1,756 research outputs found

    Performance Analysis of Downlink Inter-band Carrier Aggregation in LTE-Advanced

    Get PDF

    Performance analysis of carrier aggregation for various mobile network implementations scenario based on spectrum allocated

    Full text link
    Carrier Aggregation (CA) is one of the Long Term Evolution Advanced (LTE-A) features that allow mobile network operators (MNO) to combine multiple component carriers (CCs) across the available spectrum to create a wider bandwidth channel for increasing the network data throughput and overall capacity. CA has a potential to enhance data rates and network performance in the downlink, uplink, or both, and it can support aggregation of frequency division duplexing (FDD) as well as time division duplexing (TDD). The technique enables the MNO to exploit fragmented spectrum allocations and can be utilized to aggregate licensed and unlicensed carrier spectrum as well. This paper analyzes the performance gains and complexity level that arises from the aggregation of three inter-band component carriers (3CC) as compared to the aggregation of 2CC using a Vienna LTE System Level simulator. The results show a considerable growth in the average cell throughput when 3CC aggregations are implemented over the 2CC aggregation, at the expense of reduction in the fairness index. The reduction in the fairness index implies that, the scheduler has an increased task in resource allocations due to the added component carrier. Compensating for such decrease in the fairness index could result into scheduler design complexity. The proposed scheme can be adopted in combining various component carriers, to increase the bandwidth and hence the data rates.Comment: 13 page

    5GNOW: Challenging the LTE Design Paradigms of Orthogonality and Synchronicity

    Full text link
    LTE and LTE-Advanced have been optimized to deliver high bandwidth pipes to wireless users. The transport mechanisms have been tailored to maximize single cell performance by enforcing strict synchronism and orthogonality within a single cell and within a single contiguous frequency band. Various emerging trends reveal major shortcomings of those design criteria: 1) The fraction of machine-type-communications (MTC) is growing fast. Transmissions of this kind are suffering from the bulky procedures necessary to ensure strict synchronism. 2) Collaborative schemes have been introduced to boost capacity and coverage (CoMP), and wireless networks are becoming more and more heterogeneous following the non-uniform distribution of users. Tremendous efforts must be spent to collect the gains and to manage such systems under the premise of strict synchronism and orthogonality. 3) The advent of the Digital Agenda and the introduction of carrier aggregation are forcing the transmission systems to deal with fragmented spectrum. 5GNOW is an European research project supported by the European Commission within FP7 ICT Call 8. It will question the design targets of LTE and LTE-Advanced having these shortcomings in mind and the obedience to strict synchronism and orthogonality will be challenged. It will develop new PHY and MAC layer concepts being better suited to meet the upcoming needs with respect to service variety and heterogeneous transmission setups. Wireless transmission networks following the outcomes of 5GNOW will be better suited to meet the manifoldness of services, device classes and transmission setups present in envisioned future scenarios like smart cities. The integration of systems relying heavily on MTC into the communication network will be eased. The per-user experience will be more uniform and satisfying. To ensure this 5GNOW will contribute to upcoming 5G standardization.Comment: Submitted to Workshop on Mobile and Wireless Communication Systems for 2020 and beyond (at IEEE VTC 2013, Spring

    Modelling Load Balancing and Carrier Aggregation in Mobile Networks

    Full text link
    In this paper, we study the performance of multicarrier mobile networks. Specifically, we analyze the flow-level performance of two inter-carrier load balancing schemes and the gain engendered by Carrier Aggregation (CA). CA is one of the most important features of HSPA+ and LTE-A networks; it allows devices to be served simultaneously by several carriers. We propose two load balancing schemes, namely Join the Fastest Queue (JFQ) and Volume Balancing (VB), that allow the traffic of CA and non-CA users to be distributed over the aggregated carriers. We then evaluate the performance of these schemes by means of analytical modeling. We show that the proposed schemes achieve quasi-ideal load balancing. We also investigate the impact of mixing traffic of CA and non-CA users in the same cell and show that performance is practically insensitive to the traffic mix.Comment: 8 pages, 6 figures, submitted to WiOpt201

    Integration of Carrier Aggregation and Dual Connectivity for the ns-3 mmWave Module

