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Abstract

Recent advances in information and communications technologies (ICT) have

accelerated the realization of the Internet of Humans (IoH). Among the many

IoH applications, Wireless Body Area Networks (BANs) are a remarkable

solution that are revolutionising the health care industry. However, many

challenges must be addressed, including: a) unavoidable inter-BAN interfer-

ence severely degrading system performance. b) The non-stationarity and

atypical dynamics of BAN channels make it extremely challenging to apply

predictive transmit power control that improves the energy efficiency of the

network. In this context, this thesis investigates the use of intelligent and

adaptive resource allocation algorithms and effective channel prediction to

achieve reliable, energy-efficient communications in BAN-enabled IoH.

Firstly, we investigate the problem of co-channel interference amongst co-

existing BANs by proposing a socially optimal finite repeated non-cooperative

transmit power control game. The proposed method improves throughput,

reduces overall power consumption and suppress interference. The game is

shown to have a unique Nash equilibrium. We also prove that the aggre-

gate outcome of the game is socially efficient across all players at the unique

Nash equilibrium, given reasonable constraints for both static and slowly

time-varying channels.

Secondly, we address the problem of overlapping transmissions among

non-coordinated BANs with multiple access schemes through intelligent link

resource allocation methods. We present two non-cooperative games, em-

ployed with a time-division multiple access (TDMA) based MAC layer scheme
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x

that has a novel back-off mechanism. The Link Adaptation game jointly ad-

justs the sensor node’s transmit power and data rate, which provides robust

transmission under strong inter-BAN interference. Moreover, by adaptively

tuning contention windows size an alternative game, namely a Contention

Window game is developed, which significantly reduces latency. The unique-

ness and existence of the games’ Nash Equilibrium (NE) over the action space

are proved using discrete concavity. The NE solution is further analysed and

shown to be socially efficient.

Motivated by the emergence of deep learning technology, we address the

challenge of long-term channel predictions in BANs by using neural net-

works. Specifically, we propose Long Short-term Memory (LSTM)-based neu-

ral network (NN) prediction methods that provide long-term accurate chan-

nel gain prediction of up to 2s over non-stationary BAN on-body channels.

An incremental learning scheme, which provides continuous and robust pre-

dictions, is also developed. We also propose a lightweight NN predictor,

namely ‘LiteLSTM’, that has a compact structure and higher computational

efficiency. When implemented on hand-held devices, ‘LiteLSTM’ remains

functional with comparable performance.

Finally, we explore the theoretical connections between BAN on-body

channels’ characteristics and the performance of NN-based power control.

To analyse wide-sense stationarity (WSS) characteristics, different stationar-

ity tests are performed for a range of window lengths for on-body channels.

Following from this, we develop test benches for NN-based methods at cor-

responding window lengths using empirical channel measurements. It is

observed that WSS characteristics of the BAN on-body channels have a sig-

nificant impact on the performance of NN-based methods.
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Chapter 1

Introduction

1.1 Motivation and Scope

In recent years, the phenomenon of an ageing population is creating a signif-

icant impact on the socio-economic structure of society [1], which challenges

the current healthcare system. This raises an ever-growing need for sustain-

able solutions to support health promotion and illness prevention throughout

life spans, especially in old age.

Internet of Things (IoT) is emerging as an effective tool to aid this socio-

technical struggle [2]. The IoT market for healthcare is poised to grow 56%

each year through 2019 [3], reaching $15 billion from $4 billion in 2014 [4].

According to PwC [5], 86% clinicians believe that such mobile technology will

become important to physicians for patient health management over the next

few years. Many see IoT as key factors in reducing the cost and increasing

the reach of healthcare [6, 2], which contributes to the development of a more

human-centric Internet, namely the Internet of Humans (IoH). With the re-

cent advances made in wireless and electronics technology, IoH promises to

increase not only the quality of healthcare but also patient accessibility, while

achieving all this at a lower cost per patient.

To achieve this, it is important for IoH to have the capability of collection

and optimisation of physiological data from sensors placed on humans, gen-

1
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2 Introduction

erally with wearable technology. As wearable technologies advance for the

monitoring of human health, recently envisioned Wireless Body Area Net-

works (BANs) have great potential for continuous patient monitoring in am-

bulatory settings as well as for the early detection of abnormal conditions and

supervised rehabilitation. The applications of BANs span a wide area, such as

remote medical systems, ubiquitous healthcare, sport, fitness, entertainment,

and the military [7].

Meanwhile, to support a variety of applications, excellent Quality of Ser-

vice is required in terms of reliability, data rate, latency and energy consump-

tion, etc.. BAN nodes may operate on non-rechargeable batteries of small size

and low-power capacity for several months or even few years, in particular,

for those nodes implanted in the human body. Thus, limited by the size of

the battery and also specific absorption rate (SAR), the transmission power

consumption are stringently restricted [8]. Mobility also has to be supported

as the nodes are positioned on different parts of the body that move with

regard to each other. Nonetheless, with a rapid increase in active devices,

when a large number of sensors of different BANs coexisting in close prox-

imity access the same channel at the same time BANs will suffer unavoidable

inter-BAN interference due to no central coordinator amongst networks [7].

To address these issues, it is very important to distribute the limited radio

resources in an optimised manner to support the Quality of Service (QoS)

requirement of varies IoH applications. Although most resource allocation

schemes mainly focus on Medium Access Control (MAC) layer, cross-layered

methods need to be investigated for more effective operations.

At the same time, given the complicated deployment environments and

peculiar channel characteristics with relatively large path loss in BAN chan-
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§1.2 Hypothesis, Key Research Questions and Answers 3

nels [9, 10], it is more challenging to maintain robust transmission under

dynamic BAN scenarios, which is the focus of this thesis. Previous stud-

ies [11] reveal that accurate prediction of the future wireless channel status

can benefit the performance of power control schemes, even when predic-

tion accuracy is low. The dynamic behaviour of BAN wireless channels poses

the challenge to forecasting tasks using traditional prediction methods, such

as [12] or computational intelligence methodologies such as artificial neu-

ral networks (ANN) and machine learning methods [13]. To address such

challenges, recurrent neural networks (RNN) that have been used in various

prediction tasks [14] will be exploited to provide better performance in BAN

channel predictions. Meanwhile, due to the high complexity of neural net-

works (NN), it is often very challenging to interpret their action and results. It

is because, although neural networks are parametric, the large number of pa-

rameters inside such networks makes them nearly non-parametric, such that

the link between the input and the results are hard to model. This is the main

reason why neural networks are always considered as “black boxes”. There-

fore, characterisation and modelling of the non-stationarity of BAN channel

is important to support autonomous predictive resource allocation for future

BAN .

1.2 Hypothesis, Key Research Questions and An-

swers

The summarised research challenges for BANs in IoH leads to the following

hypothesis and key research questions that are answered by this thesis:
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4 Introduction

How can resource allocation be performed in a self-adaptive and intelligent man-

ner to accurately predict BAN channel dynamics — in order to achieve reliable,

energy-efficient and scalable communications — for BAN enabled IoH applications.

In this context, this thesis aims to answer the following questions:

Q1 How can game-theoretic transmit power control improve the overall

QoS of the system while guaranteeing social optimal outcomes from

best responses of co-existing players/networks?

Q2 How can the limited radio resources among co-existing BANs be allo-

cated autonomously and intelligently to improve uncoordinated com-

munications?

Q3 What are the benefits of using adaptive cross-layer optimisation ap-

proaches in inter-BAN interference management? Are they able to main-

tain high social efficiency?

Q4 How to solve the long-existing challenge in long-term channel predic-

tion for BAN channels in order to further increase energy efficiency?

Q5 How much performance improvement does NN based predictive trans-

mit power control provide compared with traditional methods?

Q6 Is it feasible to implement NN based methods on a mobile device with-

out compromising computational complexity?

Q7 To what extent do the non-stationary, shadow fading radio channels

affect the performance of the NN predictor?
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§1.2 Hypothesis, Key Research Questions and Answers 5

The research work to be presented in this thesis answers these questions.

In summary, the proposed work provides improved energy efficiency, miti-

gated co-channel interference, accurate channel prediction and optimised ra-

dio resource allocation for BAN applications in realistic scenarios as shown

in Figure 1.1. The performance of proposed solutions is evaluated using em-

pirical BAN channel measurements, with experimental analysis. In brief, to

be fully described in the remainder of this thesis, the research questions are

answered as follows:

Implant Sensor

On-body Sensor

Hub Device

Wireless 
Channel

Figure 1.1: A BAN system with on-body and implanted sensors

Draft Copy – 7 May 2021



6 Introduction

• The socially optimal non-cooperative game-based method with a novel

utility function suppresses interference level and improve energy effi-

ciency. Evaluated by using a realistic channel model, the game is shown

to be very energy-efficient, significantly reducing power consumption

and improving packet delivery ratio (PDR) with respect to other po-

tential schemes, consuming 67% less circuit power than transmitting

constantly at 0 dBm.

• Cross-layered adaptive optimisation methods not only improve the en-

ergy efficiency of BAN communication in realistic scenarios but also

provide higher QoS, in terms of latency, PDR and throughput.

• A long-term on-body channel prediction method based on LSTM net-

works is presented, which can provide up to 2s ahead BAN channel

prediction. It is an incremental learning scheme, where the NN model

is fine-tuned in each training episode via recent channel samples. This

allows the NN model to capture the dynamics of streaming data and

make robust predictions

• When the predicted channel gain is applied with transmit power control

and compared with traditional methods, the circuit power consumption

of BAN is reduced by up to 45% and the reliability of communications

is increased by nearly 50%.

• With reduced computational complexity, it is feasible for ‘LiteLSTM’ to

conduct training in an online manner when implemented on hand-held

devices. Meanwhile, the performance degradation is relatively small.
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Wireless Body Area Networks enabled IoH with 

energy efficient and reliable  communication

Adaptive Resource Allocation and 

Interference Mitigation
Predictive Transmit Power Control

Social Optimal 

Non-

cooperative 

Game TPC

(Chapter 3)

Link Adaptation 

Cross Layer 

Resource Allocation 

Games

(Chapter 4)

DL-Based 

Long-term 

Channel 

Prediction

(Chapter 5)

Parametric 

Modelling of 

Predictive 

Characteristics

(Chapter 6)

Conclusion and Future Works

Figure 1.2: Thesis’s Outline

1.3 Thesis Outline

The technical contributions of this thesis are detailed in four chapters, which

address the hypothesis outlined above. The structure of these chapters is

summarised in Figure 1.2.

Chapter 2: Chapter 2 presents a literature reviewdetailing relevant re-

search to this thesis. Current issues and challenges in BANs are analysed

and addressed. Related prior standards for BANs are firstly reviewed. Up-

to-date comparative studies are presented of relevant literature to this thesis

including literature on interference mitigation schemes, transmit power con-

trol (TPC) and channel prediction.
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8 Introduction

Chapter 3: In this chapter, we propose a socially optimal finite repeated

non-cooperative transmit power control game, in order to mitigate radio in-

terference amongst coexisting BANs, improve throughput and reduce power

consumption. The game is shown to have a unique Nash equilibrium. When

reasonable constraints are given, it is proven that the outcome of the game

is socially efficient across all players at the unique Nash equilibrium. Using

a realistic channel model, the game is shown to outperforms other methods.

The key results are listed as follows:

• Compared with 0 dBm constant transmit power SOG has 3% greater

probability that PDR can reach the target of 0.9 with 23 dB less transmit

power.

• The proposed method is extremely energy efficient by significantly re-

ducing circuit power usage, consuming 17% less circuit power than

Sample-and-Hold and 67% less than constant transmission at 0 dBm.

Chapter 4: To achieve smart-resources allocation among coexisting BANs,

two novel non-cooperative games are proposed that jointly adjust the BAN

sensor node’s transmit power and data rate, employed with a time-division

multiple access (TDMA) based MAC layer scheme that has a novel back-off

mechanism. The link adaptation game (LAG) tuning the transmit power and

the data rate at the same time using a non-cooperative game. Another game

namely contention window game (CWG) that adaptively tunes contention

windows size as an alternative game solution is also developed, which signif-

icantly reduces the latency.

The uniqueness and existence of the games’ Nash Equilibrium (NE) over

the action space are proven using discrete concavity. Both proposed games
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§1.3 Thesis Outline 9

provide robust transmission under strong inter-BAN interference, but are

demonstrated to be applicable to different scenarios, and shown to be socially

efficient.

Chapter 5: In Chapter 5, neural networks that are the backbone of deep

learning (DL) are used to make long-term BAN on-body channel prediction

to optimise radio resource allocation in terms of transmit power. A realistic

test bench demonstrates that the proposed long short term memory (LSTM)

based channel predictor provide higher accuracy compared with traditional

prediction methods. The incremental learning scheme is also introduced to

guarantee the robustness of the predictor. In addition, in order to suit the

needs of mobile implementation for typical BAN use case scenarios, a light-

weighted DL predictor namely ‘LiteLSTM’ is developed from the original

LSTM channel predictor. ‘LiteLSTM’ significantly reduces the computational

costs and maintaing similar prediction accuracy. Most importantly, due to

the reduced complexity, the incremental learning scheme is supported when

‘LiteLSTM’ is implemented on mobile hand-sets. The key outcomes with

experimental measurements are as follows:

• The proposed LSTM predictor provided ups to 2s of channel prediction

ahead with 50% NMSE reduction compared to the benchmark.

• When mapped to a suitable power control algorithm, LSTM-based meth-

ods provide noticeable improvements in reliability (achieving 1.2% out-

age reduction on average) and power consumption (up to 25% circuit

power saving) in comparison to other predictive power control meth-

ods.

• With respect to the number of time steps T, ‘LiteLSTM’ is considered
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to be linear in time. Therefore theoretically, compared with traditional

methods, the overhead of ‘LiteLSTM’ is not significantly increased.

Chapter 6: The novel application of DL methods in BAN channel resource

allocation raises the challenge how to interpret their operation and outcomes.

Therefore, in this chapter, we address the relationship between the character-

istics of the BAN channels and the performance of the DL channel predictor.

Using the null hypothesis significance testing (NHTS), the predictability at-

tributes of the BAN channels are characterised in terms of the probability of

stationarity then extended to the concept of Wide Sense Stationary (WSS). By

parametric modelling via extensive experiments, the relationship between the

performance metric of ‘LiteLSTM’ and on-body BAN channels is analysed.

Chapter 7: The final chapter provides some concluding remarks upon the

findings of this thesis, as well as providing some possible directions for future

research.
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Chapter 2

Background and Related Work

In recent years, the world has seen continued rapid growth in the number

of elderly persons. According to [15], nowadays, 8.5 % of people worldwide

are at least 65 years old, which is expected to balloon to nearly 17 percent

by 2050 — 1.6 billion people over 65 by 2050. In Australia, according to

the Australian Institute of Health and Welfare, the Australian population is

ageing, with older Australians a growing proportion of the total population

[16]. In 2017, 15% of Australians (3.8 million) were aged 65 and over; this

proportion is projected to grow steadily over the coming decades. Meanwhile,

traditional health-care system is inefficient in dealing with chronic diseases

[17]. As a result, the ageing population has led to a dramatic rise in demand

for health-care services, as the health of older persons typically deteriorates

with increasing age. Motivated by the social goals of achieving better health

care at lower costs, IoH will revolutionize medical practice in the future.

In this chapter, firstly the current standards are introduced. Then the state-

of-art of interference mitigation schemes, transmit power controls and BAN

radio resource allocation are discussed. Lastly, the learning-based channel

prediction studies are reviewed, as learning techniques haven’t been largely

used in wireless body-area communication.

11
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12 Background and Related Work

2.1 BAN Standards:

For a successful realization of any BAN that is able to address the require-

ments of IoH applications, it is important to provide communications which

is not yet fully described by existing wireless standards. The aim of BAN en-

abled IoH technology is to provide a broad range of data rates at much lower

power consumption than current standards. However, most established stan-

dards are designed to cover much lager distances. With the explicit assump-

tion of covering only a relatively small distance around the human body, BAN

standards should provide a broad range of data rates at much lower power

consumption than current standards. Some standards have been adapted for

healthcare applications like Bluetooth (IEEE 802.15.1) [18] or ZigBee (IEEE

802.15.4) [19] protocols etc.. Although theses standards are well documented

and have been adopted for commercialized applications, they are mainly de-

signed for networks flexible topologies and larger communication ranges.

2.1.1 IEEE 802.15.6 Standard

In 2007, IEEE 802.15.6 ((IEEE 802.15 Task Group 6 [20]) was proposed to sup-

port a wide range of data rates, to consume less energy, and to provide re-

liable BAN communication surrounding the human body, and it was com-

pleted and published in 2012. Frequency bands in BANs have to comply

with applicable medical and communication regulatory authorities. The IEEE

802.15.6 provides an overview of the frequency band regulation for BANs as

shown in Figure 2.1. The Medical Implant Communications Service (MICS)

band is a licensed band used for implant communication and has the same

frequency range (402-405 MHz) in most countries. Wireless Medical Teleme-
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§2.1 BAN Standards: 13

try Services (WMTS) is a licensed band used for medical telemetry system.

Both MICS and WMTS bandwidths do not support high data rate appli-

cations. The Industrial, Scientific and Medical (ISM) band supports high

data rate applications and is available worldwide. However, there are high

chances of interference as many wireless devices including IEEE 802.1 and

IEEE 802.15.4 operate at ISM band. Detailed descriptions of MAC and PHY

layers specification of BAN application are provided in IEEE 802.15.6. The

basic requirements of IEEE 802.15.6 are summarizes as follows:

• Bit rates in the range of 10 kBps to 10 MBps should be supported via the

BAN links.

• Packet Delivery Rate (PDR) should be larger than 90% for a 256 octet

payload for more than 95% of the best-performing links.

• Up to 256 nodes should be supported by each BAN.

• Reliability, jitter and latency should be supported for specific BAN ap-

plications. For instance, medical applications and non-medical of BANs

require latency to be less than 125 ms and less than 250 ms, respectively;

whilst jitter should be less than 50 ms;

• BAN nodes should allow reliable communication in case of mobility

scenarios for both on-body and in-body communications.

• Up to 10 randomly distributed co-located BAN networks should be sup-

ported in a 6× 6m2 area.

Apart from the IEEE standard, other popular standards are also intro-

duced in this section, such as “SmartBAN”, Bluetooth Low Energy (BLE) and

etc., which will be summarized as follows.
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14 Background and Related Work

Figure 2.1: Available bands for BAN in different country/regions

2.1.2 “SmartBan” Standard

Recently, European Telecommunication Standards Institute Technical Com-

mittee (ETSI TC) drafted a new standard for BAN applications – namely

“SmartBAN” [21]. The goal of the “SmartBAN” is to define a standard for low

power devices and networks to be used in short range links supporting, e.g.,

healthcare, wellness and sport relating BAN applications operating around

a human body. Both on-body links and links to implanted devices are sup-

ported. The system architecture of “SmartBAN” is shown in Figure 2.2. The

concept of “SmartBAN” is based on the heterogeneous multi-radio approach.

Within this end-to-end system, “SmartBAN” devices is allowed to be con-

nected by using other existing radio standards, e.g., Bluetooth, Zigbee, BLE

and etc.. Since the hub/master can act as a relay or bridge between devices

operating with different radio standards.

Compared with IEEE 802.15.6, “SmartBAN” specifies low-power, low-

complexity PHY and MAC layers with lighter data presentation formats.

Two different channels: the control channel and the data channel are used

in “SmartBAN”. The hub/master transmits control beacons that contains net-

work parameters using the control channel, and management and control

transmissions occupy the data channel. This mechanism provides fast chan-

Draft Copy – 7 May 2021



§2.1 BAN Standards: 15

Figure 2.2: System architecture of “SmartBAN”

nel acquisition and easy hub to hub communication, which increase the us-

ability of the network [22].

2.1.3 Bluetooth Low Energy:

Bluetooth Low Energy (BLE) is the main feature introduced by the Bluetooth

4.0 specification, which supports both the legacy BR/EDR (Basic Rate/En-

hanced Data Rate) controller and the new LE (Low Energy) controller. BLE

has a different topology to Bluetooth. The typical topology of Bluetooth is

illustrated in Figure 2.3. BLE network (which is called a piconet) is composed

of one master and one or more slaves, and is based on a star topology.

Each slaves communicate on a separate physical channel with the hub/-
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Figure 2.3: Bluetooth LE Star-bus Topology

master. Unlike a classic Bluetooth network/piconet, where all slaves listen for

incoming connections and therefore need to be on constant standby, a BLE

slave invites connections and so is in total control of when to consume power.

The Bluetooth LE enables dual-mode implementations to reuse the Bluetooth

RF part and to guarantee ultra low power consumption for devices with em-

bedded stand-alone implementation of the Bluetooth LE specification. The

Bluetooth LE has a physical layer bit rate of 1 Mbps and may achieve a link

distance of around 10 meters. Bluetooth LE consumes only 10% of the power

consumed by Bluetooth. It can save energy and extend battery life by sleeping

and waking up when it needs to send data.

Draft Copy – 7 May 2021



§2.2 Existing Issues: 17

2.2 Existing Issues:

This section identifies current existing challenges that hinder the development

of BAN in IoH scenarios.

2.2.1 Mobility:

Different from other RF-based Wireless Sensor Networks, BAN sensors are

either placed on the human body or implanted in the human body. Thus

the body movement and change in human posture exhibit high mobility in

sensor nodes. This may bring the shadowing effect that makes the wireless

channel between the sensor nodes and the hub to suffer considerably in a

highly variable way [23]. Despite this, RF is the only practical communi-

cation solution for future BAN-based IoH, as the non-RF communication–

Human Body Communication– has relatively low communication range [24].

