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ABSTRACT 

We introduce a symbol by symbol, soft-input soft-output (SISO) multiuser 

detector for frequency selective multiple-input multiple-output (MIMO) channels. The 

basic principle of this algorithm is to extract a posteriori probabilities (APPs) of all 

interfering symbols at each symbol interval and then feed these updated APPs as a priori 

probabilities (apPs) for joint APP extraction in the next symbol interval. Unlike near- 

optimal block oriented sphere decoding (SD) and soft decision equalization (SDE), the 

computational complexity of this updating APP (UA) algorithm is linear in the number of 

symbols but the exponential computational load of optimal joint APP extraction makes 

the basic UA impractical. To decrease computations we replace the optimal joint APP 

extractor by a groupwise SISO multiuser detector with a soft sphere decoding core. The 

resulting reduced complexity updating APP (RCUA) equalizer is flexible in different 

situations and outperforms the traditional sub-optimal MMSE-DFE without increasing 

the computational costs substantially. 
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CHAPTER 1 INTRODUCTION 

Digital wireless communications systems are now part of our day to day life; we 

watch satellite TVs, talk on cellular phones and use wireless networking to access the 

internet. With the ever-increasing demand for wireless communications, service 

providers need to increase the capacity of their system, while maintaining an acceptable 

quality of service (QoS). Satisfying this need by allocating more bandwidth is not an 

economical. Therefore, it is necessary to develop new methods that are efficiently exploit 

limited bandwidth, and at the same time are simple enough to be practical. 

By 1948, Shannon had developed fundamental limits on the efficiency of single- 

input, single-output communication over a noisy channel. For decades people believed 

that these limits are the ultimate, but practically unattainable, goals in digital 

communication. Finally in 1993 the invention of turbo codes by Berrou et al. made it 

possible for communication systems to work near the Shannon limit [24] but this was not 

the end of the story. People started to realize that exploiting antenna arrays can increase 

the capacity of the system. In 1998, Foschini and Gans (also Winters 1987) generalized 

the Shannon capacity formula for the case of a multiple-input, multiple-output (MIMO) 

system. The results promised to increase spectral efficiency far beyond single-input 

single-output Shannon limit [I]. 

In order to enjoy this huge increase in capacity, we need to develop efficient and 

reliable receivers for MIMO systems. This design can be challenging, especially in 



frequency selective channels where the transmitted signal has to be detected in the 

presence of noise, intersymbol interference (ISI) and multiuser interference (MUI). 

Optimal detection in this environment involves solving an integer least squares 

problem, which is in general NP hard. The BCJR maximum a posteriori (MAP) [2] and 

Viterbi maximum likelihood (ML) equalizers find the optimal solutions but are not 

practical because their computational complexity grows exponentially with the product of 

channel memory size and number of users. Standard suboptimal reduced-complexity 

methods [3-61 as well as linear prefiltering [7] can be used to decrease the computational 

load. However, these methods are not so popular owing to the practical difficulties of 

adapting them to MIMO channels and the trade-off between their performance and 

computational costs. 

For complexity reasons, typical equalizers use heuristic methods that can be 

linear, such as zero-forcing (ZF) and minimum mean square error (MMSE) equalizers, or 

nonlinear such as decision feedback equalizers (DFE). Linear equalizers are the simplest, 

but DFE shows better performance at high SNRs while still having much lower 

complexity than optimal BCJR and VA. In DFE the effects of past symbols are 

subtracted using their estimates. 

This approach can suffer from error propagation at low SNRs. The other problem 

with these methods is that they can not handle overloaded situations, where the number 

of transmit antennas is more than the number of receive antennas, as in a cellular system 

uplink. Optimal MIMO DFE solutions have been investigated in [8-91, and in [lo] low 

complexity SISO LE and DFE equalizers are developed based on the MMSE criterion. 



Recently, some quasi-ML, block detection techniques have been developed that 

can provide near-optimal performance with low computational complexity under some 

conditions. Sphere decoding (SD) and soft decision equalization (SDE) are important and 

will be considered in this thesis because they have already been used in the literature for 

multiuser detection in a frequency selective MlMO channel. 

The SD algorithm proposed by Fincke and Pohst [I I] finds all signal points in a 

sphere of given radius centered on the received vector. Instead of an exhaustive search 

over all possible data vectors for the least squares solution, we can restrict our search 

only to the points in the sphere and thereby reduce computation. This technique has many 

applications in communications. Reference [12] investigates its usage in frequency 

selective MIMO channels. 

The other technique, SDE [13], is based on probabilistic data association (PDA) 

filtering [14]; it processes the received signal using an iterative posterior probability 

updating and PDA-type Gaussian forcing. The next chapter covers these methods in more 

details. 

The desirability of these algorithms depends on the situation. SD finds the optimal 

solution and its computational complexity is shown to be linear in constellation size and 

polynomial (less than third order) in the number of symbols in the block over a wide 

range of SNRs, provided that the system is not overloaded [15]. 

SDE attains near-optimal performance with complexity that is comparable to that 

of SD. In low SNRs, the complexity of both methods grows; in SD, the sphere radius 

grows, and in SDE the required number of iterations increases (3-4 iterations at high 

SNRs and 7-14 iterations at low SNRs). In overloaded conditions where the number of 
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transmit antennas is more than the number of receive antennas, SD complexity climbs 

exponentially in the number of excess users [15]. SDE complexity is much less sensitive 

to overload, although performance is somewhat degraded. 

SDE provides soft decisions, but it makes no use of a priori information (it does 

not "take hints"). So SDE equalizers cannot be used in turbo equalization systems where 

the flow of extrinsic data between the equalizer and decoder achieves higher capacity. 

The original SD provides only hard decisions but some variations of it have been 

proposed in [15,18] that provide soft decisions and also utilize a priori probabilities 

(apPs) in their input, so these equalizers can be used in iterative decoding and 

equalization systems. 

These imperfections are natural to any quasi-ML method and vary from one to 

another, but the main problem of SD and SDE lies in their block detection processing. 

Because their computational complexity grows cubically with the number of symbols in 

the block, we cannot send frames of long or infinite lengths. Further, the algorithms 

require interblock zero padding. This causes significant losses in capacity when the 

frames are short and the channel memory is long. 

In this thesis, our goal is to develop a sub-optimal symbol by symbol soft-input 

soft-output (SISO) multiuser detection technique. With complexity that is linear in block 

size, it avoids the capacity loss of block oriented algorithms. Our updating a posteriori 

probabilities (UA) equalizer processes the signal acquired in each symbol time 

separately. It is based on calculating joint a posteriori probabilities (APP) of all 

interfering symbols at each symbol time, then updating the APPs at the new symbol time. 



So, unlike block oriented techniques, the computational complexity of UA equalizer 

grows linearly with the number of symbols. 

The complexity of optimal joint APP extraction is exponential in the product of 

number of users and memory length. We therefore use a suboptimal iterative group 

detection technique inspired by iterative multiuser detection algorithm (IMUD) [19]. We 

also suggest implementing the core APP extractor in the group detector by a soft SD. 

The UA algorithm makes use of the apPs so it can be used in popular iterative 

decoding systems. Also, because of its symbol-by-symbol nature, it can share information 

between different base-stations (macrodiversity). This is the subject of our future 

research. UA performance is far better than sub-optimal DFE methods and is close to 

optimal except when it is working in an overloaded situation and even then it is also 

uniquely flexible in that it does not fail or become too computationally complex. 

In the rest of this thesis, we first cover the background material in more detail and 

then we explain UA idea in detail and describe the methods of complexity reduction for 

basic UA algorithm. As well, we analyse the computational complexity of different 

algorithms and compare their performances through simulations. 



CHAPTER 2 BACKGROUND 

In this chapter, we cover the background material and establish the models that 

will be used throughout this thesis. 

2.1 Multiuser Communications 

Figure 2.1 shows the basic elements of a digital communication system. In 

wireless transmission the channel is the electromagnetic spectrum that has to be shared 

between all different applications and users. If different transmitted signals interfere with 

each other, it is hard for the receiver to maintain reliable communication. The traditional 

solution is to keep the signals more or less orthogonal. This way the receiver can easily 

suppress the undesired signals. 

Figure 2.1 Basic elements of a digital communication system 

There are different methods to keep the signals orthogonal. One is to send the 

signals at different frequencies. This method is called FDMA (Frequency Division 

Multiple Access). TDMA (Time Division Multiple Access) is another technique to share 

the channel. In this method each time frame is divided into some non-overlapping sub- 

frames and each user transmits in one of those time slots. 

- 
Message 

Receiver 
Message 

w Tansmittcr Channel 



FDMA and TDMA are narrowband multiple access methods compared to 

wideband CDMA (Code Division Multiple Access) that spreads the signal along code 

sequences which are separated at the receiver by their relatively small cross-correlation. 

