26 research outputs found

    Performance Analysis of Dual-User Macrodiversity MIMO Systems with Linear Receivers in Flat Rayleigh Fading

    Full text link
    The performance of linear receivers in the presence of co-channel interference in Rayleigh channels is a fundamental problem in wireless communications. Performance evaluation for these systems is well-known for receive arrays where the antennas are close enough to experience equal average SNRs from a source. In contrast, almost no analytical results are available for macrodiversity systems where both the sources and receive antennas are widely separated. Here, receive antennas experience unequal average SNRs from a source and a single receive antenna receives a different average SNR from each source. Although this is an extremely difficult problem, progress is possible for the two-user scenario. In this paper, we derive closed form results for the probability density function (pdf) and cumulative distribution function (cdf) of the output signal to interference plus noise ratio (SINR) and signal to noise ratio (SNR) of minimum mean squared error (MMSE) and zero forcing (ZF) receivers in independent Rayleigh channels with arbitrary numbers of receive antennas. The results are verified by Monte Carlo simulations and high SNR approximations are also derived. The results enable further system analysis such as the evaluation of outage probability, bit error rate (BER) and capacity.Comment: 24 pages, 7 figures; IEEE Transaction of Wireless Communication 2012 Corrected typo

    Capacity, coding and interference cancellation in multiuser multicarrier wireless communications systems

    Get PDF
    Multicarrier modulation and multiuser systems have generated a great deal of research during the last decade. Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation generated with the inverse Discrete Fourier Transform, which has been adopted for standards in wireless and wire-line communications. Multiuser wireless systems using multicarrier modulation suffer from the effects of dispersive fading channels, which create multi-access, inter-symbol, and inter-carrier interference (MAI, ISI, ICI). Nevertheless, channel dispersion also provides diversity, which can be exploited and has the potential to increase robustness against fading. Multiuser multi-carrier systems can be implemented using Orthogonal Frequency Division Multiple Access (OFDMA), a flexible orthogonal multiplexing scheme that can implement time and frequency division multiplexing, and using multicarrier code division multiple access (MC-CDMA). Coding, interference cancellation, and resource sharing schemes to improve the performance of multiuser multicarrier systems on wireless channels were addressed in this dissertation. Performance of multiple access schemes applied to a downlink multiuser wireless system was studied from an information theory perspective and from a more practical perspective. For time, frequency, and code division, implemented using OFDMA and MC-CDMA, the system outage capacity region was calculated for a correlated fading channel. It was found that receiver complexity determines which scheme offers larger capacity regions, and that OFDMA results in a better compromise between complexity and performance than MC-CDMA. From the more practical perspective of bit error rate, the effects of channel coding and interleaving were investigated. Results in terms of coding bounds as well as simulation were obtained, showing that OFDMAbased orthogonal multiple access schemes are more sensitive to the effectiveness of the code to provide diversity than non-orthogonal, MC-CDMA-based schemes. While cellular multiuser schemes suffer mainly from MAI, OFDM-based broadcasting systems suffer from ICI, in particular when operating as a single frequency network (SFN). It was found that for SFN the performance of a conventional OFDM receiver rapidly degrades when transmitters have frequency synchronization errors. Several methods based on linear and decision-feedback ICI cancellation were proposed and evaluated, showing improved robustness against ICI. System function characterization of time-variant dispersive channels is important for understanding their effects on single carrier and multicarrier modulation. Using time-frequency duality it was shown that MC-CDMA and DS-CDMA are strictly dual on dispersive channels. This property was used to derive optimal matched filter structures, and to determine a criterion for the selection of spreading sequences for both DS and MC CDMA. The analysis of multiple antenna systems provided a unified framework for the study of DS-CDMA and MC-CDMA on time and frequency dispersive channels, which can also be used to compare their performance

    Performance Enhancement in SU and MU MIMO-OFDM Technique for Wireless Communication: A Review

    Get PDF
    The consistent demand for higher data rates and need to send giant volumes of data while not compromising the quality of communication has led the development of a new generations of wireless systems. But range and data rate limitations are there in wireless devices. In an attempt to beat these limitations, Multi Input Multi Output (MIMO) systems will be used which also increase diversity and improve the bit error rate (BER) performance of wireless systems. They additionally increase the channel capacity, increase the transmitted data rate through spatial multiplexing, and/or reduce interference from other users. MIMO systems therefore create a promising communication system because of their high transmission rates without additional bandwidth or transmit power and robustness against multipath fading. This paper provides the overview of Multiuser MIMO system. A detailed review on how to increase performance of system and reduce the bit error rate (BER) in different fading environment e.g. Rayleigh fading, Rician fading, Nakagami fading, composite fading

    Symbol by Symbol Soft-Input Soft-Output Multiuser Detection for Frequency Selective Mimo Channels

    Get PDF
    We introduce a symbol by symbol, soft-input soft-output (SISO) multiuser detector for frequency selective multiple-input multiple-output (MIMO) channels. The basic principle of this algorithm is to extract a posteriori probabilities (APPs) of all interfering symbols at each symbol interval and then feed these updated APPs as a priori probabilities (apPs) for joint APP extraction in the next symbol interval. Unlike nearoptimal block oriented sphere decoding (SD) and soft decision equalization (SDE), the computational complexity of this updating APP (UA) algorithm is linear in the number of symbols but the exponential computational load of optimal joint APP extraction makes the basic UA impractical. To decrease computations we replace the optimal joint APP extractor by a groupwise SISO multiuser detector with a soft sphere decoding core. The resulting reduced complexity updating APP (RCUA) equalizer is flexible in different situations and outperforms the traditional sub-optimal MMSE-DFE without increasing the computational costs substantially

    Overcoming Large-Scale Fading in Cellular Systems With Network Coordination

    Get PDF

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Multi-Cell Uplink Radio Resource Management. A LTE Case Study

    Get PDF
    corecore