However, in order to maintain stable connectivity under high mobility, extra

transmit power is used by battery-constrained BAN sensors, which raises a

critical problem in energy management. Most importantly, as a simple pos-

tural change may lead to a long period of outage, such mobility can therefore

bring life-threatening risks to human wearers.

2.2.2 Power Constraints:

For BAN enabled IoH applications, sensors are used to monitor or control

medical conditions of the human wearer, such as diabetes, coronary care, etc..

However, one of the crucial issues in using these sensors is the battery lifetime

[25]. Because a) the longevity of a BAN depends heavily on the battery life cy-

cle of the sensors nodes, b) and the battery sizes should be small to guarantee
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miniature size of the sensors. Moreover, without employing complicate med-

ical procedures, the in-body sensor battery can not be replaced or recharged.

Therefore, it is expected that the lifespan of a battery powered sensor should

last for 10 to 15 years. Such requirement places a strict energy constraint on

BAN networks, as the sensor should limits its power consumption but also

maintain a long duration of operation with high connectivity.

2.2.3 Network Coexisting:

As one of the narrowband carrier frequencies for BAN (IEEE 802.15.6 [20]),

the ISM unlicensed band is much more crowded because of legacy use by

various communication systems, e.g. WiFi hubs, Bluetooth-enabled devices,

cordless phones. As Forbes predicted, the market size of smart wearable de-

vice will be doubled by 2022, with more than 233 million unit sales [26]. The

number of people using wireless sensors device will also be surging [4], thus

the co-existence of different wireless systems is more likely to become un-

avoidable. Meanwhile, with the advent of BANs, the probability of multiple

BAN users co-located in each other’s vicinity will also increase. For instance,

in a hospital foyer or waiting area, neighbouring BANs operating in the same

frequency bands are likely to significantly increase the homogeneous inter-

ference level amongst networks.

2.2.4 MAC Layer:

Body movement leads to density and topology changes that make the sensor

nodes move into or out of communication coverage of each other. Therefore,

MAC layer protocol designs for BANs should be able to guarantee the reliabil-
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Implant Sensor

On-body Sensor

Hub Device

Signal Link

Interference Link

Figure 2.4: The scenario of multiple BANs co-located

ity of the system despite mobility. In addition, MAC protocols must support

the energy efficiency requirements of BAN applications, prolong sensor life-

time, allow flexible duty cycling and save energy by periodically switching

the radio on/off. However, the MAC protocols proposed thus far for BANs

do not provide efficient network throughput and delay performance at vary-

ing traffic, and the synchronization of duty cycles of their sensors with variant

traffic characteristics and power requirements remains a challenge [27]. Tra-

ditional MAC protocols mainly focus on improving bandwidth utilization,
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throughput, and latency. However, they lack energy conserving mechanisms,

which is one of the most strict needs for BANs.

2.3 Existing Research:

2.3.1 Interference Mitigation:

With the popularisation of e-healthcare systems, it is inevitable that inter-

BAN interference will become a problem. Avoidance and mitigation of chan-

nel interference have been extensively researched in wireless communication

literature. Advanced signal processing using interference cancellation tech-

niques [28, 29] has also been proposed to minimise the impact of interference.

However, these methods require knowledge of the channel condition between

BANs, which is infeasible for BANs operation due to the lack of a central

coordinator. In addition, high complexity makes the implementation of inter-

ference cancellation impractical. Co-channel interference mitigation scheme

among BANs was first addressed in [30], by focusing on the probability den-

sity function of the total interference. Several pioneer works on inter-BAN

interference issues mainly focus on physical layer analysis and solutions,

e.g.,[31, 32], which aim to reduce the interference level by minimise the sen-

sors transmit power. Meanwhile, to provide higher spatial reuse, node-level

interference has also been studied in [33] and [34]. This method maintains a

low interference level and adds no complexity to the sensors. [35] propose

a distributed two-hop incomplete coloring (DTIC) algorithm that adopts a

game-theoretic approach. DTIC exploits two-hop information to enable high

channel reuse among two-hop neighbours.

Cooperative communication schemes were also widely studied, e.g.,[36,
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37, 38]. Assuming that the intra-BAN and inter-BAN transmission are sched-

uled by a TDMA scheme, [37] proposed and analysed the performance of

a decode-and-forward cooperative communication scheme for BANs, where

the BAN-of-interest communicates cooperatively via two relays when multi-

ple BANs coexist in the same area. Using packet reception rate as design cri-

teria, a distributed cooperative scheduling scheme that considers single-BAN

scheduling as an assignment problem and multi-BAN concurrent scheduling

as a game is proposed in [39]. In [40], Cui et al. proposed a joint relay se-

lection and power control scheme (JRP) that takes into account transmission

reliability. The proposed protocol achieved a good trade-off between reliabil-

ity and energy consumption.

Time-Slotted Channel Hopping (TSCH) that uses time synchronization to

achieve low-power operation and channel hopping to enable high reliabil-

ity has been applied in IoT applications [41, 42]. A scheduling and inter-

ference mitigation scheme in TSCH using Latin rectangles is used in [42],

which prevents scheduling nodes from channels that are already allocated.

For BAN applications, [43] use a game-based channel selection mechanism

that adopts a finite repeated potential game. Two proposed learning algo-

rithms, Stochastic Learning Algorithm (SLA) and Stochastic Estimator Learn-

ing Algorithm (SELA) outperform the random channel selection specified in

the IEEE 802.15.6 standard.

2.3.2 Transmit Power Control

As the sensors in BAN systems mainly rely on battery power, prolonging the

lifetime of these nodes are of prime importance. However, most proposed

BAN standards adopt pre-defined or fixed transmit powers (Typically less
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than 0dBm as regulated by FCC), which promotes energy wastage. Mean-

while, inefficient use of transmit power might result in packet loss that leads

to power wastage and increase in delay. Most importantly, when critical pack-

ets are lost, a patients’ life may also be threatened. In this regard, transmit

power control that is able to adjust the output power according to the unique

changing nature of BAN will play an important role in future developments of

IoH technology. Also, transmit power control methods are potentially able to

suppress intra-BAN interference or inter-interference among coexisting BANs

[31] [44]. It should be noted that transmit power control methods are often

implemented for BAN on-body channels, which use narrow-band communi-

cations. Because, as shown in Figure 2.1, most BAN applications operate at

unlicensed Industrial Scientific and Medical (ISM) radio bands that are cen-

tred at 2.45 GHz. In this section, a various number of transmit power control

methods have been studied in the literature will be discussed.

2.3.2.1 Non-Game-theoretic Transmit Power Control

Many techniques involve transmission power control that is based on a cen-

tralised [45] and partially distributed [46] approach. These techniques are

proved to be effective for stable topology networks with fewer power con-

straints [47].

In realistic BAN scenarios, only using low transmit power may leads to

reduction of reliability [48], which may eventually increase the transmission

delay and energy wastage due to the re-transmissions of undelivered packets.

In addition, low transmit power will make receivers constantly operate near

their sensitivity (normally between -85dBm and -93dBm), which increases the

packet loss as small channel fluctuationds will make the RSSI go below the Rx

Draft Copy – 7 May 2021



§2.3 Existing Research: 23

sensitivity. Therefore, it is important to make sure that power control methods

are robust to large BAN channel attenuations. In this regard, reactive-based

power control mechanisms that are able to "respond" to the wireless channels

have been addressed in literature. This mechanism rely on a “margin” that is

sometimes referred to as a target range or threshold. The “margin” is used to

update the transmit power, resulting in a lower probability of packet loss and

higher signal stability. Notably that, for this type of mechanism, it is assumes

that unlike the source nodes, the coordinator is not energy constrained. This

means that, the basic operation of this close-looped principle is demonstrated

in Figure 2.5.

Tranmit the packet at the 
updated Tx Power Level

Receive packet and 
measure RSSI

Send control packet that 
indicates new Tx Power 

Level

Send control packet that 
indicates new Tx Power 

Level

Update Tx Power Level

BAN Channel

New Packet

“Margin”TPC

Sensor Node

Hub Device

Figure 2.5: Flow Chart of Closed-Loop Mechanism.

The upper and lower bound of the “margin” can be tuned dynamically
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in order to adapt to the time-varying nature of the wireless channel. The

classic reactive approaches are: Binary [49], Linear [50] and Dynamic [51]. Fig-

ure 2.6 demonstrate the basic concept of these methods. a) Binary: Binary

approach was firstly proposed in [49], it exponentially changes the transmit

power. Compared with the target “margin”, if the measured RSSI is higher,

then the transmit power for next transmission is set as the midpoint between

the previous transmit power and the minimum transmit power (normally at

-30dBm). If the measured RSSI is lower than target “margin”, then the trans-

mit power for next transmission is set as the midpoint between the current

transmit power and the maximum transmit power (normally at 0dBm). This

method reaches the optimal transmit power faster than others, thus reducing

the rate of exchange control packets. However, when the channel is oscil-

lating, it is impossible for the binary approach to find an optimal transmit

power, and the transmit power is updated exponentially, which makes the

method extremely inefficient. [52] b) Linear: The linear algorithm [50] grad-

ually changes the transmit power (one power level at the time) based on the

previous RSSI. The optimal transmit power is the transmit power value for

which the current RSSI value falls within the target “margin". Because the

RSSIs can be continuously placed within the Target “Margin” so that the lin-

ear approach operates more efficiently in a dynamic environment, providing

higher packet delivery rate and a low outage probability. c) Dynamic: The

dynamic algorithm assigns the optimal transmit power based on the knowl-

edge of link characteristics, which can be express by a primary equation.

The primary equation shows that for a specific link, when the postural posi-

tion changes, the new RSSI value can be written as linear equation of current

power level. The equation’s slope and constant are obtained based on two col-
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Figure 2.6: Linear, Binary, and Dynamic Transmit Power Control Schemes

lected RSSI values. After the slope and constant of the equation are decided,

the TPL can be adjusted dynamically by using this feedback mechanism at

runtime without any pre-stored information.

To better cope with unstable BAN channel dynamics, [52] proposed a hy-

brid transmit power control algorithm that considers both stable and dynamic

scenarios. It uses the Binary approach in stable environments and the Linear

approach in dynamic environments. The decision of which algorithm to use

is made in real time and the Hybrid algorithm evaluates the current-channel

environment based on changing RSSI values. [53] uses reinforcement learn-

ing with approximation to learn from the environment and improve BANs

performance. Due to small scale fading, the target RSSI ranges are important

for TPCs that adopt a reactive based TPL control mechanism. More studies

about the most suitable TPL’s upper and lower values based on node location,

user movement and surrounding environment are required since these factors

clearly influence the magnitude of the small-scale fading and traffic overhead.

Thus, pre-defined upper and lower values of the TPL margin might not be

recommended in BANs, since in different scenarios, different nodes locations

and user movements may leads to different fading properties which result in

different transmission outage probabilities [54].
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The posture and movement of BAN users have the most significant in-

fluence on channel quality. Several researchers have explored different tech-

niques to recognize posture and/or movement [51, 55]. The inertial sensor-

based TPC solutions rely on hardware to determine the posture and/or activ-

ity of the user in order to estimate the current channel quality or predict it at

near future instants. Different solutions have been addressed in literature to

either estimate [56] or anticipate channel quality accordingly to user posture

and movement [57, 58].

2.3.2.2 Game-theoretic Transmit Power Control

As a useful tool in analyzing the interactions of decision makers, game theory

has been widely used by economists to investigate the actions of economic

agents in a market. In ecent years, game theory control schemes have been

shown to be beneficial in wireless network’s quality of service (QoS) Game-

theoretic power control, incorporating pricing factors in utility functions, e.g.,

[59, 60], has been shown to improve QoS in wireless networks. Due to the

general lack of a central coordinator in BANs, transmit power control must

be distributed across BANs. In recent studies, BANs have been modelled

as rational players competing for resources in non-cooperative power control

games, e.g., [61, 62, 31, 63].

An important aspect for overall coexistence of BANs is the social effi-

ciency, which refers to the maximisation of aggregated utilities. Lack of social

efficiency may result in overall power wastage and unfairness among BANs.

However, in general, social optimality has rarely been achieved due to imper-

fect information among BANs [64]. Although, in large-scale cellular networks

and ad-hoc networks, some socially optimal algorithms have been proposed,
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e.g., [65], where centralised coordination and some global knowledge are re-

quired, which is infeasible for BANs. Other socially-efficient methods re-

ferred to as distributed, e.g., [66], require some global knowledge and are

only socially efficient for static channels after a large number of iterations.

2.3.2.3 Predictive Transmit Power Control

In order to deal with such dynamic channel characterization of the BAN chan-

nel, prediction-based power control schemes [11] have been proposed to en-

hance BAN communications. A novel energy-efficient adaptive power control

algorithm is proposed [67], which can adaptively adjust transmit power level.

However, this method introduces a large proportion of packet losses. [68]

propose a practical transmission power control protocol based on both short

and long-term link-state estimation. A very similar algorithm was also pro-

posed by [69] where a non-static threshold parameter TRH is updated. To

this a value is added, which represents the channel quality variation (stan-

dard variation of n RSSI samples).

2.3.3 Resource Allocation

As previously explained, to successfully deploy BANs that can perform long-

term and continuous IoH applications, it is critical that the wearable and im-

planted devices are small, lightweight and energy efficient. Resource alloca-

tion protocols, when applied in BANs, must take topology and link changes,

as well as the dynamic traffic, into account. If carefully designed, these pro-

tocols may work efficiently under the high level of interference and mobility

conditions. Up to now, most research in resource allocation for BANs fo-

cus on intelligent MAC protocol design. It is because, although the IEEE
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802.15.6 standard has been endorsed by the biomedical industry, such a stan-

dard doesn’t provide complete specifications of the MAC layer protocol. Thus

the MAC still remains a challenging issue for the future development of BANs

as MAC protocols plays an important role in dealing with packet delivery ra-

tio and latency [70, 27, 7]. Recently, several MAC layer protocols that seek to

solve inter-BAN interference problems [71, 72, 33] have been proposed. The

work in [71] uses cooperative schemes to suppress inter-BAN interference,

where a random incomplete coloring (RIC) algorithm is proposed to realize a

fast and high spatial-reuse for inter-BAN scheduling. In [72], a mixed graph

coloring is used for interference mitigation among BANs, where the proposed

method pairs every two BANs into a cluster and uses cooperative scheduling

between the pairs in each cluster to reduce interference. Node-level schedul-

ing is considered in [33] to increase spatial reuse. However, these methods

only work for fixed topologies in the network. To better cope with the re-

quired flexibility in BAN implementations, in [73, 74, 75], collision avoidance

techniques, such as beacon rescheduling, channel sensing and adaptive sleep-

ing are used to improve the overall QoS performance for interfering BANs.

Many energy efficient MAC protocols have been proposed, such as [76, 77].

In B-MAC [78], the sender needs to broadcast a long preamble to be detected

by the right receiver to reduce power consumption, but this, however, incurs

unnecessary transmission overhead. [79] proposes A Traffic Load Aware Sen-

sor (ATLAS) MAC design, in which the traffic load is estimated into four

different classes. According to the traffic load estimation, a different super-

frame mode is used. A traffic Priority and Load Adaptive MAC (PLA-MAC)

is proposed in [80], where traffic is differentiated into four classes on the ba-

sis of data type and data rate of the sensor nodes. The prioritization among
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sensor nodes is done through prioritized random back-off. [81] evaluates en-

ergy efficient MAC protocols in terms of wake-up radio. To interleave BAN

sensors active period through contention or negotiation, Two Master Nodes

Cooperative Protocol (TMNCP) is proposed in [82].

2.3.3.1 Link Adaptation

In comparison to transmission power control schemes, resource allocation

methods tuning some other parameters, such as transmission rate, packet

size and so on, have proven to be more effective. Research interests in this

area are emerging and some centralized methods [83] have been proposed

in recent studies. As for distributed algorithms, game theoretic approaches

are widely used. For cellular networks, [84] game theoretic schemes with

multiple discrete code rates or modulation schemes are proposed, which is

also known as link adaptation [85]. The mobile terminals update power and

rate by optimising the Utility Function to obtain a Nash Equilibrium. This

idea is further extended for wireless Ad hoc networks in [86], a simple utility

function only depending on Signal to Interference and Noise Ratio (SINR)

and pricing is used. However, for BANs, there has been limited literature on

this subject. [87] proposed a transmission rate adaptation policy for BANs to

improve the QoS by solving a convex optimisation problem, but only dynamic

postures in BANs channels are considered.

2.3.4 Learning-based Prediction Schemes

Communications reliability is vital for wireless body area networks (BANs),

while minimizing transmit radio power is crucial for BAN sensor radios life-

time. Thus, efficient radio transmit power control is very important for BANs ,
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which needs to be enabled by effective radio channel prediction [11]. As most

traditional prediction methods are discussed in subsection 2.3.2.3, therefore,

only learning-based prediction studies are reviewed in this subsection.

Box and Jenkins [12], in the late 70s, made an important work in studying

applications composed of mathematical linear models. These models repre-

sent Autoregressive (AR) and Moving Averages (MA) processes, and most

existing literature on long-term channel prediction for typical radio networks

often adopts AR predictive methods [88] or weighted alternate-least-squares

technique modeling [89].

However, the narrowband on-body BAN channel is typically non-stationary

[90], and traditional long-term prediction methods may not be applicable. Re-

cently, learning methods using different types of Artificial Neural Networks

(ANN) have been successfully adopted in time series related forecasting/pre-

dicting tasks [91, 92, 93, 94]. The ANNs provide novel mathematical repre-

sentations of the non-linearity in time-series and thus improve the prediction

accuracy. ANN proposals in the literature [95] are based on a non-linear

autoregressive structure. However, the dynamic behavior of most of the wire-

less channels restrict the NN from properly modelling channel characteristics,

which poses the challenge to using ANN-based methods in wireless channel

prediction tasks.

For signal processing, deep learning approaches, typically employing re-

current neural networks (RNNs) with long short-term memory (LSTM) [96],

have been used in numerous applications [97] with better prediction than ma-

chine learning methods. Due to its ability to capture long-term dependencies,

LSTM models have shown superior results in speech recognition [98, 99], and

sentiment analysis [100].
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2.4 Concluding Remarks

In this chapter, to better motivate our research on perform resource alloca-

tion in BANs and predict BAN channel dynamics, a contextual review of

the literature has been provided. The current communications standards for

BANs were reviewed firstly. The current issues in BAN research have also

been highlighted, which further motivates the innovative contribution of this

thesis to be given in the following chapters. Moreover, the state-of-art lit-

erature were reviewed and discussed. These techniques are categorized as

interference mitigation, transmit power control, link adaptation and channel

prediction methods.

From this chapter the conclusion can be reached that existing resource al-

location techniques do not completely address QoS requirements and achieve

desired performance for IoH applications. Moreover, most existing approaches

can not be implemented in an autonomous manner and the fairness of the

systems is hard to guarantee. In addition, at the current stage, traditional

methods are not able to grasp the channel dynamics of BAN channels and

provide highly accurate channel prediction, which would benefit the over-

all performance for BANs. Such research challenges, made clear from this

chapter, are addressed in proceeding chapters of this thesis.
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Chapter 3

Energy-Efficient, Provably

Socially-Efficient, Transmit Power

Control

3.1 Introduction

To make sure body area networks, providing long-term reliable low-power

communications for IoH applications, it is paramount to achieve high PDR,

as minor errors in communications could be life-threatening to the wearer.

It is often necessary to have several BANs operating in each other’s vicin-

ity in different environments, for example, hospitals, nursing homes and age

care centres. However, it is not feasible to coordinate the BANs due to un-

predictable human movement [101]. The lack of central coordinator raises

the issue of co-channel interference that causes packet loss and leads to en-

ergy wastage among closely-located, coexisting BANs. Additionally, BAN

channels are generally non-stationary and BAN sensors, with small size and

limited battery capacity, are required to consume ultra-low power. Therefore,

practical algorithms that can improve communication reliability, and mitigate

interference across non-coordinated, coexisting BANs are of great importance.

In recent studies, BANs have been modelled as rational players compet-

33
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ing for resources in non-cooperative power-control games, e.g., [64, 31]. Ob-

viously, by using larger transmit power, a self-interested player (BAN) can

achieve a better utility outcome if the other BANs keep their transmit powers

unchanged. However, because of the strong interference experienced, if every

player in the range does so, it will worsen the social welfare that is the ag-

gregation of all player’s utilities, which will ultimately result in overall power

wastage and unfairness amongst BANs. Here, in this chapter, we aim to dis-

tribute spectral resources for non-cooperative BANs fairly and effectively to

increase energy efficiency and reliability, without global knowledge.

3.2 System Model

We consider the absence of a centralised controller amongst multiple co-

located BANs. The system model is shown in Figure 2.4, each BAN adopts

a star topology with one coordinator (or hub). Since time division multi-

ple access (TDMA) is more reliable and power efficient when compared with

contention-based access methods [72, 102]. Therefore, TDMA is adopted for

every BAN, so that in a single BAN, intra-network transmission collisions

are avoided. It should be noted that, because there is no global coordinator

among multiple BANs, the TDMA scheme used here is slightly varied from

traditional TDMA [102], given no prior channel information.

