13 research outputs found

    FSO通信システムの新高度化技術に関する研究

    Get PDF
    早大学位記番号:新7795早稲田大

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries

    Otimização do fronthaul ótico para redes de acesso de rádio (baseadas) em computação em nuvem (CC-RANs)

    Get PDF
    Doutoramento conjunto (MAP-Tele) em Engenharia Eletrotécnica/TelecomunicaçõesA proliferação de diversos tipos de dispositivos moveis, aplicações e serviços com grande necessidade de largura de banda têm contribuído para o aumento de ligações de banda larga e ao aumento do volume de trafego das redes de telecomunicações moveis. Este aumento exponencial tem posto uma enorme pressão nos mobile operadores de redes móveis (MNOs). Um dos aspetos principais deste recente desenvolvimento, é a necessidade que as redes têm de oferecer baixa complexidade nas ligações, como também baixo consumo energético, muito baixa latência e ao mesmo tempo uma grande capacidade por baixo usto. De maneira a resolver estas questões, os MNOs têm focado a sua atenção na redes de acesso por rádio em nuvem (C-RAN) principalmente devido aos seus benefícios em termos de otimização de performance e relação qualidade preço. O standard para a distribuição de sinais sem fios por um fronthaul C-RAN é o common public radio interface (CPRI). No entanto, ligações óticas baseadas em interfaces CPRI necessitam de uma grande largura de banda. Estes requerimentos podem também ser atingidos com uma implementação em ligação free space optical (FSO) que é um sistema ótico que usa comunicação sem fios. O FSO tem sido uma alternativa muito apelativa aos sistemas de comunicação rádio (RF) pois combinam a flexibilidade e mobilidade das redes RF ao mesmo tempo que permitem a elevada largura de banda permitida pelo sistema ótico. No entanto, as ligações FSO são suscetíveis a alterações atmosféricas que podem prejudicar o desempenho do sistema de comunicação. Estas limitações têm evitado o FSO de ser tornar uma excelente solução para o fronthaul. Uma caracterização precisa do canal e tecnologias mais avançadas são então necessárias para uma implementação pratica de ligações FSO. Nesta tese, vamos estudar uma implementação eficiente para fronthaul baseada em tecnologia á rádio-sobre-FSO (RoFSO). Propomos expressões em forma fechada para mitigação das perdas de propagação e para a estimação da capacidade do canal de maneira a aliviar a complexidade do sistema de comunicação. Simulações numéricas são também apresentadas para formatos de modulação adaptativas. São também considerados esquemas como um sistema hibrido RF/FSO e tecnologias de transmissão apoiadas por retransmissores que ajudam a alivar os requerimentos impostos por um backhaul/fronthaul de C-RAN. Os modelos propostos não só reduzem o esforço computacional, como também têm outros méritos, tais como, uma elevada precisão na estimação do canal e desempenho, baixo requisitos na capacidade de memória e uma rápida e estável operação comparativamente com o estado da arte em sistemas analíticos (PON)-FSO. Este sistema é implementado num recetor em tempo real que é emulado através de uma field-programmable gate array (FPGA) comercial. Permitindo assim um sistema aberto, interoperabilidade, portabilidade e também obedecer a standards de software aberto. Os esquemas híbridos têm a habilidade de suportar diferentes aplicações, serviços e múltiplos operadores a partilharem a mesma infraestrutura de fibra ótica.The proliferation of different mobile devices, bandwidth-intensive applications and services contribute to the increase in the broadband connections and the volume of traffic on the mobile networks. This exponential growth has put considerable pressure on the mobile network operators (MNOs). In principal, there is a need for networks that not only offer low-complexity, low-energy consumption, and extremely low-latency but also high-capacity at relatively low cost. In order to address the demand, MNOs have given significant attention to the cloud radio access network (C-RAN) due to its beneficial features in terms of performance optimization and cost-effectiveness. The de facto standard for distributing wireless signal over the C-RAN fronthaul is the common public radio interface (CPRI). However, optical links based on CPRI interfaces requires large bandwidth. Also, the aforementioned requirements can be realized with the implementation of free space optical (FSO) link, which is an optical wireless system. The FSO is an appealing alternative to the radio frequency (RF) communication system that combines the flexibility and mobility offered by the RF networks with the high-data rates provided by the optical systems. However, the FSO links are susceptible to atmospheric impairments which eventually hinder the system performance. Consequently, these limitations prevent FSO from being an efficient standalone fronthaul solution. So, precise channel characterizations and advanced technologies are required for practical FSO link deployment and operation. In this thesis, we study an efficient fronthaul implementation that is based on radio-on-FSO (RoFSO) technologies. We propose closedform expressions for fading-mitigation and for the estimation of channel capacity so as to alleviate the system complexity. Numerical simulations are presented for adaptive modulation scheme using advanced modulation formats. We also consider schemes like hybrid RF/FSO and relay-assisted transmission technologies that can help in alleviating the stringent requirements by the C-RAN backhaul/fronthaul. The propose models not only reduce the computational requirements/efforts, but also have a number of diverse merits such as high-accuracy, low-memory requirements, fast and stable operation compared to the current state-of-the-art analytical based approaches. In addition to the FSO channel characterization, we present a proof-of-concept experiment in which we study the transmission capabilities of a hybrid passive optical network (PON)-FSO system. This is implemented with the real-time receiver that is emulated by a commercial field-programmable gate array (FPGA). This helps in facilitating an open system and hence enables interoperability, portability, and open software standards. The hybrid schemes have the ability to support different applications, services, and multiple operators over a shared optical fiber infrastructure

