40 research outputs found

    Using Delayed Feedback for Antenna Selection in MIMO Systems

    Full text link

    Interference mitigation using group decoding in multiantenna systems

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Heterogeneous wireless networks for smart cities

    Get PDF
    In the near future, a world of smart cities is envisioned in which many devices equipped with sensors and communication interfaces can be used to collect and share data in order to derive maps or infer information on some parameter of interest. Wireless technologies are enabling this smart city paradigms, where many items are networked for the growth of society. This scenario opens new challenges to wireless network designers, with new performance metrics, coverage and privacy needs, as well as the need for a tighter integration of different networks. This is the fundamental concept of Heterogeneous Networks. Enclosing humans in the loop, through crowdsensing techniques, will dramatically increase the amount of data available for the mapping process, with obvious benefits in terms of the resulting accuracy. On the other hand, the huge amount of data generated represents also a challenge that, along with the irregular, uncontrollable, spatial distribution of measurements represent serious challenges to be addressed. Another important aspect of smart cities scenarios is represented by vehicular networks. Several technologies have been proposed to address such application. Among the others, an interesting solution is provided by Visible Light Communications (VLC). Based on the use of the light emission diodes (LEDs) that are already available on the majority of vehicles, VLC would enable short range communication in large, unlicensed, and uncongested bands with limited costs. In the framework of smart cities scenarios, my research activity aimed at formulating and solving some of the issues arising from the envisioned challenging services, with both analytical and simulation-based approaches

    Automated liquid handling systems for microfluidic applications

    Get PDF
    Advances in microfluidic research have improved the quality of assays performed in micro-scale environments. Improvement of liquid handling techniques has enabled efficient reagent and drug use while minimising waste. The requirements for the applied techniques vary with applications and a custom integrated liquid handling solution was developed to accomplish some of these applications with minimal changes to the system. It is desirable to employ this technology to neuroscience research that requires a fluidic system that can test theories of reinforcement learning in neuronal cultures. An integrated system is therefore required to implement transport and manipulation of media and drugs loaded in a microfluidic device. One requirement for such an integrated system for liquid handling is a transport mechanism to deliver reagents and nutrients to cultures. A liquid flow control system is required to allow precise and timely control of flow rates through a microfluidic device. This can be extended to enable more sophisticated drug delivery approaches like gradient generation, spatial drug distribution and high temporal resolution of the drugs delivered. Another requirement for an integrated system is a liquid loading system that is capable of inserting specified drugs into the flow line. Such a loading system would allow any number of drugs to be loaded during an experimental process to the microfluidic device containing cells as part of an assay. The integration of these systems will allow researchers take advantage of the combined systems. Software development process should also be undertaken to improve the modularity of the integrated system so that hardware changes have marginal effects on the system operation. The project scope was the development of these liquid handling systems as well as their integration in hardware and software to enable their spatio-temporal drug delivery to neuronal cultures in microfluidic devices. The approach was to optimise performance of custom liquid handling system which was developed to realise fast flow rate changes within 1 second interval. Macro- and micro-scale solutions have been investigated in order to realise effective off-chip liquid loading capabilities. Emphasis has been placed on ease of use, modularity, rapid prototyping and precision. A commercial autoloader was identified as a starting point for sequential drug delivery. This was characterised for suitability and the constraints with this setup was used to identify additional requirements for the development of a novel sequential liquid injection system. The design process of the novel liquid injection system was unable to realise a working system due to mechanical and operational challenges encountered. A modular on-chip liquid manipulation system has been investigated and proposed to realise the sequential injection requirements. Rapid prototyping techniques that can promote ubiquitous microfluidic applications have been identified and verified. An integrated liquid manipulation system has been developed using the commercial autosampler that enables sequential loading of agonists into the microfluidic device as well as reliable chemical signalling of the loaded drugs by switching flow rates of the inputs to the device. This system will be beneficial towards research of other cell types within other research fields requiring similar functionality

    Proceedings of the NASA Symposium on Global Wind Measurements

    Get PDF
    This Proceedings contains a collection of the papers which were presented at the Symposium and Workshop on Global Wind Measurements. The objectives and agenda for the Symposium and Workshop were decided during a planning meeting held in Washington, DC, on 5 February 1985. Invited papers were presented at the Symposium by meteorologists and leading experts in wind sensing technology from the United States and Europe on: (1) the meteorological uses and requirements for wind measurements; (2) the latest developments in wind sensing technology; and (3) the status of our understanding of the atmospheric aerosol distribution. A special session was also held on the latest development in wind sensing technology by the United States Air Force

    Automated liquid handling systems for microfluidic applications

    Get PDF
    Advances in microfluidic research have improved the quality of assays performed in micro-scale environments. Improvement of liquid handling techniques has enabled efficient reagent and drug use while minimising waste. The requirements for the applied techniques vary with applications and a custom integrated liquid handling solution was developed to accomplish some of these applications with minimal changes to the system. It is desirable to employ this technology to neuroscience research that requires a fluidic system that can test theories of reinforcement learning in neuronal cultures. An integrated system is therefore required to implement transport and manipulation of media and drugs loaded in a microfluidic device. One requirement for such an integrated system for liquid handling is a transport mechanism to deliver reagents and nutrients to cultures. A liquid flow control system is required to allow precise and timely control of flow rates through a microfluidic device. This can be extended to enable more sophisticated drug delivery approaches like gradient generation, spatial drug distribution and high temporal resolution of the drugs delivered. Another requirement for an integrated system is a liquid loading system that is capable of inserting specified drugs into the flow line. Such a loading system would allow any number of drugs to be loaded during an experimental process to the microfluidic device containing cells as part of an assay. The integration of these systems will allow researchers take advantage of the combined systems. Software development process should also be undertaken to improve the modularity of the integrated system so that hardware changes have marginal effects on the system operation. The project scope was the development of these liquid handling systems as well as their integration in hardware and software to enable their spatio-temporal drug delivery to neuronal cultures in microfluidic devices. The approach was to optimise performance of custom liquid handling system which was developed to realise fast flow rate changes within 1 second interval. Macro- and micro-scale solutions have been investigated in order to realise effective off-chip liquid loading capabilities. Emphasis has been placed on ease of use, modularity, rapid prototyping and precision. A commercial autoloader was identified as a starting point for sequential drug delivery. This was characterised for suitability and the constraints with this setup was used to identify additional requirements for the development of a novel sequential liquid injection system. The design process of the novel liquid injection system was unable to realise a working system due to mechanical and operational challenges encountered. A modular on-chip liquid manipulation system has been investigated and proposed to realise the sequential injection requirements. Rapid prototyping techniques that can promote ubiquitous microfluidic applications have been identified and verified. An integrated liquid manipulation system has been developed using the commercial autosampler that enables sequential loading of agonists into the microfluidic device as well as reliable chemical signalling of the loaded drugs by switching flow rates of the inputs to the device. This system will be beneficial towards research of other cell types within other research fields requiring similar functionality
    corecore