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Chapter 1

Introduction

Radio broadcasting was perhaps the first successful wireless application. Other
important examples of wireless applications have been, and still are, television
broadcasting and satellite communication. However, the establishment of the first
generation cellular phones back in the early 1980s has undoubtedly been the main
initiator of the adrenaline boosting research race we are experiencing in wireless
communications today.

Wireless transmission in the modern world is a challenging task. Huge build-
ings, slow and fast moving vehicles, and even the flora and fauna cause the signals
to get reflected and distorted. Predicting the channel statistics which describe such
fading caused by the environment is difficult, hence it is important to design codes
that are able to fight against not just certain type of fading, but against,any types
of fading. In addition to fading, the presence of thermal noise at the receiver makes
the extraction of the transmitted message from the received signal even more diffi-
cult.

In this thesis, acodecan be thought of as a finite set of matrices with complex
entries, with the purpose ofencodingthe information bits in such a way that re-
vealing the original message becomes feasible, even in the presence of fading and
noise.

About a decade ago, it was noticed that by increasing the number of antennas
at both the transmitting and receiving end of a wireless channel and by sending
multiple copies of the data stream, the quality of the transmission can be signif-
icantly improved. The notion of a code matrix for the coded modulation scheme
was introduced by Gueyet al. in [10], where its design criteria were also estab-
lished. Thespace-time (ST) codewhich spreads the transmitted signal in both
space (antennas) and time (consecutive channel uses for the same information) in
this way was invented by Tarokh, Seshadri, and Calderbank [51] in 1998. Their
original construction was based on trellis codes. However, block codes were easier
to implement, and the first explicit space-time block code (STBC) construction for
this multiple-input multiple-output (MIMO)scenario was given by Alamouti [2]
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later in 1998. Alamouti’s construction was actually an example of amultiple-input
single-output (MISO)code which are nowadays commonly used in telecommu-
nications technology. MIMO systems significantly increase the channel capacity
and link robustness of wireless communications, and have been widely adopted in
many future wireless communication standards such as WiMAX (Worldwide In-
teroperability for Microwave Access), and 3GPP LTE (3rd Generation Partnership
Project, Long Term Evolution).

Five years ago, Sethuramanet al. [48] showed that the transmission rate of
a space-time code, i.e. how many bits of information can be transmitted in each
channel use, can be increased by usingcyclic division algebras (CDAs). Division
algebras were already in use prior to this, albeit seldom, due to the full diversity
they provide. In addition to diversity gain, CDAs can also provide multiplexing
gain [48]; Zheng and Tse showed in their landmark paper [58] that there exists a
fundamentaldiversity-multiplexing trade-off (DMT): diversity can be increased at
the cost of reduced multiplexing, and vice versa. Sethuramanet al. took advantage
of transcendental elements in order to achieve full diversity. However, this caused
the minimum determinant of the code matrices to vanish when increasing the code
size, i.e. when taking a bigger set of matrices. As the coding gain is directly
proportional to the minimum determinant, this result was not welcome. In 2003,
Belfiore and Rekaya [4] suggested that, instead of using transcendental elements
and the whole algebra, one could use a certain subring that would guarantee a non-
vanishing minimum determinant (NVD). Codes having this NVD property have
raised a vast amount of interest, especially after Eliaet al. [8] showed that the
NVD property is a sufficient condition for a CDA-based code to achieve the optimal
DMT. The most famous example of such DMT optimal codes are, by no doubt, the
Perfect codes by Oggieret al. [43]. Later on, the construction of Perfect codes was
generalized to an arbitrary number of antennas by Eliaet al. [9].

One crucial observation still remained to be made. In 2006 we pointed out that
the subring almost exclusively used in the construction of CDA-based space-time
codes, later on referred to as thenatural order, is not the optimal one [13] in terms
of coding gain. Also the fact that this subring is actually an example of an algebraic
object calledorder was revealed only then. We proved that if we use amaximal
order instead, we can increase the size of the code within the given energy limits
without any penalty in the coding gain. In other words, maximal orders allow us
to increase the codedensity. A counterpart of this observation can be found in the
traditional theory of error correcting codes.

The notion of maximal orders in the context of space-time codes was intro-
duced in [13], and the first results in this direction were given for the MISO case
in Publication I. In Publication II we proposed a systematic construction of codes
from maximal orders fornTx+nRx antennas for anyn, and gave explicit exam-
ples for all practical values ofn. It was also shown that one should pick algebras
which have maximal orders with the smallest possible discriminant, as these give
the highest density for the code. Our explicit constructions for2× 2 and3× 3
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systems have been shown to outperform the Perfect codes of the same size, de-
spite the fact that the Perfect codes were considered unbeatable. The only penalty
is the loss of orthogonality. Using a non-orthogonal code does introduce some
practical problems. For instance, bit labeling becomes more complicated, as we
cannot use the traditional Gray mapping for this purpose. Maintaining a codebook
or sphere encoding is necessary in order to take full advantage of the density of
the code. Suboptimal decoders may be required to reduce decoding complexity.
Nevertheless, Kumar and Caire [32] have shown in their recent paper that using
sphere encoding and a suboptimal decoder for maximal order codes still results in
excellent performance. Our work in [24, 17] also deals with the decoding issues.

The general construction of ST codes from maximal orders with minimal dis-
criminants was considered more thoroughly in Roope Vehkalahti’s dissertation [55]
in 2008. Here one can also find interesting bounds for the coding gain, revealing
that orthogonal codes can never achieve the density provided by non-orthogonal
codes.

Until recently, most of the research in algebraic space-time coding concentrated
on thesymmetric scenario, where the number of transmitting and receive antennas
are equal. Often the portable receiving device, e.g. a mobile phone, laptop or
a portable digital TV, is so small in physical size that only very few antennas fit
inside. In this case, it is more practical to consider theasymmetric scenario, where
we have more transmit antennas than receive antennas. In Publication V some
of the results of Publication II were generalized to the asymmetric scenario and
different construction methods were proposed. The best construction was shown
to outperform all potential challengers [25, 33].

In addition to the record breaking symmetric and asymmetric space-time con-
structions, we feel that bringing maximal orders into the field as well as clarifying
and explicitly laying out the notions of normalized minimum determinant and den-
sity should help the ST audience to design better codes and to compare different
codes in algebraic terms rather than by simulations only. The methods and results
in this thesis, at least to some extent, also apply to e.g. distributed and multi-user
space-time coding. Especially the asymmetric methods can be exploited in the
multi-user scenario.