CDMA signals can share the same bandwidth and time in this way but as the code rate is 

far more than the actual bit rate, a far wider bandwidth than usual has to be allocated to 

the CDMA signal. 

There are also some other techniques that utilize the physical properties of the 

signals to increase the spectrum usage. One is sectoring the area using directional 

antennas as in multi-beam satellite systems [27]. The other technique is implementing 

cellular concepts that have revolutionized mobile telecommunication technology. 

The main idea in cellular systems is to replace one high power base station by 

many low power base-stations. Each of these low power transmitters would cover a small 

area that is called a cell. N adjacent cells make a cluster and the whole frequency 

bandwidth would be divided into N non-overlapping subsets. Each cell in the cluster 

would use one of these subsets and the whole frequency bandwidth is reused in every 

cluster. Co-channel cells are separated so path-loss attenuates the co-channel interference 

to the noise level. Figure 2.2 shows a cellular system with hexagonal cells and cluster 

size of 7. 

All of the orthogonalization methods mentioned above treat interfering signals as 

noise and ignore their structure or any information about them. As a result, these methods 

have to sacrifice some of the resources to keep the noise level low enough. For example, 

in FDMA and TDMA some of the bandwidth has to be used for guard bands between 

different sub-channels and in CDMA the number of users would be limited by the noise 
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level. Even in cellular systems the whole bandwidth has to be divided between different 

cells so each cell does not have access to use all the resources. 

Unlike the traditional simple single user detection, multiuser detection (MUD) 

takes explicit account of the structure of interferers. In this way, MUD is able to reduce 

the damage to the detection of the desired signal. The goal of MUD is to achieve single 

user performance in the presence of interferers and relax the orthogonalization rules to 

increase the capacity of the system. To achieve these goals, we have to develop high 

performance, low complexity MUD algorithms. So this has been an active research area 

in communications. The key factor in this research is to make appropriate use of mobile 

channel characteristics. 

In the rest of this chapter we first go through the essentials of mobile channels. 

Following, we will discuss the multiple antenna systems. Finally we will review the 

different detection techniques and describe the motivations for this thesis. 



2.2 Mobile Channel Characteristics 

Sharing the bandwidth is not the only problem we face in mobile communications 

systems. Geographical and physical factors like building structures, hills, weather or even 

an airplane passing in the area, can affect the properties of a wireless channel. Many 

models have been developed to describe different aspects of mobile channel 

characteristics. These models help us to design and test different algorithms to improve 

the performance of mobile communication systems. 

2.2.1 Path Loss 

As the signal propagates, it gets weaker. In free space, this loss follows inverse 

square law but in many situations, the signal does not go through the free space. Earth's 
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surface as a large reflecting object changes the model substantially. Equation (2.1) shows 

the relationship model between the transmitted power P, and received power P, and 

distance d . In free space, the path loss exponent y would be 2 as the inverse square law 

predicts but in urban cellular systems, it is usually between 3-4. 

This higher exponent path loss model has advantages and disadvantages for 

wireless communication systems. Transmission power must be higher for a desired 

coverage area. The power levels of near and far users will also be very different, causing 

increased interference for low power users. So in many cases a power control system is 

required. The good news is that the cell coverage is sharper and co-channel interference 

from other clusters is small. 

2.2.2 Shadowing 

Path loss includes the effect of earth but other large obstacles (hills, buildings, 

foliage, etc.) cause other loss termed shadowing. Shadowing causes variation around the 

mean power that is modelled by path loss. This variable factor has a lognormal 

distribution or in other words, power in dB contains a Gaussian term with zero mean. The 

standard deviation of the Gaussian term is about 6-8 dB. It will be higher in urban 

settings and indoor systems, but lower in rural areas. Shadowing would cause coverage 

holes and results in vague cell boundaries instead of the circles that simple path loss 

calculations predict. 



2.2.3 Multipath 

Path loss and shadowing models the effect of the earth and large scale obstacles 

on wireless communication, but these are not the only factors that should be considered 

in a mobile communication system. Figure 2.3 shows a typical link between a mobile 

user and a base station. There are a lot of scatterers around the mobile but few around the 

base station because it is usually situated higher than its surroundings. There are many 

signal paths between the user and the base station and the receiver in this link picks up 

the sum of all the reflections. This phenomenon is called multipath and its effects are 

destructive for reliable communications. Decades of intensive research has been done in 

order to mitigate these effects. 

Figure 2.3 Multipath environment 

The impulse response of the channel includes all the paths between the transmitter 

and the receiver. Each of these paths has its own amplitude, delay, and a phase that cause 



constructive or destructive interference. This can cause huge changes in signal power 

over a small distance as short as half a wavelength. The characteristics of the channel are 

extremely local. A change of only one wavelength in path length causes a phase shift 

of 2n radians, so moving even a fraction of wavelength in any direction can cause huge 

changes in the phase and power of the sum of the arriving signals. 

This impulse response in turn defines the frequency response of this channel. It 

means that different carrier frequencies experience different gains and phases. When the 

mobile moves, the impulse response, and the frequency response change so the channel is 

a time-varying linear filter. The fastest rate of change which is proportional to the speed 

of the user is called "Doppler frequency". The time varying gain is called "fading" in the 

literature. "Delay spread" is another term defining the range of delays in impulse 

response. Next, we will discuss more about fading and delay spread and their destructive 

effect on communications. 

2.2.3.1 Fading 

Fading is one of the major problems in communications and it can cause an 

irreducible error floor in the link. This means that bit error rate (BER) does not decrease 

after a certain point, no matter how much the power is increased. Fading can also 

decrease the capacity of the channel. Therefore, it is paramount to investigate the nature 

of fading and develop mathematical models to describe this phenomenon. 

As mentioned before, fading is the random fluctuation about the mean power that 

is determined by shadowing and path loss. These fluctuations range typically from 10 dB 

above or to 40 dB below the mean power. The distance between two deep fades is on 



average half a wave length. As a result Doppler frequency f, which shows the fastest 

rate of change in power is defined by (2.2), vis the speed of the user and Ais the 

wavelength of the carrier frequency 

The Doppler spectrum shows the distribution of power in Doppler domain v and 

is the Fourier transform of autocorrelation function of complex gain. These functions are 

extremely important in analysis of modulation in fading channels, pulse distortions, error 

floors, effectiveness of interleaving and many other situations. 

When the gain varies during a symbol time T ,  it is called fast fading. This 

happens if fDT 2 1. Fast fading makes the communication difficult because we would not 

be able to track the channel, varying in a symbol time. Fortunately we usually face 

moderate to slow fading channels where fDT 1 ( f, < 100 Hz even when operating in 

v = 100 Kmls and frequencies up to 1 GHz). In this case we can control some of the 

damage caused by fading by tracking the fading channel using pilot symbols or using 

differential detection methods. 

Many mathematical models have been developed to describe fading. Rayleigh 

fading happens when the amplitude gain is a zero mean complex Gaussian random 

variable that is a Rayleigh magnitude and a uniform phase. Physically this happens when 

a mobile is surrounded by scatterers and there is no line of sight between mobile and base 

stations. 



Measurements show that even with 6 scatterers the gain distribution is Gaussian 

to a good extent. If there is a line of sight though the distribution is called Rician in which 

the amplitude gain is a non- zero mean complex Gaussian random variable. These models 

help us simulate the channels and test different algorithms to improve the performance of 

the system. 

2.2.3.2 Delay Spread 

The delay spread z shows the spread of delays in the multipath channel. If delay 

spread is small compared to symbol time z T , then we have a flat fading channel that 

can be modelled by one hypothetical equivalent path. In other words, the bandwidth of 

the signal is smaller than the coherence bandwidth of the fading channel so it is almost 

flat across the signal bandwidth. As a result, there is no interference between consecutive 

symbols of sequence in this channel. 

In the case where the delay spread is significant compared to symbol time, we 

would have a frequency selective fading channel. It means that the channel is no longer 

flat because the signal bandwidth is larger than the coherence bandwidth of the channel. 

As a result, there would be intersymbol interference (ISI) in the system. 

The power delay profile is the key to analysis or simulation of delay spread and 

ISI. It represents the density of power in delay domain that can be treated discrete-time or 

continuous. Equation (2.3) shows the discrete-time model of the frequency selective 

channels 



Detection in this channel is made difficult because we have to deal with both 

fading and ISI. The good news is that if the detection is good enough, then performance 

of a communication link in a frequency selective channel is better than in a flat fading 

channel. This sounds odd but can be explained by the diversity we experience in 

frequency selective channels. Next we discuss diversity in more detail as it one of the 

most important methods to improve performance in a fading channel. 