    Hybrid Free-Space Optical and Visible Light Communication Link

    Get PDF
    V součastnosti bezdrátové optické komunikace (optical wireless communication, OWC) získávají širokou pozornost jako vhodný doplněk ke komunikačním přenosům v rádiovém pásmu. OWC nabízejí několik výhod včetně větší šířky přenosového pásma, neregulovaného frekvenčního pásma či odolnosti vůči elektromagnetickému rušení. Tato práce se zabývá návrhem OWC systémů pro připojení koncových uživatelů. Samotná realizace spojení může být provedena za pomoci různých variant bezdrátových technologií, například pomocí OWC, kombinací různých OWC technologií nebo hybridním rádio-optickým spojem. Za účelem propojení tzv. poslední míle je analyzován optický bezvláknový spoj (free space optics, FSO). Tato práce se dále zabývá analýzou přenosových vlastností celo-optického více skokového spoje s důrazem na vliv atmosférických podmínek. V dnešní době mnoho uživatelů tráví čas ve vnitřních prostorech kanceláří či doma, kde komunikace ve viditelném spektru (visible light communication, VLC) poskytuje lepší přenosové parametry pokrytí než úzce směrové FSO. V rámci této práce byla odvozena a experimentálně ověřena závislost pro bitovou chybovost přesměrovaného (relaying) spoje ve VLC. Pro propojení poskytovatele datavých služeb s koncovým uživatelem může být výhodné zkombinovat více přenosových technologií. Proto je navržen a analyzovám systém pro překonání tzv. problému poslední míle a posledního metru kombinující hybridní FSO a VLC technologie.The field of optical wireless communications (OWC) has recently attracted significant attention as a complementary technology to radio frequency (RF). OWC systems offer several advantages including higher bandwidth, an unregulated spectrum, resistance to electromagnetic interference and a high order of reusability. The thesis focuses on the deployment and analyses of end-user interconnections using the OWC systems. Interconnection can be established by many wireless technologies, for instance, by a single OWC technology, a combination of OWC technologies, or by hybrid OWC/RF links. In order to establish last mile outdoor interconnection, a free-space optical (FSO) has to be investigated. In this thesis, the performance of all-optical multi-hop scenarios is analyzed under atmospheric conditions. However, nowadays, many end users spend much time in indoor environments where visible light communication (VLC) technology can provide better transmission parameters and, significantly, better coverage. An analytical description of bit error rate for relaying VLC schemes is derived and experimentally verified. Nonetheless, for the last mile, interconnection of a provider and end users (joint outdoor and indoor connection) can be advantageous when combining multiple technologies. Therefore, a hybrid FSO/VLC system is proposed and analyzed for the interconnection of the last mile and last meter bottleneck