Part I of this thesis is dedicated to explaining the required theory and summa-
rizing the results from the original publications, that will form Part II. As most
of the material in Part I can also be found in the publications, our aim is to give
an overview of the theory and results without too many technicalities, and to in-
troduce some down-to-earth examples. Part I consists of five chapters. After this
introductory Chapter 1, Chapter 2 provides some algebraic preliminaries, intro-
ducing the reader to cyclic division algebras and maximal orders. Unfortunately,
the explicit construction of maximal or even natural orders is not at all simple.
There exist algorithms for maximality testing and for constructing maximal orders,
both of which heavily exploit the local properties of orders. Therefore, some local
properties of orders are also provided at the end of Chapter 2. Chapter 3 gives an
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insight to the coding theoretic aspects of our problems. Chapter 4 brings us to the
use of cyclic division algebras and their orders as lattice space-time codes. It is
shown that by using the proposed methods, one can construct codes that perform
extremely well both at low and high signal-to-noise ratios (SNRs). We remark that
the beginning of Section 4.4 contains some deeper algebra, hence a reader with
a modest mathematical background can skip the beginning and pick the explicit
bounds from the following subsections. The main results from Publications I, II,
V, and VI are summarized in Chapter 4, omitting the proofs as they can be found in
the original publications. Finally, Chapter 5 will leave the reader with conclusions
and some future prospects.

The organization of Part II of this thesis follows the chronological submission
order of the original papers. In Publication I, we construct explicit codes with full
diversity and non-vanishing minimum determinants for the4×1 MISO channel.
The constructions have straightforward generalizations to anyn×1 or 2n×1 MISO
system. Our work on MISO codes has its origins in [11, 12, 13]. Whilst carrying
out the research for Publication I, we came to realize that there exist remarkable
algebraic objects, namely maximal orders of crossed product algebras, with the aid
of which we would be able to generalize the promising results to then×n MIMO
scheme as well. This led us to the work upon which Publication II is based. There,
we consider the construction of cyclic division algebras that have maximal orders
with minimal discriminants, and hence provide the largest possible coding gain.
We also enhance the Rónyai-Ivanyos algorithm to better suit our purposes, as the
original implementation of their algorithm tends to fall short of memory when the
index of the algebra is larger than six. Publications III and IV are related to decod-
ing, and have been added here only for the sake of completeness. In Publication
II, only the symmetricn×n scenario was considered. The proposed codes are also
DMT optimal for any number of receivers less than or equal ton but, unlessn re-
ceivers are used, cannot be efficiently decoded. In Publication V, we move on to the
asymmetric scenario and solve the problem of constructing sphere decodable codes
with large coding gains for the asymmetric MIMO systems. Various construction
methods for asymmetric ST codes are proposed. For one of these constructions,
we are able to generalize the density results from Publication II to also hold in this
more challenging asymmetric case. And once more, maximal orders will play a
role. In Publication VI, non-minimum delay, DMT optimal codes are constructed
for different asymmetric scenarios.

Publications I-VI appear also in the references list, and from now on we will
mostly use the respective numbers in the references list when referring to these
papers.
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Chapter 2

Algebraic preliminaries

In this chapter, we will recall some preliminaries from algebraic number theory.
Throughout this thesis, we will deal with algebraic number fields, Galois groups,
algebras, discriminants, and many other algebraic objects. We will give the most
crucial definitions in Sections 2.1 and 2.2. For further background information, the
reader can refer to e.g. [31] or [50]. For those with a background in information
theory, we also recommend the early chapters of [44]. Sections 2.4 to 2.7 are
devoted to introducing in more detail the non-commutative algebraic and class field
theoretic tools that were used in the original publications. Throughout the whole
thesis, we denote the fields of integers, rationals, reals, and complex numbers by
Z,Q,R, andC, respectively. The capital lettersF , L andE will denote number
fields.

2.1 Algebraic number fields

Let us start with the very basics of algebraic number theory.
A number fieldF is a finite extension ofQ. Let E/F be a finite extension of

number fields, and let thedegreeof the extension be[E : F ] = n (< ∞). Now E
can be seen as ann-dimensional vector space over the fieldF . Hence,E has a
basis{b1,b2, ...,bn} over F . The extensionE/F is algebraic, i.e. each element
e∈ E is algebraic. This means that there exists a polynomial with coefficients inF
havingeas a root. The (unique) minimal polynomial ofe is the monic, irreducible
polynomial

µe(x) = xm+ f1xm−1 + · · ·+ fm∈ F [x],

for which µe(e) = 0. The integerm= degµ is called thedegreeof e overF and it
always dividesn.

A finite extensionE/F of number fields is alwayssimple, i.e. it can be written
asE = F(α), whereα is algebraic overF . The single generating elementα (not
unique) is calledprimitive. The degree of a primitive element isn = [E : F ]. This
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means that the elements ofE can be written as polynomialsf (α) ∈ F [α] with
degf ≤ n−1.

Definition 2.1.1. Let S be an integral domain andR its subdomain,R⊆ S. An
elementα ∈ S is calledintegral overR, if there exists a monic polynomialf (x) ∈
R[x] for which f (α) = 0. A complex numberα ∈C that is integral overZ is called
analgebraic integer.

Remark 2.1.2. Algebraic integers of a number field form a ring. In Chapter 3 we
will see that this is not the case when we consider the set of integers of a division
algebra (see Remark 3.2.4).

An algebraic numberα is an algebraic integer if and only if its minimal poly-
nomial (overQ) µα(x) ∈ Z[x]. The ring of (algebraic) integersof F is denoted
by OF . The above statement can be generalized to any field extensionE/F : an
algebraic numberα ∈ E is integral overF if and only if its minimal polynomial
(overF) µα(x) ∈OF [x].

Remark 2.1.3. If F =Q, F =Q(i) or F =Q(ω), ω = ζ3 = exp(2π i/3), andE is
an extension ofF , thenOE is a freeOF -module that has rank equal ton = [E : F ].
This property will be needed later when we consider the rate of a code design
constructed from a cyclic division algebra (see Equation (3.6) and Section 4.2).

Definition 2.1.4. A finite extensionE/F is separable, if for all α ∈ E the roots
of the minimal polynomialµα(x) ∈ F [x] are simple. A number field extension is
always separable.

A finite extensionE/F is normal, if E is the splitting field for some polynomial
f (x) ∈ F [x] over F , in other wordsE is the smallest extension ofF , where f (x)
splits into linear factors.

Now suppose again thatE/F is a number field extension and[E : F ] = n. Con-
sider the set of field homomorphismsσ : E → C that areF-embeddings, i.e. ho-
momorphisms that fixF , σ( f ) = f for every f ∈ F, and that mapE isomorphically
to σ(E). Let us denoteE = F(α), and letµα(x) ∈ F [x] be the minimal polyno-
mial of α over F . Let α1 = α,α2, ...,αn be the roots ofµα(x) in C. Now the
F-monomorphisms are completely described by

σk(α) = αk. (2.1)

Hence, there are exactlyn F-embeddings (cf. Definition 2.1.4). The set ofF-
embeddings ofE will be denoted by HomF(E,C).