As illustrated in Figure 2.4, each BAN suffers inter-BAN interference re-

ceived from other simultaneously transmitting BANs, thus the signal-to-noise-

plus-interference ratio (SINR) of the ith BAN at time τ, γi(τ) is defined as:

γi(τ) =
|hi

i|2pi(τ)

σ2 + ∑m
j=1,j 6=i pj(τ)|hi

j|2
, (3.1)
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where σ2 denotes additive gaussian white noise. |hi
i| is the on-body channel

gain between the sensor and hub in ith BAN, and |hi
j| the inter-BAN channel

gain from the sensor in jth BAN to the hub in ith BAN. Meanwhile, the pi(τ)

and pj(τ) are the transmit powers of sensors at time τ in ith and jth BAN

respectively.

Accurate modelling of the packet delivery ratio (PDR) for the BAN is a key

foundation of the success implementation of the non-cooperative power con-

trol mechanism here. According to IEEE 802.15.6 Standard [20], cyclic error-

correcting codes BCH (31,19) and DPSK/BPSK modulations with a packet

length of 256 bytes are applied.1 The BCH(31,19) coding gives about 2dB

coding gain over the uncoded scheme when implemented. Considering the

2dB channel coding gain, the relationship between PDR and the SINR can be

expressed as:

PDR = exp

(
−
(

1
γac

)bc
)

= exp
(

aγb
)

, (3.2)

where the value of parameter ac and bc is determined by the modulation

type, packet size and data rate. With a root-mean-square error of the ap-

proximation less than 0.006, the value of ac and bc are estimated with respect

to fitting the DPSK and BPSK modulation as in [64]. For DPSK modulation

ac = 0.23, bc = 7.409, and for BPSK modulation ac = 0.293, bc = 6.358 .

3.3 The Social-Optimal Power Control Game

Each BAN is modeled as a self-interested and rational player competing

for resources (shared channel) in the proposed non-cooperative game: G =

1The BCH (31,19) code is a shortened code derived from a BCH (63, 51) code.
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{N , P, U}, N = {1, 2, ..., N} is a set of players, i is the index of the player in

N . P is the pure strategy space, for each player i and Pi is a finite set of dis-

crete transmit powers from Pmin
i to Pmax

i . The global strategy space P is given

by the Cartesian product of all players’ strategy space P = P1 × P2 × ...× Pn.

And P−i represents all other player strategies except for player i. In order to

minimise the transmit power and maximise the packet delivery ratio (PDR)

at the same time, the utility function U(·) is defined in terms of the current

transmit power and packet delivery ratio as:

U (pi, pdri) = −C · pw
i + log (1 + pdrv

i ) , (3.3)

where pi and pdri are the ith players transmit power and PDR respectively.

The current PDR of the ith BAN changes according to the current transmit

power of the ith player and all other players (sensors) −i. The exponents

w > 0 and v > 0 can be adjusted according to the communications scenario.

The pricing factor C > 0 adjusts the trade-off between PDR and transmit

power, to enable each player to best maximise their utility. At the end of

the each stage, the BAN updates its transmit power for the next time slot

to maximise the utility function: pi(τ + 1) = arg max(U(pi(τ), pdri)). The

algorithm for the game is given below in Algorithm 1.

The utility function is a vital factor in the power control scheme, since

the nodes are punished or rewarded according to their transmit power and

PDR. The utility function U(·) guarantees that when the SINR is significantly

high or extremely low, power consumption dominates U(·). Note that the

natural logarithm log(1 + pdr) in U(·) is different to the common rate utility

log2(1 + γ), in order to provide better PDR performance while minimising

power. And since pdr ∈ [0, 1], the value of log(1+ pdr) is confined, while high
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SINR is over-rewarded in log2(1 + γ) that can increase power consumption.

Algorithm 1 The Proposed Game

1: When τ = 0 , pi(0) ∈ [Pmin
i , Pmax

i ] is randomly chosen
2: From the received packet the hub could get information of the current

SINR γi(τ)
3: The PDR pdri(τ) could be estimated by using pdr = exp

(
aγb

i
)

4: The transmit power for next time slot could be obtain by pi(τ + 1) =
argmax(U(pi(τ), pdri)), where pi(τ + 1) ∈ [Pmin

i , Pmax
i ]

The action profile Po = (po
1, po

2, po
3...po

n) for n ≥ 2 BANs is a Nash Equilib-

rium, if po
i is the best response towards Po−i , which implies for all players

Ui(po
i , pdro

i ) ≥ Ui(pi, pdro
i ), for any choice of pi ∈ P, where pdro

i is a function

of Po−i. This leads to the following two theorems:

3.3.1 Existence:

Theorem 3.1. The game G admits at least one Nash Equilibrium

Proof. In game G, for i ∈ N the following condition can be verified. The

strategy set [Pmin
i , Pmax

i ] is a non-empty, convex, bounded in finite dimension

vector space. The utility function U is continuous for all pi ∈ [Pmin
i , Pmax

i ]. As

the first derivative of the utility function is well defined as:

δUi

δpi
= −C · wpw−1 + v

(
1− 1

(1 + pdrv
i )

)
ab

γb
i

pi
(3.4)

where |h
i
i(ki)|2
I−i

= γi
pi

, therefore, as pi ∈ [Pmin
i , Pmax

i ] is real and the pdri is non-

zero, the Theorem 3.1 is proved [103].
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3.3.2 Uniqueness:

Theorem 3.2. The Nash Equilibrium in each stage of the game G is unique,

and independent of history so it is a unique sub-game perfect equilibrium.

Proof. To prove the theorem, the second derivative of U(·) is shown to be

negative ∀i, so that U(·) is strictly concave. Since,

δ2Ui

δp2
i
= −C · w(w− 1)pw−2

i +

(
1− 1

(1 + pdrv
i )

)
vγb

i ab(b− 1)/p2
i

−
v2pdrv

i
(1 + pdri)2 a2b2γ2b

i /p2
i (3.5)

where pdri is always positive and between (0,1), and the term (b− 1) is less

than 0. In addition w is positive thus δ2Ui
δp2

i
< 0. Therefore the utility function

has a global maximum at p∗i which occurs at the point where δU
δpi

= 0.

3.4 Social Properties of the Game

The Nash Equilibrium solution of each individual BAN in the proposed game

is the maximisation of its own utility. The social welfare reflects the fairness

and efficiency of this best response, considering all individuals utility com-

bined, and can be expressed as: SW (P) = ∑n
i=1 U (pi, P−i), where U(pi, P−i))

represents the utility function for BAN i as a function of its transmit power

and other players’ transmit power.

Figure 3.1 represents an example comparison among all possible action

profiles for all BANs at each stage of the proposed game by simulating under

realistic channel conditions, which are specified in Section 3.5. The social wel-
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fare for all possibilities are plotted as red dots, the aggregate utility achieved

at the Nash Equilibrium for each BAN are indicated as blue diamonds, and

the black dashed-line denotes the achievable social optimum. Apart from the

initial stage, the social optimum equals to the aggregate utility operating at

the Nash Equilibrium for each BAN. It is also noted that, at the first time slot,

since the transmit power is randomly chosen in the range [−30, 0] dBm by all

BANs, the aggregate utility achieved at the unique Nash Equilibrium points

is not socially optimal. The social welfare, given feasible constraints that can

be maximised in the proposed non-cooperative game leads to the following

definition:

Definition 3.1. Under specified constraints that gi(P) ≥ 0, ∀i ∈ N , (for ex-

ample pdri − threshold ≥ 0), the social welfare of the coexisting BANs has

a maximum value specific action profiles P∗ = (p∗1 , p∗2 , p∗3 ...p∗n), where n is

the number of BANs coexisting. The BANs’ interaction in this game is thus

constrained social efficient.

Thus the action profile P∗ is the solution for social welfare maximisation

as:
maximise

P
SW(P) = ∑

i
U (pi, P−i)

subject to gi(P) < 0, ∀i ∈ N
(3.6)

However, sometimes the global social optimum solution is hard to ob-

tain and without central coordinator, the social optimum is difficult to get

for BANs without knowing each others transmit power. Although, properly

setting the pricing factor may lead to social welfare maximisation [104], it is

not practical to implement the algorithm for BANs. Therefore, we proposed

the concept of constraint social optimum to reveal that the proposed game
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U
tility

Time Slots

Maximum

Figure 3.1: Comparison Between Social Welfare and Nash Equilibrium Points
implementing the proposed game.

can lead to social welfare maximisation in feasible power levels. We consider

realistic radio channel scenarios, assuming that the channel attenuation hj
i for

all i, j has relatively small variation between consecutive time slots,

For the proposed game, the constrained social efficiency, achieved from

individual BAN Nash Equilibrium responses (solved based on the channel

conditions in the previous time slot), will be proved in the following. The

exponent w is set to be 1 for simplicity and best performance.

Theorem 3.3. At each stage of the game, when under PDR constraints where

the PDR of each BAN reaches the threshold, constrained social efficiency is

achieved by the action profile Po(t) = (po
1(t), po

2(t), po
3(t)...p

o
n(t)) for n ≥ 2,
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where po
i (t) denotes the Nash Equilibrium solution for BAN i.

Proof. Theorem 3.3 can be proved by showing that the solution (social welfare)

for the constrained utilities maximisation problem and the Nash Equilibrium

points intersect (Po = P∗).

As already stated, the utility function for any BAN is dependent on the

transmit power of all other BANs. Hence, this competition among BANs

implies that the utility functions are coupled. Social welfare, and hence opti-

mality, is with respect to the coupled constraint set of feasible PDR region.

We first consider the situation where the channels are static (i.e., channel at-

tenuation does not change during the period of the game) under equality

constraints. Inequality constraints will be introduced later.

3.4.1 Static Channel Conditions

Since the channel conditions are not time varying, the PDR remains un-

changed after convergence. The constraint for the social welfare maximisation

problem is that pdri = threshold, for all i ∈ N , where the PDR after conver-

gence (generally larger than 0.9) is chosen to be the threshold.

The action profile at time t, Po(t) that satisfies the constraints and max-

imises the sum of the utilities can be found from solutions of Lagrange mul-

tipliers λi. The Lagrange function for the social welfare function SW (P(t))

with constraint equations g (pi(t), P−i(t)) = pdri(t)− threshold = 0, i ∈ N , is

represented by:

Λ (P(t)) = SW (P(t)) + ∑
i

λi(t)g (pi(t), P−i(t)) . (3.7)

In order to obtain the solution of the maximisation problem (3.6), the
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First Order Lagrange Condition (FOL), ∇Λ(P(t)) = 0, should be met. The

solution intersects with the aggregate Nash Equilibrium solutions Po(t) =

(po
1(t), po

2(t), po
3(t)...p

o
n(t)), which are evaluated based on the PDR for every

BANs in time t− 1,

∂U(pi, pdri(t− 1))
∂pi

|pi=po
i (t)

= 0, ∀i ∈ N . (3.8)

When the solution intersects at P∗ = Po, the Lagrange Multiplier λi > 0 can

be proved to exist ∀ i, then Theorem 3.3 holds once the game converges.

It should be noted that positive Lagrange Multipliers λi > 0, ∀ i show that

the gradient of the objective function (social welfare function) is in the oppo-

site direction to the gradient of the constraint function. The non-negativity en-

sures that the constraint function and the social welfare cannot be increased at

the same time. The inequality constraints g (pi(t), P−i) = pdri − threshold >

0, can be handled by the Karush-Kuhn-Tucker (KKT) conditions, which ex-

tend the ideas of Lagrange multipliers:

• Gradient of the Lagrangian: ∇Λ (P(t)) = 0;

• Constraints: g (pi(t), P−i(t)) ≥ 0, i ∈ N ;

• Complementary slackness: λi(t)g (pi(t), P−i(t)) = 0;

• Sign condition: λi(t) ≥ 0;

As stated above, the Lagrange Multipliers are always non-negative, there-

fore the KKT conditions will also be met by the action profile Po(t) = (po
1(t),

po
2(t), po

3(t)...p
o
n(t)). Then Theorem 3.3 holds. However, the local optimum so-

lution of the KKT condition happens at the boundaries where g (pi(t), P−i(t))

= 0). In other words, there are no action profiles that can improve the social
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welfare of the players without making the PDR going below the threshold.

Thus the Nash Equilibrium solution of the game is said to be constrained

social efficient, and hence also Pareto efficient.

Remark. For static channel conditions when the transmit powers are the same

for two consecutive time slots and the PDRs all reach the threshold, then the

game has converged and a socially optimal outcome is achieved.

3.4.2 Time-varying Channel Conditions

In a realistic scenario, the channels are varying through time, thus it becomes

difficult to show that the solution for the social welfare optimisation problem

intersects with the Nash equilibrium solution, However, the utility function

has been shown to be concave and twice differentiable. Meanwhile, in real

cases, the transmit power is constrained in [−30, 0] dBm due to hardware

limitations [11, 37]. Furthermore, by making use of the convexity constraints,

the social efficiency can be analysed through the Lagrange duality of social

welfare maximisation 3.6 problem. With the help of decomposition for the

coupled constraints, the upper or lower bounds of (3.6) are derived.

Theorem 3.4. Consider the social welfare maximisation problem (3.6), where

the solution represents the constrained socially optimal solution for the BANs

in time t, under power constraints. If the NE solutions in t are less than or

equal to those in t− 1, then social optimality can be achieved.

Proof. The social welfare maximisation problem in (3.6) can be rewritten is
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term of power constraints as:

maximise
P(t)

SW(P(t)) = ∑
i

U (pi(t), P(t)−i)

subject to pi(t) ≥ qi, ∀i ∈ N
(3.9)

The objective function (3.9) is coupled with pi(t) and P(t)−i. By intro-

ducing auxiliary variables and additional equality constraints, the coupling in

objective function is transferred to coupling of constraints, solved by addi-

tional consistency pricing. Thus (3.9) can be expressed as:

maximise
P(t)

∑
i

Ui(pi(t),
[
yi,j
]

j ∈ L(i))

subject to pi(t) ≥ qi, ∀i ∈ N .

yi,j = pj(t), ∀i ∈ N .j ∈ L(i),

(3.10)

where yi,j are the auxiliary variables, and L(i) denotes the set of BANs cou-

pled with ith utility. Note that pi(t), yi,j are local variables for the ith BAN.

Therefore, the Lagrangian is:

L(P(t), y, λ, r) = ∑
i

Ui(pi(t),
[
yi,j
]

j ∈ L(i))

+ ∑
i

λi(pi(t)− qi) + ∑
i,j∈L(i)

ri,j(pj(t)− yi,j), (3.11)

where ri,j are the consistency pricing. By taking the dual decomposition ap-

proach, the Lagrangian (3.11) is separated into sub-problems, maximised by
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local variables. The dual function g(r, λ) can be expressed as:

g(r, λ) = ∑
i

supremum
P(t),y

Ui(pi(t),
[
yi,j
]

j ∈ L(i))

+ λi pi(t) + ∑
j,i∈L(j)

rj,i pi(t)− ∑
i,j∈L(i)

ri,jyi,j. (3.12)

It can be seen from (3.12) that for positive λi and ri,j, it is possible to have

pi(t) > qi that makes the Lagrangian (3.11) go to +∞. Thus, to get the supre-

mum of L(P(t), y, λ, r), the Lagrange multiplier λi and the consistency pricing

rj,i together have to meet the condition that λi pi(t) = 0, ∑j,i∈L(j) rj,i = 0 , so

that the solution of the dual function (3.12) equals the aggregate Nash equi-

librium solutions. Otherwise, −C + λi pi(t) + ∑j,i∈L(j) rj,i ≤ 0. Furthermore, if

the channel is slowly time-varying (hj
i(t) ≈ hj

i(t− 1), ∀i, j), and assuming that

the noise σ2 is relatively negligible, then PDR maximisation can be achieved

over two time slots. This approximation can be applied in the dual problem:

minimise
λ,r

g(r, λ)

subject to λ ≥ 0
(3.13)

with solution

min

[
−C ∑

i
po

i + ∑
i

log(1 + pdri(Po
−i)) ,

−C ∑
i

qi + ∑
i

log (1 + pdri(q−i))

]
, (3.14)

where po
i represents the Nash equilibrium solution from q−i. Consider when

this constraint is qi = pi(t− 1). The Slater’s condition [105] are met by the
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constraints (reducing the duality gap to zero), implying power allocation P

giving strictly feasible constraints. Therefore the solution of (3.9) equals (3.14).

Thus objective (3.9) is maximised at SW(b = P(t− 1)) ≥ SW(P(t)), for any

P(t). Furthermore, by changing the power constraints into pi(t) ≤ qi, i ∈ N

, it can be similarly shown that SW(Po) ≥ SW(P(t))), for any feasible P(t).

Thus, if the updated power (Nash Equilibrium solution) is strictly-less-than-

or equal to the previous power vector, P(t) ≤ P(t− 1), which occurs when

the power vectors P in the game are feasible, then the outcome is constrained

socially optimal

3.5 Performance Evaluation

To evaluate the performance of our proposed socially optimal power con-

trol game, namely SOG (Socially Optimal Game), both intra-BAN and inter-

BAN channels are first modeled. It is assumed that 8 BANs with the same

topology are coexisting and moving randomly within a 6 × 6 m2 square

area. The walking speed of the BAN wearer is modeled as 1.5 ± 0.3 m/s,

which is updated every 1 ms. The channel attenuation is modeled as hj
i =

At(do/dj
i)
(3/2)ASE ASC, where the path loss exponent is 3. dj

i represents the

distance between BAN i and j, and the reference distance do = 5m corre-

sponds to a channel attenuation of 50 dB. The shadowing effect ASE is as-

sumed to be 42 dB, and a Jakes model with Doppler spread of 1.1Hz as

the CN (0, 1) Rayleigh distribution for small scale fading ASC between BANs.

Gamma fading with a mean 60 dB attenuation, a shape parameter of 1.31,

and a scale parameter of 0.562 is employed for the on-body channels. Each

individual plays the proposed game repeated over 100 stages. The 100-stage
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game is played on 50 occasions, in which the walking patterns of the players

are different.

In terms of the inter-BAN TDMA scheme, when total M BANs operating

within a close proximity, all with transmit power in the range [−30, 0] dBm,

where a shared channel is divided into Nc orthogonal time slots with a length

of Td. The probability of m BANs transmitting simultaneously could be ex-

pressed as below:

Pr (|Active BANs| = m) =

(
M
m

)(
2

Nc

)m (
1− 2

Nc

)M−m
, (3.15)

where 1 ≤ m ≤ M, Nc ≥ 2. The rationale for this expression is described in

[102, 64]. In this paper, 4 orthogonal channels (Nc = 4) are used. The pricing

factor C in the utility function is set to be 2, while the exponents w = 1 and

v = 4. The generic form for utility functions for different exponents versus

transmit power are described in Figure 3.22. It can be seen from Figure 3.2,

that by setting w = 1, v = 4, the trade-off between PDR and transmit power

can be optimised, properly punishing for power usage according to w = 1,

while rewarding for higher throughput, according to v = 4. It should be

noted that the turning point at the optimum when w = 2 and v = 4 is similar

with w = 1 and v = 4. However, the choice of w = 1 and v = 4 allows

analysis to be more computationally tractable.

Other potential power control methods such as Sample-and-Hold [11],

SINR Balancing [47], GPC (Game theory power control)[64], SINR Game[63]

(another power control game)and constant transmit power at 0 dBm are also

evaluated in the same simulation. GPC employs a utility function defined as:

2In Figure 3.2, power on the x-axis is in dB-scale, in linear scale all curves are strictly
concave, enabling a unique Nash equilibrium with respect to power.
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Figure 3.2: Average Utility Function for Different Exponents

U(pi, pdri) = −pw
i −

di

pdrv
i

, (3.16)

and SINR Game employs a utility function as:

U(pi, SINRi) =
c
pi
(0.5 · exp(−SINRi

2
)), (3.17)

where the value of c is related to the packet size and data rate. Mean-

while, in Sample-and-Hold the current SINR is used as a prediction of the

SINR in the next time slot, and the sensor can adjust the transmit power

according to the prediction. SINR balancing propose a fully distributed

power control scheme to mitigate inter-cell interference, which is expressed as

Pt+1 = max(min(SINR, ¯SINR)
SINR · Pt, Pmin), to guide the evolve of transmit power.

The comparison of the transmit power at each stage and the percentage of

BANs reaching the PDR threshold (chosen as 0.9 according to IEEE 802.15.6
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requirements [20]) is outlined.
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Figure 3.3: Average Probability PDR>0.9 under DPSK modulation. Socially-
Optimal Game (SOG) is the method proposed here.

All power control methods are applied, with BPSK and DPSK modulation

respectively and BCH(31,19) coding. It is shown in Figure 3.3, with DPSK

modulation, that nearly 92.8% of the time the BANs in the proposed SOG

achieve a PDR at 0.9 while this is only achieved 85% and 89.1% of the time

for Sample-and-Hold and SINR Balancing. In Figure 3.4. a significant re-

duction in transmit power is shown for the proposed SOG with an average

of −23.2 dBm compared to that for Sample-and-Hold and SINR Balancing

method, averaging −15.2 dBm and −17.8 dBm respectively. For GPC it uses

more than twice (3.5 dB) the transmit power of SOG, with 3% less probability

than SOG that PDR can reach the target, from Figure 3.3. SINR Game uses
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Figure 3.4: Average Transmit Power under DPSK modulation. Socially-
Optimal Game (SOG) is the method proposed here.

more than 5 dB extra transmit power with average probability of 90% that

PDR is greater than 0.9. Furthermore, compared with 0 dBm constant trans-

mit power SOG has 3% greater probability that PDR can reach the target

and 23 dB less transmit power. When BPSK modulation is employed, similar

results with respect to comparing transmit power and PDR performance are

obtained as summarised in Table 3.1. Using BPSK needs 0.7 dB less average

transmit power than DPSK and improves the probability of PDR reaching the

threshold by 1.5% for our proposed SOG.