    Mode division multiplexing in radio-over-free-space-optical system incorporating orthogonal frequency division multiplexing and photonic crystal fiber equalization

    Get PDF
    Radio over free space optics (Ro-FSO) is a revolutionary technology for seamlessly integrating radio and optical networks without expensive optical fiber cabling. RoFSO technology plays a crucial role in supporting broadband connectivity in rural and remote areas where current broadband infrastructure is not feasible due to geographical and economic inconvenience. Although the capacity of Ro-FSO can be increased by mode division multiplexing (MDM), the transmission distance and capacity is still limited by multipath fading and mode coupling losses due to atmospheric turbulences such as light fog, thin fog and heavy fog. The main intention of this thesis is to design MDM system for Ro-FSO for long and short haul communication. Orthogonal frequency division multiplexing (OFDM) is proposed for long haul communication to mitigate multipath fading and Photonic Crystal Fiber (PCF) is proposed for short haul communication to reduce mode coupling losses. The reported results of the proposed scheme for long haul communication show a significant 47% power improvement in deep fades from multipath propagation with the use of OFDM in MDM-Ro-FSO systems as compared to without OFDM. The results of the proposed scheme for short haul communication show 90.6% improvement in power in the dominant mode with the use of PCF in MDM-Ro-FSO as compared to without PCF. The reported results in the thesis show significant improvement in Ro-FSO systems as compared to previous systems in terms of capacity and transmission distance under clear weather conditions as well as under varying levels of fog. The contributions of this thesis are expected to provide seamless broadband services in remote areas

    Performance of wireless optical telecommunication systems in the presence of fading and interference

    Get PDF
    Postojeći komunikacioni sistem u domenu RF elektromagnetnog spektra nije u mogućnosti da zadovolji sve potrebe brzog i obimnog prenosa podataka, koje se javljaju usled ekspanzije i sve veće upotrebe IoT uređaja, 5G i B5G mreža, kao i raznovrsnih aplikacija i multimedijalnog sadržaja. Optička bežična komunikacija (OWC), koja koristi veliki opseg nelicenciranog dela spektra, se pokazala kao dobra alternativa za ublažavanje nedostataka konvencionalnog sistema za prenos podataka koji radi u RF domenu. FSO (Free Space Optics) tehnologija predstavlja jednu od vrsta optičkih bežičnih komunikacija, ima veliku upotrebu u LAN i MAN mrežama , bežičnom video nadzoru, koristi se u medicinske svrhe, u svemirskoj komunikaciji, za rešavanje problema poslednje milje itd. Primena bežičnih komunikacija, znatno može da doprinese performansama sistema, i to u smislu spektralne i energetske efikasnosti kao i u smislu pouzdanosti. U disertaciji je u cilju utvrđivanja optimalnog scenarija prijema signala, kao i određivanja optimalnih vrednosti parametara takvog prenosa, izvršena analiza karakteristika bežičnog optičkog prenosa signala u prisustvu turbulencije i efekta greške pozicioniranja, koji se odvija pod kompozitnim uticajem navedenih smetnji. Za posmatrane scenarije prenosa razmatrane su standardne mere performansi sistema, kao što su srednja verovatnoća greške po bitu, posmatrana za odgovarajuće modulacione formate, kao i verovatnoća otkaza. Predstavljena su analitička i numerička rešenja problema, a uticaji pojedinih parametara sistema na performanse bežičnog optičkog prenosa prikazani su i grafički

