32,882 research outputs found

    Optimal channel allocation with dynamic power control in cellular networks

    Full text link
    Techniques for channel allocation in cellular networks have been an area of intense research interest for many years. An efficient channel allocation scheme can significantly reduce call-blocking and calldropping probabilities. Another important issue is to effectively manage the power requirements for communication. An efficient power control strategy leads to reduced power consumption and improved signal quality. In this paper, we present a novel integer linear program (ILP) formulation that jointly optimizes channel allocation and power control for incoming calls, based on the carrier-to-interference ratio (CIR). In our approach we use a hybrid channel assignment scheme, where an incoming call is admitted only if a suitable channel is found such that the CIR of all ongoing calls on that channel, as well as that of the new call, will be above a specified value. Our formulation also guarantees that the overall power requirement for the selected channel will be minimized as much as possible and that no ongoing calls will be dropped as a result of admitting the new call. We have run simulations on a benchmark 49 cell environment with 70 channels to investigate the effect of different parameters such as the desired CIR. The results indicate that our approach leads to significant improvements over existing techniques.Comment: 11 page

    Cellular radio networks systems engineering.

    Get PDF
    by Kwan Lawrence Yeung.Thesis (Ph.D.)--Chinese University of Hong Kong, 1995.Includes bibliographical references (leaves 115-[118]).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Cellular Concept --- p.1Chapter 1.2 --- Fixed Channel Assignment --- p.2Chapter 1.3 --- Dynamic Channel Assignment --- p.2Chapter 1.4 --- Performance Evaluation of DC A --- p.3Chapter 1.5 --- Han doff Analysis --- p.3Chapter 1.6 --- Mobile Location Tracking Strategies --- p.3Chapter 1.7 --- QOS Measure --- p.4Chapter 1.8 --- Organization of Thesis --- p.4Chapter 2 --- Optimization of Channel Assignment I --- p.6Chapter 2.1 --- Introduction --- p.6Chapter 2.2 --- Generating Compact Patterns --- p.7Chapter 2.2.1 --- Regular size cells --- p.7Chapter 2.2.2 --- Irregular size cells --- p.7Chapter 2.3 --- Nominal Channel Allocation Methods --- p.10Chapter 2.3.1 --- Compact pattern allocation --- p.10Chapter 2.3.2 --- Greedy allocation --- p.11Chapter 2.3.3 --- Hybrid allocation --- p.11Chapter 2.3.4 --- The K-Optimal variations --- p.11Chapter 2.3.5 --- Backtracking strategies --- p.12Chapter 2.4 --- Performance Comparison --- p.12Chapter 2.5 --- Conclusions --- p.16Chapter 3 --- Optimization of Channel Assignment II --- p.18Chapter 3.1 --- Introduction --- p.18Chapter 3.2 --- Basic Heuristics --- p.20Chapter 3.2.1 --- Two methods for cell ordering --- p.20Chapter 3.2.2 --- Two channel assignment strategies --- p.20Chapter 3.3 --- Channel Assignments with Cell Re-ordering --- p.21Chapter 3.3.1 --- Four channel assignment algorithms --- p.21Chapter 3.3.2 --- Complexity --- p.22Chapter 3.3.3 --- An example --- p.22Chapter 3.4 --- Channel Assignment at Hotspots --- p.23Chapter 3.4.1 --- Strategy F vs strategy R --- p.23Chapter 3.4.2 --- Strategy FR --- p.24Chapter 3.5 --- Numerical Examples --- p.25Chapter 3.5.1 --- "Performance of algorithms F/CR,F/DR,R/CR and R/DR" --- p.26Chapter 3.5.2 --- Effect of X & Y on performance of algorithms FR/CR & FR/DR --- p.26Chapter 3.5.3 --- Performance of algorithms FR/CR & FR/DR --- p.27Chapter 3.6 --- Conclusions --- p.27Chapter 4 --- Compact Pattern Based DCA --- p.29Chapter 4.1 --- Introduction --- p.29Chapter 4.2 --- Compact Pattern Channel Assignment --- p.30Chapter 4.2.1 --- Data structures --- p.30Chapter 4.2.2 --- Two functions --- p.31Chapter 4.2.3 --- Two phases --- p.32Chapter 4.3 --- Performance Evaluation --- p.33Chapter 4.4 --- Conclusions --- p.36Chapter 5 --- Cell Group Decoupling Analysis --- p.37Chapter 5.1 --- Introduction --- p.37Chapter 5.2 --- One-Dimensional Cell Layout --- p.38Chapter 5.2.1 --- Problem formulation --- p.38Chapter 5.2.2 --- Calculation of blocking probability --- p.39Chapter 5.3 --- Two-Dimensional Cell Layout --- p.41Chapter 5.3.1 --- Problem formulation --- p.41Chapter 5.3.2 --- Calculation of blocking probability --- p.42Chapter 5.4 --- Illustrative Examples --- p.42Chapter 5.4.1 --- One-dimensional case --- p.42Chapter 5.4.2 --- Two-dimensional case --- p.45Chapter 5.5 --- Conclusions --- p.45Chapter 6 --- Phantom Cell Analysis --- p.49Chapter 6.1 --- Introduction --- p.49Chapter 6.2 --- Problem Formulation --- p.49Chapter 6.3 --- Arrival Rates in Phantom Cells --- p.50Chapter 6.4 --- Blocking Probability and Channel Occupancy Distribution --- p.51Chapter 6.4.1 --- Derivation of α --- p.51Chapter 6.4.2 --- Derivation of Bside --- p.52Chapter 6.4.3 --- Derivation of Bopp --- p.53Chapter 6.4.4 --- Channel occupancy distribution --- p.54Chapter 6.5 --- Numerical Results --- p.55Chapter 6.6 --- Conclusions --- p.55Chapter 7 --- Performance Analysis of BDCL Strategy --- p.58Chapter 7.1 --- Introduction --- p.58Chapter 7.2 --- Borrowing with Directional Carrier Locking --- p.58Chapter 7.3 --- Cell Group Decoupling Analysis --- p.59Chapter 7.3.1 --- Linear cellular systems --- p.59Chapter 7.3.2 --- Planar cellular systems --- p.61Chapter 7.4 --- Phantom Cell Analysis --- p.61Chapter 7.4.1 --- Call arrival rates in phantom cells --- p.62Chapter 7.4.2 --- Analytical model --- p.62Chapter 7.5 --- Numerical Examples --- p.63Chapter 7.5.1 --- Linear cellular system with CGD analysis --- p.63Chapter 7.5.2 --- Planar cellular system with CGD analysis --- p.65Chapter 7.5.3 --- Planar cellular system with phantom cell analysis --- p.65Chapter 7.6 --- Conclusions --- p.68Chapter 8 --- Performance Analysis of Directed Retry --- p.69Chapter 8.1 --- Introduction --- p.69Chapter 8.2 --- Directed Retry Strategy --- p.69Chapter 8.3 --- Blocking Performance of Directed Retry --- p.70Chapter 8.3.1 --- Analytical model --- p.70Chapter 8.3.2 --- Numerical examples --- p.71Chapter 8.4 --- HandofF Analysis for Directed Retry --- p.73Chapter 8.4.1 --- Analytical model --- p.73Chapter 8.4.2 --- Numerical examples --- p.75Chapter 8.5 --- Conclusions --- p.77Chapter 9 --- Handoff Analysis in a Linear System --- p.79Chapter 9.1 --- Introduction --- p.79Chapter 9.2 --- Traffic Model --- p.80Chapter 9.2.1 --- Call arrival rates --- p.80Chapter 9.2.2 --- Channel holding time distribution --- p.81Chapter 9.3 --- Analytical Model --- p.81Chapter 9.3.1 --- Handoff probability --- p.81Chapter 9.3.2 --- Handoff call arrival rate --- p.81Chapter 9.3.3 --- Derivation of blocking probability --- p.81Chapter 9.3.4 --- Handoff failure probability --- p.82Chapter 9.3.5 --- Finding the optimal number of guard channels --- p.83Chapter 9.4 --- Numerical Results --- p.83Chapter 9.4.1 --- System parameters --- p.83Chapter 9.4.2 --- Justifying the analysis --- p.84Chapter 9.4.3 --- The effect of the number of guard channels --- p.84Chapter 9.5 --- Conclusions --- p.85Chapter 10 --- Mobile Location Tracking Strategy --- p.88Chapter 10.1 --- Introduction --- p.88Chapter 10.2 --- Review of Location Tracking Strategies --- p.89Chapter 10.2.1 --- Fixed location area strategy --- p.89Chapter 10.2.2 --- Fixed reporting center strategy --- p.89Chapter 10.2.3 --- Intelligent paging strategy --- p.89Chapter 10.2.4 --- Time-based location area strategy --- p.89Chapter 10.2.5 --- Movement-based location area strategy --- p.90Chapter 10.2.6 --- Distance-based location area strategy --- p.90Chapter 10.3 --- Optimization of Location Area Size --- p.90Chapter 10.3.1 --- Location updating rates ´ؤ linear systems --- p.90Chapter 10.3.2 --- Location updating rates ´ؤ planar systems --- p.91Chapter 10.3.3 --- Optimal location area size ´ؤ linear systems --- p.92Chapter 10.3.4 --- Optimal location area size ´ؤ planar systems --- p.92Chapter 10.4 --- Comparison of FLA & DBLA Strategies --- p.93Chapter 10.5 --- Adaptive Location Tracking Strategy --- p.94Chapter 10.5.1 --- Mobility tracking --- p.94Chapter 10.5.2 --- Protocols for ALT strategy --- p.94Chapter 10.6 --- Numerical Examples --- p.95Chapter 10.7 --- Conclusions --- p.97Chapter 11 --- A New Quality of Service Measure --- p.99Chapter 11.1 --- Introduction --- p.99Chapter 11.2 --- QOS Measures --- p.99Chapter 11.3 --- An Example --- p.101Chapter 11.4 --- Case Studies --- p.101Chapter 11.5 --- Conclusions --- p.106Chapter 12 --- Discussions & Conclusions --- p.107Chapter 12.1 --- Summary of Results --- p.107Chapter 12.2 --- Topics for Future Research --- p.108Chapter A --- Borrowing with Directional Channel Locking Strategy --- p.110Chapter B --- Derivation of p2 --- p.112Chapter C --- Publications Derived From This Thesis --- p.114Bibliography --- p.11