The average circuit power consumption evaluated by non-linear mapping

[106] is shown in Figure 3.5. The average circuit power consumption of the

proposed SOG is around 1.96 mW for DPSK modulation. While from Fig-
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Table 3.1: Performance under BPSK modulation. SOG is the proposed game.
SOG GPC SINR-

Game
SINR-

Balancing
Sample

and
Hold

Transmit
Power (dBm)

−23.9 −20.6 −20.1 −18.8 −15.4

Probability
PDR > 0.9

94.3% 92.2% 91.5% 91.2% 86.5%
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Figure 3.5: Circuit Power Consumption. SOG is the proposed game.

ure 3.5 with DSPK modulation, SINR Balancing uses 2.1 mW, while the GPC

method and the SINR Game consumes around 2.08 mW and 2.09 mW of

circuit power respectively. In Figure 3.5 the proposed SOG uses 17% less cir-

cuit power than Sample-and-Hold and 67% less than constant transmission

at 0 dBm. Thus the proposed SOG will significantly extend BAN lifetime.

Meanwhile, the power consumption for BPSK is 0.04 mW less than for DPSK

modulation for all schemes as shown in Table 3.1.
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3.6 Concluding Remarks

In this chapter, we have presented an non-cooperative game-theoretic trans-

mit power control approach for closely-located BANs. The proposed method

provides better interference mitigation and energy efficiency and guarantees

the fairness of the system which always overlooked by other methods. It was

mathematically proven that the Nash Equilibrium outcomes of each stage of

the game are socially optimal for the system under practical constraints for

both static and slowly time-varying channels. Meanwhile, the numerical re-

sults validate our analysis by demonstrating that the maximum of social wel-

fare is achieved at the Nash Equilibrium for each player. This social efficiency

analysis could be extended to other power control approaches.

Based on simulation results over different channel models, the proposed

game can reduce circuit power consumption and prolong the lifetime of the

battery’s sensor node in a BAN. Moreover in a scenario with many BANs

coexisting, 94% of the time the PDR of each BAN reaches a threshold PDR

of 0.9 by adopting the proposed game. As we demonstrated in this chapter,

game-theoretic methods enhance the performance of coexisting BANs. To

further optimise scarce radio resources, in the next chapter, we will provide

game-theoretic cross-layered design for interfering BANs.
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Chapter 4

Game Theoretic Approaches to

Time-Division MAC for Wireless

Body Area Networks’ Coexistence

4.1 Introduction

Toward the realisation of next-generation BAN enabled IoH, high levels of

quality of service (QoS) of BANs are in great demand for the management

of critical health information. Although in Chapter 3, we proposed the non-

cooperative game that controls transmit power for BAN sensor that provides

higher energy efficiency and PDR. The proposed method only provides a so-

lution for resource allocation at the PHY layer. However, to improve QoS of

BANs on other aspects, such as lower the latency, increase overall through-

put, reduce retransmission rate and minimise packets discard probability, ra-

dio resource allocation schemes across different layers of the protocol stack

are required. To address this, link adaptation mechanisms that exploit the

interdependence between transmission scheduling and transmit power al-

location can be used to provide cross-layer design. Further exploiting the

strength of game theory, thereby, we propose a game-theoretic formulation of

53
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a TDMA-based MAC protocol to achieve high energy efficiency, reduce inter-

BAN interference, improve overall throughput and reduce latency across all

co-existing BANs.

The study in this chapter has two principal features: (i) a novel MAC

layer protocol and (ii) game-theoretic resource allocation schemes. The MAC

layer protocol focuses on rescheduling unsuccessfully transmitted packets to

reduce the probability of packet collision among other co-located BANs. Two

games are proposed for better resource allocation: a Link Adaptation Game

and a Contention Window Game (as an extension of the Link Adaptation

Game). The Link Adaptation Game tunes the node’s transmit power and

data rate from the Nash equilibrium of its utility function to obtain optimised

throughput (in terms of Packet Delivery Ratio, PDR) and power consump-

tion. In the Contention Window Game, the sensor node adjusts its transmit

probability by dynamically changing the contention parameters (contention

window size), to improve throughput performance further and minimise

transmission delay. Due to the difference in delay performance and power

consumption, a trade-off of the two games can be made according to BAN

application.

4.2 Proposed Time-Division MAC

Here, we propose a TDMA-based MAC protocol to achieve energy efficiency,

reduce inter-BAN interference and obtain low delivery latency for co-existing

BANs. Depending on the special random back-off mechanism to minimise the

probability of packets collision among sensors in different BANs, the overall

level of interference and power consumption can be consequently reduced.
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4.2.1 System Model

We consider star-topology BANs that are closely located and coexisting. Each

BAN consists of a single hub with multiple sensors as described in Figure 2.4.

The hub is not energy-constrained, so the energy consumption of the sensor

is mainly considered. The hub facilitates the main BAN operations such as

synchronisation, re-transmission and determining transmission schedules.

As interference across all co-existing BANs is the main reason for dropped-

packets and energy wastage, the following assumptions apply:

A1. All BANs are saturated, which means that they always have a packet

to send (packer arrive rate is 1).

A2. Interference-dominated, where packet loss due to additive noise is

negligible.

A3. All hubs are not energy constrained

A4. Time-slots across every superframe are normalised to unity

Within each BAN the sensor devices acquire data and use TDMA to trans-

mit to the hub to avoid idle-listening and overhearing. The intra-BAN inter-

ference is collision free when each sensor is transmitting using round-robin

scheduling. However, it is infeasible to implement central coordinator among

co-existing BANs that are closely located. Thus, the transmission between dif-

ferent BANs can not be synchronised. Therefore, co-channel interference may

arise due to collisions amongst concurrent transmissions made by sensors in

different BANs.
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4.2.2 MAC Layer Specification

4.2.2.1 Superframe Structure

As described above, the sensors in each BAN are synchronised by periodic

transmission of the superframe, with constant length Ts. Each superframe

consists of a beacon, ACK reception, several slots used for data transmission

and an inactive (idle) period. The beacon is configured to contain control

information for broadcasting to sensors. The turnaround time is negligible.

After the reserved transmission slots followed by ACK reception, the remain-

ing slots in the superframe are considered as an inactive or idle period. The

basic structure of the superframe is depicted in Figure 4.1.

Each superframe starts with broadcasting a beacon packet from the hub

to the sensors, which consists of information for establishing links and syn-

chronisation. Due to Assumption A.3, the probability that beacon or ACK is

not received at the sensor is negligible, as the hub can apply higher trans-

mit power to avoid SINR outage. The beacon is immediately followed a data

frame, which mainly consist of up-link data traffic from the sensors to the

hub.

Beacon Payload ACK Idle

Figure 4.1: Superframe Structure
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4.2.2.2 Back-off Mechanism

In order to avoid collisions when many BANs sharing the medium, a back-

off algorithm is used in here for BAN MAC. Since, if a transmission fails due

to interference, it is highly likely that a following transmission will also be

blocked, which results in extreme inefficiency. Keeping the sensor in back-off

states for a period of time will increase throughput and reduce collision prob-

ability. Figure 4.2 also illustrates the back-off mechanism and the operation

mode of the sensor. As depicted in Figure 4.2, all the sensors may be in one of

three different operation states: back-off state, channel occupancy state, and

inactive state. If the transmission is not correctly received by the coordinator,

then it will back-off its next beacon broadcast to reduce the collision cause

by consecutive transmission. Figure 4.2 illustrates the back-off mechanism

Beacon Payload ACK Idle Beacon Payload ACK Idle

Beacon Payload ACK Idle

Beacon Payload ACK Idle Beacon Payload

Beacon

Beacon

Collide

BAN#1

BAN#2

BAN#3

Time

Figure 4.2: Timing Scheme and Operations

and the operation mode of the sensor. As depicted in Figure 4.1, all the sen-

sors may be in one of three different operation states: back-off state, channel

occupancy state, and inactive state.

During the random back-off procedure, the back-off counter w is set as

Draft Copy – 7 May 2021



58 Game Theoretic Approaches to Time-Division MAC for BAN’s Coexistence

a uniformly distributed random integer number over the interval [1, W], i.e.,

w ∈ U (1, W). The value W, namely the contention window size is deter-

mined by the back-off stage b and the number of maximum back-off stages

m. The back-off stage b equals to the number of transmissions failed for the

packet. After each successful transmission attempt, W is set as 0. After each

unsuccessful transmission, W is set as the Wmin multiplied by the persistence

coefficient λ (W = λbWmin), until it reaches its maximum value W = λmWmin.

In this paper λ = 2, so that the contention window size, W is doubled after

each failed transmission. In order to analytically evaluate the performance of

the MAC layer protocol, we develop a Markov Chain model. We demonstrate

that performance metrics numerically obtained from the steady-state solution

of the Markov Model matches monte-carlo simulated results. Both analytical

results and simulated results show that the proposed MAC protocol reduces

the packet collision and improves the throughput, when multiple BANs are

co-located. The basic algorithms are listed in Algorithm 2. If the payload is

not received by the sensor, the hub executes a random back-off procedure to

reduce the collision probabilities among BANs and the next beacon is trans-

mitted after the back-off counter reaches zero.

4.2.3 Markov Model

A Markov Model was initially proposed by Bianchi for IEEE 802.11 DCF [107].

The model describes the basic fundamental process of MAC layer scheme

through a Markov Chain. The model has been extended in several directions.

In this section, we proposed a discrete-time Markov Chain, which models

the operation of the proposed algorithm in the tagged BAN and captures

the key characteristics of the MAC layer timing scheme, such as, superframe
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Algorithm 2 The Proposed MAC Layer Protocol
1: Initialising MAC Parameters when, W = CWmin , b = 0 ,w = 0
2: Hub send the sensor a beacon to sensor i with synchronisation informa-

tion
3: After receive the beacon, the sensor i transmit data using the scheduled

slots.
4: if Hub successfully receives the packet then
5: Sensor keeps inactive for a period of Tidle until the end of the super-

frame.
6: go to 2
7: close;
8: else if The transmission fails because of the interference, the sensor will

not receive the ACK then
9: b← b + 1

10: if b > MaxRetransmissionLimit then
11: Discard The Packet
12: go to 2
13: close;
14: end if
15: The hub calculates the back-off length
16: Wb = λbCWmin
17: w = random{0, Wb}
18: Sensor keeps inactive for a period of Tidle, and the hub starts back off

at the end of the superframe.
19: w← w− 1
20: if w = 0 then
21: go to 2
22: close;
23: else
24: go to 19
25: end if
26: end if

structure, and re-transmission mechanism. The Markov Chain model can

help us investigate features of the proposed MAC layer timing scheme, such

as throughput and delay.

Figure 4.3. shows the state transition diagram of the Markov Chain of the

proposed MAC scheme. In the Markov Model, the state at time t for tagged

BAN is represented by the stochastic process (b(t), w(t)). b(t), w(t) represent
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the back-off stage and the back-off counter respectively. Here, b(t) ∈ [0, m]

represents the back-off stage of the tagged BAN at time t, where m is the

maximum back-off stages. w(t) represents the value of the back-off counter

at time t.

Figure 4.3: Markov Chain for Proposed MAC Scheme

Initially, the values of back-off counter and re-transmission counter are set

to zero. In the back-off stage, when the value of back-off counter reaches zero,

Draft Copy – 7 May 2021



§4.2 Proposed Time-Division MAC 61

the hub will re-transmit the packet. If the transmission attempt is successful,

the state will move to {0, 0}, (b(t)=0, w(t)=0), and the BAN starts to transmit

in the next frame after the in-active period. Otherwise, the sensor moves

from back-off stage j to j + 1 with its re-transmission counter incremented

by 1. In addition, at the state {m, 0}, the data from the sensor will either

be successfully transmitted or discarded by the sensor. The parameter p f

is the probability of transmission failure due to the inter-BAN interference,

which is the probability of ACK reception under collision of packets. The

state transition probabilities are:



Pr((i, j− 1)|(i, j)) = 1

Pr((i + 1, j)|(i, 0)) = p f
1

Wi

Pr((0, 0)|(i, 0)) = 1− p f

Pr((0, 0)|(0, 0)) = 1− p f

, (4.1)

where Wi = 2iCWmin, i ≥ 1.

4.2.3.1 Steady-State Solution

Here, we derive the steady solution of the Markov Chain described in Fig-

ure 4.3. Let the stationary distribution of the Markov Chain be, bi,j = limt→∞

Pr(s(t) = i, b(t) = j), where i ∈ (0, m), j ∈ (0, Wi). Then, we can calculate

the stationary distribution for all the values of bi,j. According to the state

transition probabilities (4.1), bi,j can be expressed as functions of the value

b0,0 and of the transmission failure probability p f . b0,0 is finally determined
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by imposing the normalisation condition:

b0,0 +
m

∑
k=1

Wk

∑
j=0

bk,j = 1, (4.2)

that simplifies to:

b0,0 =
2(1− p f )(1− 2p f )

2CWmin p f (1− (2p f )m)(1− p f ) + (2 + p f )(1− pm
f )(1− 2p f )

. (4.3)

We can now get τ, which is the probabliity of a BAN sensor attempts

to carry out a superframe transmission in a randomly chosen slot time. As

each transmission starts when the back-off counter reaches zero, τ can be

expressed as:

τ =
m

∑
k=0

bk,0 (4.4)

=
2(1− 2p f )(1− pm+1

f )

2CWmin p f (1− (2p f )m)(1− p f ) + (1− 2p f )(2 + p f )(1− pm
f )

. (4.5)

The probability of transmission failure p f is the intersection of the proba-

bility of collision and the packet error rate (PER):

p f = pc ∩ PER = (1− PDR)(1− (1− ηττ)N−1), (4.6)

where PDR is the packet deliver ratio and ητ is a coefficient that normalises

τ by the average number of time slots staying in an arbitrary state of the

Markov Chain. The values of p f , τ and b0,0 can be solved using Eq. (4.5),

Eq. (4.6) respectively.
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4.2.4 MAC Layer Performance

By comparing the analytical modeling with simulation results, we can eval-

uate the accuracy of the Markov Model described in the previous section.

We simulated N single-link star topology BANs co-existing in the saturated

regime (all BANs always have a packet to transmit). A performance analy-

sis is also conducted based on the steady-state solutions. We assumed when

intra-BAN interference occurs that the packets collision will result in trans-

mission failure p f = pc as PER = 1(PDR = 0).

In our experiment, the data rate is set as 32 kbit s−1. The retransmissions

limits m = 4, and the minimum back-off length CWmin = 64. The duration

of one superframe is Ts = 64ms. Each superframe consist of 256 time slots.

Each time slot last for Tslot = 250µs. The beacon, payload and the ACK are

set to be 30, 110, 10 bytes respectively.
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Figure 4.4: The Comparison of Probability of Collision
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Figure 4.5: The Comparison of Goodput

Figure 4.4 and Figure 4.5 show that, in terms of Probability of Collision

and Goodput (S), the analytical model matches the simulation results accu-

rately. Goodput is defined as the ratio between time elapsed to delivery the

payload and the total time. Therefore, analytically, Goodput is calculated as:

Goodput(S) =
(1− p f )τTpayload

τTs + (1− τ)Tslot
, (4.7)

where

Ts = Tbeacon + Tpayload + Tack + Tidle, (4.8)

Tbeacon, Tpayload, Tack, Tidle represent the duration of beacon, payload, ACK and

idle respectively. However, weak matching occurs when less BANs are co-

existing, as randomness of the back-off counter in the simulation is relatively

large. Figure 4.5 shows that when more BANs are co-located, the system’s
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Goodput decreases as the collision probability increases.

4.3 Link Adaptation Game

The majority of existing game theoretic algorithms in BANs only focus on

transmit power control. However, when considering saturated traffic con-

ditions, in particular interfering networks, selfishly changing the transmit

power may increases packet losses, and thus, reduce the overall throughput.

From previous numerical analysis, we observed that greater system efficiency

can be achieved by varying performance-impacting characteristics such as

modulation and data rate. One of the objectives in this paper is to exploit

the above MAC layer scheme to find a method that further increases the sys-

tem’s energy efficiency and reduces interference. In this section, we develop a

utility-based game theory model that is a function of two variables: transmis-

sion power and data rate to address interference and packet contentions. The

transmitter chooses the value of the transmit power and data rate to maximise

energy efficiency whilst meeting the PDR requirements. Since the transmit-

ter’s action will be a function of the choice of data rate and transmit power,

these two parameters need to be executed jointly. According to experimen-

tal results, an increase in data rate will result in the BAN’s PDR degrada-

tion in the same SINR regime. However, the length of payload transmission

time is also related to the BAN’s data rate, so that higher data rate may also

reduce the intra-BAN packet collision probability as the transmission time

is reduced, which mitigates interference. Furthermore, the proposed game

theoretic algorithm handles packet re-transmissions, until the retry limit is

reached.
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4.3.1 Game-theoretic System Model

We consider the system model of the form described in Section III where

multiple BANs are co-located. All BANs are within each others interference

range, and the corresponding transmitters always have packets to send. our

proposed TDMA scheme with the same random back-off scheduling mech-

anism is applied in all BANs and the minimum back off slot length cannot

be changed. There are no pre-assigned priorities among different BANs such

that all links can expect identical priorities in traffic.

Each coexisting BAN is a player in the Link Adaptation Game, the player

set is denoted by N = {1, 2, 3...N}. Within each BAN, the sensor adapts its

power and data rate by utilising the game-theoretic algorithms. Data rate of

BAN i, Ri is chosen from a discrete finite set R = {Rmin, ..., Rmax}, where

Rmin is the base data rate and Rmax is the maximum data rate. In each

packet transmission, applying different data rate will changes the PDR (as

shown in Table 4.1). Additionally, each BAN can adjust its power Pi within

[Pmin, Pmax], therefore, the action space of player i ∈ N is defined as the

pair Ai = (Pi, Ri), where Pi is the transmit power of player i and Ri is the

data rate of player i. The aggregation of all players action is denoted as

A = (P, R) = {A1, A2...An}.

It is obvious that each player is always trying to maximising its own util-

ity. However, due to the non-cooperative nature of this game, it is easy to

see that in an attempt to maximize its own benefits at any cost [64, 108], each

BAN is likely to consume maximum power, and the highest data rate. This

will also create excessive interference, leading to performance degradation.

To penalise the use of excessive transmit power, a pricing mechanism is intro-
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duced, where the utility function of each player is defined as follows:

U(P, R) = −c · Pg + ln(1 + PDR(P, R))− q · 1
R

, (4.9)

where the coefficients in the cost function c, g, q, are positive constants that can

be tuned depending on channel conditions. The linear cost function (where

the exponent g = 1) is commonly used in the literature, however, in the

proposed game g is generally greater than 1 to provide strictly concavity. c, q

are constant non-negative weighting factors.

In Eq. (4.9), a sigmoid approximation of PDR is introduced. This model

has been shown to be capable of approximating the PDR versus SINR of a

wireless channel [109]. Here, the SINR is defined as:

γi =
hiiPi

∑N
j=1,j 6=i hijPj + σ2

, (4.10)

where, hij represents the channel attenuation between BAN i and BAN j. hii

denotes the on-body channel attenuation in BAN i. σ is the noise gain. The

sigmoid PDR function of SINR is presented as follows:

PDR = exp
(

α · γβ
)

, (4.11)

where α, β of the sigmoid model that best approximate the simulation

curves are selected by computer-aided search and summarised in Table 4.1.

Figure 4.6 shows the comparison between approximated and simulated PDR

vs. SINR for different data rates (R1 ∼ R5) respectively.
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Table 4.1: Coefficients for PDR Estimation
Data Rate α β

R1 = 25.6kbps -100.02 -3.66
R2 = 51.2kbps -214.95 -2.82
R3 = 76.8kbps -663.69 -2.79

R4 = 102.4kbps -1182.7 -2.73
R5 = 128.0kbps -1433.5 -2.58

4.3.2 Nash Equilibrium

The Nash Equilibrium is a set of strategies that guarantee the best response of

each player with respect to the chosen utility. In the proposed non-cooperative

game, the game is played by rational players, which implies that every player

adopts the strategy achieving the Nash Equilibrium. For each sensor, the

main steps of the Link Adaptation Game are described in Algorithm 3.

Definition 4.1. Let A∗ = (P∗, R∗) be the Nash Equilibrium in the Link Adap-
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Algorithm 3 Main steps of Link Adaptation Game
1: Initialising MAC Parameters when, CW = CWmin , b = 0 ,w = 0
2: Hub sends a beacon to sensor i with synchronisation information
3: After receiving the beacon, the sensor i transmits data using the scheduled

slots with (P(t), R(t)).
4: if Hub successfully receives the packet then
5: The Hub choosing the transmit power and rate for next transmission

by Eq. (4.13):{Pi(t + 1), Ri(t + 1)} = arg max U{(Pi, Ri), P∗−i, R∗−i}
6: The Hub keeps inactive for a period of Tidle until the end of the super-

frame.
7: go to 2
8: i← i + 1
9: t← t + 1

10: close;
11: else if The transmission fails because of the interference, the sensor will

not receive the ACK then
12: b← b + 1
13: if b > MaxRetransmissionLimit then
14: Discard The Packet
15: go to 2
16: close;
17: end if
18: The Hub choosing the transmit power and rate for next transmission

by Eq. (4.13):{Pi(t + 1), Ri(t + 1)} = arg max U{(Pi, Ri), P∗−i, R∗−i}
19: The hub calculates the back-off length
20: W = λbCWmin
21: w = random{0, CW}
22: The Hub keeps inactive for a period of Tidle, and starts back off until

the end of the superframe.
23: w← w− 1
24: if w = 0 then
25: go to 2
26: t← t + 1
27: close;
28: end if
29: end if

tation Game, then for every i ∈ N:

U(P∗i , R∗i ) ≥ U{(Pi, Ri), P∗−i, R∗−i}, (4.12)
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where (P−i, R−i) represents all other player strategies except for player

i. At the end of every transmission (say t), players update their next trans-

mit power and rate jointly to maximise the outcome of adapting the utility

function based on the current SINR:

{Pi(t + 1), Ri(t + 1)} = arg max U{(Pi(t), Ri(t)), P∗−i, R∗−i}. (4.13)

The action profile P∗ = (P∗1 , P∗2 , P∗3 ...P∗n ) for n ≥ 2 is the best response

towards P∗−i.

