131 research outputs found

    Interference Cancellation at the Relay for Multi-User Wireless Cooperative Networks

    Full text link
    We study multi-user transmission and detection schemes for a multi-access relay network (MARN) with linear constraints at all nodes. In a (J,Ja,Ra,M)(J, J_a, R_a, M) MARN, JJ sources, each equipped with JaJ_a antennas, communicate to one MM-antenna destination through one RaR_a-antenna relay. A new protocol called IC-Relay-TDMA is proposed which takes two phases. During the first phase, symbols of different sources are transmitted concurrently to the relay. At the relay, interference cancellation (IC) techniques, previously proposed for systems with direct transmission, are applied to decouple the information of different sources without decoding. During the second phase, symbols of different sources are forwarded to the destination in a time division multi-access (TDMA) fashion. At the destination, the maximum-likelihood (ML) decoding is performed source-by-source. The protocol of IC-Relay-TDMA requires the number of relay antennas no less than the number of sources, i.e., RaJR_a\ge J. Through outage analysis, the achievable diversity gain of the proposed scheme is shown to be min{Ja(RaJ+1),RaM}\min\{J_a(R_a-J+1),R_aM\}. When {\smallMJa(1J1Ra)M\le J_a\left(1-\frac{J-1}{R_a}\right)}, the proposed scheme achieves the maximum interference-free (int-free) diversity gain RaMR_aM. Since concurrent transmission is allowed during the first phase, compared to full TDMA transmission, the proposed scheme achieves the same diversity, but with a higher symbol rate.Comment: submitted to IEEE Transaction on Wireless Communicatio

    Low Complexity Maximum-Likelihood Detector for DSTTD Architecture Based on the QRD-M Algorithm

    Get PDF
    This paper presents a new decoder algorithm for the double space-time transmit diversity (DSTTD) system. The decoder is based on the QRD-M algorithm, which performs a breadth-first search of possible solutions tree. The search is simplified by skipping unlikely candididates, and it is stopped when no promising candidates are left. Furthermore, the search is divided into three concurrent iterations, making possible a fast, parallel implementation either in hardware or software. After presenting an analysis of the capacity and diversity of DSTTD, we present performance results showing that the proposed decoder is capable of achieving near maximum likelihood performance. We also show that the proposed algorithm exhibits lower computational complexity than other existing maximum likelihood detectors

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Order-Theoretic Methods for Space-Time Coding: Symmetric and Asymmetric Designs

    Get PDF
    Siirretty Doriast

    Linear space-time modulation in multiple-antenna channels

    Get PDF
    This thesis develops linear space–time modulation techniques for (multi-antenna) multi-input multi-output (MIMO) and multiple-input single-output (MISO) wireless channels. Transmission methods tailored for such channels have recently emerged in a number of current and upcoming standards, in particular in 3G and "beyond 3G" wireless systems. Here, these transmission concepts are approached primarily from a signal processing perspective. The introduction part of the thesis describes the transmit diversity concepts included in the WCDMA and cdma2000 standards or standard discussions, as well as promising new transmission methods for MIMO and MISO channels, crucial for future high data-rate systems. A number of techniques developed herein have been adopted in the 3G standards, or are currently being proposed for such standards, with the target of improving data rates, signal quality, capacity or system flexibility. The thesis adopts a model involving matrix-valued modulation alphabets, with different dimensions usually defined over space and time. The symbol matrix is formed as a linear combination of symbols, and the space-dimension is realized by using multiple transmit and receive antennas. Many of the transceiver concepts and modulation methods developed herein provide both spatial multiplexing gain and diversity gain. For example, full-diversity full-rate schemes are proposed where the symbol rate equals the number of transmit antennas. The modulation methods are developed for open-loop transmission. Moreover, the thesis proposes related closed-loop transmission methods, where space–time modulation is combined either with automatic retransmission or multiuser scheduling.reviewe

    Performance of MIMO systems

    Get PDF
    Demand in high data rate communications, driven by internet and cellular mobile, have increased, specially in wireless local area networks, emerging home audio visual networks and multimedia services in general. The limitation of the available radio spectrum makes it impossible for the data rate needs to be accomplished by an increase in the bandwidth. The deployment of multiple antennas in the transmitter and the receiver, multiple input multiple output (MIMO), a cost effective technology, makes it feasible to meet the high data rate demands. In this work, several scenarios such as the transmission under Rayleigh and Rice channel conditions are analyzed. Different transmission schemes are used, using different numbers of transmit and receive antennas. The focus of the project is an investigation of the fundamental performance tradeoff between bit error probability and bit rate in these systems, related to the number of antennas deployed and the SNR. ______________________________________________________________La demanda de la alta velocidad de datos ha crecido considerablemente debido a internet y a los teléfonos móviles especialmente en redes wifi, en las redes audiovisuales de los hogares y servicios multimedia. La limitación del espectro de radio disponible hace imposible que la velocidad de datos aumente aumentando el ancho de banda. El desarrollo de múltiples antenas transmitiendo y múltiples antenas recibiendo, multiple input multiple output (MIMO), tiene un bajo coste y hace factible el aumento de alta velocidad de datos. En el trabajo, varios tipos de de condiciones de transmisión, como los canales Rayleigh y Rice se han analizado. Se han usado diferentes modelos de transmisión, utilizando numerosas antenas en transmisión y recepción. El objetivo del proyecto es la investigación del rendimiento que se obtiene entre sacrificar la probabilidad de bit y la tasa de transmisión en estos sistemas, relacionándolo con el número de antenas en transmisión y recepción y la SNR.Ingeniería de Telecomunicació
    corecore