Definition 2.1.5. An extension isGalois if it is both normal and separable. Equiv-
alently, an extensionE/F is Galois, ifE is the splitting field of a separable poly-
nomial with coefficients inF . Yet another equivalent way of stating this is that all
the roots ofµα(x) belong to the fieldE, henceσ(E) = E for all σ ∈ HomF(E,C).
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Definition 2.1.6. In the case when the extensionE/F is Galois, the set ofF-
embeddings forms a group, called theGalois groupof E/F , and is denoted by
Gal(E/F).

Definition 2.1.7. Let E/F be a number field extension with the set of embeddings
HomF(E,C) = {σ1, ...,σn} and lete∈ E. The (relative)norm and trace of E/F
are defined as

NE/F(e) =
n

∏
i=1

σi(e) and TE/F(e) =
n

∑
i=1

σi(e),

respectively.

Definition 2.1.8. The discriminantof the basis{b1,b2, ...,bn} of a number field
extensionE/F is

d(b1, ...,bn) = det(σi(b j))2 = det(TE/F(bib j)) (1≤ i, j ≤ n),

where HomF(E,C) = {σ1,σ2, ...,σn}.
Definition 2.1.9. The basis{b1,b2, ...,bn} is called integral, if it forms an OF -
module basis forOE, i.e. if

1) bi ∈ OE for i = 1, ...,n, and
2) OE = OFb1⊕·· ·⊕OFbn.

The discriminant of an integral basis is called the (relative)discriminant ofE/F
and denoted byd(E/F). The discriminant ofE/F is independent of the choice of
the integral basis up to a unit factor. In the cases whereOF is not a principal ideal
domain (PID), we cannot guarantee the existence of a relative integral basis (one
example of such an extension isQ(

√−14,
√−7)/Q(

√−14)), and the discriminant
must be viewed as an ideal, rather than as a number. For the modifications required
in this case or in the case when an integral basis is not known, see Definition 2.5.6.

2.2 Rings of integers and prime ideals

Let F be an algebraic number field and letO = OF be the (commutative) ring of
integers ofF . An idealI of O generated byα1, ...,αs is denoted byI = 〈α1, ...,αs〉.
We will write 〈0〉= 0 and〈1〉= 1, whenever the meaning is clear from the context.
Notice that1 = O.

An idealp⊆O is aprime ideal, if p 6= O and

a,b∈ O, ab∈ p ⇒ a∈ p or b∈ p.

An idealM is maximal, if M 6= O and

M⊂ I⊆O ⇒ I = O.
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An idealI 6= O is maximal if and only if the (finite) residue ringO/I is a field.
Moreover, an idealp 6= O is prime if and only ifO/p is an integral domain, i.e. has
no zero divisors. From this it follows that every maximal ideal inO is also a prime
ideal inO. The inverse claim is also true: every (proper) prime idealp 6= 0,1 of
O is maximal. The ringO is a Dedekind domain, from which it follows that every
ideal0,1 6= I⊆ O has a representation as a product of prime ideals (see Equation
(2.2)). This presentation is unique up to the ordering of the ideals.

Now let E/F be a number field extension,[E : F ] = n, andp a prime ideal of
OF . We can write

pOE =
g

∏
i=1

Pei
i , (2.2)

whereP1, ...,Pg are distinct prime ideals inOE. We say that the idealsPi lie
abovep. Each of the idealsPi is adjoined with a numberfi = [OE/Pi : OF/p],
called the inertial degree ofPi overp. The exponentei is called the ramification
index ofPi overp. The inertial degrees and ramification indices satisfy

g

∑
1=i

ei fi = n. (2.3)

The relative norm of a prime idealP⊆OE lying abovep⊆OF is NE/F(P) =
p f , where f is the inertial degree. This extends multiplicatively asN(I1I2) =
N(I1)N(I2). Fora∈ E, NE/F(a)OF = NE/F(aOE). That is, the ideal ofOF gen-
erated by the norm ofa is equal to the norm of the ideal ofOE generated bya.

In the case whenE/F is Galois, (2.2) gets a simpler form

pOE = (
g

∏
i=1

Pi)e,

where the prime idealsPi are the distinct conjugate ideals ofP1. That is,Pi =
σ j(P1) for someσ j ∈Gal(E/F). Each prime idealPi has the same inertial degree
fi = f and N(Pi) = p f for all i = 1, ...,g. Also the ramification indicesei = e
coincide for allPi . Equation (2.3) now takes the form

e f g= n.

If e> 1, we say thatp ramifiesin E/F . If p ramifies, thenp|d(E/F). If g > 1,
we say thatp splits. If f > 1, p hasinertia.

Lemma 2.2.1. LetF2 ⊇ F1 ⊇ F be a tower of finite extensions ofQ. Then

d(F2/F) = NF1/F(d(F2/F1))d(F1/F)[F2:F1].

Proof. For the proof we refer the reader to [46, p.249].
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Definition 2.2.2. Let F/Q be a finite extension of degreen. Let r1 be the number
of real embeddingsσ : F → R andr2 the number of conjugate pairs of non-real
embeddingsσ : F → C. The 2-tuple(r1, r2) is calledthe signatureof the fieldF .

Proposition 2.2.3. Let [F :Q] = n. Then

r1 +2r2 = n.

As mentioned above, the ramification of the prime ideals ofF for a finite ex-
tensionE/F of algebraic number fields is dictated by the discriminantd(E/F),
which is an ideal ofOF . In 1977 Andrew Odlyzko [41] gave a lower boundC(r1,r2)
for the discriminants of fields with signature(r1, r2). For small values ofr1 andr2

there exists tables forC(r1,r2). Asymptotically, whenn approaches infinity, we have

|d(F/Q)|1/n ≥ (60.8395...)r1/n(22.3816...)2r2/n−O(n−2/3) = C(r1,r2). (2.4)

2.3 Central simple algebras

Let us next formally introduce the world of central simple algebras. We refer the
interested reader to [27, 45] for a more detailed exposition of the theory of central
simple algebras and their matrix representations.

An algebraA over a fieldF (or anF-algebra) is a (right)F-module and a ring
such that the moduleA and the ringA have the same additive group(A ,+,0)
and

(ab) f = a(b f) = (a f)b

for a,b∈A and f ∈ F . The centerC = C(A ) = {a∈A | aa′ = a′a ∀a′ ∈A } of
an algebraA is the set of elements ofA that commute with all elements ofA ,
and the image ofF under the ring homomorphismµ : F →A , f 7→ 1 f , is 1F ⊆C.

Definition 2.3.1. An F-algebraA is called central, ifC = 1F . An algebraA is
calledsimpleif it has no nontrivial ideals. AnF-central simple algebrais a simple
F-algebra that is finite dimensional over its centerF .