4.3.3 Existence and uniqueness of the Nash equilibrium

The existence and uniqueness of the Nash Equilibrium of the proposed game

are proved as follows:

Lemma 1. The action space A = (P, R) is not a convex set. However, under

the condition that R is fixed, A = (P, R) is a convex set.

Proof. We simply choose two points, A1 = (Pmax, R1), A2 = (Pmax, R2) that

have the same power component. A line connecting these points consists of

only two points A1,A2 themselves. The intervening points on this line do not

belong to (P, R). Hence, (P, R) is not convex. However, suppose the data rate

is fixed at, say R1. We note that a convex combination A′ = ΛA′1 + (1−Λ)A′2,

Λ ∈ [0, 1], where A′1 = (P1, R1), A′2 = (P2, R1) are any two arbitrarily selected

actions in A, such that Pmin < P1, P2 < Pmax belongs to the set A. Hence the

set A is convex when R is fixed.

Theorem 4.1. (Existence) The game G admits at least one Nash Equilibrium,

when assuming R is fixed.
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Proof. In game G, for BAN i, i ∈ N the following condition can be verified.

When the data rate of BAN i is fixed, the action set A = (P, R) is a nonempty,

convex, bounded in finite dimension vector space as proved in Lemma 1. The

utility function U is continuous for all Pi ∈ [Pmin
i , Pmax

i ]. As the first derivative

of the utility function U is well defined as:

δUi

δPi
= −c · gPg−1 +

(
1− 1

(1 + PDRi)

)
αβ

γ
β
i

Pi
, (4.14)

where |h
i
i(ki)|2
I−i = γi

Pi
, therefore, as Pi ∈ [Pmin

i , Pmax
i ] is real and the PDRi is

non-zero, the Theorem 4.1 is proved.

Theorem 4.2. (Uniqueness): The Nash Equilibrium in each stage of the game

G is unique, and independent of history so it is a unique sub-game perfect

equilibrium.

Proof. The second derivative of U(·) is shown to be always negative ∀i, so

that U(·) is strictly concave.

δ2Ui

δP2
i

= −c · g(g− 1)Pg−2
i +

(
1− 1

(1 + PDRi)

)
γ

β
i αβ(β− 1)/P2

i

− PDRi

(1 + PDRi)2 α2β2γ
2β
i /P2

i ,
(4.15)

where PDRi is always positive and between (0,1), and the term (β− 1) is less

than 0. In addition w is positive, thus δ2Ui
δP2

i
< 0. Therefore the utility function

has a global maximum at P∗i which occurs at the point where δU
δPi

= 0.

However, in practice, the data rate R is not always fixed. Hence, we need

to make sure that the game only admits a unique Nash Equilibrium solution

over the action space A. As the concavity of the utility function leads to
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the uniqueness of the Nash Equilibrium, we use the concept of a potential

game [110], which provides useful properties concerning the justification of

the Nash equilibrium.

4.3.4 Forming a Potential Game

For game G, when in a high PDR regime (where the system usually operates),

we can get the following approximation using Taylor’s series for the last term

in Eq. (4.12):

ln(1 + PDR(Ai, A−i)) ≈ ln(2) +
α · γβ

2
+

(α · γβ)2

8
... (4.16)

Substituting this approximation in to the utility function (only takes the

first order term), we can get a new game with utility function defined as:

UP(P, R) = −c · Pg
i − q · 1

Ri
+ ln(2) +

α(Ri) · γβ(Ri)

2
≈ U(P, R). (4.17)

Thus we transform the game G to a potential game denoted by GP = {N, A, UP},

where UP is the new utility function.

We firstly provide the definition of the exact potential game, and proceed

to show that the game belongs to the class of exact potential games.

Definition 4.2. A game is said to be an exact potential game if there exists a

function satisfying:

U(Si, S−i)−U(Ti, S−i) = F(Si, S−i)− F(Ti, S−i), (4.18)

where F is called the potential function that can map the action space of the

game in to a real space.
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The Game GP is an exact potential game, with a potential function defined

as:

F(A) = ∑−cPg
i − q

1
Ri

+
α(Ri) · γβ(Ri)

2
. (4.19)

Notice that we discard ln(2) in the utility function when constructing the

potential function as the constants can be canceled out. We can see that F

satisfies the Definition 2.1 in [111]:

F(Ai, A−i)−F(Ti, A−i) = −cPg
i − q

1
Ri

+
α · γβ

2
− cTg

i

− q
1

RTi

+
α · γβ

2
= UP(Ai, A−i)−UP(Ti, A−i),

(4.20)

where Ti = (PTi , RTi), and thus it is a potential function of the game GP.

Also, game GP is a best response potential game, which is defined as :

Definition 4.3. The game G is a best-response game if and only if a potential

function F exists such that,

arg max U(Ai, A−i) = arg max F(Ai, A−i), (4.21)

according to [112], this leads to the following lemma:

Lemma 2. For the best-response game G defined over action space A, with a

potential function F, then i f A ∈ A maximises F, then it is a Nash Equilibrium

for G.

4.3.5 Large Midpoint Property and Discrete Concavity

For an exact potential game, the change of the potential function attributes

the same amount of change in a player’s utility function due to its strategy
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deviation. A concave potential function guarantees that every Nash equilib-

rium of the game also maximises a potential function. Therefore, with the

help of the results in [113] on discrete concavity for potential games, we can

prove the uniqueness of the Nash equilibrium in Gp: since the maximiser in

the potential function F is unique, so is the Nash Equilibrium in game G. The

large midpoint property (LMP)[113] is defined as:

Definition 4.4. For a function defined over discrete set satisfies LMP if for

any x, y ∈ X with |x− y| = 2 ,

max
|x−z|=|z−y|=1

f (z) =


>min{ f (x), f (y)}, if f (x) 6= f (y)

≥ f (x) = f (y), otherwise
(4.22)

We show that the potential function satisfies the LMP for the discrete strat-

egy R. As data rate [Rmin, Rmax] is discrete, and P is continuous, we have the

following theorem:

Theorem 4.3. For a certain power strategy P ∈ P, the potential function F(A)

, where A = (P, R) satisfies LMP for R ∈ R.

Proof. See Appendix 8.2.

This leads to the following proposition:

Proposition 4.1. Suppose that A = (P, R) satisfies LMP for R ∈ R. Then, only

if F(A = (P, Rx), A−i) ≥ F(A = (P, Ry), A−i) for all y, F(A = (P, Rx), A−i) ≥

F(A = (P, Ry), A−i) for all |x− y| ≤ 1

This means that if LMP is satisfied for a discrete potential function, then

the local optimality in the potential function implies global optimality. Thus,

when at a certain transmit power level, only one maximiser exists over the
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discrete set of data rate. The proof of the Proposition 4.1 is shown in Ap-

pendix 8.3. As Theorem 4.2 shows that when R is fixed, the utility function

admits one optimiser (maximiser). Hence, for exact potential game, the po-

tential function also admits unique maximiser.

Theorem 4.4. The maximizer in the action space A, namely Ao = arg max

F(Ai, A−i) is unique and:

F(Ao, A−i) = max{F(P∗min , Rmin), F(P∗1 , R1)...F(P∗max , Rmax)}, (4.23)

where, P∗x is the maximiser when R = Rx. To show that the equilibrium

of the propose potential game is unique, it is sufficient to prove that the set

of maximisers of the potential function is a singleton, as the only maximiser

is at Rx for one P∗x . Therefore, the best-response for the potential game G,

A∗ = (P∗, R∗) is unique and equals Ao.

4.4 Contention Window Game

By implementing the proposed back-off algorithms, the collision during the

frame transmission can possibly be avoided. Because, before each transmis-

sion, each BAN waits for a random time, based on the contention window

size. This mechanism space out repeated retransmissions of the data packet

in each BAN. Generally, each BAN is able to tune their transmission proba-

bility by modifying the back-off control parameters, such as CWmin value and

maximum back-off stages (m value). Therefore, each BAN can dynamically

choose a suitable contention window size by the contention level of current

network to effectively improve system performance.
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However, due to the non-cooperative nature of the system, each selfish

player attempts to increase its utility by increasing its transmission probability

or equivalent by decreasing its contention window size. Increasing the trans-

mission probability by one player encourages other players to shorten their

contention window sizes, which increases collisions, thus the delay and pack-

ets drop ratios are also increased. Here, we proposed the Contention Window

Game GCW based on the aforementioned MAC layer scheduling, which aims

to balance the trade-off between packet delay and system throughput.

In the Contention Window Game, the action selected by any player is their

minimum contention windows size CWmin, where CWmin is the action space.

As described by the Markov Model, by changing the contention window size,

players transmission probability can be adjusted accordingly. As, in a high

PDR regime, we have the following approximation:

τ ≈ 1
p f · CWmin + 1

, (4.24)

where p f is transmission failure probability.

Empirically, in order to get the estimated number of players nest, each node

can measure p f and τ through several counters independently. The number

of coexisting BANs can be estimated from the following equations[114]:

τest =
TransmittedFragmentCount

SlotCount

pest =
AckFailureCount

TransmittedFramentCount

nest = f (pest, τest) = 1 +
ln(1− pest)

ln(1− τest)
,

(4.25)

where pest and τest denote the estimated failure probability and the esti-

mated τ respectively.
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TransmittedFragmentCounter that counts the total number of successfully

transmitted data frames, ACKFailureCounter that counts the total number of

unsuccessfully transmitted data frames and the SlotCounter that counts the

total number of experienced time slots. (The historical data can be used to

estimate the current parameters, and the length of how far we should trace

back can be adjusted accordingly).

Algorithm 4 Main steps for Contention Window Game
1: After execute line 19 in Algorithm 3
2: The Hub estimated the number of coexisting BANs nest by using Eq. (4.25)
3: After obtain nest. The Utility Function V(CWmin) can be constructed as

a function of w, where the PDR is obtained as PDR(P∗−i, R∗−i) from the
Nash Equilibrium in the Link Adaptation Game.

4: Determine the minimum contention window size CWmin for that given
sensor, which gives the Nash Equilibrium value of the Utility Function
V(CWmin)

5: go to 20 in Algorithm 3

The objective of the game is to reach a trade-off in maximising the through-

put, and minimise delay. Following from the analytical model, the through-

put of each BANs is positively correlated with the Goodput(S) in Eq. (4.7).

The average delay for a packet to be transmitted successfully is estimated as:

D =
m

∑
i=1

PBiE[Di]

=
m−1

∑
i=1

[pi
f (1− p f )

i

∑
j=0

(
Wj + 1

2
Tslot + Ts)]

+ pm
f

m

∑
j=0

(
Wj + 1

2
Tslot + Ts),

(4.26)

where E[Di] is the average delay in state i. It is obvious that through-

put, delay may have different units in different ranges, and they have to be
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normalised. Therefore, the utility function is defined as the following:

Vi(CWmin) = d · S− l · D− PDrop, (4.27)

where PDrop = τp f
m+1 is the probability that a packet drops due to exceed

maximum retry limits. The weights d, l can be adjusted based on different

scenarios. The obtained results have shown that in game GCW , each user im-

proves its chance of successful transmission by increasing transmission prob-

ability, whilst this increase of transmission probability causes an increase in

collision probability, as well. Such collisions will cause large delay in pack-

ets transmission and energy wastage led by PDR reduction. Thus, when at

low interference level (high SINR regime), the nodes should select a smaller

CWmin as the best strategy. In high interference environment (or low SINR

regime), greater CWmin is more appropriate in order to reduce the collision

probability. The game is implemented in a similar distributed manner to the

Link Adaptation Game.

4.4.1 Existence and uniqueness of the Nash equilibrium

The existence and uniqueness of the Nash equilibrium point for the Con-

tention Window game is guaranteed. The proof is given as follows.

Theorem 4.5. (Existence and Uniqueness): In each stage of the game GCW

exists a unique Nash Equilibrium.

Proof. Similar with the Link Adaptation Game G, the utility function in GCW

is differentiable and strictly concave over the convex set of the minimum

contention window size CWmin. Therefore, according to [115], the game GCW
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admits a unique Nash Equilibrium. The details can be found in Appendix

8.1.

4.5 Performance Evaluation

This section discusses the simulation results of our proposed resource alloca-

tion games in comparison with conventional schemes as well as gam-theoretic

methods in the literature. To evaluate and validate the performance of the

proposed game, we compare throughput, energy efficiency and delay with

Adaptive CSMA/CA [116] and B2IRS [74] with respect to varying numbers of

coexisting BANs. The values of MAC layer parameters are listed above in Ta-

ble 4.2, parameters that are mainly based on the IEEE 802.15.6 Standard [117].

In addition, a non-linear power estimation [106] is made to measure the ac-

tual circuit energy consumption, to provide a more realistic evaluation of the

system.

Table 4.2: MAC Parameters
Parameters Value

Superframe Length 80 ms
Allocated Time Slot Length 0.312 ms

Minimum Data Rate 25.6 kbit s−1

Maximum Data Rate 1.28 Mbit s−1

Payload 175 bytes
NBeacon 20 bytes
NACK 10 bytes

CWmin 43.75 ms
MaxBackoffLimits (m) 4
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4.5.1 Scenario 1

In this scenario, realistic empirical measurements [118] in an “everyday” sce-

nario using small body-mounted “channel sounder” radios that operated at

2.36 GHz are adopted in the simulation. The measurement set contains both

inter-BAN and intra-BAN channels of the coexisting BANs, which are mea-

sured in many different environments, involving human subjects doing a mix

of distinct everyday activities. It should also be noted that the measurements

are re-sampled by the parameters above, thus the channel attenuation remains

constant in each superframe [119].

In our experiments, it has been observed that in the Link Adaptation Game

more than 90% of the packets are delivered, which meets the requirement for

10% maximum packet error rates in the IEEE 802.15.6 BAN Standard [117].

It should also be noted that in B2IRS, because the packets are rescheduled

in a collision-free manner across BANs, no interference occurs. Therefore,

as shown in Figure 4.9, the PDR performance of B2IRS is almost optimal,

although such a scheme brings significant penalties to delay and requires

global coordination. Figure 4.7 and Figure 4.8 show the variation in through-

put and delay, respectively, with different numbers of BAN coexisting. Fig-

ure 4.7 shows that the throughput reduces with more BANs actively coexist-

ing. When compared with other methods, Link Adaptation Game provides

the highest throughput, and Contention Window Game manages to maintain

the lowest delay as shown in Figure 4.7 and Figure 4.8. In terms of circuit

power consumption, as illustrated in Figure 4.10, the Link Adaptation Game

uses the least power, which is around 0.3 J bit−1, while B2IRS and Adaptive

CSMA/CA use nearly 3 times and 8 times more respectively.
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Figure 4.7: Throughput Performance of the proposed games compared to
other methods under Realistic Measurement Channel Sets. Link Adaptation
Game and Contention Window Game are the two proposed games. Social

Optimal PHY Game is proposed in [64].

4.5.2 Scenario 2

The empirical measurements can only provide channel gains of up to 6 BANs

coexisting, hence computer-simulated channels are also needed to obtain per-

formance analysis under a crowded environment where many more BANs

are co-located. In this simulation, both intra-BAN and inter-BAN channels

are modeled in a similar manner to [64, 108]. It is assumed that up to 15

BANs with the same topology are coexisting and moving randomly within

a 6× 6 m2 square area. The walking speed of the BAN wearer is modeled

as 0.5± 0.1 m/s, which is updated every 1 ms. The channel attenuation is

modeled as

hj
i = At(do/dj

i)
(2.5/2)ASE ASC, (4.28)
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Figure 4.8: Delay Performance of the proposed games compared to other
methods under Realistic Measurement Channel Sets. Link Adaptation Game
and Contention Window Game are the two proposed games. Social Optimal

PHY Game is proposed in [64].

where the path loss exponent is 2.5. dj
i represents the distance between BAN

i and j, and the reference distance do = 5m corresponds to a channel atten-

uation of 50dB. The shadowing effect ASE is assumed to be 42dB, and a

Jakes model with Doppler spread of 1.1Hz as the CN (0, 1) Rayleigh distribed

small scale fading ASC between BANs. Small-scale gamma with a mean 65

dB attenuation, a shape parameter of 1.31, and a scale parameter of 0.562 is

employed for the on-body channels.

Basically, for the proposed methods, less than 10% of the packets are

blocked. Again, PDR performances of B2IRS and adaptive CSMA/CA are

better than others, because of the low collision probabilities in these two

methods.
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Figure 4.9: PDR performance of the proposed games compared to other meth-
ods under Realistic Measurement Channel Sets. Link Adaptation Game and
Contention Window Game are the two proposed games. Social Optimal PHY

Game is proposed in [64].

In Figure 4.12, there is increasing delay with increase in the number of co-

located BANs. Amongst three game-theory-based methods, Social Optimal

PHY Game has the highest delay due to large re-transmissions. The Con-

tention Window Game provides smallest packet delay, and the delay time is

increased a small amount at higher interference regime. At the same time,

B2IRS has the largest delay due to complexity of beacon re-scheduling when

greater number of BANs are co-existing.

As described in Figure 4.11, when more than 4 BANs co-exiting, the Con-

tention Window Game can provides higher throughput. Both two proposed

methods have significantly larger throughput respect to other methods, as

higher date rate are more preferable in the game at relative better channel

Draft Copy – 7 May 2021



84 Game Theoretic Approaches to Time-Division MAC for BAN’s Coexistence

2 3 4 5 6

Number of WBANs

10
-4

10
-3

A
v
e

ra
g

e
 P

o
w

e
r(

J
 p

e
r 

b
it
)

Link Adaptation Game*

Social Optimal PHY Game

Contention Window Game*

B
2
IRS

Adaptive CSMA/CA

Figure 4.10: Circuit power consumption of the proposed games compared to
other methods under Realistic Measurement Channel Sets. Link Adaptation
Game and Contention Window Game are the two proposed games. Social

Optimal PHY Game is proposed in [64].

conditions.

A non-linear circuit power mapping [106] is used to estimate the circuit

power consumption of the system. can be estimated. As it can be seen from

Figure 4.14 that Link Adaptation Game method provides the lowest power

consumption in terms of Joules per bit (J/bit). Meanwhile, B2IRS consumes

10 times more Joules per bit. However, the Contention Window Game uses

slightly larger power than Link Adaptation Game, because in Contention

Window Game, when the contention windows size is small, more packets are

transmitted concurrently, hence the transmitter uses larger transmit power to

achieve reasonable PDR.
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Figure 4.11: Throughput performance of the proposed games compared to
other methods under Simulated Channel Sets. Link Adaptation Game and
Contention Window Game are the two proposed games. Social Optimal PHY

Game is proposed in [64].

4.6 Game Efficiency

The Nash Equilibrium solution of each individual BAN in the game G is the

maximization of its own utility. This leads to the problem of efficiency of the

network. More specifically, for a network without a central coordinator, the

fairness of the system may degrade due to selfish actions of the players. Thus,

it is important to investigate the equilibrium efficiency among the coexisting

BANs. The social welfare reflects the fairness and efficiency of the system’s

best response, considering all individuals utility combined.

Definition 4.5. The social welfare is defined by the aggregation sum of each
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Figure 4.12: Delay performance of the proposed games compared to other
methods under Simulated Channel Sets. Link Adaptation Game and Con-
tention Window Game are the two proposed games. Social Optimal PHY

Game is proposed in [64].

BAN’s utility function as:

Ω(A) =
n

∑
i=0

Ui(A). (4.29)

The maximisation of the social welfare is the social optimum, which rep-

resents the social fairness among the system. The price of anarchy (PoA) is

used to measure the inefficiency of equilibriums among selfish players. With

finite number of players in game G, the PoA is defined as the ration of the

highest value of social welfare (social optimum) to the NE (as NE in G is

unique) of the game:

PoA =
Ω(Aopt)

Ω(A∗)
≥ 1, (4.30)
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Figure 4.13: PDR performance of the proposed games compared to other
methods under Simulated Channel Sets. Link Adaptation Game and Con-
tention Window Game are the two proposed games. Social Optimal PHY

Game is proposed in [64].

where Aopt = arg max Ω(A) is the global optimum solution. Similarly

with the Link Adaptation Game the social welfare of the Contention Window

Game GCW is defined as :

ΩCW =
n

∑
i=0

Vi. (4.31)

With finite number of players in game GCW the PoA is defined as the

ration of the highest value of social welfare (global optimization) to the NE

(as the Nash Equilibrium in GCW is unique) of the game:

PoACW =
ΩCW(Bopt)

ΩCW(B∗)
≥ 1, (4.32)

where Bopt = arg max ΩCW(B) is the global optimum solution.
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Figure 4.14: Circuit power consumption of the proposed games compared to
other methods under Simulated Channel Sets. Link Adaptation Game and
Contention Window Game are the two proposed games. Social Optimal PHY

Game is proposed in [64].