2.3 Diversity 

The basic idea in diversity techniques is to use several independently fading 

channels to transmit the data. Then the receiver would pick up several replicas of the 

same signal. The probability that all these channels fade simultaneously is very low. In 

other words, there is higher probability that at least one high quality copy of the signal is 

present at the receiver. In this way, diversity reduces BER substantially by preventing 

most of the error bursts that usually happen in deep fades. 

Without diversity, the probability of error P, decreases only as the inverse of 

SNR (E,  l N,)-' but if we have N independent channels, the probability of all of them 

failing would be (<)N. Figure 2.4 shows the approximate behaviour of a diversity 

system. In this case N is called the diversity order of the system and it decreases when 

the channels are correlated or suboptimal detection methods are used. Several different 

methods can be used to achieve diversity. 

One way is to employ frequency diversity. In this way several copies of the signal 

will be sent via different uncorrelated channels. In other words, the separation between 

these channels should be higher than coherence bandwidth to ensure independent fading. 
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Another way is to use time diversity and send the signal several times over different time 

frames. Separation between these time frames also has to be long enough to make sure 

that they fade independently. These methods waste the bandwidth and energy because of 

the repetitive transmissions. 

Figure 2.4 Approximate behaviour of a diversity system 

= -2  

slope 

Eb 1% (dB) 

Source: Professor Paul Ho, course note [31], 2003, by permission. 

Another more commonly used method is space diversity that employs multiple 

antennas. Different antennas can obtain independent fading if they have different 

polarizations or directionality, or if they are far enough spatially. The required separation 

can be determined by spatial correlation function and is usually a few wavelengths. The 

extra antennas can be either in the receiver or the transmitter. The advantage of antenna 

diversity is gaining extra quality or capacity without using extra spectrum. The 

disadvantage is extra expense, inconvenience, and the extra space. 



One more situation to gain diversity is when our signal bandwidth is greater than 

the coherence bandwidth as in frequency-selective fading channels. In this case we 

receive several independently faded replicas of the signal through time and we can gain 

diversity, provided that we use a sophisticated equalizer. 

2.4 Multiple-Input Multiple-Output Arrays 

Systems with spatial diversity have multiple antenna arrays at one end. In the last 

section we saw that these systems enjoy increased quality and capacity and also saw that 

the performance would be degraded by correlation among channel gains experienced by 

the antennas in an array. In this section we consider a multiple-input multiple-output 

(MIMO) scenario where multiple antenna arrays are at both ends. This configuration has 

many degrees of freedom and is expected to provide us with increased capacity and 

diversity with no increase in required bandwidth. 

Pioneering work by Winters [28], Foschini [I] and Telatar [29] ignited much 

interest in this area. They demonstrate that capacity can be proportional to the smaller of 

the number of antennas at each end, if a high scattering environment provides 

independent fading on all the paths between the transmitter and the receiver. This is a 

huge boost to the single-input single-output capacity. 

However, realizing the potential capacities of these systems relies on nature and 

technology. Natural characteristics of the environment like correlation between paths can 

degrade the performance of the system substantially. On the other hand, technological 

issues like antenna patterns, coupling, coding schemes and detection methods can play an 

important role. Investigating these factors in a MIMO channel is a necessary step towards 



implementing reliable systems. As the subject is still relatively young, MIMO is an 

intensive area of research right now. 

The focus of this thesis is the problem of finding near optimal detection methods 

that are low in computational complexity and we are going to introduce a new soft-input 

soft-output (SISO) detection method for frequency selective MIMO channels. The rest of 

this chapter first defines the system model we use for our analysis. Then we review 

different available methods to solve the problem and investigate their properties and at 

last we express the motivations for this new technique. 

2.5 System Model 

We consider a discrete-time, baseband equivalent of a MIMO system to simplify 

the formulas and avoid the confusions caused by the complexities of modulations, 

filtering, sampling, and conversions. For coherent detection methods, we assume that the 

receiver has perfect channel state information (CSI). The overall channel impulse 

response is also assumed to be constant in a block of N symbols and changes 

independently to the next. This block-fading frequency-selective model is frequently used 

in high data rate systems like EDGE [20] and in literature [13, 151. 

Figure 2.5 shows a MIMO system with N, transmit and N,  receive antennas. 

Each of the N,N,  links in this system is modelled as a linear finite impulse response 

(FIR) dispersive channel with L symbol-spaced taps. Each tap follows an independent 

Gaussian distribution according to the channel's power delay profile. At the receiver end 

the signal is perturbed by independent identically distributed (i.i.d) additive complex 



Gaussian noise. Single-input single-output channel impulse response from the jth 

transmitter to the ith receiver is denoted by 

(i.j) T h(1.j) = [ # ' J ) ,  q"" ,..., h ] L-1 . 

Figure 2.5 MIMO channel model 
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The symbol sent from the jth user in time interval k is denoted by b,' . It typically 

comes from a M-ary constellation. Here we mostly consider the BPSK case, where b,' is 

(?I ) ,  in order to simplify the formulas. Generalization of the formulas to M-ary is 

usually straightforward or can be found in the literature. 



We also suppose that each noise sample vl is a complex Gaussian random 

variable with unit variance, and that they are mutually independent. Unit variance is 

chosen for simplicity and does not restrict the generality of the results. The received 

signal at the ith antenna in time interval k can then be expressed as 

N is the block size but because of the memory of the channel, echoes will be 

received in the L-1 samples following the last symbol time N. Equation (2.5) can be 

written in matrix form as 

where 

Equivalently, 



where 

b,=[bT It-L+l ... b y .  

We modify (2.6) to develop the general input-output relation in the MWIO FIR 

channel 

The notations discussed in this section will be used next in describing different 

detection methods. 



2.6 Multiuser Detection in Frequency Selective MIMO Channels 

Different algorithms can be adapted to be used for multiuser detection in the 

system described above. In this section, we review these techniques and explain their 

qualities and characteristics. This analysis reveals the shortcomings in current methods, 

motivating the work in this thesis. Here are a few issues and definitions that should be 

noted before the beginning of the discussion: 

Detection can be performed according to different criteria such as minimum bit 

error rate (BER), symbol error rate (SER) or sequence error rate. In multiuser detection, 

we are usually interested in minimum sequence error rate criteria because symbols are 

often overlapping in our measurements. In such cases it is often easier to formulate a 

sequence detector. 

In digital communications whenever the data is in the form of a finely graded 

multilevel confidence measure concerning the probabilities of the symbols, it is called 

soft information. If the data carries the decisions about the symbols, it is called hard 

information. Hard information is easier to handle and transfer but ignores some of the 

data and degrades the performance of the system as a result. 

Different situations may occur in our MIMO system. If the number of transmitters 

N, is more than the number of receivers N,, this is called an overloaded situation. 

N, = N, is critically loaded and N, < Nr is under loaded. It is important to investigate 

the performance of different detection methods under these situations. 

Most of the techniques dscussed here have originally been used in other systems, 

such as in decoding convolutional codes or in equalizers used to suppress ISI. They can 



be adapted to our more difficult situation where they have to suppress both IS1 and MU1 

but some of the references discuss other or general instances of their usage. 

2.6.1 Optimal Detection Methods 

Optimal detection shows the limits of performance in a system. One of its 

attractive features is that it provides the many users with almost the same performance 

and the order of diversity as a single user operating without interference. As we explain 

next, the barrier is the huge computational burden of optimal methods. 

In order to rninimise the sequence error rate, the constraint in (2.9) has to be 

satisfied. The set {b,} includes all possible transmitted vectors and y is the received 

vector. The estimated vector b(y) is defined as 

This is the maximum a posteriori (MAP) sequence estimator. 

If all sequences are equiprobable or if a priori probabilities (apP) are unknown 

then 

This is maximum likelihood sequence estimation (MLSE). Optimal estimation is 

performed according to either MAP or ML definitions. 



As we saw in last section, y = H b + v and V is a vector of independent complex 

Gaussian random variables so 

where c is a real positive constant. 

The maximization problem in (2.10) is equivalent to a least squares problem 

Similarly for MAP 

b(y) = arg rnin {c lly - fi bi 112 -In p(bi)] . 

It is clear from these formulas that MAP requires more computation and ML ignores the 

apPs. 

2.6.1.1 Joint MAP and Joint ML 

Joint detection relies on the knowledge of gain values H and on the finite 

alphabet (FA) properties of the signal. It involves calculating the metric in MAP or ML 

formulas for all instances of the transmitted vector bi and finding the minimum metric. If 

we use the metric in (2.12), the detection method is called Joint ML (JML) but if we use 

the metric in (2.13), it is Joint MAP (JMAP) detection. JMAP employs the apPs but 

requires more computations. 