Definition 2.3.2. We call the algebraA a division algebraif every non-zero ele-
ment ofA is invertible.

If A is a finite dimensional simple algebra overF, thenA ∼= Mn(D), where
D is a finite dimensional division algebra overF . The centers ofA andD are
isomorphic, i.e. the centerC is a field. Hence, we can considerA as a central
simple algebra overC. Later on we shall see that this class of finite dimensional
central simple algebras has some beautiful properties that are especially welcome
in the context of space-time code constructions.

Definition 2.3.3. Let M be a leftA -module andx∈M. We define a representation
νM : A→ End(M) of A , wherea∈A maps to a homomorphismx 7→ ax.
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Later on in Section 2.5, by restricting this map to an orderΛ⊆A , we also get
a representation of an order. Moreover, ifM is actually an(A ,E)-bimodule, then
the image ofνM is in EndE(M). If thenM is ann-dimensional (right) vector space
overE, we get a representation ofA asn×n matrices overE.

2.4 Cyclic division algebras

In this section, we concentrate on a special class of central simple algebras, namely
cyclic division algebras. For a more detailed exposition, see [27, 45].

The main ingredients of a cyclic division algebra are

(i) a finite dimensional algebraic number field extension and its (cyclic)
Galois group,

(ii) a so-called non-norm element coming from the base field.

Let us explain the above more precisely. In Publications II-IV we consider
number field extensionsE/F , whereF denotes the base field andF∗ (resp. E∗)
denotes the set of the non-zero elements ofF (resp. E). For the purposes of
space-time coding, the most interesting cases are those whereF is an imaginary
quadratic field, usually eitherQ(i) or Q(

√−3). We assume thatE/F is a cyclic
field extension of degreen with Galois groupGal(E/F) = 〈σ〉= {σ ,σ2, ...,σn =
IdF}. Let A = (E/F,σ ,γ) be the corresponding cyclic algebra of degreen (n is
also called theindexof A ), that is

A = E⊕uE⊕u2E⊕·· ·⊕un−1E,

as a (right) vector space overE. Hereu ∈ A is an auxiliary generating element
subject to the relationsxu = uσ(x) for all x ∈ E andun = γ ∈ F∗. An element
a = x0 + ux1 + · · ·+ un−1xn−1 ∈ A has the following left regular representation
(see Definition 2.3.3) as

A =




x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) γσn−1(x2)
x2 σ(x1) σ2(x0) γσn−1(x3)
...

...
xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)




. (2.5)

We refer to this as the standard matrix representation ofA , and we identify the
elementa∈A with its representation (2.5). Taking e.g. a transposeAT makes no
difference for coding purposes.

Definition 2.4.1. The determinant (resp. trace) of the matrixA above is called
the reduced norm(resp. reduced trace) of the elementa ∈ A and is denoted by
nrA /F(a) (resp. trA /F(a)). In short, we denote the norm and trace bynr(a) and
tr(a), respectively, when the field is clear from the context.
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Remark 2.4.2.The connection with the usual norm map NA /F(a) (resp. trace map
TA /F(a)) and the reduced normnr(a) (resp. reduced tracetr(a)) of an elementa∈
A is NA /F(a) = (nr(a))n (resp. TA /F(a) = ntr(a)), wheren is the degree ofE/F .
Recall that NA /F(a) (resp. TA /F(a)) is defined similarly as the reduced norm
(resp. reduced trace), i.e. as the determinant (resp. trace) of the left multiplication
matrix ofa but with respect to a basis ofA /F rather than ofA /E.

Theorem 2.4.3.LetF be a number field. Every central simpleF-algebra is cyclic.

Proof. [45, Thm. 32.30, p. 280]

The elementγ is often called anon-norm elementdue to Theorem 2.4.5 by
Albert [3, Theorem 11.12, p. 184]. It provides us with a condition under which a
cyclic algebra is a division algebra. The original result was stated fort = 1,2, ...,n−
1, but is given in a simplified form after the next lemma.

Lemma 2.4.4. Let γ ∈ F∗ andE/F be as above. Consider the setSof exponents
t ∈ Z such thatγ t is a norm of an element ofE. Then

S= kZ

for somek|n.

Proof. The mappingf : t 7→ γ t is a homomorphism of groups from(Z,+) to (F∗, ·).
BecauseH = NE/F(E∗) is a subgroup ofF∗, andS= f−1(H), we immediately see
thatS is a subgroup of(Z,+). From basic algebra it now follows thatS is cyclic,
i.e. S= kZ for somek∈Z. On the other hand, asγ ∈ F∗ we get thatγn = NE/F(γ),
and hencen∈ S. Thereforek|n.

Proposition 2.4.5 (Norm condition). The cyclic algebraA = (E/F,σ ,γ) of de-
green is a division algebra if and only if the smallest factort ∈ Z+ of n such that
γ t is the norm of some element ofE∗ is n.

Proof. We need to prove the equivalence of two conditions, the original stating that
γ t is not a norm for anyt in the range1,2, ...,n−1, and the relaxed version stating
the same for thoset in the same range that are also divisors ofn. One implication
is clear, and the other follows from the above lemma. Namely, if there are integers
t in the range1,2, ...,n−1 such thatγ t happens to be a norm, then the lemma tells
us that the smallest sucht must be a divisor ofn.

Remark 2.4.6. We can even relax the above conditions fort. The proof of the
previous lemma shows that it actually suffices to check thatγn/p is not a norm for
any prime divisorp of n. For example, whenn = 8, it suffices to check thatγ4 is
not a norm.

We conclude this section by defining the Jacobson radical which will be needed
for investigating the algorithmic properties of maximal orders [15].
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Definition 2.4.7. Let S denote an arbitrary ring with identity. AnS-module is
simple, if it is not the zero module and if it has no proper submodules.

Definition 2.4.8. Let againSdenote an arbitrary ring with identity. TheJacobson
radical of the ringS is the set

Rad(S) = {x∈ S | xM = 0 for all simple leftS-modulesM}.
Rad(S) is a two-sided ideal inScontaining every nilpotent (i.e. for whichI k =

0 for somek∈ Z+) one-sided idealI of S. Also, Rad(S) can be characterized as
the intersection of the maximal left ideals inS. If S is a finite dimensional algebra
over a field or, more generally, left or right Artinian (i.e. satisfies the descending
chain condition on (left or right) ideals), thenRad(S) is the maximal nilpotent ideal
in S.

2.5 Orders and discriminants

In this section, our intention is to familiarize the reader with orders and their basic
and most crucial properties. The original publications also contain most of the
material of this section. The general theory of maximal orders can be found in
[45].

Throughout the section, let us suppose that we have anF-central division al-
gebra of indexn < ∞, and thatR is a Dedekind ring inF . For instance, we could
haveF =Q(i) andR= Z[i].

