetics and evolution of social immunity in animals. This heritable, colony-level behavior is performed by nurse bees when they detect and remove infected or dead brood from the colony. We sequenced 125 haploid genomes from two artificially selected highly hygienic populations and a baseline unselected population. Genomic contrasts allowed us to identify a minimum of 73 genes tentatively associated with hygienic behavior. Many genes were within previously discovered QTLs associated with hygienic behavior and were predictive of hygienic behavior within the unselected population. These genes were often involved in neuronal development and sensory perception in solitary insects. We found that genes associated with hygienic behavior have evidence of positive selection within honey bees (Apis), supporting the hypothesis that social immunity contributes to fitness. Our results indicate that genes influencing developmental neurobiology and behavior in solitary insects may have been co-opted to give rise to a novel and adaptive social immune phenotype in honey bees.York University Librarie

    Spartan Daily, November 19, 1999

    Get PDF
    Volume 113, Issue 58https://scholarworks.sjsu.edu/spartandaily/9487/thumbnail.jp

    Is Humane Slaughter Possible?

    Get PDF
    One of the biggest ethical issues in animal agriculture is that of the welfare of animals at the end of their lives, during the process of slaughter. Much work in animal welfare science is focussed on finding humane ways to transport and slaughter animals, to minimise the harm done during this process. In this paper, we take a philosophical look at what it means to perform slaughter humanely, beyond simply reducing pain and suffering during the slaughter process. In particular, we will examine the issue of the harms of deprivation inflicted in ending life prematurely, as well as shape of life concerns and the ethical implications of inflicting these harms at the end of life, without the potential for future offsetting through positive experiences. We will argue that though these considerations may mean that no slaughter is in a deep sense truly ‘humane’, this should not undermine the importance of further research and development to ensure that while the practice continues, animal welfare harms are minimised as far as possible

    Launching the Grand Challenges for Ocean Conservation

    Get PDF
    The ten most pressing Grand Challenges in Oceans Conservation were identified at the Oceans Big Think and described in a detailed working document:A Blue Revolution for Oceans: Reengineering Aquaculture for SustainabilityEnding and Recovering from Marine DebrisTransparency and Traceability from Sea to Shore:  Ending OverfishingProtecting Critical Ocean Habitats: New Tools for Marine ProtectionEngineering Ecological Resilience in Near Shore and Coastal AreasReducing the Ecological Footprint of Fishing through Smarter GearArresting the Alien Invasion: Combating Invasive SpeciesCombatting the Effects of Ocean AcidificationEnding Marine Wildlife TraffickingReviving Dead Zones: Combating Ocean Deoxygenation and Nutrient Runof

    Burial and seed survival in Brassica napus subsp. oleifera and Sinapis arvensis including a comparison of transgenic and non-transgenic lines of the crop

    Get PDF
    The creation of transgenic plants through genetic engineering has focused interest on how the fitness of a plant species may be altered by small changes in its genome. This study concentrates on a key component of fitness: persistence of seeds overwinter. Seeds of three lines of oilseed rape (Brassica napus subsp. oleifera DC Metzger) and of charlock (Sinapis arvensis L.) were buried in nylon mesh bags at two depths in four habitats in each of three geographically separated sites: Cornwall, Berkshire and Sutherland. Seeds were recovered after 12 and 24 months. Charlock exhibited much greater seed survival (average 60 per cent surviving the first year and 32.5 per cent surviving the second year) than oilseed rape (1.5 per cent surviving the first year and 0.2 per cent surviving the second) at all sites. Charlock showed higher survival at 15 cm burial than 2 cm burial at certain sites, but oilseed rape showed no depth effect. Different genetic lines of oilseed rape displayed different rates of seed survival; non-transgenic rape showed greater survival (2 per cent) than the two transgenic lines, one developed for tolerance to the antibiotic kanamycin (0.3 per cent) and one for tolerance to both kanamycin and the herbicide glufosinate (0.25 per cent). The absolute and relative performances of the different genetic lines of oilseed rape were context specific, illustrating the need to test hypotheses in a wide range of ecological settings
    corecore