    Robust Optical Wireless Links over Turbulent Media using Diversity Solutions

    Get PDF
    Free-space optic (FSO) technology, i.e., optical wireless communication (OWC), is widely recognized as superior to radio frequency (RF) in many aspects. Visible and invisible optical wireless links solve first/last mile connectivity problems and provide secure, jam-free communication. FSO is license-free and delivers high-speed data rates in the order of Gigabits. Its advantages have fostered significant research efforts aimed at utilizing optical wireless communication, e.g. visible light communication (VLC), for high-speed, secure, indoor communication under the IEEE 802.15.7 standard. However, conventional optical wireless links demand precise optical alignment and suffer from atmospheric turbulence. When compared with RF, they suffer a low degree of reliability and lack robustness. Pointing errors cause optical transceiver misalignment, adversely affecting system reliability. Furthermore, atmospheric turbulence causes irradiance fluctuations and beam broadening of transmitted light. Innovative solutions to overcome limitations on the exploitation of high-speed optical wireless links are greatly needed.Spatial diversity is known to improve RF wireless communication systems. Similar diversity approaches can be adapted for FSO systems to improve its reliability and robustness; however, careful diversity design is needed since FSO apertures typically remain unbalanced as a result of FSO system sensitivity to misalignment. Conventional diversity combining schemes require persistent aperture monitoring and repetitive switching, thus increasing FSO implementation complexities. Furthermore, current RF diversity combining schemes may not be optimized to address the issue of unbalanced FSO receiving apertures.This dissertation investigates two efficient diversity combining schemes for multi-receiving FSO systems: switched diversity combining and generalized selection combining. Both can be exploited to reduce complexity and improve combining efficiency. Unlike maximum ratio combing, equal gain combining, and selective combining, switched diversity simplifies receiver design by avoiding unnecessary switching among receiving apertures. The most significant advantage of generalized combining is its ability to exclude apertures with low quality that could potentially affect the resultant output signal performance.This dissertation also investigates mobile FSO by considering a multi-receiving system in which all receiving FSO apertures are circularly placed on a platform. System mobility and performance are analyzed. Performance results confirm improvements when using angular diversity and generalized selection combining.The précis of this dissertation establishes the foundation of reliable FSO communications using efficient diversity-based solutions. Performance parameters are analyzed mathematically, and then evaluated using computer simulations. A testbed prototype is developed to facilitate the evaluation of optical wireless links via lab experiments

    Subcarrier intensity modulated free-space optical communication systems

    Get PDF
    This thesis investigates and analyses the performance of terrestrial free-space optical communication (FSO) system based on the phase shift keying pre-modulated subcarrier intensity modulation (SIM). The results are theoretically and experimentally compared with the classical On-Off keying (OOK) modulated FSO system in the presence of atmospheric turbulence. The performance analysis is based on the bit error rate (BER) and outage probability metrics. Optical signal traversing the atmospheric channel suffers attenuation due to scattering and absorption of the signal by aerosols, fog, atmospheric gases and precipitation. In the event of thick fog, the atmospheric attenuation coefficient exceeds 100 dB/km, this potentially limits the achievable FSO link length to less than 1 kilometre. But even in clear atmospheric conditions when signal absorption and scattering are less severe with a combined attenuation coefficient of less than 1 dB/km, the atmospheric turbulence significantly impairs the achievable error rate, the outage probability and the available link margin of a terrestrial FSO communication system. The effect of atmospheric turbulence on the symbol detection of an OOK based terrestrial FSO system is presented analytically and experimentally verified. It was found that atmospheric turbulence induced channel fading will require the OOK threshold detector to have the knowledge of the channel fading strength and noise levels if the detection error is to be reduced to its barest minimum. This poses a serious design difficulty that can be circumvented by employing phase shift keying (PSK) pre-modulated SIM. The results of the analysis and experiments showed that for a binary PSK-SIM based FSO system, the symbol detection threshold level does not require the knowledge of the channel fading strength or noise level. As such, the threshold level is fixed at the zero mark in the presence or absence of atmospheric turbulence. Also for the full and seamless integration of FSO into the access network, a study of SIM-FSO performance becomes compelling because existing networks already contain subcarrier-like signals such as radio over fibre and cable television signals. The use of multiple subcarrier signals as a means of increasing the throughput/capacity is also investigated and the effect of optical source nonlinearity is found to result in intermodulation distortion. The intermodulation distortion can impose a BER floor of up to 10-4 on the system error performance. In addition, spatial diversity and subcarrier delay diversity techniques are studied as means of ameliorating the effect of atmospheric turbulence on the error and outage performance of SIM-FSO systems. The three spatial diversity linear combining techniques analysed are maximum ratio combining, equal gain combining and selection combining. The system performance based on each of these combining techniques is presented and compared under different strengths of atmospheric turbulence. The results predicted that achieving a 4 km SIM-FSO link length with no diversity technique will require about 12 dB of power more than using a 4 × 4 transmitter/receiver array system with the same data rate in a weak turbulent atmospheric channel. On the other hand, retransmitting the delayed copy of the data once on a different subcarrier frequency was found to result in a gain of up to 4.5 dB in weak atmospheric turbulence channel