Definition 2.5.1. An R-order in theF-algebraA is a subringΛ of A , having the
same identity element asA , and such thatΛ is a finitely generated module overR
and generatesA as a linear space overF .

Definition 2.5.2. An orderΛ is calledmaximal, if it is not properly contained in
any otherR-order.

Let us illustrate the above definition via some concrete examples.

Example 2.5.3. (a) Orders always exist: IfFM = A , i.e. M is a full R-lattice in
A , then theleft orderof M defined asOl (M) = {x∈A | xM⊆M} is anR-order
in A . The right order is defined in an analogous way. Left orders are used in [15]
to demonstrate algorithmic properties of maximal orders.

(b) If R is the ring of integersOF of the number fieldF , then the ring of integers
OE of the extension fieldE is the unique maximal order inE. For example, in the
case of the cyclotomic fieldE = Q(ζ ), whereζ = exp(2π i/k) is a primitive root
of orderk the maximal order isOE = Z[ζ ]. In sharp contrast to the commutative
case, a maximal order in a non-commutative algebra is usually not unique.

One of the most crucial properties of orders is stated below (see Section 4.2).
For the proof, see [45, Theorem 10.1, p. 125].
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Proposition 2.5.4.LetΛ be an order in a cyclic division algebra(E/F,σ ,γ). Then
for any non-zero elementa∈Λ its reduced normnr(a) and reduced tracetr(a) are
non-zero elements of the ring of integersOF of the centerF.

Example 2.5.5. Let γ ∈ F∗ be an algebraic integer, i.e.0 6= γ ∈ OF . If γ is
not integral to start with, it is of the forma

b, wherea,b ∈ OF . Now we can
get an isomorphic algebra having an integralγ by multiplying by a ‘norm ele-
ment’ NE/F(b) = bn. By [27, Theorem 8.14, p. 481], the cyclic division algebras
(E/F,σ ,γ) and(E/F,σ ,γN(b)) = (E/F,σ ,abn−1) are then isomorphic. So when
considering the division algebras up to isomorphism, then without loss of general-
ity we can assume that the non-norm element is actually an algebraic integer.

We immediately see that then theOF -module

ΛNAT = OE⊕uOE⊕·· ·⊕un−1OE,

whereOE is the ring of integers, is anOF -order in the cyclic algebra(E/F,σ ,γ).
We refer to thisOF -order as thenatural order. It will also serve as a starting point
when searching for maximal orders.

In any cyclic algebra, a maximalZ-order is a maximalOF -order as well.

We remark that the term ‘natural order’ is somewhat misleading. While it is
perhaps the first order that comes to mind, there is nothing canonical about it.
Indeed, distinct realizations of a given division algebra as a cyclic algebra often
lead to different natural orders. For instance, constructing the algebra of rational
Hamiltonian quaternions from the cyclic extensionQ(

√−3)/Q as opposed to the
more commonQ(i)/Q leads to a different natural order.

Let us next define the discriminant of an order. LetA = (E/F,σ ,γ) be a cyclic
division algebra andΛ⊂A an order.

Definition 2.5.6. Let F be the center ofA andm= dimFA . Thediscriminantof
theR-orderΛ is the ideald(Λ/R) in Rgenerated by the set

{det(trA /F(xix j))m
i, j=1 | (x1, ...,xm) ∈ Λm}.

In the interesting cases ofF = Q(i) (resp. F = Q(
√−3)) the ringR = Z[i]

(resp.R= Z[ω], ω = (−1+
√−3)/2) is a Euclidean domain, so in these cases (as

well as in the caseR=Z) it makes sense to speak of the discriminant as an element
of R rather than as an ideal. We simply pick a generator of the discriminant ideal,
and call it the discriminant. Equivalently we can compute the discriminant as

d(Λ/R) = det(tr(xix j))m
i, j=1,

where{x1, . . . ,xm} is anyR-basis ofΛ. It can be readily seen that wheneverΛ⊆ Γ
are twoR-orders, thend(Γ/R) is a factor ofd(Λ/R). The index[Γ : Λ] is related to
discriminants by the following lemma.
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Lemma 2.5.7.
[R : d(Λ/R)R] = [Γ : Λ]2[R : d(Γ/R)R]

Proof. [45, p. 66]

We present the following basic formula for the discriminant of certain cyclo-
tomic fields (see [30, Theorem 1.61, p. 42]), as it will be required later.

Example 2.5.8.Let ζ` = exp(2π i/2`) be a complex primitive root of unity of order
2`, where`≥ 2 is an integer. Thenn = [Q(ζ`) :Q(i)] = 2`−2 and

d(Z[ζ`]/Z[i]) = (1+ i)2n(`−2).

Remark 2.5.9. It turns out (cf. [45, Theorem 25.3, p. 218]) that all the maximal
orders of a division algebra share the same discriminant, which we will refer to
as thediscriminant of the division algebra. In this sense a maximal order has the
smallest possible discriminant among all orders within a given division algebra, as
all the orders are contained in a maximal one.

For an easy reference we state the following result which follows from the
definitions.

Lemma 2.5.10. Let E/F be as above, assume thatγ is an algebraic integer of
F, and letΛNAT be the natural order of Example 2.5.5. Ifd(E/F) is the OF -
discriminant ofOE (often referred to as the relative discriminant of the extension
E/F), then

d(ΛNAT/OF) = d(E/F)nγn(n−1).

Proof. [15, Lemma 5.4] or [55].

2.6 The Brauer group and Hasse invariants

In this section, we define two useful algebraic objects called, namely the Brauer
group and the Hasse invariants of an algebra.

Let A andB be finite dimensional central simple algebras. We sayA andB
aresimilar, if for some positive integersm andn we haveMm(A ) ∼= Mn(B) as
F-algebras. From the properties of the tensor product it follows that this similarity
relation defines an equivalence relation. Any cyclic algebra (see Section 2.4) is a
central simpleF-algebra (cf. Definition 2.3.1) and Wedderburn’s structure theorem
[27, Theorem, p. 171] tells us that any central simple algebra is a matrix algebra
over a central simple division algebra. Thus, it easily follows that within any sim-
ilarity class there is a unique division algebra. The similarity classes{A } form a
group under the multiplication rule

{A }{B}= {A ⊗F B}.
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This group is called theBrauer group ofF and is denoted byBr(F). If F ′ is an
extension field ofF , andA is a central simpleF-algebra, then the tensor product
A ′ = A ⊗F F ′ is a central simpleF ′-algebra. We refer to this algebra as the algebra
obtained fromA by extending the scalars toF ′.