Both techniques provide us with hard decisions and will have the same answer if 

the sequences are equiprobable or if we have no prior information. Their performance is 



optimal but their computational complexity is proportional with the number of possible 

vectors { S i )  and it grows exponentially with the number of symbols in the block. So if 

we use BPSK signals, block size of N and N, users the computational complexity would 

be in the order 0(2N1N ) . 

2.6.1.2 Joint APP Extraction 

JMAP and JML both provide hard decisions but the joint APP extractor uses as 

inputs the a priori probabilities and the received signals to generate the a posteriori 

probabilities, usually in the form of log likelihood ratios (LLR) 

Its performance and complexity is the same as JMAP and JML but because it is a 

soft-input soft-output (SISO) algorithm, it can be used in an iterative decoding system. 

2.6.1.3 Trees and Trellises 

Bayes' theorem states that 

By applying this theorem, we can formulate our probability metric recursively 



We can convert the recursion formula (2.16) to an additive metric by using LLRs 

instead of probabilities. Then we can form all instances of bi by a tree that spreads 

branches of symbols over time. Figure 2.6 shows a tree of candidate binary sequences. 

This way, we can calculate the metrics of all vectors efficiently over the tree. We start 

from the beginning and calculate the metric of each node recursively by adding the 

proper update to the metric of its predecessor node on the branch. When we get to a leaf, 

the minimum metric belongs to the optimal estimation branch. This method is called a 

tree search. 

Figure 2.6 A tree of candidate binary sequences 



If the memory is finite, our system is a finite state machine (FSM). In other 

words, the locality in time changes the tree to a trellis. Figure 2.7 shows how the tree 

changes to a trellis in a system with one user and memory of 2. Trellis structure is very 

important and is necessary when we use efficient recursive algorithms, such as the 

Viterbi algorithm (VA) and BCJR. Next we review these algorithms. 

Figure 2.7 Trellis for a system with one user and memory of 2 

2.6.1.4 Viterbi Algorithm 

The invention of maximum likelihood sequence estimation by Viterbi [21] in 

1967 is a major milestone in digital communication. A classical interpretation of the 

Viterbi algorithm can be found in Fomey's often quoted paper [22]. VA is based on 

calculating path metrics along a trellis. Then at each node, the path with the least metric 

survives and the other ones are discarded. This way, the VA finds the path with the least 

metric which is the maximum likelihood path. 

VA performs optimal detection with less computational complexity than joint 

detection. The number of computations in VA grows linearly with block size N. The 

number of branches in the trellis is 2NtL if binary symbols are used. So the computational 
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complexity is in the order of O ( N ~ ~ ! ~ )  which is a huge saving compared to 0 ( 2 ~ , ~ )  of 

joint detection if the memory size L is relatively small. 

The original version of VA provides only hard decisions about the ML path 

through the trellis. Some modified versions of VA can also supply soft-outputs, most 

notably soft-output Viterbi algorithm (SOVA) proposed by Hagenauer and Hoeher [23] 

but the performance of these algorithms is not as good as MAP algorithms in iterative 

systems. 

2.6.1.5 BCJR 

The VA finds the most likely sequence of transmitted symbols and does not 

necessarily result in minimum SER but its performance is close to it. Minimum SER 

detection algorithm was proposed by Bahl et al. [2] in 1974. This maximum a posteriori 

(MAP) algorithm is known by the initials of its inventors Bahl, Cocke, Jelinek, and Raviv 

(BCJR). The BCJR algorithm provides not only the estimated sequence, but also the 

probabilities of the symbols. These soft output decisions are essential for iterative 

detection. BCJR slightly outperforms VA but because of its significantly higher 

complexity it was rarely used in practice until the introduction of turbo codes in 1993. 

Reference [24] presents a good explanation of BCJR algorithm. BCJR is also 

based on the trellis structure, but unlike VA, it performs both forward and backwards 

recursions through the trellis to calculate probabilities of the branches and probabilities of 

the states knowing the future and the past. yk (s,sr) is the probability of the branch from 

state s' to state s at timek. ak-,(s') is the probability that trellis is at state s' at time 

k - 1 knowing the past channel outputs. Qk (s) is the probability that trellis is at state s at 



time k knowing the future channel outputs. The a posteriori LLRs are then calculated 

using these values: 

These calculations seem to be very complicated but they can be simplified by 

using Jacobian logarithm formula: 

So we can use a look-up table, instead of doing the calculations every time. This 

is called Log-MAP algorithm. We can also simplify the algorithm more by this 

approximation: 

This called Max-Log-MAP algorithm and causes a slight degradation in 

performance. It is shown in [25 ]  that this setting is inherently equivalent to a combination 

of forward and backward VA processors, coupled by a dual-maxima computation and 

that it can be implemented by processing load no more than four times of VA with some 

moderate memory requirements. As a result, the order of computational complexity in 

BCJR would be the same as VA o ( N ~ ~ J ~ ) .  



2.6.1.6 Complexity Reduction Methods 

Even by using VA and BCJR, optimal detection can require a huge computational 

load especially when the memory length of the channel L is long. One way to decrease 

the computations is to settle for a reduced number of states as in delayed decision- 

feedback sequence estimation (DDFSE) or reduced-state sequence estimation (RSSE). 

DDFSE [3] consists of a VA processor with a reduced memory size and a decision 

feedback filter to cancel the effect of the symbols that are not considered in VA. RSSE, 

on the other hand, reduces the number of states using set partitioning [4]. 

An alternative approach to complexity reduction is to keep fewer survivor paths 

or nodes through the tree or trellis. The M algorithm [5] keeps only the best M choices 

but, in the T algorithm [6], paths or nodes that are better than a certain threshold survive. 

Another standard suboptimal method is to use linear prefiltering [7] to modify the 

impulse response before the actual processing. 

The practical difficulties of adapting these techniques to MKMO channels and the 

trade-off between their performance and computational costs, make them less popular. So 

in practice, most often a multi-channel equalizer is used to suppress the interference 

caused by IS1 or MUI. 

2.6.2 Linear Methods 

Linear filtering is a conventional suboptimal channel equalization technique. 

Purely linear methods employ the knowledge of channel H to solve the least square 

problem (2.12) and to simplify the problem; they ignore the finite alphabet (FA) 

properties of the signal. Figure 2.8 shows a linear equalization system. The linear filtering 



is in the form of a matrix Wt (transpose conjugate of W )  which provides the estimated 

symbols by Wty . Each component is then mapped to the nearest point in the signal 

constellation 

Figure 2.8 Linear equalizer 

This matrix format is simple and makes the analysis easier, but in practise we 

usually consider the locality in time and implement linear techniques in the form of 

multiuser transversal filters (Figure 2.9). The implementation is generally the simplest in 

linear schemes and the computational costs are low, however, these methods produce a 

noticeable performance degradation in the sense of both BER and diversity order. This 

class of detectors includes zero forcing (ZF) and minimum mean square error (MMSE) 

equalizers. 



Figure 2.9 Linear transversal filter 

+ Delay 

2.6.2.1 ZF 

ZF is based on nulling all other users by using the pseudo-inverse in order to 

make a decision about one user. This algorithm is thoroughly discussed in [17]. W is 

derived as follows and is equal to the pseudo-inverse of H 

So the transmitted vector b can be estimated by 



The computational complexity of this process is 0((NN,13), but it would be 

0(NN;LZ) for detection and o ( ( N , L ) ~ ) ~ o ~  initialization if we use the transversal filters 

instead of block detection. Unfortunately, ZF loses an order of diversity with each 

additional user, so if the number of transmit antennas is more than the number of receive 

antennas, the diversity order would be less than one and we would experience an 

irreducible error floor. This means that ZF can not handle an overloaded situation. The 

other problem with ZF is that the term Wf v might cause noise enhancement and degrade 

the performance, if H is poorly conditioned. 

2.6.2.2 MMSE 

The minimum mean square error (MMSE) technique employs a more practical 

criterion for linear detection to achieve an improved performance compared to ZF. 

MMSE includes the noise power in filter calculations and instead of nulling all the users, 

it attenuate them to noise level and in this way controls the noise enhancement problem 

encountered in ZF. 

The filter matrix W in MMSE is defined as 

where No is the noise power. 

Reference [16] explains MMSE and its characteristics and presents the derivation 

of the above formula. MMSE does not sacrifice diversity order for the user weaker than 

noise level but when all the users are strong, MMSE has the same diversity order as ZF: 

N ,  - N, + I ,  so it can not handle overloaded situations either. Performance achieved by 



MMSE is better than ZF and is the best linear filtering is capable of. Unfortunately, it is 

still far from optimal. 