    Experimental Characterisation and Modelling of Atmospheric Fog and Turbulence in FSO

    Get PDF
    Free space optical (FSO) communication uses visible or infrared (IR) wavelengths to broadcast high-speed data wirelessly through the atmospheric channel. The performance of FSO communications is mainly dependent on the unpredictable atmospheric channel such as fog, smoke and temperature dependent turbulence. However, as the real outdoor atmosphere (ROA) is time varying and heterogeneous in nature as well as depending on the magnitude and intensity of different weather conditions, carrying out a proper link assessment under specific weather conditions becomes a challenging task. Investigation and modelling the ROA under diverse atmospheric conditions is still a great challenge in FSO communications. Hence a dedicated indoor atmospheric chamber is designed and built to produce controlled atmosphere as necessary to mimic the ROA as closely as possible. The experimental results indicate that the fog attenuation is wavelength dependent for all visibility V ranges, which contradicts the Kim model for V < 0.5 km. The obtained result validates that Kim model needs to be revised for V < 0.5 km in order to correctly predict the wavelength dependent fog attenuation. Also, there are no experimental data and empirical model available for FSO links in diverse smoke conditions, which are common in urban areas. Therefore, a new empirical model is proposed to evaluate the wavelength dependent fog and smoke attenuation by reconsidering the q value as a function of wavelength rather than visibility. The BER performance of an FSO system is theoretically and experimentally evaluated for OOK- NRZ, OOK-RZ and 4-PPM formats for Ethernet line data-rates from light to dense fog conditions. A BER of 10-6 (Q-factor ≈ 4.7) is achieved at dense fog (transmittance, T = 0.33) condition using 4-PPM than OOK-NRZ and OOK-RZ modulation schemes due to its high peak-to-average power ratio albeit at the expense of doubling the bandwidth. The effects of fog on OOK-NRZ, 4-PAM and BPSK are also experimentally investigated. In comparison to 4-PAM and OOK-NRZ signals, the BPSK modulation signalling format is more robust against the effects of fog. Moreover, the effects of using different average transmitted optical communication powers Popton the T and the received Q-factor using the OOK-NRZ modulation scheme are also investigated for light and dense fog conditions. The results show that for an FSO system operating at a Q-factor of 4.7 (for BER = 10-6), the required Q-factor is achieved at T of 48% under the thick fog condition by increasing Popt to 1.07 dBm, whereas the values of T are 55% and ~70% for the transmit power of 0.56 dBm and -0.7 dBm, respectively. The experimental characterisation and investigation of the atmospheric turbulence effect on the Ethernet and Fast-Ethernet FSO link is reported using different modulation schemes. The experiment is carried out in a controlled laboratory environment where turbulence is generated in a dedicated indoor atmospheric chamber. The atmospheric chamber is calibrated to mimic an outdoor turbulence conditions and the measured data are verified against the theoretical predictions. The experiment also demonstrates methods to control the turbulence levels and determine the equivalence between the indoor and outdoor FSO links. The results show that the connectivity of Ethernet and Fast-Ethernet links are highly sensitive to atmospheric turbulence. The results also show that the BPSK and OOK-NRZ modulation signalling formats are more robust against the weak atmospheric turbulence conditions than PAM signal
    corecore