We evaluate the Price of Anarchy (PoA) of the two prosed games by im-

plementing a Monte Carlo simulation on time varying channels, where an

interior point approach is applied to find the centralized (global) optimum of

the social welfare. Figure 4.15 and Figure 4.16 above illustrate the PoA for

different numbers of co-existing BANs. It can be seen that the loss due to

decentralisation is relatively small as PoA → 1. Also, in general , the system

waste less than 10% of their welfare in terms of utility for not being coordi-

nated from both Figure 4.15 and Figure 4.16. Meanwhile, we introduce a new

metrics L,LCW :

L = exp(
Ω(Aˇ)

Ω(A∗)
), (4.33)
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Figure 4.15: PoA in Link Adaptation Game

and,

LCW = exp(
ΩCW(Bˇ)

ΩCW(B∗)
), (4.34)

where Aκ ∈ A, Aκ = arg min Ω(A), and Bκ ∈ B, Bκ = arg min ΩCW(B). L,

LCW correlated with the ratio of the worst value of the social welfare and the

maximum value of the social welfare in game G and GCW respectively (we

take the exponential as sometime the value of utility function can be nega-

tive). These two metrics represent the gap between the system’s best possible

performance and the worst case scenario. The comparison between L,LCW

and exp( 1
PoA) and exp( 1

PoACW
) provides some insight of how stable the Nash

equilibrium is across iterations of the game. Hence, in Table 4.3, we illustrate
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Figure 4.16: PoA in Contention Window Game

the comparison between the mean value of L and exp( 1
PoA) when different

number of BANs are co-located. Meanwhile, the comparison between LCW

and exp( 1
PoACW

) is depicted in in Table 4.4.

Comparing with exp( 1
PoA), L is much more smaller. It is because the

social welfare varies a significant amount over the action space. Thus, in

Link Adaptation Game, the system is socially stable as the deviation from the

social optimum solution is small. On the other hand, in contention window

game, the values of LCW are relatively large. However, it can be seen that, the

PoACW is close to 1, which represents complete stability of the game.
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Table 4.3: Comparison of exp( 1
PoA) and the mean value of L

No. of BANs L exp( 1
PoA)

2 6.832e-32 2.718
5 4.252e-32 2.704
8 2.291e-32 2.562

11 2.728e-32 2.549
14 1.141e-32 2.542

Table 4.4: Comparison of exp( 1
PoACW

) and the mean value of LCW

No. of BANs LCW exp( 1
PoACW

)

2 2.2445 2.7056
5 2.0317 2.7175
8 1.5793 2.7183

11 1.5746 2.7183
14 1.5864 2.7183

4.7 Concluding Remarks

In this chapter, we developed two game-theoretic resource allocation schemes

for co-located BANs. The proposed methods adapts to the time-varying chan-

nel and traffic by minimising the interference among all players. The model

was based on a novel contention-based MAC layer protocol with special back-

off mechanism, which reduces packet collision probability. The best response

of each player was a utility-maximising choice of transmission parameters

across superframes. We mathematically proved that the proposed schemes

admit unique Nash Equilibrium solutions, which provides higher through-

put and a reduction in latency and power consumption.

Evaluated by both realistic empirical measurements and simulation, the

Link Adaptation Game was demonstrated to reduce radio interference by

improving throughput, in conjunction with reduced power and delay when

compared with the state-of-art. The Contention Window Game provided
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much more lower delay (< 5ms in general), but with a slight compromise

in circuit power consumption. Both of the proposed methods have PoA → 1

and are very close to the social optimum, which guarantees high social effi-

ciency at the games’ Nash Equilibrium. One important finding of this study

is that robust results can be obtained by perceiving channel state using his-

torical information (ACK counts). Hence, it is interesting to explore utilising

past channel samples to predict future channel states, in spite of the dynamic

nature of BAN channels. Thus, in the next chapter, novel channel prediction

schemes for BAN channels will be discussed in detail.
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Chapter 5

Deep Learning Enabled Channel

Prediction for Wireless Body Area

Network Transmit Power Control

5.1 Introduction

As demonstrated in Chapter 4 and Chapter 3, our proposed methods sig-

nificantly improve the overall QoS for co-located BANs using adaptive ap-

proaches. However, the characteristics of dynamic BAN channels haven’t

been fully exploited and utilised. To make IoH networks more intelligent, that

can learn and make decisions by themselves, in this chapter, predictive op-

timisation schemes over BAN channels are investigated. Channel prediction

techniques have recently attracted interest from researchers due to its possi-

bility to optimise the management of scarce resources and provide high com-

munication efficiently. Prior studies have revealed that accurate prediction

of the future wireless channel status can benefit the performance of power

control schemes [11], even when the prediction accuracy is low [120]. But

the strong shadowing effect generated by the human body itself makes the

channel prediction problem extremely challenging in BAN scenarios. Exist-

ing literature on long-term channel prediction for typical radio networks of-

93
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ten adopts autoregressive (AR) predictive methods [88], the sum of sinusoids

methods [121, 122] or weighted alternate-least-squares modelling techniques

[89]. However, such methods are not robust towards realistic wireless chan-

nels. It is because of that the lack of non-stationary modelling capability

prevents those traditional methods from accurately capturing the channel dy-

namics. Meanwhile, only very few previous studies have investigated BAN

channel predictions, especially on a long-term scale. Thanks to the rapid ad-

ht-1 

ct-1  ct

xh

xt-1 

σ σ tanh σ

tanh

htft it ot

~ct

ct

Figure 5.1: The basic operation inside a LSTM cell

vancement in recent years of deep learning (DL), in signal processing area,

their applications are widely used for modelling and predicting [123], [124].

Recurrent neural network (RNN) which is a nonlinear, adaptive modelling

approach has demonstrated its advanced ability in wide range of modelling

and prediction tasks [125]. RNNs have shown significant improvements over

state-of-the-art results in sequence modelling tasks (e.g., natural language

processing, speech recognition and predictions from any form of time series
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data) [97]. However, both vanishing gradient and exploding gradient prob-

lems [126] limit the capability of RNNs to model long range context depen-

dencies to 5-10 discrete time steps between the input signals and output [97].

To address these problems, an elegant solution for RNNs, LSTM is used [96]

which has some internal contextual state cells that act as long-term or short-

term memory blocks, and it is used in our research as shown in Figure 5.1.

Our research shows that, by training on past channel statistics with atypical

variations, LSTM is potentially promising to predict future channel attenua-

tions within BANs.

5.2 LSTM Channel Prediction

In this work, we propose an LSTM-based solution for the problem of channel

prediction in wireless body area networks.

5.2.1 LSTM Network Architecture

The architecture of the proposed LSTM network is composed of one input

layer, one dense layer with batch normalisation, several stacked LSTM layers,

and one fully-connected layer followed by the output layer as illustrated in

Figure. 5.2.

The task of the proposed network is to use the past channel samples

logged in the hub to provide long term prediction of on-body channel at-

tenuation in the future. For each channel link within the BAN system, the

hub device records the RSSI from successful packet transmission. So that

with such information the channel attenuation at time t can be calculated as

Rt = RSSI(t)·p(t). To obtain the input-output pair with known data, imagine
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Figure 5.2: Proposed LSTM architecture.

that we have a window with fixed size w (which is equal to the input size of

the LSTM network n) to collect the channel samples. The value in the window

at t is denoted as X(t):

X(t) = (Rt−w+1, Rt−w+2...Rt). (5.1)

The channel predictor aims to predict the channel attenuation for the next

Npred samples (the value of Npred is related with the link sample interval).

Thus, for each observation X(t) = (Rt−w+1, Rt−w+2...Rt), the target sequence

Y(t) is constructed by delaying X(t) for Npred steps, such that:

yi = Ri+Npred , (5.2)

where i ∈ [t − w + 1; t], and the last Npred values are the actual target. By

feeding X(t) into the LSTM network, the output sequence is obtained as
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Figure 5.3: Graphical illustration of the tensor completion.

Z(t) = (zt−w+1, zt−w+2...zt) (generated from forward propagation). During

inference phase, the last Npred values of the LSTM output sequence Z(t)

are the actual predictions. Therefore, given an observation sequence X(t) =

(Rt−w+1, Rt−w+2...Rt) we train a LSTM network that predicts the next Npred

samples by minimising the loss function through updating the model pa-

rameters using back-propagation. Figure. 5.3 provides an example of X and

Y. The loss function is defined as the mean-square error (MSE) between the

predicted values and the ground truth values:

L(X, Y) =
1

Npred

Ninput

∑
i=Ninput−Npred+1

(yi − zi)
2. (5.3)

The LSTM model is trained by minimising the loss function through up-

dating the model parameters using back-propagation. However, it is gener-

ally unfeasible to pass the whole training data set to the neural network at
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once (full batch), because a large amount of memory will be occupied and

the model will easily over-fit. Thus, the data set is divided into a number of

mini-batches. This is achieved by transforming several instances of Xs and Ys

into 3-D tensors, such a tensorization process is illustrated in Figure 5.4. Prior

to feeding mini-batches for training, batch normalisation [127] is performed,

which is a simple and effective way to improve the performance of a neural

network. More specifically, we used a dense layer + normalisation layer +

non-linear activation (ReLU) structure. Therefore, the input tensor is fed into

a dense layer with a linear activation function. A ReLU activation function is

added to the batch normalisation layer that has an output:

BNi = (
xi − µ√
ε + σ2

)γ + β, (5.4)

where xi ∈ X is the output from the input layer, and BN = (BN1, BN2, ..., BNn)
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is the normalised output. µ and σ2 are the mini-batch mean and variance, re-

spectively. To increase numerical stability, a constant ε is added to the mini-

batch variance σ2. γ and β are the parameters to learn. Avoiding over-fitting

is central to the performance of the network, for this reason, LSTM cells are

wrapped with dropouts mechanism, so that for a given probability, the data

on the input connection to each LSTM cell will be inactivated for parameter

updating.

In the training phase, given input X, the NN continuously improves the

prediction towards the correct target Y by adjusting its parameters (i.e., weights

and states). This is performed by adjusting the model parameters (i.e., weights

and biases) so as to minimise the loss function. Firstly, the nodes in all the lay-

ers of the network are initialised. In order to change those parameters in the

nodes in a way to approach the minimum possible error between the input-

output pairs, a gradient descent method is employed, whereby the gradient is

used to alter parameters to lead it towards the minimum of the loss function.

Generally, the expression of the cost function makes the gradient difficult to

evaluate. However, by comparing the output of the neural network to the

target Y, we can investigate how the change in the parameters of the RNN

changes the cost function. To do this for all the hidden layers of the network,

back-propagation is used. This method allows us to share the cost function,

i.e., error, with all the parameters in the network. The gradient descent rou-

tine is repeated until the average cost function has reached a minimum. At

this point, the network is trained and ready for use.
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Figure 5.5: The flow chart of the incremental prediction mechanism.

5.2.2 Incremental Training Mechanism

To better cope with the dynamics of BAN channels, an incremental learning

algorithm is proposed here that enables the LSTM network to continuously

evolve with streaming channel samples. After finishing the initial training of

the LSTM network, the hub is able to forecast the future channel situation

at any time by forward-feeding recently received channel samples with the

trained recurrent weights.1 However, in traditional offline learning schemes,

the acquired parameters in the network will no longer be updated after the

first training process terminates. This is such that, the received channel sam-

ples will only be used for inference only. As opposed to traditional mod-

els, the proposed scheme adopts the concept of dynamic refinement, which

means the existing model gradually increases knowledge over time. To do

so, the hub is required to records channel gains at each time step during the

inference phase. After collecting a predefined number of samples, the hub be-

gins to fine-tune the model using new batches that are composed of acquired

data. Therefore, without forgetting its existing knowledge the model can

adapt to new data. When each training episode is finished, the hub will use

1It should be noted that in the inference phase the stored hidden state will also be replaced
by the current values.
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this newly trained model instance for subsequent predictions. The detailed

schematic overview of the incremental learning mechanism is demonstrated

in Figure. 5.5.
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Figure 5.6: Initial Training Loss

5.3 Performance Evaluation

We use TensorFlow 1.13 to build the proposed NN model. The training and

testing of the NN are conducted on a desktop with Intel i7 CPU, 8GB Mem-

ory. Recent studies [128] have suggested that using learning rate decay in

Adam could result in significant performance improvement, thus the Adam

optimiser [129] is used with learning rate decay. The learning rate at step/it-
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eration t is represented as:

lr(t) = lr0 ∗ r(t/gs)
d , (5.5)

where lr0 is the initial learning rate, rd is the decay rate and sd is the de-

cay step. For better convergence, all LSTM cells are initialised by the Xavier

initialiser proposed in [130]. The channel measurements are normalised and

pre-processed to have zero mean and unit variance:

X̃ =
X−E(X)

σ(X)
, (5.6)
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where σ denotes the standard deviation. Via hyper-parameter searching, the

size of the hidden state in each LSTM cell is set as 64, which yields optimal

performance. The channel samples are batched by using a batch size of 64

and padded with zeros when required. In the proposed incremental learning

scheme, the first training uses 50 batches of channel sample sequences, while

20 batches of channel sample sequences are used in each updating training

phase. Therefore, when the link sampling rate is 50Hz, the proposed pre-

dictor can predict the link for approximately 30 seconds, before each model

updates. The training time is set based on the realistic running time, varying

from 5s to 15s depending on the size of the training set. The configuration

parameters of the LSTM model are listed in Table 5.1.

Table 5.1: Detailed Configuration of the LSTM Network.
Description Value

Number of layers in the LSTM network 2
Size of the hidden state of an LSTM cell 64
Number of sequences in each mini-batch 64

Input size of the network 100
No. of epochs for initial training 50

No. of epochs for model fine tuning 20
Training Time 10s
Learning Rate 0.0003

Dropout Probability 0.8

Figure. 5.6 and Figure. 5.7 illustrate the training loss of an initial training

data set and the training loss of training data sets across epochs in a typical

instance respectively. It can be seen that it takes the model less than 50 epochs

to converge in initial training, and in update training the model converges

before 20 epochs.

Figure. 5.8 shows a typical prediction instance of the proposed method.

Here we attempted to predict 50 samples ahead of the last received sampled
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Figure 5.8: An example of LSTM network prediction with link sampling rate
at 50Hz. Plot interval between predictions is 50.

by using the last 75 channel samples. The time period between link samples

is 20ms. The black line indicates the actual channel gain samples, and the

coloured lines are predictions. We plotted the prediction with an interval of

50 samples to avoid overlapping.

We then evaluate the accuracy of the proposed LSTM predictor by using

normalised mean square power error (NMSE) [89]. The NMSE is expressed

as E[( p̃(l)/p(l) − 1)2], where p̃(l) is the optimal transmit power estimate

mapped from each predicted samples, p(l) denotes the optimal transmit

power estimate mapped from the ground truth value2 and E represent the

2The ground truth values are not practical for actual power control as no error margin is
allowed
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expectation. A comparison of the NMSE power error between the proposed

method and two baseline methods: Moving Average method (MA) [131] and

Adaptive Prediction method (AP) [132] is plotted in Figure. 5.9 with a re-

ceiver sensitivity, Rxsens, of −90 dBm, and link sampling periods of 20 ms.

It should be noted that the error is based on the NMSE power error of other

predictors relative to the NMSE power error of the proposed method. MA

forecasts the channel gain by taking an average over recently received link

samples. Meanwhile, the Adaptive Prediction method combines the Least

Mean Squares (LMS) adaptive tracking method and the channel inversion

algorithm to provide long-term predictions for fading channels. As can be

seen, comparing with the Adaptive Prediction method, the proposed method

offers obvious prediction error reduction, an up-to 13 times reduction. When

the prediction interval is far more than the BAN channel coherence time (nor-

mally 500ms [133]), the proposed method can provide nearly 2 times smaller

NMSE compares to MA.

Obviously, the predictor’s accuracy is increased with the size of the train-

ing set. However, under our proposed incremental learning scheme, when the

size of the training set increases, the time interval between each model up-

dates also increase, such that the errors in each prediction may accumulate. It

is also a difficult task to guarantee the accuracy of the predictor when using

a relatively small size data set. At the same time, using small training set

requires frequent parameter updates, which also increase the computational

cost. Hence, it is important to trade-off the size of training data. Figure.5.10

shows the NMSE power error of the proposed predictor for different sizes of

the training set from 300 samples to 1800 samples when RXsens = −90dBm.

The minimum of the NMSE power error occurs at around 1000 samples. The
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Figure 5.9: Comparison of prediction accuracy in different methods, for
200ms, 400ms, 1000ms and 2000ms prediction ahead.

NMSE power error of the LSTM predictor decreases at first and then increases

when increases the size of the training set.

To produce the best possible performance from the proposed predictor, we

developed a Tx power control scheme amended from the Tx power control

used in [11]. The details of the Tx power control scheme is described in

Algorithm 5. For power allocation, 0.5 dB is set as the step size in level

scanning, to reduce outage and transmit power consumption at the same

time. We use the short term mean value and the inter-quartile range (IQR)

of the last w channel samples to optimise the scaling factor. IQR is a widely

used metric in statistics that measures statistical dispersion, being equal to the

difference between 75th and 25th percentile. THH = 0.3, THL = 0.15 are the

high and low threshold for IQR value and THC = 0 is the threshold for the

mean channel samples. Accurate prediction offered by the proposed method

allows BANs to use less transmit power while avoiding outages.
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Figure 5.10: The prediction accuracy of the proposed method for different
training set sizes.

Figure. 5.11 presents the outage probability and transmit power for the

proposed power control when predicting 1000 ms ahead under four different

Rxsens, using a one-star topology with link sampling rate at 50 Hz. The perfor-

mance of AP and MA are also evaluated for comparison here. Larger outage

probability is expected when the Rxsens is high. We observe the proposed

method consumes approximately 1 dB to 3.5 dB less transmit power and has

approximately 1% smaller outage probability. In Figure. 5.12, we evaluate the

performance metrics when employing multi-star topology channel measure-

ments. As expected, transmit power consumption and outage probability are

slightly larger under a multi-star topology. With Rxsens of −95,−93 and −90

dBm, the transmit power consumption of the proposed method is between
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11% − 26% less than the MA, and provides around 2% outage reduction.

However, with Rxsens of −86 dBm, only marginal improvement is offered by

the proposed method, under both topologies.

Algorithm 5 Transmit power control at 4 Rxsens for Tpred samples into the
future

1: Get Predicted channel gain Spred (length of Tpred)
2: Rxsens = [−95, −93, −90, −86] dBm, k = 1,2,3,4
3: levelsk = [Rxsens(k), Rxsens + 0.5,...,Rxsens + 40] dBm
4: Scaling Factor a = [5.5, 5, 4, 4] dB, b = [0, 0, 1, 1] dB
5: for t in Tpred do
6: if IQR(t) > THH and E[X̃] < THC then
7: a = a + 2.5, b = b + 1.5
8: else if IQR(t) > THH and E[X̃] ≥ THC then
9: a = a + 2, b = b + 1

10: else if THL < IQR(t) ≤ THH and E[X̃] < THC then
11: a = a + 1.5, b = b + 1
12: else if THL < IQR(t) ≤ THH and E[X̃] ≥ THC then
13: a = a + 1, b = b + 0.5
14: else if IQR(t) ≤ THL then
15: a = a + 0.5
16: end if
17: Find index i, levelsk(i− 1) < Spred(t) < levelsk(i)
18: C = Rxsens(k) + a(k)
19: if levelsk(i) < C then
20: Txout(t) = 0 dBm
21: else if C + 2.5 ≤ levelsk(i) ≤ C + 30 then
22: Txout(t) = C + b(k)− levelsk(i) dBm
23: else
24: Txout(t) = −30 + b(k) dBm
25: end if
26: end for

Figure. 5.13 shows the circuit power consumption and outage probabil-

ity comparison among the proposed method, MA and AP. The results are

obtained by averaging from 5 subjects over 18 different on-body links with

Rxsens at −90 dBm. Among the 18 different links, 12 links are of a one-star

topology. In total, over 1.5 hours of measurements data are used in this exper-
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iment. In practice, the actual power consumption of the sensor circuit doesn’t

linearly match with the transmit power. Thus we used a non-linear mapping

proposed in [106] to evaluate the circuit power consumption from the trans-

mit power. The proposed method consumes less than around 2.9 mW circuit

power on average, with approximately 2.1% outage, which is around 45%

smaller than 4% of MA. In addition, MA uses nearly 13% circuit power than

the proposed method. Meanwhile, AP provides a similar result to MA, with

a small outage reduction.

Figure. 5.15 shows the performance over different Tx positions under a

one-star topology. Over 2 hours of measurements of different subjects are

used. Although the performance varies from different Tx positions, the pro-

posed method achieves 1.2% outage reduction on average with respect to MA.

At the same time, the proposed method provides up to 25% circuit power sav-

ing with respect to AP.
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Figure 5.11: Outage Probability and Power Consumption for 4 Rxsens, one-star
topology. LSTM is proposed method.
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Figure 5.12: Outage Probability and Power Consumption for 4 Rxsens, multi-
star topology. LSTM is proposed method.
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5.4 ‘LiteLSTM’

In typical BAN operation scenarios, smartphones are usually used as hub

devices, which coordinate transmissions among all sensors. Therefore, here,
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Figure 5.14: Outage Probability at Rxsense = −90 dBm at different positions,
one-star topology. Rx located at left hip pocket.
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Figure 5.15: Circuit Power Consumption at different positions, one-star topol-
ogy. Rx located at left hip pocket.

we investigate the feasibility of a practical deployment of the proposed neu-

ral networks based predictor. However, when employing NN-based appli-

cations on mobile devices, the performance and energy consumption restric-

tions make the execution of such computationally intensive algorithms bur-

densome, especially in training phases. Hence, in order to extend the benefit

of the NN predictor to embedded devices, it is very important to reduce the

complexity as well as memory footprint of the network structure due to limi-
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tations in computational power and memory.