    An improved multi-agent simulation methodology for modelling and evaluating wireless communication systems resource allocation algorithms

    Get PDF
    Multi-Agent Systems (MAS) constitute a well known approach in modelling dynamical real world systems. Recently, this technology has been applied to Wireless Communication Systems (WCS), where efficient resource allocation is a primary goal, for modelling the physical entities involved, like Base Stations (BS), service providers and network operators. This paper presents a novel approach in applying MAS methodology to WCS resource allocation by modelling more abstract entities involved in WCS operation, and especially the concurrent network procedures (services). Due to the concurrent nature of a WCS, MAS technology presents a suitable modelling solution. Services such as new call admission, handoff, user movement and call termination are independent to one another and may occur at the same time for many different users in the network. Thus, the required network procedures for supporting the above services act autonomously, interact with the network environment (gather information such as interference conditions), take decisions (e.g. call establishment), etc, and can be modelled as agents. Based on this novel simulation approach, the agent cooperation in terms of negotiation and agreement becomes a critical issue. To this end, two negotiation strategies are presented and evaluated in this research effort and among them the distributed negotiation and communication scheme between network agents is presented to be highly efficient in terms of network performance. The multi-agent concept adapted to the concurrent nature of large scale WCS is, also, discussed in this paper

    Ubiquitous Cell-Free Massive MIMO Communications

    Get PDF
    Since the first cellular networks were trialled in the 1970s, we have witnessed an incredible wireless revolution. From 1G to 4G, the massive traffic growth has been managed by a combination of wider bandwidths, refined radio interfaces, and network densification, namely increasing the number of antennas per site. Due its cost-efficiency, the latter has contributed the most. Massive MIMO (multiple-input multiple-output) is a key 5G technology that uses massive antenna arrays to provide a very high beamforming gain and spatially multiplexing of users, and hence, increases the spectral and energy efficiency. It constitutes a centralized solution to densify a network, and its performance is limited by the inter-cell interference inherent in its cell-centric design. Conversely, ubiquitous cell-free Massive MIMO refers to a distributed Massive MIMO system implementing coherent user-centric transmission to overcome the inter-cell interference limitation in cellular networks and provide additional macro-diversity. These features, combined with the system scalability inherent in the Massive MIMO design, distinguishes ubiquitous cell-free Massive MIMO from prior coordinated distributed wireless systems. In this article, we investigate the enormous potential of this promising technology while addressing practical deployment issues to deal with the increased back/front-hauling overhead deriving from the signal co-processing.Comment: Published in EURASIP Journal on Wireless Communications and Networking on August 5, 201

    Effect of lateral displacement of a high-altitude platform on cellular interference and handover

    Get PDF
    A method for predicting movements in cellular coverage caused by lateral drift of a high-altitude platform (a quasi-stationary platform in the stratosphere) is developed. Cells are produced by spot beams generated by horn-type antennas on the platform. It is shown how the carrier-to-interference ratio (CIR) across these cells varies when the antenna payload is steered to accommodate the lateral movement of the platform. The geometry of the antenna beam footprint on the ground is first developed and then applied to a system of many cochannel beams. Pointing strategies are examined, where the pointing angle is calculated to keep, for example, a center cell or an edge cell in the same nominal position before and after the platform drift, and the CIR distribution is calculated. It is shown that the optimum pointing angle depends on the desired level of CIR across the service area, typically lying between 3 +/- 0.75 degrees for a platform drift of 2'km and corresponding to a cell in the middle ring. It is shown that it is necessary for a significant proportion of users to perform a handover to maintain a given CIR after platform drift. The analysis reveals that there is an optimum pointing angle that minimizes the probability of handover for a particular value of drift and CIR

    Optimizing an array of antennas for cellular coverage from a high altitude platform

    Get PDF
    In a wireless communications network served by a high altitude platform (HAP) the cochannel interference is a function of the antenna beamwidth, angular separation and. sidelobe level. At the millimeter wave frequencies proposed for HAPs, an array of aperture type antennas on the platform is a practicable solution for serving the cells. We present a method for predicting cochannel interference based on curve-fit approximations for radiation patterns of elliptic beams which illuminate cell edges with optimum power, and a means of estimating optimum beamwidths for each cell of a regular hexagonal layout. The method is then applied to a 121 cell architecture. Where sidelobes are modeled As a flat floor at 40-dB below peak directivity, a cell cluster size of four yields carrier-to-interference ratios (CIRs), which vary from 15 dB at cell edges to 27 dB at cell centers. On adopting a cluster size of seven, these figures increase, respectively, to 19 and 30 dB. On reducing the sidelobe level, the. improvement in CIR can be quantified. The method also readily allows for regions of overlapping channel coverage to be shown
    • …
    corecore