8 research outputs found

    The Internet of Humans: Optimal Resource Allocation and Wireless Channel Prediction

    Get PDF
    Recent advances in information and communications technologies (ICT) have accelerated the realization of the Internet of Humans (IoH). Among the many IoH applications, Wireless Body Area Networks (BANs) are a remarkable solution that are revolutionising the health care industry. However, many challenges must be addressed, including: a) unavoidable inter-BAN interference severely degrading system performance. b) The non-stationarity and atypical dynamics of BAN channels make it extremely challenging to apply predictive transmit power control that improves the energy efficiency of the network. In this context, this thesis investigates the use of intelligent and adaptive resource allocation algorithms and effective channel prediction to achieve reliable, energy-efficient communications in BAN-enabled IoH. Firstly, we investigate the problem of co-channel interference amongst coexisting BANs by proposing a socially optimal finite repeated non-cooperative transmit power control game. The proposed method improves throughput, reduces overall power consumption and suppress interference. The game is shown to have a unique Nash equilibrium. We also prove that the aggregate outcome of the game is socially efficient across all players at the unique Nash equilibrium, given reasonable constraints for both static and slowly time-varying channels. Secondly, we address the problem of overlapping transmissions among non-coordinated BANs with multiple access schemes through intelligent link resource allocation methods. We present two non-cooperative games, employed with a time-division multiple access (TDMA) based MAC layer scheme that has a novel back-off mechanism. The Link Adaptation game jointly adjusts the sensor node's transmit power and data rate, which provides robust transmission under strong inter-BAN interference. Moreover, by adaptively tuning contention windows size an alternative game, namely a Contention Window game is developed, which significantly reduces latency. The uniqueness and existence of the games' Nash Equilibrium (NE) over the action space are proved using discrete concavity. The NE solution is further analysed and shown to be socially efficient. Motivated by the emergence of deep learning technology, we address the challenge of long-term channel predictions in BANs by using neural networks. Specifically, we propose Long Short-term Memory (LSTM)-based neural network (NN) prediction methods that provide long-term accurate channel gain prediction of up to 2s over non-stationary BAN on-body channels. An incremental learning scheme, which provides continuous and robust predictions, is also developed. We also propose a lightweight NN predictor, namely 'LiteLSTM', that has a compact structure and higher computational efficiency. When implemented on hand-held devices, 'LiteLSTM' remains functional with comparable performance. Finally, we explore the theoretical connections between BAN on-body channels' characteristics and the performance of NN-based power control. To analyse wide-sense stationarity (WSS) characteristics, different stationarity tests are performed for a range of window lengths for on-body channels. Following from this, we develop test benches for NN-based methods at corresponding window lengths using empirical channel measurements. It is observed that WSS characteristics of the BAN on-body channels have a significant impact on the performance of NN-based methods

    Intelligent Routing Metric for Wireless Body Area Networks

    Get PDF
    Routing in Wireless Body Area Networks (WBANs) is a critical requirement due to its dynamic behaviour. This paper proposes an intelligent framework for link cost evaluation. A suitable Quality of Service (QoS) parameters based function has been proposed. The sensors in WBANs would be capable of computing the Link Cost (LC) function based upon the current values of QoS parameters: throughput, delay of the link and residual energy of the sensor. A fuzzy logic based system is proposed at the sensor to evaluate the LC. Nodes of architecture evaluate a set of possible paths between source-terminal pairs. This LC is then used to evaluate the suitable path for the routing

    Physical-layer security in 6G networks

    Get PDF
    The sixth generation (6G) of mobile network will be composed by different nodes, from macro-devices (satellite) to nano-devices (sensors inside the human body), providing a full connectivity fabric all around us. These heterogeneous nodes constitute an ultra dense network managing tons of information, often very sensitive. To trust the services provided by such network, security is a mandatory feature by design. In this scenario, physical-layer security (PLS) can act as a first line of defense, providing security even to low-resourced nodes in different environments. This paper discusses challenges, solutions and visions of PLS in beyond-5G networks

    Evaluation of the aggregate interference in 2.4 GHz ISM band in home, office and hospital environments