A primeof F is an equivalence class of non-trivial valuations onF . Thus there
is exactly one prime for each prime ideal inOF , for each real embeddingF ↪→ R,
and for each conjugate pair of non-real embeddingsF ↪→ C. The corresponding
primes are calledfinite, real, and complex, respectively. An element ofF is said to
bepositiveat the real prime corresponding to an embeddingF ↪→ R if it maps to a
positive element ofR. A real prime of F is said tosplit in an extensionE/F if every
prime lying over it is real; otherwise it is said toramify in E. A finite extensionsF
of Q only has finitely many infinite primes.

Let P be an infinite prime ofF . By F̂P we refer to the field of realsR or to the
field of complex numbersC, depending on whether the primeP is real or complex,
respectively. IfP is finite thenF̂P is just the familiarP-adic completion of the field
F . All the fieldsF̂P, whereP is any prime ofF , are referred to as completions ofF .
The division algebras over̂FP are easy to describe. They are all obtained as cyclic
algebras of the formA (n, r) = (E/F̂P,σ ,π r), whereE is the unique unramified
extension ofF̂P of degreen, σ is the Frobenius automorphism, andπ is the prime
element ofFP. The quantityr/n is called theHasse invariantof this algebra and
n is referred to as thelocal index. It immediately follows from Proposition 2.4.5
thatA (n, r) is a division algebra if and only if(r,n) = 1. For a description of the
theory of Hasse invariants we refer the reader to [45, p. 266] or [40].

For a detailed exposition on the general properties of Brauer groups and Hasse
invariants, we refer to [45, Chapters 3,7, and 8].

2.7 Local theory of orders

In [15] some facts from the local theory of orders are required in order to describe
an algorithm for producing maximal orders. For the basic properties of localization
the reader can turn to [27, Chapter 7] or [45, Chapters 1, 2]. In this section, we
only briefly summarize some of the results that were needed in [15]. For the proofs
of the results in this section, see [26] and [47] — these references have a nice
collection of results which were originally taken from [45], but have been modified
for our purposes. For the definition of the radical, see Definition 2.4.8.

We first recall the left order of an algebra.

Definition 2.7.1. Let us suppose that we have anF-central division algebra of
index n and thatR is a Dedekind ring inF . If M is a full R-lattice in A , i.e.
FM = A , then theleft orderof M defined asOl (M) = {x∈ A | xM ⊆ M} is an
R-order inA . The right order is defined in an analogous way.

The next proposition (see [47, proof of Theorem 3.2]) is useful when comput-
ing left orders.
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Proposition 2.7.2. Let A be a simple algebra overF andM a finitely generated
OF -module such thatFM = A . Then there exists an elements∈ OF \ {0} such
that s·1∈M. Moreover,Ol (M) = {b∈ s−1M | bM≤M} ≤ s−1M.

If R is a Dedekind domain with a quotient fieldF , andP is a prime ideal inR,
then the ring of quotientsRP = (R/P)−1R⊂ F is a discrete valuation ring. For the
R-latticesM in A the localization atP is defined asMP = RPM ⊂ A . MP is an
RP-lattice. Moreover, ifM is a full (cf. Example 2.5.3)R-lattice inA , thenMP is
a full RP-lattice inA . To be more specific, let us define the ringZp.

Definition 2.7.3. For a rational primep letZp denote the ring

Zp = { r
s
∈Q | r,s∈ Z, gcd(p,s) = 1}.

Zp is a discrete valuation ring with the unique maximal idealpZp. If Λ is aZ-order
we use the notationΛp = ZpΛ.

We remark that one should not confuse the localizationRP with the ring of
integersR̂P of the P-adic completion. We use the caret to indicate a complete
structure. This is somewhat non-standard in the case ofZp that is nearly universally
used to denote the complete ring ofp-adic integers. We usêZp for the complete
ring.

In the following, we work inside anF-central division algebraA , R being the
ring of algebraic integers inF . The next statement illustrates a simple but useful
connection between the ordersΛ andΛP.

Proposition 2.7.4 (Proposition 2.8 [26]).Let Λ be a R-order in A . The map
f : x 7→ x+PΛP, x∈ Λ induces an isomorphism of the ringsΛ/PΛ∼= ΛP/PΛP.

Proposition 2.7.5 (Proposition 3.1 [26]).Let P be a prime ideal of the ringR.
The residue class ringΛP = ΛP/PΛP is an algebra with identity element over the
residue class fieldRP = RP/PRP and dimFA = dimRP

ΛP. If φ : ΛP → ΛP is the
canonical epimorphism, thenPΛP ⊆ Rad(ΛP) = φ−1Rad(ΛP) and φ induces a
ring isomorphismΛP/Rad(ΛP)∼= ΛP/Rad(ΛP). As a consequence, a left (or right)
idealI of ΛP is contained inRad(ΛP) if and only if there exists a positive integer
t such thatI t ⊆ PΛP.

Combining the previous two results we get.

Corollary 2.7.6 (Corollary 9.4 [15]). Let P be a prime ideal of the ringR. We
then have

φ−1(Rad(Λ/PΛ)) = ψ−1(Rad(ΛP)),

whereψ is the embeddingΛ 7→ΛP andφ is the canonical epimorphismΛ→Λ/PΛ.

The following facts establish some practical connections between the local and
global properties of orders.
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Proposition 2.7.7 (Theorem 2.3 [47]).Let A be a simple algebra overF. LetP
be a prime ideal ofR, andΓ be anR-order inA . Then

(i) ΓP is anRP-order inA .
(ii) Γ is a maximalR-order inA if and only ifΓP is a maximalRP-order inA

for every prime idealP of R.
(iii) d(Γ/R)P = d(ΓP/RP).

Corollary 2.7.8 (Corollary 9.6 [15]). If P does not divided(Λ/R), thenΛP is
maximalRP-order.

Extremal orders and especially Proposition 2.7.13 below play a key role in the
method for constructing maximal orders.

Definition 2.7.9. We say thatΓP radically containsΛP if and only if ΛP ⊆ ΓP and
Rad(ΛP)⊆ Rad(ΓP). The orders maximal with respect to this partial ordering are
calledextremal. Maximal orders are obviously extremal.

Proposition 2.7.10 (Proposition 4.1 [26]).AnRP-orderΛP is extremal if and only
if ΛP = Ol (Rad(ΛP)).

Lemma 2.7.11 (Lemma 2.7 [26]).Let P be a prime ideal of the ringR, Λ an
R-order and suppose thatOl (Rad(ΛP)) ⊃ ΛP. Let I denote the inverse image of
Rad(ΛP) with respect to the embeddingΛ 7→ΛP. Then we haveI ⊇PΛ andOl (I)⊃
Λ.

The previous corollary together with Corollary 2.7.6 gives us the following.

Lemma 2.7.12. If Ol (φ−1(Rad(Λ/PΛ)) = Λ, the orderΛP is extremal.