In order to suit the needs of mobile implementation, we introduce a com-

pact LSTM channel predictor, namely ‘LiteLSTM’. ‘LiteLSTM’ has a relative

low complexity, and the computational cost of the network is therefore re-

duced. Although deeper neural networks often perform better, a single LSTM

layer is used in ‘LiteLSTM’ and the size of the hidden state of an LSTM cell

is reduced to 16. This is viable, because in our experiments, such removal of

redundancy only shows marginal performance degradation. Meanwhile, to

further reduce the number of trainable parameters, the fully connected layers

are replaced by 1-D temporal convolution layers [134], since they are able to

capture spatial features and converge much faster. In addition, the batch nor-

malisation layer is also removed as the performance improvement of the BN

layer in “shallow” networks is limited. At the same time, in each incremen-

tal training episode, the number of epochs should also be reduced. We also

explore the use of an attention mechanism on top of the LSTM outputs in

the ‘LiteLSTM’ network. The attention can generally be interpreted as a vec-

tor of importance weights, which allows the LSTM attend to the parts of an

input that are correlated to the prediction. However, in our experiments we

found that using self-attention after the LSTM/RNN layers will degrade the

prediction accuracy in terms of NMSE. At the same time, attention only pro-

vide marginal outage reduction. This is because, for regression tasks, typical

RNN-based attention schemes are less effective in capturing local dependen-

cies [135, 136].
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5.4.1 Time Complexity Analysis

One of the practical barriers of implementing NN-based methods on portable

devices is constrained computation budgets. We here investigate the com-

putation complexity of our proposed method. In ‘LiteLSTM’, the total time

complexity of 1-D convolutional layers is O(k · T · nl · sl) [137, 138], k denotes

the kernel size, T is the number of time steps. nl, sl are the size of output

and the number of channels at layer l. For the proposed ‘LiteLSTM’, s = 1,

T is the number of input channel samples, n = 1 for the input convolutional

layer and n = h for the output convolution layer, where h is the number of

hidden state in the LSTM cell. For an LSTM layer, the complexity of per

time step is O(h2) [97]. Therefore, the time complexity of the LSTM layer

is O(h2 · T). Since ‘LiteLSTM’ is sequential, the overall complexity will be

O([h2 + k ·∑2
l=1 nl] · T). Therefore, the total complexity of ‘LiteLSTM’ can be

written as O(c · T), where c = h2 + k · (1 + h) ≈ h2 is a constant determined

by the structure of the network.

Hence, with respect to the number of time steps T, ‘LiteLSTM’ is consid-

ered to be linear in time. At the same time, most traditional methods, e.g.

adaptive predictions, also require time complexity of O(T). So that, theoreti-

cally, compared with traditional methods, the overhead of ‘LiteLSTM’ is not

significantly increased.

5.4.2 Experiments and Results

5.4.2.1 Performance of Different Variants

In the following experiment, we benchmark the performance of different

RNN variants. The LSTM cells in the original model are replaced by GRU
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[139] and Vanilla RNN cells. Also, in ‘LiteRNN’ and ‘LiteGRU’, Vanilla RNN

cells and GRU cells replace the LSTM cells in ‘LiteLSTM’. The performance of

the original LSTM model is used as the baseline. For different model variants,

prediction accuracy (in terms of NMSE), computation efficiency and transmit

power control outcomes are compared. In order to obtain comparable results,

the same training sets and prediction set are employed by different model

variants. Thus, the batch size of each iteration is set as 64. Again, the Adam

optimiser with an initial learning rate of 0.003 is used.

The results of the comparison are shown in Table 5.2, where it can be

observed that the original LSTM model can provide most robust results in

terms of prediction accuracy when compared with other variants. However,

this model has computational storage and complexity requirements, typically

infeasible for real-time deployment and processing on a mobile device. When

the original architecture is used, LSTM can provide the lowest NMSE, while

other variants have nearly more than 45%. In terms of power consumption,

despite having a large number of parameters, LSTM consumes nearly 12%

less transmit power than other variants. When a light-weight architecture is

applied, performance degradation can be seen in all variants. Among those

lightweight variants, ‘LiteLSTM’ outperforms others by providing up to 15%

outage probability reduction and 11% less transmit power. It should be noted

that, although Vanilla RNN has less trainable parameters, the level crossing

rate (LCR) 3 of vanilla RNN is the highest among all variants, which is around

63% higher than ‘LiteLSTM’. The average outage duration (AoD) is also low-

est for ‘LiteLSTM’ as opposed to other lightweight variants, with a small

degradation from heavier variants. Thus, from Table 5.2, ‘LiteLSTM’ pro-

3The rate at which Rx power crosses below Rxsens to when it next crosses below Rxsens
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vides small accuracy loss and greater computation/storage reduction com-

pared with the original model. It should also be noted that the circuit power

consumption of ‘LiteLSTM’ is 20% less than using -5dBm constant transmit

power [11]. In addition, the proposed method uses even less circuit power

than cooperative power control [38], which requires more complicated radio

receiver design.

.
Table 5.2: Prediction performance comparison of different structures. NMSE is
Normalised mean-square-error (with ratio to LSTM, higher ratio implies less ac-
curacy). Tx_Pow is transmit power in dBm, “Circuit" is circuit power consump-
tion in mW. LCR is level crossing rate in Hz, AoD is average outage duration in

ms

Methods Accuracy Efficiency Performance
NMSE # of Para. Outage Tx_Pow Circuit LCR AoD

LSTM – – 75529 1.70% -8.80 3.09 3.04 11.62
RNN 145.70% 19081 1.80% -8.33 3.17 3.75 11.80
GRU 147.94% 56713 1.79% -8.29 3.18 3.07 11.62

LiteLSTM 119.18% 1171 1.83% -8.50 3.13 3.87 12.28
LiteRNN 149.26% 309 2.13% -8.07 3.22 6.31 12.57
LiteGRU 184.76% 885 2.16% -8.26 3.19 4.91 13.56

5.4.2.2 Sampling Rates

In order to better interpret our method in the context of IEEE 802.15.6 that

supports varying superframe lengths, Table 5.3 compares the performance

of different methods at sampling rates 50Hz, 20Hz, and 10Hz respectively.

Apart from predictive methods, a non-predictive channel deviation-based

power control [140] is also evaluated. All methods are required to provide

power control for the next 1s using 2s of previous channel samples at the

corresponding sampling rate. As both Adaptive Power Control and Channel

Deviation-based Power Control require recursive calculation at every time
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step, they use their result as the input for the next operation. In contrast, ‘Li-

teLSTM’ has the capability to perform power control to the sensor once after a

longer interval of time using only previous channel samples. Following from

[11], normalised power bias, which is defined as E[ p̃(l)/p(l)− 1], is used to

measure the prediction accuracy.

Table 5.3 shows that for all methods, with the increase of sampling pe-

riod, the outage probability of each method reduces with the sampling rate,

whereas the transmit power of each method increases. This is because large

sampling period will bring fluctuations to the sampled sequences, and Al-

gorithm 5 will respond to those fluctuations by using more transmit power.

With the sampling periods range from 100ms to 20ms, similar results can also

be found in [89], which uses the same data-set as this study. As expected,

with the increase of the sampling period, the performance gains of ‘LiteL-

STM’ remain in most aspects. Compared to traditional methods, the outage

probability of ‘LiteLSTM’ is around 40% less. Nevertheless, ‘LiteLSTM’ con-

sumes similar transmit power to the Moving Average. This is because the

light-weight structure slight reduces its prediction accuracy. It also can be

seen that Adaptive Power Control is more sensitive to the reduced sampling

rate. AoD is a dynamic representation of the system outage performance.

For a system with high AoD, when re-transmission of a packet is required,

it is most likely that the consecutive transmissions will fail again [7, 141].

For all the methods, AoD increases when the sampling rate sampling rate

is reduced. This is because when an outage occurs it takes a longer time to

recover. The AoD of Adaptive Power Control is the largest among all the

methods and when lowering the sampling rate, it increases from 32.65ms to

40.42ms. Meanwhile, ‘LiteLSTM’ is resilient to longer sampling periods, as
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the AoD of ‘LiteLSTM’ is the smallest and remains almost constant at around

24ms.

Table 5.3: Prediction performance comparison of different sam-
pling rates. Higher bias implies less accuracy. Tx_Pow is trans-
mit power in dBm. “Circuit" is circuit power consumption in mW.
AoD is average outage duration in ms. STD PC, MA, AP represent
Standard Deviation Power Control [140], Moving Average [131] and

Adaptive Power Control [132] respectively.5

Rate Method Acc. Performance
Bias Out. Prob Tx_Pow Circuit AoD

50Hz

LiteLSTM 2.53 5.08% -7.90 3.24 22.18
STD PC – – 7.29% -7.49 3.32 24.73

MA 2.92 6.91% -7.86 3.26 26.78
AP 4.57 9.00% -8.43 3.16 32.65

20Hz

LiteLSTM 1.42 3.93% -7.58 3.29 25.10
STD PC – – 6.98% -7.66 3.28 32.67

MA 1.94 5.11% -7.64 3.28 29.01
AP 3.17 7.05% -8.51 3.14 37.75

10Hz

LiteLSTM 1.04 3.52% -6.61 3.47 24.00
STD PC – – 7.01% -6.46 3.51 38.35

MA 1.48 4.48% -6.48 3.50 27.89
AP 2.43 6.99% -7.35 3.35 40.42

5.4.2.3 On-device Runtime Performance

Although, the linear time complexity of ‘LiteLSTM’ is theoretically guaran-

teed, the actual running time can be highly sensitive to the implementation

and hardware. Meanwhile, the running time of the training process has a

huge impact on the functionality of our proposed incremental learning mech-

anism. We, therefore, evaluate the runtime performance of the ‘LiteLSTM’ by

using commercial mobile devices. Two devices: Raspberry Pi 3 and Pixel 3

are used to implement our proposed method. Because of the different CPU

5LCR is not evaluated as it is related with sampling rate.
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Figure 5.16: Mobile Implementation

Table 5.4: The ratio of NMSE between the ‘LiteLSTM’ & the original version
of the LSTM predictor

Name of the Subject Pixel Raspberry Pi 3

20090430_Female2 116% 113%
20090421_Male1 123% 125%
20090421_Male5 120% 121%
20090417_Male4 115% 112%

20090423_Female4 125% 122%

architectures on these two devices, different deep learning frameworks are

used. On Pixel 3, we implement ‘LiteLSTM’ using a Keras. On Raspberry Pi

3, Tensorflow that is built from a source is used. In Table 5.4, we compare the

prediction accuracy on both devices using different channel measurements in

terms of NMSE against the original version of the LSTM predictor. Fig. 5.16

demonstrates our implementation running on a Pixel 3.

It can be observed that the mobile implementation of ‘LiteLSTM’ gives

similar results compared to previous experiments. However, since ‘LiteL-
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STM’ is deployed by different frameworks on mobile devices (using ARM

CPU), the precision of the prediction is slightly degraded. The prediction ac-

curacy of the Pixel 3 and Raspberry Pi are very similar. Most importantly, the

network is compressed at an enormous scale in terms of the number of train-

able parameters, which guarantees the normal operation of the mechanism.

In our experiments, the on-device training time of the proposed neural net-

work will increase due to limited computational power. Thus, if the training

takes longer than the period of one segment of the incremental training, the

timing scheme then overflows. As the training process continues, such over-

flow accumulates and will prevent the neural network from updating param-

eters. To make sure the incremental training mechanism operates properly,

the maximum training time allowed for one epoch is defined as:

Ttmax(Nsamples) =
Nsamples

Nepoch × fs
, (5.7)

where fs is the sampling frequency. Besides, the training time is also re-

lated to the number of batches. To maintain a fully functional Incremental

training scheme, the training time should be kept less than Ttmax. To explore

the relationship between the training time and the training parameters, we

evaluate the training time of the proposed predictor on a Pixel 3 with differ-

ent training set sizes and batch sizes by using the same channel measurement

set. Table 5.5 demonstrates such a relationship in detail. As can be seen

the relationship between the actual training time and the size of the training

set is not linear. Feasible settings that meet the requirements of incremental

learning are highlighted. When running on Raspberry Pi, the runtime of ‘Li-

teLSTM’ is not able to meet (5.7), due to low computation capability. For Pixel

implementations, when the numbers of samples for training is less than 2000,
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Table 5.5: Incremental Training Time for Different Batch Sizes

Batch Size Device Number of Samples
500 1000 2000

64 Pixel 2.0s 3.6s 6.6s
Raspberry Pi 6.9s 11.3s 14.2s

32 Pixel 3.1s 5.9s 10.4s
Raspberry Pi 10.2s 16.4s 22.5s

16 Pixel 4.0s 8.4s 16.2s
Raspberry Pi 15.4s 25.6s 30.1s

it is difficult to keep the incremental training mechanism fully functional by

using small batches.

5.5 Concluding Remarks

In this chapter, firstly an LSTM based BAN long-term channel prediction

scheme was presented. The proposed method provided noticeable improve-

ments in reliability and power consumption in comparison to other predictive

power control methods when mapped to a suitable power control algorithm.

To make sure that the DL method is resilient to the dynamic changes in wire-

less channels, an incremental training scheme was also developed. Due to the

computational limitation of hub devices in BANs, it is important to exploit

the hardware applicability of the proposed DL-based method so that it can

be realistically applied. Therfore, to successfully training the NN on-device,

we developed ‘LiteLSTM’, which is much more efficient in terms of compu-

tational cost. ‘LiteLSTM‘ occupies around 45 times less trainable parameters

than the original LSTM model.

Experimental results showed that the LSTM model can provide up to 2s

channel prediction ahead with 50% NMSE reduction compared to the bench-
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mark Moving Average predictor. When mapped to a suitable power control

algorithm, there were noticeable improvements in reliability and power con-

sumption in comparison to other predictive power control methods. Com-

parable results can be obtained from ‘LiteLSTM’ at different sampling rates.

By evaluating its runtime performance, despite being implemented on tiny

devices, ‘LiteLSTM’ is still able to retain robust and comparable performance

to LSTM. This has demonstrated that it is feasible to implement advanced

DL channel prediction. Although the high computational complexity of DL

methods often prevent them from realistic implementations on hand-held de-

vices, our proposed light-weight structure can be used to provide more effi-

cient adaptive scheduling approaches to further improve the overall system

performance and enable deployment on hand-held devices. However, it is

a challenging issue to demonstrate how neural networks interact with input

data, especially when using dynamic BAN channel samples as inputs. Hence,

in the next chapter, we using parametric modelling to reveal the relationship

between BAN channel predictive characteristics and the performance of the

‘LiteLSTM’ described here in this chapter.
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Chapter 6

Interpretation of Deep Learning

Channel Prediction Model From a

Wide-Sense-Stationary Perspective

6.1 Introduction

As concluded in the last chapter, recent years have seen growing interest

in predictive resource allocation schemes in BANs. Among such schemes,

DL techniques have achieved extremely high predictive accuracy, in many

cases, outperforming traditional methods. In practice, it is also important to

understand how do the DL methods provide sustainable performance gains

from proper exploitation of the wireless channel features. It is known that

simple models provide higher interpretability than complex ones. However,

with more than thousands of parameters that can be tuned inside the neural

network, DL methods could be interpreted as nonparametric, thus, it is very

difficult to characterise the DL models through direct parametric modelling.

The parametric modelling of the performance of DL predictive methods

with respect to the wireless channel’s probability of stationarity can be used

for predictive analysis towards futuristic autonomous IoH applications. As

123
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it is very important towards understanding the nature of the neural network

that allows optimization of parameters for overall performance gain. This

chapter investigates the following question: What’s the relationship between the

performance of DL method and the predictability of the BAN wireless channel in terms

of the probability of satisfying WSS for different duration times? By answering the

above question, we provide some interpretability to the DL methods, which

helps to unveil the so-called "black-boxed" mechanism behind DL-based ap-

proaches.

Previous research shows that wide-sense stationarity (WSS) is an impor-

tant characteristic to estimate the predictability of a channel, and therefore

plays a significant role in the design of BAN systems. The definition of the

WSS or second-order stationarity is as follows:

Definition 6.1. WSS If the first and second moments (mean and auto-covariance)

of a process X(t) are independent of time, such that:

E [X(t)] = µx(t1) = µx(t1 + ω), for all ω ∈ t

Cov[X(t1), X(t2)] = Cov[x(t1, t2)]] = Cov[x(t1 + ω, t2 + ω)], for all ω ∈ t,
(6.1)

where µx(t) denotes the mean of X(t). Cov[X(t1), X(t2)] = E[{X(t1) −

µx(t)}{X(t2)− µx(t)}] depends on the difference of t2 − t1.

However, in practice, BAN channels are extremely difficult to model be-

cause of the human-body dynamics and shadowing effects brought by pos-

tural movements. Previous studies suggest that real-world radio channels

often demonstrate ‘quasi-stationary’ characteristics. In order to identify the

suitable time region of wide-sense stationary, it is important to provide sys-
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tematic modelling of channel behaviour. As have already been discussed1

that WSS has not been broadly studied for BANs. In [142] provide a practical

approach to examine the WSS of BAN on-body channels using null hypoth-

esis significance testing [143]. In [142] interval over which the channel is

WSS determines the interval for which the statistical models are meaningful.

Where the channel is not semi-stationary, we shall refer to it as non-stationary.

It is shown [11, 144] that, for BAN on-body channels the probabilities of sta-

tionarity at large intervals (> 500 ms) are relatively low, typically under 50%.

Hence, it is very important to verify that how do the low probabilities of

stationarity affect the performance of DL channel prediction schemes.

Therefore the main contributions of the study are:

• The parametric modelling of the performance of DL predictive methods

with respect to the wireless channel’s probability of stationarity.

• We show that outage probability is a Reciprocal Logarithm function of

the average probability of stationarity and MSE has a sigmoidal rela-

tionship with the average probability of stationarity.

In the following sections, we describe how to measure the BAN chan-

nel stationarity via null hypothesis significance testing (NHST) in detail, and

discuss the experimental outcomes of different window lengths from bench-

marking the previously proposed ‘LiteLSTM’ over real-life experimental chan-

nel measurements. Finally, conclusions and remarks are summarized.

1Some related work has been reviewed in Chapter 2
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Tx Rx
One-Star Lh Lc Lw Rw Ra H

Table 6.1: Sounders placement map: One-Star Topology2

Tx Rx
Multi-Star Lh Rc Lw Rw Ra H Rk Lk La Le

Table 6.2: Sounders placement map: Multi-Star Topology2

6.2 Experiment Scenarios

In this chapter, we analyse the WSS characteristics of BAN on-body channels

and benchmark DL-based predictive power control method with an extensive

amount of channel measurements from [118]. Detailed descriptions of these

measurements can be found in Chapter 4.

Both one-star and multi-star topologies were measured. The full map of

Tx/Rx locations is illustrated in Table 6.1 and Table 6.2.

Channel gains were derived using the received signal strength indicators

(RSSIs). Digital logs were made upon successful packet detection by the

sounders. It is noteworthy that each Tx transmits in a roundrobin fashion,

at 2.36 GHz, which in compliance with IEEE 802.15.6.

6.3 Null Hypothesis Significance Testing

We apply stationarity null hypothesis significance testing based on the defi-

nitions given in [145, 142]. WSS is tested over mean and variance via ANOVA

that will be discussed later. As defined in Definition 6.1, the WSS implies

mean and variance stationarity of the channel.

2Sounders placement map: R, L-Right, Left. w-Wrist, a-Ankle, k-Knee, e-Elbow, h-hip,
H-head, c-Chest.
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In this paper, WSS is tested over a wide range of window lengths L, hence,

the whole channel is divided into m consecutive non-overlapping intervals of

length l. This means that there will be m − 1 pairwise independent null

hypothesis test, for each window length L where L = 2 × l. The Fig 6.1

illustrate the pairwise comparison across two intervals.

Thus, the average probability of stationarity of L under the null hypothesis

for test statistic TL at a significance level α can be formalized as:

H0 : L retains WSS (null hypothesis)

H1 : L does not retain WSS (alternative hypothesis)
(6.2)

Then,

pL = P{Tl > TLobs|H0}. (6.3)

When given that the null hypothesis is true, the p-value pl that represents

the probability of observing a more extreme test statistic Tl is a measure of

evidence against H0. Therefore, when at the significance level/threshold α

that measures the significance of the test outcome. The p-value pl can be

interpreted as the probability of incorrectly rejecting a true null hypothesis:

if α > pl, then H0 is rejected in favor of H1.

if α ≤ pl, then H0 is not rejected.

The average probability of stationary for window length L at threshold α

is the summing over each of the m− 1 null hypothesis significance testing :
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Figure 6.1: m− 1 pairwise comparison across consecutive intervals

{p1
L, P2

L, P3
L, ..., Pm−1

L }, which can be expressed as:

γL =
∑m−1

i=1 {p1
l > α}

m− 1
, (6.4)

γL therefore represents the percentage of pairwise comparisons that sat-

isfy the null hypothesis significance testing over all windows.