2.6.3 Decision Feedback Methods 

Limited performance of linear filtering has motivated a considerable amount of 

research in nonlinear detectors with low computational complexity. The decision 

feedback equalizer (DFE) is an effective solution to this problem. It employs the finite 

alphabet property of the signal in a non-linear feedback loop to the system (Figure 2.10). 

DFE subtracts the effects of past symbols using their estimates and improves the 

performance at high enough SNR while still having the same order of computational 

complexity as the linear equalizers (LE). 

Figure 2.10 Decision feedback equalizer 

The problem with DFE is that it can suffer from catastrophic error propagation at 
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decisions but with some modifications, low complexity SISO LE and DFE equalizers are 

developed [lo] that can be used in turbo equalization systems. Optimal MlMO DFE 

solutions have been investigated in [8, 93 but their performance is still far from optimal. 

2.6.4 Quasi ML Techniques 

Some quasi-ML methods have recently been introduced in literature that achieve 

near optimal performance with low computational cost. Some restrictions apply to their 

performance and complexity. 

2.6.4.1 Soft Decision Equalization 

Soft decision equalization (SDE) is introduced by Shoumin Liu and Zhi Tian [13] 

in the quest for a low complexity, near-optimum equalization technique. It is built on 

probabilistic data association (PDA) multiuser detector [14] that was originally developed 

for near-ML detection in CDMA systems. SDE extends this method to a narrowband, 

frequency selective MIMO channel described in 2.5. It also eliminates the need for ZF 

pre-processing performed in PDA that imposed an invertibility constraint on the channel 

matrix. 

SDE is a block detection algorithm rather than a sequence detection method like 

VA. So at the end of each block it  is necessary to send a sequence of zeros to eliminate 

the interblock interference. This is called Zero padding and causes some redundancy 

especially when the memory of channel is long and the block is short. 

SDE is based on generating tentative soft decisions in the presence interference 

and simplified decision updating by forcing the composite effect of noise and interference 

to be Gaussian. It considers the general MIMO block matrix model y = H b + v . If b(i)  
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is the ith element of b and h(i) is the i~ column of H ,  we can rewrite the formula in this 

Adopting the PDA filtering idea, SDE treats the transmitted bits ( b ( i ) ) y  as 

Gaussian random variables. So they are fully characterised by their means and variances 

that can be easily calculated using the apPs: 

a,' = 4 Pr(b(i) = +1)(1- Pr(b(i) = +I)) (2.26) 

Because the channel is linear, h(i)b(i) 1 y is approximated as a Gaussian vector 

and its pdf can be described by its mean and covariance as follows. 

NN, 

Ri = var{(h(i)b(i) 1 y)} = x ajhjh: + NJ 
j=l. j+ i  

SDE updates the APPs using the pdf formula (2.27). Then the updated APPS are 

used to calculate new mean and variances using (2.28) and(2.29). SDE performs this 



process for the whole block iteratively until a11 the APPs converge which usually happens 

very quickly at 3-5 iterations for high SNR and 7-14 iterations for low SNR. 

The computational complexity of this technique is polynomial in the number of 

inputs o ( ( N N , ) ~ ) .  Its performance is better than suboptimal MIMO-DFE. SDE 

experiences some performance loss in overloaded situations but unlike most other 

techniques, it does not fail or become too computationally complex. 

A major problem with SDE is that although it is a soft decision technique, it can 

not be used in an iterative decoding system. Because SDE does not make use of the a 

priori probabilities, no matter what the apPs are, outputs would be the same. Another 

problem is caused by the fact that SDE is a block detection technique with computational 

complexity that is almost cubic with the block size. So if the blocks are long, the 

computational costs will be high. On the other hand if the blocks are short and the 

memory is long, the redundancies caused by the zero padding structure, will degrade the 

efficiency of the system. 

2.6.4.2 Sphere Decoding 

The sphere decoding algorithm is also a quasi-ML, block detection technique. It 

promises to find the optimal solution with low computational costs under some 

conditions. SD was first introduced by Finke and Pohst 11 11 in the context of the closest 

point search in lattices but i t  has become very popular in digital communication literature. 

Its various applications include lattice codes, CDMA systems, MIMO systems, global 

positioning system (GPS), etc. 



As noted above, optimal ML detection leads to solving a minimum least square 

problem (2.12) and finding an exact solution for it  is, in general, NP hard. By using the 

FA property of the signal, we can change this complex valued model to an integer least 

squares problem of the form 

As entries of s are integer, s spans a rectangular m-dimensional lattice and for 

any real matrix H ,  Hs spans a skewed lattice. Therefore, given the real vector x and the 

skewed lattice Hs ,  the integer least square problem would be equivalent to finding the 

closest lattice point to x in Euclidean sense (Figure 2.1 1) and SD algorithm can then be 

employed on this problem. 

Figure 2.11 Geometric representation of the integer least-squares problem 

H s  . . . . . . 
The basic idea of SD is limit our search only to the lattice points s that lie in a 

sphere of radius d around the given vector x and in this way save on computations. It is 

clear that the closest point inside the sphere is also the closest point in the lattice. The two 



important questions are how to find the points inside the sphere and how to choose the 

radius d. SD proposes an efficient way to solve the first question but does not really 

address the first question. There are different methods in the literature that use the 

qualities of the noise and the channel to choose the radius efficiently [15]. 

As the integer least-square problem is NP hard, the worst case complexity of SD 

is still exponential. However the complexity will be a random variable because both 

x and H are random. So it is meaningful to investigate the average complexity of the 

algorithm. Reference [15] shows that the average complexity of SD is polynomial (often 

sub-cubic) in the number of inputs over a wide range of SNRs, rates and dimensions. 

SD is originally a hard decision algorithm but with some modification it can 

provide soft decisions [15, 181. This research promises a low complexity MAP detector 

that can be used in implementing practical, high performance iterative decoding systems. 

Exact Max-Log based MAP decisions can be acquired by performing a set of hard SD 

processes [26] so the computational complexity of the soft SD has the same sub-cubic 

order as the hard SD. 

Reference [12] covers the application of SD in our frequency selective MlMO 

channel model. SD, like SDE, is a block detection algorithm so it will cause redundancy 

when the block is short and the channel memory is long but the blocks can not be chosen 

too long because the computational complexity increases cubically. The other problem is 

that the computational complexity increases exponentially in low SNRs and in 

overloaded situations. 



2.7 Motivation 

As mentioned above, both SD and SDE are block detection methods with and 

their computational complexity grows almost cubically with the number of inputs. They 

are not efficient for detection in long sequences and each of them have some restrictions. 

SD complexity grows exponentially in overloaded situations and SDE does not take 

hints. The other option is to perform optimal detection which has a huge computational 

cost or to use the conventional DFE and suffer in performance. Our goal here is to 

develop a SISO MUD algorithm to address some of these problems. 



CHAPTER 3 UPDATING APP ALGORITHM 

In this chapter, we introduce a sub-optimal symbol by symbol SISO multiuser 

detection technique. The basic idea of this updating APP (UA) algorithm is to process the 

received data at each time interval separately, extract the information and then pass only 

the partially accumulated APPs to the next time. We will show that this new algorithm 

achieves better BER than the conventional sub-optimal MIMO DFE and its performance 

is close to optimal in many cases. 

Unlike the block oriented algorithms, UA complexity is linear in block size but 

exponential in the product of number of users and memory length. This exponential 

growth makes the basic UA algorithm impractical unless its complexity is reduced. We 

will discuss the key ideas, analyse the process and simulate the performance of the basic 

UA algorithm in this chapter. Then we will develop reduced complexity UA algorithm in 

chapter 4. 

3.1 Basic UA Algorithm 

Our UA equalizer is based on processing the signal received in each symbol time 

separately. It performs joint APP extraction at each symbol time. A joint APP extractor 

block, explained in 2.6.1.2, receives the apPs and the received signal in the input, and 

generates the updated APPs at the output. The UA algorithm then uses these soft outputs 

as apPs for joint APP extraction in the next symbol time. Figure 3.1 shows the basic 

structure of UA algorithm. 



Figure 3.1 Basic structure of UA 
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The received vector at time k, y k ,  is influenced by the symbols in the L most 

recent symbol times as we saw in section 2.5 

The probability of each symbol is updated in the L time intervals that the symbol 

contributes to the received signal. After that the symbol's soft decision will be final. 

Figure 3.2 shows the process to make these soft decisions. 

Figure 3.2 The process of making soft decisions in UA 
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In this way, UA can provide soft decisions with a very short delay that is equal to 

the memory length of the channel L. In contrast, most of the other techniques like BCJR, 

SDE and SD have to wait for the whole block to arrive before making any decisions. 

Only linear algorithms and decision feedback methods can have shorter delays than UA. 

Even VA delays are usually 5-10 times more. This quality enables UA to process 

infinitely long sequences at the cost of sub-optimal performance. 

