435 research outputs found

    Raptor codes for infrastructure-to-vehicular broadcast services

    Get PDF

    On the Energy Efficiency of LT Codes in Proactive Wireless Sensor Networks

    Full text link
    This paper presents an in-depth analysis on the energy efficiency of Luby Transform (LT) codes with Frequency Shift Keying (FSK) modulation in a Wireless Sensor Network (WSN) over Rayleigh fading channels with pathloss. We describe a proactive system model according to a flexible duty-cycling mechanism utilized in practical sensor apparatus. The present analysis is based on realistic parameters including the effect of channel bandwidth used in the IEEE 802.15.4 standard, active mode duration and computation energy. A comprehensive analysis, supported by some simulation studies on the probability mass function of the LT code rate and coding gain, shows that among uncoded FSK and various classical channel coding schemes, the optimized LT coded FSK is the most energy-efficient scheme for distance d greater than the pre-determined threshold level d_T , where the optimization is performed over coding and modulation parameters. In addition, although the optimized uncoded FSK outperforms coded schemes for d < d_T , the energy gap between LT coded and uncoded FSK is negligible for d < d_T compared to the other coded schemes. These results come from the flexibility of the LT code to adjust its rate to suit instantaneous channel conditions, and suggest that LT codes are beneficial in practical low-power WSNs with dynamic position sensor nodes.Comment: accepted for publication in IEEE Transactions on Signal Processin

    Distributed Joint Source-Channel Coding With Copula-Function-Based Correlation Modeling for Wireless Sensors Measuring Temperature

    Get PDF
    Wireless sensor networks (WSNs) deployed for temperature monitoring in indoor environments call for systems that perform efficient compression and reliable transmission of the measurements. This is known to be a challenging problem in such deployments, as highly efficient compression mechanisms impose a high computational cost at the encoder. In this paper, we propose a new distributed joint source-channel coding (DJSCC) solution for this problem. Our design allows for efficient compression and error-resilient transmission, with low computational complexity at the sensor. A new Slepian-Wolf code construction, based on non-systematic Raptor codes, is devised that achieves good performance at short code lengths, which are appropriate for temperature monitoring applications. A key contribution of this paper is a novel Copula-function-based modeling approach that accurately expresses the correlation amongst the temperature readings from colocated sensors. Experimental results using a WSN deployment reveal that, for lossless compression, the proposed Copula-function-based model leads to a notable encoding rate reduction (of up to 17.56%) compared with the state-of-the-art model in the literature. Using the proposed model, our DJSCC system achieves significant rate savings (up to 41.81%) against a baseline system that performs arithmetic entropy encoding of the measurements. Moreover, under channel losses, the transmission rate reduction against the state-of-the-art model reaches 19.64%, which leads to energy savings between 18.68% to 24.36% with respect to the baseline system

    Raptor Code for Energy-Efficient Wireless Body Area Network Data Transmission

    Get PDF
    Wireless Body Area Network (WBAN) is a device developed mainly for the purpose of monitoring the medical condition of a human. WBAN is worn on the surface or in the human body, and it contains a wireless communication device.  A WBAN device is required to be small-sized, with limited power and high data reliability. The data reliability can be obtained by using a carefully designed channel coding scheme so that the energy consumed can be maintained at a low level.  In this paper, data transmission in Rayleigh, Rician, and Nakagami-m fading channels using Raptor and BCH codes is simulated.  Simulation results show that Raptor-coded data transmission consumes lower energy compared to BCH-coded transmission for various fading channels if the transmission distance exceeds 10 meters.  Therefore, Raptor code is a good candidate for the channel coding scheme for WBAN

    Collaborative Communication And Storage In Energy-Synchronized Sensor Networks

    Get PDF
    In a battery-less sensor network, all the operation of sensor nodes are strictly constrained by and synchronized with the fluctuations of harvested energy, causing nodes to be disruptive from network and hence unstable network connectivity. Such wireless sensor network is named as energy-synchronized sensor networks. The unpredictable network disruptions and challenging communication environments make the traditional communication protocols inefficient and require a new paradigm-shift in design. In this thesis, I propose a set of algorithms on collaborative data communication and storage for energy-synchronized sensor networks. The solutions are based on erasure codes and probabilistic network codings. The proposed set of algorithms significantly improve the data communication throughput and persistency, and they are inherently amenable to probabilistic nature of transmission in wireless networks. The technical contributions explore collaborative communication with both no coding and network coding methods. First, I propose a collaborative data delivery protocol to exploit the optimal performance of multiple energy-synchronized paths without network coding, i.e. a new max-flow min-variance algorithm. In consort with this data delivery protocol, a localized TDMA MAC protocol is designed to synchronize nodes\u27 duty-cycles and mitigate media access contentions. However, the energy supply can change dynamically over time, making determined duty cycles synchronization difficult in practice. A probabilistic approach is investigated. Therefore, I present Opportunistic Network Erasure Coding protocol (ONEC), to collaboratively collect data. ONEC derives the probability distribution of coding degree in each node and enable opportunistic in-network recoding, and guarantee the recovery of original sensor data can be achieved with high probability upon receiving any sufficient amount of encoded packets. Next, OnCode, an opportunistic in-network data coding and delivery protocol is proposed to further improve data communication under the constraints of energy synchronization. It is resilient to packet loss and network disruptions, and does not require explicit end-to-end feedback message. Moreover, I present a network Erasure Coding with randomized Power Control (ECPC) mechanism for collaborative data storage in disruptive sensor networks. ECPC only requires each node to perform a single broadcast at each of its several randomly selected power levels. Thus it incurs very low communication overhead. Finally, I propose an integrated algorithm and middleware (Ravine Stream) to improve data delivery throughput as well as data persistency in energy-synchronized sensor network

    Rateless Space-Time Block Codes for 5G Wireless Communication Systems

    Get PDF
    This chapter presents a rateless space-time block code (RSTBC) for massive multiple-input multiple-output (MIMO) wireless communication systems. We discuss the principles of rateless coding compared to the fixed-rate channel codes. A literature review of rateless codes (RCs) is also addressed. Furthermore, the chapter illustrates the basis of RSTBC deployments in massive MIMO transmissions over lossy wireless channels. In such channels, data may be lost or are not decodable at the receiver end due to a variety of factors such as channel losses or pilot contamination. Massive MIMO is a breakthrough wireless transmission technique proposed for future wireless standards due to its spectrum and energy efficiencies. We show that RSTBC guarantees the reliability of the system in such highly lossy channels. Moreover, pilot contamination (PC) constitutes a particularly significant impairment in reciprocity-based multi-cell systems. PC results from the non-orthogonality of the pilot sequences in different cells. In this chapter, RSTBC is also employed in the downlink transmission of a multi-cell massive MIMO system to mitigate the effects of signal-to-interference-and-noise ratio (SINR) degradation resulting from PC. We conclude that RSTBC can effectively mitigate such interference. Hence, RSTBC is a strong candidate for the upcoming 5G wireless communication systems
    corecore