6.3.1 One-way ANOVA Test

To evaluate the mean and variance consistency of the BAN on-body channels,

a one-way ANOVA test is used in this study. The ANOVA test is the ratio of

the mean square variance within each interval and the mean square variance

between the intervals, which analyzes the variation or difference between the

means of two or more sets of observations:

Tanova =
S̃between

S̃within
, (6.5)
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where,

S̃between =
∑k

i=1 ni(X̄i − X̄)2

k− 1
, (6.6)

and,

S̄within =
∑k

i=1
N − k

, (6.7)

where N is the total number of the observations, X̄i is the sample mean

in the ith group, and X̄ is the overall mean. In general, ANOVA testing re-

quires that the variances of the underlying distribution are homogeneous and

have a normal distribution. However, BAN channels are not always normally

distributed. Despite this, with a large number of observations, ANOVA can

be considered as robust [145]. In addition, when the sets/intervals are the

same size and have a similar distribution, the sensitivity of ANOVA against

the homoscedasticity assumption is relatively low [146].

6.4 Performance Evaluation

6.4.1 ANOVA Test Results

Table 6.3 shows the average probability of stationarity for the ANOVA hy-

pothesis tests of BAN on-body channels (See Section 6.3 for details) when

α = 0.95. It should be noted that the results are averaged over all channel

measurements with multiple subjects.

Overall, the average probability of stationarity is relative low (less than

40%) 3. This suggests that in our experiments, on-body channel gains still

exhibit non-stationarity in general. In addition, the stationarity reduces with

the increase of window length.

3This finding is in agreement with [145]
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Window length
(No. of samples) Duration Avg. Prob. of stationarity

p-value in average
150 3000ms 0.387
200 4000ms 0.387
250 5000ms 0.336
500 10000ms 0.275
750 15000ms 0.223

1000 20000ms 0.205

Table 6.3: ANOVA hypothesis tests for the average probability of stationarity
over all channel measurements

Remark. The results of the ANOVA test demonstrate that the probability of

stationarity reduces significantly with the increase in window length. Hence,

this brings up the discussion of how will the reducing probability of station-

arity impact the performance of DL predictive power control.

To analyse the effect of training duration in DL channel prediction models.

In the next section, we evaluate the performance of ‘LiteLSTM’ using different

input sizes that correspond to different window lengths in the null hypothesis

significance testing .

6.4.2 Performance of ‘LiteLSTM’

As described in Chapter 5 Section 5.4, ‘LiteLSTM’ is a DL channel predictor

and it is much more efficient in terms of computational cost. ‘LiteLSTM’

uses 1-D convolution layer as input layer, and the output of the input layer

is connected with a single LSTM layer, with another 1-D convolution layer as

output layer. The 1-D convolution layer provide better generalization ability

[147], and as shown previously in Chapter 5 the performance of ‘LiteLSTM’

maintains good performance under different sampling rates.

Here we demonstrate the performance outcomes of the DL method using
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different input sizes Nin. It should be noted that for sampling frequency fS,

the corresponding duration of each instance is Ts = 1
fs
× Nin. The dataset

we used to conduct our experiments was described in Chapter 5. And the

parameter settings are listed in Table 6.4.

Table 6.4: Parameter Settings of ‘LiteLSTM’
Description Value

Number of layers in the LSTM network 1
Size of the hidden state of an LSTM cell 16
Number of sequences in each mini-batch 32

Input size of the network Nin
No. of epochs for initial training 50

No. of epochs for model fine tuning 20
Learning Rate 0.003

Dropout Probability 0.8

In addition, to produce the best possible performance from the proposed

predictor, we used the previously developed Tx power control algorithm. The

details of the Tx power control scheme is described in Algorithm 5. It should

also be noted that, error bars are also plotted to represent one sigma of un-

certainty (+/- 1 σ).

Here we use Mean Square Error to measure the ‘absolute’ numerical predic-

tion error of the ‘LiteLSTM’. As shown in Figure 6.2, the MSE firstly reduces

and then increases with the increase of window length. This trend is similar

to Figure 5.10 in Chapter 5 where NMSE is plotted against the input size of

the NN.

Figure 6.3 illustrates the Tx power consumption against different window

lengths. It can be seen that Algorithm 1 provides sustainable transmit power

reduction. Hence, average Tx power consumption approximately remains

constant over different input sizes.

As shown in Figure 6.4, outage probability increases with an increase in
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Figure 6.2: MSE at different window length

(d
B

m
)

Figure 6.3: Tx power consumption at different window length

Draft Copy – 7 May 2021



§6.4 Performance Evaluation 133

window length. Also, the standard deviation of outage probability increases,

which means that large window length (less probability of stationarity) re-

duces the robustness of the ‘LiteLSTM’. Meanwhile, Figure 6.5 demonstrates

that for Average Outage Duration (AoD), a similar pattern can be identi-

fied. This is because AoD is correlated with outage probability, as higher

probability of outage also increases the probability of consecutive outage that

eventually increases the duration of the outage.

(%
)

Figure 6.4: Outage probability at different window length

6.4.3 Performance Modelling

To parametrically model the performance of ‘LiteLSTM’ and the probability

of stationarity at different window length, we use the Levenberg-Marquardt

method [148], which is a fast, reliable technique for nonlinear optimization to

model the non-linear relationship between them.
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(s
)

Figure 6.5: AoD at different window length

Figure 6.6 shows that relationship between MSE of ‘LiteLSTM’ and the

probability can be characterised by a Logistic Model:

MSE =
α

1 + β · exp(−θ · p)
, (6.8)

where the values of constants α, β and θ are listed in Table 6.5.

Constant α β θ
Values 26.468 -20.833 21.494

Table 6.5: Constants’ Values of the Logistic Model

In Figure 6.7 an a Reciprocal Logarithm model is shown to present the re-

lationship between outage probability and the probability of stationarity. It

means that the outage probability of ‘LiteLSTM’ can be represented as a Re-

ciprocal Logarithm function of the probability of stationary:

Outage =
1

α + β · ln p
, (6.9)
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the values of parameters: α and β are listed in Table 6.6:

Constant α β
Values 51.018 20.934

Table 6.6: Constants’ Values of the Reciprocal Logarithm Model

Figure 6.6: Logistic Model of MSE towards probability of stationarity (p-
value)

6.4.3.1 Goodness-of-Fit

To access the goodness of fit (GOF) of the parametric modelling, two metrics

are used, which are the standard error and the coefficient of determination

R2 respectively. The standard error can be expressed as σx̄ = σ√
n , where σ is

the standard deviation. The Correlation Coefficient R is:

R =
E[XY]−E[X]E[Y]√

E[X2]− (E[X])2
√

E[Y2]− (E[Y])2
(6.10)
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Figure 6.7: Reciprocal Logarithm of Outage Probability towards probability
of stationarity (p-value)

and for sampled data, it could be represented as:

R =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2
√

∑n
i=1(yi − ȳ)2

(6.11)

coefficient determination R2 is basically a square of a correlation coeffi-

cient, which provides one measure of goodness of fit. The closer this value is

to 1 or to -1, the better the fit. Table 6.7 provides the standard error and the

coefficient determination R2 for the Reciprocal Logarithm Model of Outage

Probability and the Logistic Model of the MSE respectively.

Model Reciprocal Logarithm Logistic Model
Standard Error 0.009 0.040

Coefficient Determination 0.991 0.989

Table 6.7: Goodness-of-fit of the Logistic Model and the Reciprocal Logarithm
Model

It is clear that the standard error is relatively small, which implies that the

models are effective. Also, the correlation coefficients are close to 1, so that

Draft Copy – 7 May 2021



§6.5 Concluding Remarks 137

0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38
p-value

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

Re
si
du

al

nruns=4, P = 0.00% (pattern unlikely)

Figure 6.8: The residual plot of the logistic model

goodness-of-fit is guaranteed.

Additionally, the residual plots of these two models are illustrated in Fig-

ure 6.9 and Figure 6.8. Although, such residuals are normally used to assess

the fitness of linear regressions, the randomness in both plots also corrobo-

rates that the parametric models provide a decent fit.

6.5 Concluding Remarks

In the last chapter it was shown that DL methods can achieve better perfor-

mance in BAN channel prediction tasks, leading to more efficient resource

allocation. In this chapter, we explored the relationship between the dynamic
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Figure 6.9: The residual plot of the Reciprocal Logarithm model

features of BAN channels and the performance of the neural network. Using

the null hypothesis significance testing (NHTS), the predictability attributes

of the BAN channels were characterised in terms of the probability of sta-

tionarity. More specially, here, a one-way ANOVA test was used to measure

the probability of stationary with different window lengths. The results of

the one-way ANOVA test demonstrated that BAN on-body channels exhibits

non-stationarity in general and the probability of stationarity reduces signifi-

cantly with the increase of the window length. When trained by using input

sequences with different sizes (window length), the first order and second

order performance statistics of ‘LiteLSTM’ demonstrates different non-linear

relationships with input lengths.

Draft Copy – 7 May 2021



§6.5 Concluding Remarks 139

To this end, we used parametric modelling with guaranteed goodness-of-

fit to measure the relationships between the level of stationarity of the channel

and the actual performance metric of ‘LiteLSTM’ to provide parametric ob-

servation of how exactly the dynamic features of the BAN channels impact

our proposed neural network. The results showed that outage probability

is reciprocal logarithm function of the average probability of stationarity and

MSE has a sigmoidal relationship with the average probability of stationarity.
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Chapter 7

Conclusion and Future Work

In this chapter, the key contributions made in this thesis are remarked upon,

and future research directions are also illustrated and discussed.

7.1 Conclusion

The overall goal of this thesis has been to achieve high-reliability and im-

prove energy efficiency for BAN enabled IoH systems, via adaptively and

intelligently distributing limited radio resources and accurately predicting

dynamic wireless channels.

There is no denying that because of its promising advantages, BANs are

becoming a reality in meeting current and future requirements of the IoH

systems. Recently proposed BAN communication standards and current re-

search challenges associated with the realisation of BAN enabled IoH were

described in detail. BAN sensor nodes are often constrained in sizes that

lead to limited transmit power to meet the requirements of next-generation

IoH. Moreover, the lack of central network coordinators results in heavy inter-

BAN interference, which makes it challenging to maintain high QoS when ra-

dio resources are limited. Therefore, due to these challenges and the unique

features of BANs, we argued that the existing literature is not well suited for

real-world BAN enabled IoH systems. To this end, our line of works explored

141
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the use of effective radio resource schemes with game-theoretic mechanisms

and accurate wireless channel prediction technology to improve overall com-

munication QoS, maintain high reliability and increase energy efficiency of

BANs. It should be noted that we used extensive BAN channel measurements

that were collected from subjects performing different "everyday" activities in

practical scenarios, which captures dynamic factors of the BAN channels in

realistic settings, which we used extensively to evaluate our proposed solu-

tions.

Below, we provide conclusions of each technical chapter (from Chapter 3

to Chapter 6) and short answers to the research questions raised in the thesis

statement (Chapter 1).

In Chapter 3, a non-cooperative game transmit power control was used,

which adaptively allocated limited transmit power for each BAN sensor.

When compared with traditional methods, the proposed game provided a

remarkable reduction in energy consumption and guaranteed good commu-

nication reliability. Most importantly, the postulate of social optimality of the

game was mathematically proven across all players/BANs when giving fea-

sible constraints. This chapter provided answers to the questions raised in:

Q1, Q2.

In Chapter 4, we further strippped down the strength of game-theoretic

methods by developing two cross-layer radio allocation schemes (Link Adap-

tation Game and Contention Window Game)employed with a time-division

multiple access (TDMA) MAC that has a novel back-off mechanism, to jointly

adjust the different transmission parameters of BAN nodes. It was demon-

strated that the proposed methods provide robust transmission under strong

inter-BAN interference. This chapter provided answers to the questions raised
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in: Q2, Q3.

In Chapter 5, we explored deep learning frameworks for long-term chan-

nel predictive power control, which demonstrated great improvement in en-

ergy efficiency when compared with traditional predictive power control meth-

ods. To utilise a DL method in realistic BAN applications, a light-weight

network with low computational cost and comparable performance that can

be implemented on hand-set devices was proposed. This chapter provided

answers to the questions raised in: Q4, Q5, Q6.

In Chapter 6, we characterised the interpretability of our proposed DL

methods in Chapter 5 in terms of predictive behaviour of the BAN on-body

channels. Null Hypothesis Tests (NHPT) were applied over a varies number

of channel measurements to analyse the wide-sense-stationarity of the wire-

less channels. Parametric modelling was also conducted, which showed rela-

tionships between channel characteristics and the performance metrics of DL

methods, and such relationships numerically explained the proposed neural

networks. This chapter provided answers to the questions raised in: Q4, Q7.

7.2 Future Work

In this thesis, we have shown that non-cooperative game theory power con-

trol schemes can significantly save energy consumption of BAN sensors and

prolong the system lifespan, and provide significant interference mitigation

for co-existing networks.

7.2.1 Recommended Future Research Work for Chapter 3
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In the future, the scalability and computational cost of game-theoretic meth-

ods using hardware implementations could be investigated. For next-generation

IoH applications that consist of sensors with a varying number of types,

BANs need to be able to adapt to various transmission priorities, especially

for on-demand emergency packet transmissions. Hence, the development of

resource allocation schemes cross MAC/PHY layers that support different

communication priorities will be paramount in the future.

7.2.2 Recommended Future Research Work for Chapter 4

Although game theory provides a promising solution towards multi-BAN co-

existence, practical implementation of such algorithm on a hardware level

still requires further research. Meanwhile, it would also be promising to ap-

ply a software-defined network (SDN) that allows the network to be managed

from a logically central point and could simplify the control and management

operations of BAN systems. This would be in order to support comprehen-

sive BAN solutions that have different PHY layer standards: narrowband,

ultra-wideband (UWB), and human body communication (HBC) at the same

time. Considering that the interference between BAN communications and

other wireless systems such as Bluetooth, WLAN, ZigBee, etc.., will become

inevitable, it will be essential to address the inference management challenge

in heterogeneous IoH network environments in the future.

7.2.3 Recommended Future Research Work for Chapter 5

Attention mechanisms have been widely used in different tasks in text clas-

sification, video segmentation and time series prediction, which are able to

Draft Copy – 7 May 2021



§7.2 Future Work 145

relate different positions of a sequence in order to compute a better repre-

sentation. It would be worth investigating how to combine attention with

our proposed LSTM channel predict to further improve prediction accuracy.

Apart from that, it would also be interesting to use a Seq2seq model [125] with

a novel architecture – transformers (also based on attention), as the sequential

nature of the RNN-based Seq2seq architecture prevents parallelization in the

end-to-end model (as used in this thesis). Going forward, we would like to

borrow ideas like graph convolution networks (GCN) [149] and random ge-

ometry graph frames in order create better topology management for optimal

resource allocation in a BAN‘s link layer.

7.2.4 Recommended Future Research Work for Chapter 6

In order to empirically estimate the influence of the dynamic features of BAN

channels on the prediction made by a DL model, a Null Hypothesis Test

was used to provide interpretability. However, in order to explore the re-

lationship between wireless channel dynamics and different neural network

structures in depth, it would be interesting to numerically analyse the latent

space which represents the hidden ’compressed state’ of the neural network.

In addition, one could also provide interpretability not only by statistic or

parametric models, but by addressing the dimensions of decomposability and

algorithmic transparency of the IoH.
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Chapter 8

Appendix

8.1 Proof of Theorem 4.5

Firstly, the utility function (4.27) denoted as:

V = d · S− c · D− PDrop (8.1)

It can be seen that the first derivative of the utility function is continuous:

d · ∂S
∂CW

=
∂S
∂τ

∂τ

∂CW

=
∂τ

∂CW
·
(1− P)Tpayload[Tslot + τ(Ts − Tslot)]− (Ts − Tslot)τ(1− P)Tpayload)

[Tslot + τ(Ts − Tslot)]2

= −(aCW + 1)−2 d(1− P)TpayloadTslot

[Tslot + τ(Ts − Tslot)]2

(8.2)

Hence, according to [103], in this contention window game, the Nash equilib-

rium exists.

d · ∂2S
∂CW2 =

2d(1− P)TpayloadTslot([Tslot + τ(Ts − Tslot)]
2)τ2(Ts − Tslot)

[Tslot + τ(Ts − Tslot)]4

+ 2τ3 d(1− P)TpayloadTslot

[Tslot + τ(Ts − Tslot)]2

(8.3)

147
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Meanwhile, delay is a linear function of the contention window size, thus

∂2D
∂CW2 = 0.

∂2PDrop

∂CW2 = 2τ3Pm+1, (8.4)

which should always be positive. Therefore, the second order derivative of

the utility function can be obtained as follows:

∂2v
∂CW2 =− 2τ3Pm+1 + 2τ3 d(1− P)TpayloadTslot

[Tslot + τ(Ts − Tslot)]2

+
2d(1− P)TpayloadTslot([Tslot + τ(Ts − Tslot)]

2)τ2(Ts − Tslot)

[Tslot + τ(Ts − Tslot)]4

(8.5)

When d is set in a reasonable range, ∂2v
∂CW2 will always be less than zero.

Hence, the utility function is concave.

8.2 Proof of Theorem 4.3

In BAN i, for any x, y, z ∈ X, ‖x− y‖ = 2, ‖x− z‖ = ‖z− y‖ = 1, we have

F(Ai = (P, Rx), A−i) = −cPg
x − q

1
Rx

+
α(Rx) · γβ(Rx)

2
+ ∑

j 6=i
−cPw

j − q
1
Rj

+
α(Rj) · γβ(Rj)

2

= C(Px) + G(Rx) + H(Ai) + Q(A−i),
(8.6)

where H(Ai) = H((P, Rx)) = α(Rx)·γβ(Rx)

2 , Q(A−i) = ∑j 6=i−cPg
j − q 1

Rj
+

α(Rj)·γ
β(Rj)

2 . Meanwhile, F(Az, A−i) and F(Ay, A−i) are expressed in a simi-

lar way.

Obviously, G(R) is strictly concave, and increase with R. Hence, 2G(Rz) >
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G(Rx) + G(Ry). Also, as shown in table 4.1, 0 > 2α(Rz) > α(Rx) + α(Ry).

When at high PDR regime, where γ > 0dB, as β(Rx) increases with R and

γβ(Rx) > 0 is convex:

(γβ(Ry)− γβ(Rz))− (γβ(Rz)− γβ(Rx)) > 0

α(Rx) · {(γβ(Ry)− γβ(Rz))− (γβ(Rz)− γβ(Rx))} < 0
(8.7)

Also,

γb(RX) · {(α(Rx)− α(Rz))− (α(Rz)− α(Ry))} < 0 (8.8)

Combining equation 8.8 and equation 8.7:

α(Rx) · {(γβ(Ry)− γβ(Rz))− (γβ(Rz)− γβ(Rx))}

+ γβ(RX) · {(α(Rx)− α(Rz))− (α(Rz)− α(Ry))} < 0, (8.9)

and

α(Rx) · {(γb(Ry)− γb(Rz))− (γb(Rz)− γb(Rx))}

+ γb(RX) · {(α(Rx)− α(Rz))− (α(Rz)− α(Ry))}

− (α(Rx)− α(Rz))(γ
b(Ry)− γb(Rz))

− (α(Rz)− α(Ry))(γ
b(Rz)− γb(Rx)) < 0

(8.10)

Thus:

α(Ry)γ
β(Ry)− 2α(Rz)γ

β(Rz) + α(Rx)γ
β(Rx) < 0, (8.11)

which means 2H(Ai = (P, Rz)) ≥ H(Ai = (P, Ry)) + H(Ai = (P, Rx)),
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such that:

2F(Ai = (P, Rz), A−i) > F((P, Rx), A−i) + F((P, Ry), A−i) (8.12)

Therefore, the potential function F satisfies Lemma1.

8.3 Proof of Proposition 4.1

Let x satisfy F((P, Rx), A−i) ≥ F((P, Ry), A−i) for all y with |x− y| ≤ 1. For

y with d = |x − y| ≥ 2, we can make a sequence xd
k=0 such that x0 = x and

xd = y with the following steps:

xk+1 ∈ arg max
|x−z|=1,|y−z|=d−k−1

F((P, Rz), A−i) (8.13)

Suppose |xk − z| = |xk+2 − z| = 1, then we have d − k = |xk − y| =

|xk − z + z− y| ≤ |z− y|+ 1. Meanwhile, |z− y| = |z− xk+2 + xk+2 − y| ≤

|z− xk+2|+ |xk+2− y| = d− k− 1. Therefore, d− k− 1 = |z− y|, which gives

the following equation:

F((P, Rxk+1), A−i) = max
|xk−z|=1,
|z−y|=d−k−1

F((P, Rxz), A−i) ≥ max
|xk−z|=xk+2−z|,
|xk+2−z|=1

F((P, Rxz), A−i)

(8.14)
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Since F satisfies LMP as proved above, for 0 ≤ k ≤ d− 2:

max
|x−z|=|z−y|=1

F((P, Rxk+1), A−i) =



≥ F((P, Rxk), A−i) = F((P, Rxk+2), A−i)

, if F((P, Rxk), A−i) = F((P, Rxk+2)

> min{F((P, Rxk), A−i), F((P, Rxk+2), A−i)}

, otherwise
(8.15)

Since |x0 − x1| = 1, F((P, Rx0), A−i) ≥ F((P, Rx1), A−i), Also, by using the

above properties, for all k we have: F((P, Rxk), A−i) ≥ F((P, Rxk+1), A−i).

Thus, by induction we can have:

F((P, Rx), A−i) = F((P, Rx0), A−i) ≥ F((P, Rx1), A−i)...

F((P, Rxd−1), A−i) ≥ F((P, Rxd), A−i) = F((P, Ry), A−i) (8.16)
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