Processing the signal in separate times also saves a great deal of memory. VA and 

BCJR need a lot of memory for the metrics of the paths, states and branches; UA just 

carries APPs of the symbols from time to time. Low memory requirements will simplify 

the detection process and make it more practical. 

In this section we introduced the basic UA idea and observed that it causes short 

delay and reduces the memory requirements but there is still much more to explore to get 

a better understanding of this algorithm. Next we will analyse UA and justify the 

assumptions associated with it. We will assess its performance and compare it with other 

algorithms by performing simulations in different situations, and in the last section we 

estimate the complexity order of this algorithm, which is its most important restriction. 

3.2 UA Analysis 

As we mentioned before, UA is a sub-optimal detection algorithm and like all 

sub-optimal methods, it is based on some heuristics and approximations. In this section, 

we will analyse the formulas for joint APP extraction and explain the approximations 

leading to the development of UA algorithm. 



In order to simplify the analysis, we consider the case where only one symbol is 

sent from each user at the same time. The vector of the transmitted symbols is denoted 

b = [b' , b2 ,  ..., bq 1' and y = ly;, y: ,  ..., y is a vector of the received vectors from time 

T T T T 0 to L-1. The APP of the bit bi is p(bi l y )  and if yb-' = [yo, y2, ..., yL-2] , we can write it 

Now we'll use two approximations on (3.1) to obtain the recursive U A  

formulation, and examine the approximations further below. The first approximation is 

that the measurements are conditionally independent in order to factor the numerator. The 

other approximation is that the measurements are unconditionally independent, to factor 

the denominator. Then 

Equation (3.2) suggests that instead of extracting APP on all the received signals 

we can perform APP extraction on the received signals at time L, yL-, using the 

information obtained from the other received signals $2(b'). By applying this formula 

recursively for the other steps, we will obtain the basic UA algorithm. 



However, the UA algorithm is sub-optimal because the approximations used for 

developing it are not exact in most situations. The first approximation (3.3) is that 

measurements are conditionally independent and it is only exact when the only 

transmitted bit is b' . 

P(Y~-~ 'Y ; -~  Ibi) = P(YL-~ I bi)p(~gl-2 Ibi) 

The exact formula is 

where b' is the vector of bits from users other than i. 

The second approximation (3.5) is that the measurements are unconditionally 

independent. This one is not accurate even when there is one bit in the system. 

The exact formula is 

Although these approximations are not exactly true, i t  is an approximation that 

intuitively justifies the steps of UA algorithm. That is why UA is a sub-optimal algorithm 

rather than an optimal method and the only way we can estimate the amount of loss is 

through performing simulations in different situations. 



3.3 UA Performance 

To evaluate the UA algorithm, we study the BER performance versus SNR of 

various detectors in a simulated block fading system model explained in 2.5. BCJR 

represents the optimal performance and MMSE-DFE shows the traditional sub-optimal 

results. Recently introduced near-optimal SDE is also illustrated in the figures to allow 

better judgments. 

In these simulations we use an exponential power delay profile which is common 

to observe in an urban setting [30]. So the mean power of channel taps decreases 

exponentially and is truncated at L, 

-n' . 
c = k e  ,z=O...L-1 

k constant 

z decay constant 

The exact value of the decay constant for is different for different channels. 

Throughout this thesis z is chosen to be 1 so only the first 2-3 taps will be strong enough 

in SNRs of interest to contribute to diversity order. SNR is defined as sum of the mean 

power of all taps divided by noise power 

All the simulations are performed for BPSK signals over 10,000 random channels 

for the block length of 10 bits. Although UA can handle blocks of any length, the blocks 

are kept short to facilitate comparison with block oriented SDE, since its complexity 

grows cubically with sequence length. 



We compare the results under three different conditions; critically loaded where 

the number of transmit antennas is equal to the receive antennas, underloaded where the 

transmitters are less than receivers and overloaded where it is the reverse. These 

simulations will give us an idea about the UA performance and characteristics. 

3.3.1 Critically Loaded 

We examine the case where the number of transmit antennas is equal to the 

number of receive antennas N, = Nr = 2,  memory length L = 3  and block length is 

N = 10 over 10,000 runs. Figure 3.3 shows the results; UA outperforms MMSE-DFE and 

is within 1 dB from the optimal BCJR over most of the SNR range. 

3.3.2 Under Loaded 

Figure 3.4 shows an under loaded condition where receivers are more than 

transmitters N, = 2 ,  Nr = 4 ,  L = 3 and N = 10 over 10,000 turns. In this situation the 

loss of the UA algorithm is negligible and in the order of fraction of a dB, Unlike 

MMSE-DFE, UA also enjoys full diversity order. 

3.3.3 Overloaded 

Studying the overloaded situation is important because most of the detection 

techniques experience difficulties in handling this case Figure 3.5 illustrates the 

performance of different algorithms where number of receivers is less than the number of 

transmitters N, = 2,  Nr = 1, L = 3 and N = 10 over 10,000 random runs. As we see, 

MMSE-DFE experiences an irreducible error floor. SDE and UA are close together and 

experience some loss compared to optimal BCJR. SDE converges to a floor BER in high 



SNRs while basic UA seems to just suffer from 1.5 dB loss in SNR. The estimates that 

SDE uses for soft interference cancellation are not accurate enough in this case and cause 

the error floor. 

Figure 3.3 
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Figure 3.4 BER performance of under loaded system N, = 2 ,  Nr = 4 ,  L = 3 and N = 10 

Figure 3.5 BER performance of overloaded system N, = 2, N ,  = 1, L = 3 and N = 10 



3.4 UA Complexity 

UA processes each received vector separately from the others so its computational 

complexity is linear in the number of symbols, but each of these processes in the basic 

algorithm includes joint APP extraction, and the complexity of optimal joint APP 

extraction is exponential in the product of number of users and memory length, as we 

explained in 2.6.1.2. 

This exponential growth can cause an impracticable computational cost when the 

users are numerous or the channel memory length is large. To implement this system we 

need to modify the optimal joint APP extractor in order to decrease its computational 

load without sacrificing much of the performance. That modification is the topic of 

chapter 4. 

3.5 Summary 

In this chapter we introduced the basic UA algorithms and explored its 

characteristics. UA performance is far better than sub-optimal DFE methods and is close 

to optimal except when it is working in an overloaded situation. Even then its BER is 

acceptable, and does not exhibit a floor. UA needs less memory than most other detection 

algorithms, and its complexity grows linearly with block size. However, it is not practical 

in the basic form presented in this chapter, because the number of computations at each 

step grows exponentially with the product of the number of users and the memory length. 



CHAPTER 4 COMPLEXITY REDUCTION IN UA 
ALGORITHM 

As explained above, the duty of the joint APP extractor block in the UA structure 

is to perform SISO MUD. However, the optimal joint APP extraction, with its 

exponential computational complexity, makes the basic UA algorithm impractical. Our 

goal in this chapter is to replace the optimal joint APP extraction with another SISO 

MUD algorithm in order to enjoy the good qualities of UA with reduced complexity and 

minimal performance degradation. 

There are a number of ways in the literature to perform MUD with less 

computational complexity, such as SD, SDE defined in chapter 2 and iterative MUD 

(MUD) that will be explained later. SD is not a proper option for this application 

because it has polynomial complexity only when we have a full rank channel matrix, and 

with rank deficiency the computations grow exponentially with number of deficiencies. 

So in our case, SD is not desirable because the MUD in the UA algorithm is usually 

overloaded; that is the product of the number of users and memory length usually exceeds 

the number of receiver antennas. 

Using an SDE-based MUD technique for joint APP extraction will have 

polynomial computational complexity but SDE experiences huge performance loss in an 

overloaded situation. Moreover, it does not "take hints" so it can not use the apPs from 

the previous time intervals. 



As a result, SDE is not a good candidate to replace the optimal joint APP 

extractor. This fact can also be confirmed by performing simulations. Figure 4.1 

compares the performance of optimal detection and UA-SDE algorithm and shows a loss 

of more than 3 dB in most cases. The simulations comprise of 10,000 runs in a system 

with 2 transmit and 4 receive antennas and block length of 100 bits. 

Figure 4.1 Performance comparison N, = 2 ,  N ,  = 4 ,  L = 5 and N = 100 

On the other hand, the IMUD algorithm recently introduced in [19] is an iterative 

groupwise SISO MUD method that reduces the computations especially in overloaded 

cases where the number of transmit antennas is more than receivers. So applying its 

principles to our problem seems to be beneficial. Therefore, we propose replacing the 

optimal joint APP extractor with a suboptimal iterative group detection technique 



inspired by IMUD to reduce the computational complexity of UA algorithm without 

causing much degradation in performance. 