    Get PDF
    Abstract. In the last years, the wireless body area network (WBAN) research has grown considerably and the idea to apply WBAN to the medical and healthcare issues could materialize. A possible WBAN could exploit the ISM (industrial, scientific and medical) band, clustered around 2.4 GHz. The ISM band is just used by other communication systems and non-communication systems. These systems transmit signals, defined aggregate interference, that could hinder the WBAN communications. In this thesis, the ISM band is investigated in order to understand if the amount of interference is too high to allow implementation of a new WBAN or if the coexistence between WBAN and the other systems is still possible. The ISM band analyses are carried out using data collected in real-life measurements, in environments where a patient monitored by a WBAN could usually stay. Data was collected in an office and a home environments, situated in Florence, Italy, in “San Giuseppe” hospital located in Empoli, Italy and in Oulu University Hospital, situated in Oulu, Finland. In each location, data are collected during a week using a spectrum analyzer (SA). The information measured by the SA is the power, expressed in dBm. In this work, a spectrum occupancy evaluation (SOE) has been developed to analyze the occupancy percentage of every frequency channel of the ISM band. The occupancy value is determined by a threshold, which divides the interference samples from the noise samples. In this work, the occupancy is evaluated using both a fixed threshold and a dynamic threshold, which value directly depends on the samples’ values. The results achieved using fixed and dynamic thresholds are discussed and compared. In addition, a time domain analysis has been carried out in order to know the amplitude, the time distribution and the size of the interference contributions. The time domain results allow to predict the interference behavior, making possible the extraction of a statistical interference modelling. The final results of the analyses depend strongly on the measurement location, the time and the measurement equipment. However, in most cases, the occupancy value is below 10%. Hence, the amount of interference is not so high as to prevent the implementation of a new WBAN or to determine an added smartness to the WBAN

    A bibliography experiment on research within the scope of industry 4.0 application areas in sports: Sporda endüstri 4.0 uygulama alanları kapsamında yapılan araştırmalar üzerine bir bibliyografya denemesi

    Get PDF
    Developed countries develop their production sites within the scope of industry 4.0 technology components and experience constant change and transformation to establish economic superiority. This situation allows them to produce more in various fields and thus to rise to a more advantageous position economically. Industry 4.0 technology affects areas within the scope of the sports industry such as sports tourism, athlete performance, athlete health, sports publishing, sports textile products, sports education and training, sports management and human resources, and creates an international competition environment in terms of production and performance. In this study, it is aimed to examine the researches about the usage areas of industry 4.0 in sports. From this point on, researches in the context of the subject have been presented with bibliographic method. In the conclusion section, the weaknesses and possibilities of youth sociology were discussed, and efforts were made to present a projection on what to do about the field. In this respect, a youth sociology evaluation has been tried to be made on the prominent topics, forgotten aspects and themes left incomplete in youth sociology studies. ​Extended English summary is in the end of Full Text PDF (TURKISH) file.   Özet Gelişmiş ülkeler endüstri 4.0 teknolojisi bileşenleri kapsamında üretim sahalarını geliştirmekte ve ekonomik üstünlük kurmak amacıyla sürekli değişim ve dönüşüm yaşamaktadır. Bu durum onların çeşitli alanlarda daha fazla üretmelerine dolayısıyla ekonomik yönden daha avantajlı konuma yükselmelerine olanak sağlamaktadır. Endüstri 4.0 teknolojisi spor turizmi, sporcu performansı, sporcu sağlığı, spor yayıncılığı, spor tekstil ürünleri, spor eğitimi ve öğretimi, spor yönetimi ve insan kaynakları gibi spor endüstrisi kapsamındaki alanları etkilemekte üretim ve performans yönünden ülkeler arası bir rekabet ortamı oluşturmaktadır. Bu çalışmada endüstri 4.0’ın sporda kullanım alanları ile ilgili araştırmaların incelenmesi hedeflenmektedir. Bu noktadan hareketle konu bağlamındaki araştırmalar bibliyografik metodla ortaya konmuştur. Sonuç bölümünde ise sporda endüstri 4.0 kullanım alanları tartışılmış, alana olan katkıları ve olumuz etkilerinin değerlendirilmesi yapılmıştır. &nbsp

    JIDOKA. Integration of Human and AI within Industry 4.0 Cyber Physical Manufacturing Systems

    Get PDF
    This book is about JIDOKA, a Japanese management technique coined by Toyota that consists of imbuing machines with human intelligence. The purpose of this compilation of research articles is to show industrial leaders innovative cases of digitization of value creation processes that have allowed them to improve their performance in a sustainable way. This book shows several applications of JIDOKA in the quest towards an integration of human and AI within Industry 4.0 Cyber Physical Manufacturing Systems. From the use of artificial intelligence to advanced mathematical models or quantum computing, all paths are valid to advance in the process of human–machine integration

    Performance comparison between ETSI SmartBAN and bluetooth

    No full text
    Abstract This paper introduces the comparative performance analysis between ETSI SmartBAN and Bluetooth low energy (BLE) in the interfered additive white Gaussian noise (AWGN) channel as well as in multipath fading channel. Both technologies are possible solutions for wireless body area networks (WBAN) to implement services like delivering the vital signs data of an individual. The results show how the SmartBAN can outperform BLE in both AWGN and fading channel. In addition, SmartBAN can take advantages of repetition and coding features, which are not present in BLE to increase its performance even more
    corecore