    Full text link
    Thanks to the wide availability of bandwidth, the millimeter wave (mmWave) frequencies will provide very high data rates to mobile users in next generation 5G cellular networks. However, mmWave links suffer from high isotropic pathloss and blockage from common materials, and are subject to an intermittent channel quality. Therefore, protocols and solutions at different layers in the cellular network and the TCP/IP protocol stack have been proposed and studied. A valuable tool for the end-to-end performance analysis of mmWave cellular networks is the ns-3 mmWave module, which already models in detail the channel, Physical (PHY) and Medium Access Control (MAC) layers, and extends the Long Term Evolution (LTE) stack for the higher layers. In this paper we present an implementation for the ns-3 mmWave module of multi connectivity techniques for 3GPP New Radio (NR) at mmWave frequencies, namely Carrier Aggregation (CA) and Dual Connectivity (DC), and discuss how they can be integrated to increase the functionalities offered by the ns-3 mmWave module.Comment: 9 pages, 7 figures, submitted to the Workshop on ns-3 (WNS3) 201

    LTE and Wi-Fi Coexistence in Unlicensed Spectrum with Application to Smart Grid: A Review

    Full text link
    Long Term Evolution (LTE) is expanding its utilization in unlicensed band by deploying LTE Unlicensed (LTEU) and Licensed Assisted Access LTE (LTE-LAA) technology. Smart Grid can take the advantages of unlicensed bands for achieving two-way communication between smart meters and utility data centers by using LTE-U/LTE-LAA. However, both schemes must co-exist with the incumbent Wi-Fi system. In this paper, several co-existence schemes of Wi-Fi and LTE technology is comprehensively reviewed. The challenges of deploying LTE and Wi-Fi in the same band are clearly addressed based on the papers reviewed. Solution procedures and techniques to resolve the challenging issues are discussed in a short manner. The performance of various network architectures such as listenbefore- talk (LBT) based LTE, carrier sense multiple access with collision avoidance (CSMA/CA) based Wi-Fi is briefly compared. Finally, an attempt is made to implement these proposed LTEWi- Fi models in smart grid technology.Comment: submitted in 2018 IEEE PES T&

    Increasing LTE-Advanced Network Capacity Using The Inter-band Carrier Aggregation (Downlink Side) Method

    Get PDF
    According to the identification of the Operating Support System (OSS) by the Smartfren cellular operator in the Central Bandung area, six sites are found to have high traffic capacity with the physical resource block (PRb) percentage of 82.6 %. The use of PRb > 80 % is included in the warning indicator 2 based on the operator’s standards. It is also strengthened by the condition of the existing sites with the average Reference Signal Receive Power (RSRP) of -103.3 dBm, Signal to Interference Noise Ratio (SINR) of 6.28 dB, and throughput of 27.78 Mbps, thus resulting in non-optimal network performance in the area. Therefore, in this study, the inter-band Carrier Aggregation (CA) was applied by combining the 40 Time Division Duplex (TDD) band (2300 MHz) and band 5 Frequency Division Duplex (FDD) (850 MHz). One of the advantages of applying this method is that it can increase the user network capacity by maximizing the resources owned by the operator.  The predetermined scenario taking into account the initial network condition indicated a decrease in the PRb percentage by 44.50 % and an increase in the average RSRP value by 12.8 dBm, SINR by 5.14 dB, and throughput by 34.59 Mbps.According to the identification of the Operating Support System (OSS) by the Smartfren cellular operator in the Central Bandung area, six sites are found to have high traffic capacity with the physical resource block (PRb) percentage of 82.6%. The use of PRb > 80% is included in the warning indicator 2 based on the operator’s standards. This is also strengthened by the condition of the existing sites with the average Reference Signal Receive Power (RSRP) of -103.3 dBm, Signal to Interference Noise Ratio (SINR) of 6.28 dB, and throughput of 27.78 Mbps, thus resulting in non-optimal network performance in the area. Therefore, in this study, the Inter-band Carrier Aggregation (CA) was applied by combining the 40 Time Division Duplex (TDD) band (2300 MHz) and band 5 Frequency Division Duplex (FDD) (850 MHz). One of the advantages of applying this method is that it can increase the user network capacity by maximizing the resources owned by the operator.  The predetermined scenario taking into account the initial network condition indicated a decrease in the PRb percentage by 44.50% and an increase in the average RSRP value by 12.8 dBm, SINR by 5.14 dB, and throughput by 34.59 Mbps
    • 

    corecore