In the rest of this chapter we will introduce M U D  and explain how we can adapt 

it according to the nature of our problem. We also suggest implementing the core APP 

extractor in the group detector by a soft SD to further reduce the computations. Then we 

will explore the performance of the resulting reduced complexity UA algorithm and 

estimate its performance and characteristics. 

4.1 Iterative Multiuser Detection 

The IMUD algorithm divides the interfering symbols into non-overlapping groups 

that are detected separately and in succession. To detect a group, M U D  first removes the 

effect of all other groups by soft cancellation. Then the results go through a joint APP 

extractor which provides soft decisions for the symbols in the selected group. The soft 

decisions in turn allow soft cancellation of that group's symbols in the detection of 

subsequent groups. 

After all the groups are detected, we do the whole process again and iterate until 

all the APPs converge, which usually happens in 2-3 iterations. So the computational 

complexity of M U D  is exponential in the group size N ,  , instead of the whole number of 

symbols. Because N ,  is smaller than the number of all symbols, we gain a huge 

reduction in computation at the cost of relatively small performance degradation. 

In the original MUD, users are assigned to a group in MMSE-VBLAST order, 

but our problem has some natural grouping strategies according to the transmission time. 



bk=[bT . b:lT 
t-Lfl 

The whole N , L  interfering symbols in 6, can be divided into L groups 

, = { b k l i  , i 1 . .  of the N, symbols comprising bktl-,. We define h, as the i' 

column of H and b, as the bit associated with it. We can rewrite (4.1), symbol-wise and 

group-wise, respectively 

Using the a prior- probabilities, we can calculate the mean and variance of each 

bit 

What we know about bi is ,q and a,: shows the amount of uncertainty. For soft 

cancellation of the effects of this bit on the measurements we should subtract the mean 

and account for its variance in correlation matrix of noise. In other words, we suppose 

that what we do not know about b, is a complex, zero mean Gaussian random noise with 



variance oi2. Equations below show the results when all the groups except G, (the group 

being detected) are cancelled. 

We then feed yJ,  RL and a priori probabilities of the symbols in Gj to a joint 

APP extractor and use the resulting LLRs to update means and variances of the symbols 

in Gj . 

Symbols in Gk are the most recent symbols, so we have no a priori information 

about them. The best strategy is to start the detection from this group because we have 

apP of all other groups so we are able to cancel them. Then Gk will be detected with the 

best quality. Next, we detect the other groups in descending order. After all the groups 

are finished we go back to Gk and start the process again. LLRs typically converge in two 

(sometimes three) iterations. 

It should be noted that the joint APP extractor here is a little bit different from the 

one in section 2.6.1.2 because of the colored noise (or we can still use that after first 

whitening the noise using Cholesky decomposition). Figure 4.2 shows the structure of the 

resulting UA-IMUD system. 



Figure 4.2 UA-MUD structure 
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4.2 Soft Sphere Decoder 

The core of the UA-IMUD algorithm (Figure 4.2) still employs the optimal joint 

APP extractor. We can further reduce the computational costs of UA algorithm, if we 



replace the optimal joint APP extractors in the group detector by soft sphere decoders. 

Soft SD finds the signal points in a sphere of predetermined radius around y:. Then 

instead of the optimal exhaustive search on all possible points, it restricts the calculations 

only to the points in the sphere. LLRs are then calculated as 

S = {points in the sphere} 

This way, the computational complexity of this block decreases from ZN1 to 

o(N:) if N, I N ,  and to 0(2N1-Nr N : )  if N, > N ,  . In the case where L = 1, there is no 

memory in the system and UA would be symbol by symbol multiuser detection via 

sphere decoding. 

4.3 BER Performance 

Reduced complexity UA (RCUA) algorithm solves the problem of excessive 

computational load of basic UA by using a combination of IMUD and soft SD but 

because both IMUD and soft SD are suboptimal algorithms, RCUA will suffer from some 

performance loss. In this section we will evaluate the BER performance versus SNR of 

RCUA, compared with various detectors by performing simulations similar to those in 

section 3.3. 



4.3.1 Critically Loaded System N,  = N ,  

Figure 4.3 shows the case where N,  = Nr = 2 ,  L = 4 and block size N =lo .  As 

we see, RCUA algorithm still shows a better result than MMSE-DFE not only in BER but 

also in the diversity that it enjoys, shown from the slope of the curve. It is within 1.5 dB 

from the optimal BCJR over most of the SNR range. The loss of RCUA compared to the 

basic UA of chapter 3 seems negligible in this case (see Figure 3.3 for comparison). 

Figure 4.3 BER performance of critically loaded system N,  = N ,  = 2 ,  L = 4 and N = 10 
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basic UA. As it seems the extra information coming from more antennas helps the 

algorithm to feed back better estimates and improve the performance. 

4.3.3 Overloaded System N,  > N ,  

Most techniques handle this case poorly. SD can keep the optimal performance 

only by computational complexity that grows exponentially with the product of number 

of deficiencies and block size. SDE manages to keep a sub-optimal performance, though 

with an error floor. However, it cannot be used in an iterative system, so it can not 

improve performance through turbo equalization and decoding. 

As we see in Figure 4.6 where N ,  = 1, N, = 2, L = 4 and N = 10, RCUA keeps a 

suboptimal performance but still no irreducible error floor. It seems that in this case 

RCUA suffers the most loss in performance and diversity order (compare with Figure 

3.5). The reason is that the system is overloaded and we gain less information from each 

step. So the soft cancellations in next steps will be less accurate and the overall loss will 

be more than other cases. 

In comparison SDE offers better performance and diversity order at low SNRs but 

saturates at a floor BER value. As the degree of overload N, - Nr grows, both SDE and 

RCUA experience substantially increased performance loss. Figure 4.6 and Figure 4.7 

illustrate this situation. As we see SDE performance deteriorates more than RCUA with 

increased degree of overload. 



Figure 4.4 BER performance of under loaded system N ,  = 4 ,  N,  = 2, L = 4 and N = 10 

Figure 4.5 BER performance of overloaded system N, = 2, N,  = 1, L = 3 and N = 10 
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Figure 4.6 BER performance of overloaded system Nr = 1 ,  N ,  = 3 ,  L = 4 and N = 10 

Figure 4.7 BER performance of overloaded system N ,  = 1 ,  N, = 4, L = 2 and N = 10 
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4.4 Complexity of RCUA 

In last section we saw that reducing the complexity of UA algorithm causes small 

performance loss in most cases and we compared the performance with other algorithms. 

Now, we have to evaluate the overall computational cost of RCUA. As we mentioned in 

Chapter 3, the order of computational complexity in basic UA is o ( N ~ ~ I ~ ) .  By using 

IMUD we will reduce O ( N ~ ~ [ ~ )  to o ( N L ~ ~ ' )  because the groups will each have N, 

users. When we use SD as the core, 0 ( 2 ~ l )  will be reduced to in an 

overloaded system and to o(N:)  in a non-overloaded case as we explained in chapter 2 .  

Table 4.1 below compares the asymptotic computational complexity and 

performance of different algorithms in overloaded and non-overloaded situations 

provided that the SNRs are high enough. It shows that RCUA is very flexible, and does 

not fail or become too computationally complex in any situation. 

However, the table does not show how low SNRs affect the computational 

complexity increases of different algorithms. SDE needs more iterations to converge and 

the number of points in the sphere increases as the radius of the sphere grows in SD [15]. 

The same thing happens for the core SD in RCUA but the effect in not huge because the 

worst case for RCUA is O ( N L ~ ~ I )  which far less than the worst case for SD 0 ( 2 ~ ! ~ ) .  



Table 4.1 Comparison of asymptotic (high SNR) computational complexities and performance 

BCJR 

SDE 

SD 

MMSE-DFE 

RCUA 

Overloaded 

O ( N ~ ~ ! ~ )  
Optimal 

o ( ( N N , ) ~ ~ ~ ' ~ ' - ~ "  
Optimal but too complex 

O(NLNJ 2'N1-Nr))  
Sub-optimal 

O ( N ~ ~ , ~ )  
Optimal 

o( NLN; ) 
Sub-optimal 

4.5 Characteristics 

In this section we investigate various characteristics of UA algorithm. 

4.5.1 Different Block Lengths 

We have been using a block fading system model in this thesis to develop UA 

algorithm and compare its performance with the block oriented techniques. However, this 
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algorithm is not block oriented and it can process long or infinite streams of data. It can 

also be used in adaptive systems where the channel impulse response changes over a 

block. 

As an experiment we changed the block length in simulations and we expected 

that there would be no change in the performance of the system. Figure 4.8 shows the 

BER performance does not change within the accuracy of the results. The simulations 

have run 10,000 times on a system with N, = Nr = 2 and L = 3. 