Proposition 2.7.13 (Theorem 4.5 [26]).LetΛP⊂ ΓP beRP-orders inA . Suppose
that ΛP is extremal and thatΓP is minimal among theRP-orders properly con-
taining ΛP. Then there exists an idealJ of ΛP minimal among those containing
Rad(ΛP) such thatOl (J )⊇ ΓP.
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Chapter 3

Coding-theoretic preliminaries

3.1 The MIMO channel model

A distinguishing characteristic of wireless channels is the fact that there are many
different paths between the transmitter and the receiver. This means that, instead
of simply receiving the transmitted signal, the receiver will get several different
versions of the signal. All these multipath components are then added together
at the receiver, which results in signal fading since the phase factors of distinct
components have a tendency to cancel each other out. In addition to the faded
signal, some other factors are added to the mix: thermal noise, interference from
other users etc. These extra terms can adequately be modeled by Gaussian random
variables. There are many different models which describe the fading effect due
to multipath propagation, but in what follows we mostly restrict ourselves to the
Rayleigh fading model. Good handbooks for wireless communications and space-
time coding are [54] and [28], among others. First, let us give a formal definition
for a space-time (ST) code. We restrict ourselves to square matrices; the general-
ization to rectangular matrices is straightforward.

Definition 3.1.1. A space-time codeC , sometimes also referred to as aMIMO
code, is a finite collection of complex matrices

X =




x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
...

xn1 xn2 · · · xnn


 ∈ C ⊂Mn(C).

The rows represent different transmit antennas, i.e.space. The differenttimeslots
are represented by the columns. The first transmit antenna sendsx1 j in the jth time
slot, the second antenna sendsx2 j , etc.

Rayleigh fading is a statistical model for the effect of a propagation environ-
ment on a radio signal, such as that used by wireless devices. The model assumes
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that the signal will fade according to a Rayleigh distribution, and experience has
shown that it describes the effects of the heavily built-up urban environment on the
transmitted signal reasonably well. We use a somewhat simplified channel model
which is sufficient for the purposes of this thesis.

Let us denote bynt (resp. nr ) the number of transmitting (Tx) (resp. receiv-
ing (Rx)) antennas. We assume the coherentnt ×nr MIMO channel with perfect
channel state information (CSI) available at the receiver. LetX be a codeword ma-
trix coming from a space-time codeC ⊂Mn(C). We assume that the quasi-static
interval, i.e. the coherence time during which the channel remains constant, and
the block lengthn are equal. We only consider square matrices and hence further
assume thatnt = n. Now the transmitted signal is received in the form

Y =
√

ρHX +N ∈Mnr×n(C), (3.1)

whereH ∈ Mnr×n(C) is the channel response matrix andN ∈ Mnr×n(C) is the
noise matrix. The entries of bothH andN are independent identically distributed
(i.i.d.) zero-mean complex circular Gaussian random variables with unit variance.
Let ||X||F denote the Frobenius norm ofX (corresponds to the squared Euclidean
norm of the vectorized matrix, i.e. the sum of the squares of all the matrix ele-
ments). We assume the codeC satisfies the overall power constraint

1
|C | ∑

X∈C

||X||2F = n. (3.2)

We then easily see that the parameterρ represents the average signal to noise ratio
(SNR) at the receive antennas.

3.2 Code design criteria for space-time codes

Let us assume that the receiver has to decide (based on the Euclidean metric) know-
ing the channel, whetherX or X′ was transmitted. LetX† denote the hermitian
transpose ofX. The probabilityPe = P(X → X′) that the receiver makes an error
betweenX andX′ gives us a clue of the criteria we need for designing good codes.
At high SNR valuesρ the right hand side of the below inequality gives a good
approximation to the pairwise error probability.

Pe≤ 1
(det((X−X′)(X−X′)†))nr ρntnr

. (3.3)

From the above pairwise error probability (PEP) point of view [51], the per-
formance of a space-time code is dependent on two parameters:diversity gain
andcoding gain. At high SNRs, a log-log plot of the corresponding error rates
is a straight line. Roughly speaking, the diversity gain is the slope of the asymp-
tote. Although two codes with the same diversity gain achieve the same asymptotic
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slope, they can still differ in the horizontal shift of their asymptotes. The coding
gain of a space-time code is an approximate measure of the offset of the asymptote.
Together with (3.3), this leads us to the natural code design criteria given below.

The diversity gain is the minimum of the rank of the difference matrixX−X′

taken over all distinct code matricesX,X′ ∈ C , and it is also called therank of
the codeC . WhenC is a full-rank code, the coding gain is proportional to the
determinant of the matrix(X−X′)(X−X′)†. The minimum of this determinant
taken over all distinct code matrices is called theminimum determinantor coding
gain of the codeC . If the coding gain is bounded away from zero, even in the
limit as the size of the code approaches infinity, then the ST code is said to have
thenon-vanishing determinant(NVD) property [4]. For non-zero square matrices,
having full-rank coincides with being invertible.

The goal is to design sets of full-rank matrices with large

and preferably non-vanishing minimum determinants.

These design criteria, to some extent, depend on the premise that the receiver
will know the channel response matrix, but the transmitter will not. If the transmit-
ter also has this piece of information, then other methods are used. For example,
in modern cell phone networks, the user’s equipment reports its measured channel
coefficients back to the base station, and the MIMO transmission aimed at that par-
ticular phone may then be adapted accordingly. Nevertheless, the situations where
the transmitter is denied this information occur. In broadcast applications there are
several recipients of the same signal, and such tuning is useless. Also, in the case
of a rapidly moving cellular phone, e.g. one on a fast train, the channel conditions
may vary so rapidly that the received information will become outdated so quickly
that it is practically useless. The situation changes quite a lot of if the receiver does
not know the channel. The code design for thisnon-coherentchannel has a whole
theory of its own.

Remark 3.2.1. The term ‘diversity’ has multiple meanings in wireless communi-
cations. Henceforth, diversity will refer to (spatial) diversity, as defined below in
(3.10).

Remark 3.2.2. When we discuss the coding gain of a finite code we always sup-
pose that the code is scaled so that the overall energy constraint in (3.2) is met.
This normalization allows us to reasonably compare two finite codes of the same
size.

The next example introduces the reader to the first explicit space-time code
designed for the2×1 MIMO channel, namely the Alamouti code [2].

Example 3.2.3.The Hamiltonian quaternions form a neat set for illustrating the
above. Leti2 = j2 = k2 = −1, and i j = k. If a,b,c, and d range overR, we
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define the setH of Hamiltonian quaternions as the one containing the elements
q= a+bi+c j+dk. This set becomes a ring by extending the above multiplication
rules linearly. It might be helpful for the reader to notice thatH ' C⊕C j. The
conjugate quaternionq = a− bi− c j− dk tells us thatqq = a2 + b2 + c2 + d2 ∈
R\{0}, wheneverq 6= 0. Thus, the quaternions form a division algebra.