Figure 4.8 Comparison of performance with different block lengths N, = Nr = 2 and L = 3 

4.5.2 Different Channel Memory Lengths 

Within our exponential power delay profile we changed the memory length of the 

channel to observe the performance of RCUA detector under different channel models. 



Figure 4.9 shows the results of simulations performed 10,000 times on a system with 

N, = N, = 2 and N = 10. There is a noticeable improvement in performance when L 

increases from 1 to 2. The reason is if L = 1, channel has no memory and we receive the 

signal only once and this lack of diversity causes the performance to be worse than the 

case where L = 2 .  There is a small further improvement for L = 3 and almost no further 

improvement for L = 10. This observation can be justified by the fact that only the first 

few delayed versions of the signal are strong enough to increase the diversity order or 

improve the performance of the system. 

Figure 4.9 Comparison of performance with different channel memory lengths 
N, = N ,  = 2  and N=10 



4.5.3 Different Power Delay Profiles 

We have done all our previous simulations on systems with exponential power 

delay profile. As we mentioned before, this power delay profile is commonly observed in 

an urban setting. It is interesting though to investigate the effects of changing the power 

delay profile on the performance of our RCUA detector. For this comparison we have 

chosen a uniform power delay profile where all the taps of the channel have equal 

average power. Again we choose N, = N ,  = 2 ,  N = 10, L = 3 and perform the 

experiment 10,000 times. 

The results are illustrated in Figure 4.10 and show a small degradation in 

performance in the uniform case compared to exponential. The reason has to do with the 

RCUA algorithm's important first estimates of the signal, which are taken from the 

lowest delay arrivals (Section 4.1). In an exponential profile these have strength 

significantly above the average of the taps. In a uniform setting the first estimates of the 

signal are less accurate as less power is the first few taps compared to the exponential 

setting. These less accurate estimates will then be used as apPs for soft cancellation in the 

next steps of detection and cause the small performance degradation. 

The fact that the difference between two different cases is very small shows that 

RCUA performs almost the same under different power delay profiles so we can 

generalize the results obtained in other sections under exponential power delay profile. 



Figure 4.10 Performance comparison with exponential and uniform power delay profiles 
N, = N ,  = 2 ,  N = 1 0  and L = 3  
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4.5.4 Effect of a priori Information 

We have mentioned before that unlike UA, SDE does not take hints. To prove this 

fact, we have done some simulations to compare the performance of SDE and RCUA in 

the cases where the detectors have some or no a priori information about the signal. 

Figure 4.1 1 shows the results of a simulation performed in the case. N, = N ,  = 2 ,  L = 4 ,  

N = 10 and a priori LLRs are +1 for +1 and -1 for -1 which means that the probability of 

correct bit is 0.7311. As we see SDE does not use these hints but RCUA uses the 

information and improves the BER performance. It is obvious from these results that 

SDE can not be used in an iterative decoding system. 



Figure 4.11 Effect of a priori information 
N, = N ,  = 2 ,  L = 4  and N = l O  

4.5.5 Sharing Information 

In the last section, we saw that UA has the ability to utilize a priori information. 

We also know that UA can provide us soft information with small delays and relatively 

small computational costs. Now if we use UA in a cellular system, different base stations 

can share their information. This is called macrodiversity, and it is a solution for 

shadowing problems traditionally because if a user is in the shadow region of one base 

station it might have acceptable reception for the link to another base station. 

Existing literature about macrodiversity [32,33] show that it can increase the 

capacity of the system by increasing the number of co-channel signals but these 

investigations have used optimal detection techniques. It is interesting and promising to 

consider the performance of cellular macrodiversity system using RCUA. This is the 

topic of our future research. 



4.5.6 Near-Far Effect 

In all the cases we have investigated before the users had equal powers but in a 

real situation users will have different mean power. This difference in power level is 

usually caused by path loss as the users nearer to base stations will be stronger than the 

far users and might cause relatively high interference for the weak users. To avoid this 

near-far effect, power control systems are usually necessary. 

Here we have investigated the near far effect caused by different detection 

algorithms. The simulations are performed in a system with 2 users in which one of them 

is 5 dB stronger than the other N, = N,  = 2 ,  L = 3 ,  N = 10. Figures below illustrate the 

BER performance of each user against its own SNR for different algorithms. As we see in 

MMSE-DFE the weak user experiences some loss but in BCJR, SDE and RCUA the 

difference in performance is small and helps the weak user. 



Figure 4.12 Near-far effect in MMSE-DFE 
N, = N r  = 2 ,  L=3 and N = 1 0  

Figure 4.13 Near-far effect in BCJR 
N,  = N , = 2 ,  L=3 and N = 1 0  



Figure 4.14 Near-far effect in RCUA 
N, = N ,  = 2 ,  L = 3  and N = 1 0  

Figure 4.15 Near-far effect in SDE 
N, = N ,  = 2 ,  L = 3  and N = 1 0  



4.6 Different Variations in RCUA 

As we mentioned before we adapt IMUD according to the nature of our system 

model to develop RCUA. So each group will include the symbols sent at a time interval 

and group detection starts with the most recent group because we have the least amount 

of information about its symbols. Iterations continue successively on the same groups. 

These steps describe the normal RCUA algorithm but many other variations to ordering 

and grouping is also possible. 

One way is to form the groups by a sliding window of length N , .  Detection still 

starts from the most recent bits sent but the next group will be only one bit different from 

the previous one. This sliding window version of RCUA increases computations in one 

iteration by a factor N, , but we can not predict how it influences the performance or if it 

needs fewer iterations to converge. 

As the performance of the normal ZMUD algorithm [19] improves with random 

group selection, another suggestion is to do the first iteration in normal RCUA format 

and for the next iterations choose random groups. Figure 4.16 compares the performance 

of these two variations with the normal RCUA through simulation in the case 

where N, = N ,  = 2 ,  L = 4 and block size N = 10 over 10,000 runs. As we see, normal 

RCUA shows the best performance of all and this will justify our choices in developing 

this algorithm. 



Figure 4.16 Performance comparison of variations in RCUA 
N, = N ,  = 2 ,  L = 4  and N=10 



CHAPTER 5 CONCLUSIONS 

We introduced the new SISO updating APP (UA) equalizer for symbol by symbol 

multiuser detection in frequency selective MIMO channel. One of UA principal 

advantages is that its computational load is linear in the block or packet length. Also its 

flexible structure permits any measurements at different times, polarizations, 

rnicrodivesity antennas, macrodiversity antennas, etc. to be incorporated into a common 

decision structure. 

The basic UA algorithm extracts APPs from the received signals at one time 

interval and then passes only these probabilities as apPs to the next time interval. Because 

of the exponential complexity of optimal joint APP extraction, basic UA algorithm is not 

practical. We then reduced its complexity using the powerful tools of soft SD, soft 

cancellation and group detection in a hybrid way. 

The resulting RCUA achieves performance gain over the traditional sub-optimal 

MMSE-DFE with comparable order of computational complexity. UA performance is 

near optimal and comparable to BCJR, SDE and SD in non-overloaded situations. Even 

in an overloaded situation, its BER performance is acceptable and does not saturate at a 

floor like SDE. Moreover, the number of computations in RCUA does not increase as 

much as SD in an overloaded system so RCUA is the most flexible algorithm to variation 

in the number of users. 

UA computational complexity is linear in the number of symbols because of the 

symbol by symbol process. So unlike SD and SDE, it is able to process long or infinite 
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streams of data. Unlike SDE, UA can also be used in iterative turbo equalization systems. 

The overall characteristics and flexibility of this algorithm make it worthwhile to be 

considered in future wireless communication systems. 

5.1 Future Research 

In this thesis we developed RCUA and evaluated its complexity, performance and 

characteristics. There is still a lot more to be explored about different aspects of this 

algorithm. It is a SISO algorithm so its performance can be evaluated in turbo- 

equalization systems, using different codes and iterating between the decoder and UA 

equalizer. If we can find codes that can be decoded using RCUA without much loss then 

we will be able to implement turbo-equalization systems with less complexity and shorter 

delay. 

RCUA is flexible and does not cause much delay relative to most other algorithms 

in providing soft decisions, so if we use it in a cellular system, it can share information 

between different base-stations in real-time. This macrodiversity system has the potential 

to accommodate co-channel users in neighbouring cells or to increase the number of co- 

channel users in a cell. This can cause a huge increase in capacity without using more 

bandwidth or increasing the computation load substantially. Investigating such a system 

can be interesting and fruitful. 

Another interesting topic is to develop sliding window techniques for soft SD. 

Shorter windows will prevent the increased computational burden caused by long block 

lengths and will decrease the delays. Evaluating the performance and comparing it with 

UA is one of our suggested areas of future research. 
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