The quaternions can be conveniently represented either by complex2×2 ma-
trices or by real4× 4 matrices with respect to a suitable basis. We now write
z1 = a+ bi and z2 = c+ di and letz∗ denote the complex conjugate ofz. The
complex matrix takes the form

q =
(

z1 −z∗2
z2 z∗1

)
(3.4)

with respect to the basis{1, j}. We identify the elementq with its matrix represen-
tationq and recycle the same notation.

The Alamouti code [2] is now obtained by selecting complex integer vectors
(z1,z2), i.e. theLipschitz quaternions, and mapping them to codewords of the2-
antenna ST-code as in (3.4) above. The rank criterion is automatically met, and the
minimum determinant ofq is the squared minimum Euclidean distance.

Remark 3.2.4. In Remark 2.1.2 it was noted that the set of integral elements does
not form a ring in the non-commutative case. As an easy counter-example one can
use the ring of Lipschitz quaternions

L = {q = a+bi+c j +dk∈ H | a,b,c,d ∈ Z}

from the above example. For instance, consider the polynomialf (x) = x2 + 1
having integral coefficients. The elementt = 3i+4 j

5 is one of the (infinitely many)
roots of the polynomialf (x), and hence may be called integral. However, if we try
to adjoint to the ringL , we end up with a set that will also contain the elementit .
The reduced tracetr(it ) ∈Q is not an integer, hence we cannot have an order that
would contain both the Lipschitz quaternions andt.

Remark 3.2.5. Proposition 2.5.4 provides us with a tool for producing codes sat-
isfying the NVD property. See Proposition 4.2.6 for a more thorough explana-
tion. In the above example, the Alamouti code corresponds to the natural order of
the cyclic division algebra(Q(i)/Q,σ =∗,γ = −1) (cf. Section 2.4 and Example
2.5.5), hence, according to Proposition 2.5.4,det(q) ∈ Z and det(q) ≥ 1 for all
0 6= q∈ H.

Thedata rateR in bits per channel use (bpcu) is given by

R=
1
n

log2(|C |), (3.5)
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where|C | is the code size andn is the number of channel uses. The data rate should
not be confused with therate of a code design(in short, thecode rate) defined as
the ratio,

k
n
, (3.6)

of the numberk of transmitted (complex) information symbols, e.g. quadrature
amplitude modulation (QAM) symbols matching Gaussian integers, to the decod-
ing delayn. If this ratio is equal to the delay, then the code is said to have afull
rate.

Remark 3.2.6. If one intends to usenr receive antennas and perform sphere de-
coding or some other simple decoding method at the receiver, thenthe code rate
should not exceednr , i.e. we must havekn ≤ nr . In order to achieve as high a rate as
possible while enabling sphere decoding, one should choose the ratek

n = nr . See
[18, 38] for a more detailed justification of this claim.

The contents of the following section are mainly taken from [28], [54], and
[38].

3.3 Spatial diversity and multiplexing

The Rayleigh fading channel model (3.1) describes sudden declines in power. As
discussed earlier, this fading is due to the destructive addition of multipath signals
in the propagation media. Also interference from other users may complicate the
situation. The received power can thus change significantly. On the other hand, the
power of the thermal noise at the receiver does not usually change very much. As
a result, if the signal undergoes significant fading, the effective SNR at the receiver
may drop dramatically. In practice, for a fixed rate there is a minimum SNR for
which the receiver can still reliably detect and decode the transmitted signal. For a
SNR below this threshold, recovering the signal reliably is impossible. This event
is referred to as anoutage. The outage probability can be calculated based on the
statistical model describing the channel, or one can measure the actual real-life
channel.

The main idea behind diversity is to provide the receiver with different replicas
of the transmitted signal. If the multiple antennas used are far enough apart from
each other, then the paths between different pairs of antennas can be considered as
independent. In this way it is less probable that all the copies of the transmitted
signal would significantly fade simultaneously. As a result the outage probability
will be lower than for a system with a lower diversity.

More technically, diversity (or diversity gain) can be defined as the slope of the
error probability curve in terms of the received SNR in a log-log scale.

Multiple transmit antennas can also be utilized to achieve goals other than di-
versity. For instance, a higher capacity and, as a result, a higher transmission rate
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are possible by increasing the number of transmit antennas. Let us, for the sake
of simplicity, assume a symmetric MIMO channel equipped with equal numbers
of transmit and receive antennas. Then, in a rich scattering environment the ca-
pacity increases linearly with the number of transmit antennas without increasing
the transmission power. This results in the possibility of transmitting at a higher
rate by using spatial multiplexing. In general, one can transmit up tomin{nt ,nr}
symbols in one time slot (see the remark below). For example, ifnt ≥ nr , one can
sendnr symbols and achieve a diversity gain ofnt −nr +1. On the other hand, the
maximum spatial diversity while transmitting only one symbol per time slot isntnr .
Therefore, we can benefit from a MIMO channel in two ways: (i) we can increase
the diversity of the system, and (ii) we can increase the number of transmitted
symbols.

Remark 3.3.1. The received signal belongs to at-dimensional complex vector
space, wheret = 2nrn. From this it is clear that the receiver cannot decode a lattice
(see Section 4.1) that has rank> t, because the infimum of the euclidean distance
of points in such a lattice is zero. This gives us a natural upper bound for the
multiplexing gain.

Remark 3.3.2. The capacity of a MIMO channel increases by raising the SNR.
Since the transmission rate relates to capacity, it is reasonable to hope that the rate
can be increased as the SNR increases. This motivates the formal definition of
(spatial) multiplexing gain (3.7).

Let us next give the formal definition of the diversity-multiplexing tradeoff.
When the channel matrixH is known completely to the receiver but not to the

transmitter, Telatar [53] first showed that the ergodic channel capacity of such an
nt ×nr MIMO channel approximates tomin{nt ,nr} log2SNR at high SNR regime,
regardless of the relation betweennt andnr . Furthermore, it was shown that such a
capacity can be achieved by using i.i.d. complex Gaussian random vectorsx having
a covariance matrixKX = SNR

nt
Int . On the other hand, assuming that the transmitter

communicates at a rate of

R = r log2SNR (bits/channel use), (3.7)

wherer, 0≤ r ≤min{nt ,nr}, is termed themultiplexing gain, Zheng and Tse [58]
proved that givenr, the smallest bit error probability that can be achieved by any
coding scheme is given by

Pe,min(SNR) .= SNR−d∗(r), (3.8)

where by
.= we mean the exponential equality defined by

lim
SNR→∞

logPe,min(SNR)
logSNR

= −d∗(r). (3.9)
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The negative exponentd∗(r) is termeddiversity gain, and is given by a piecewise-
linear function connecting the points

{
(r,(nt − r)(nr − r)) : r = 0,1, ...,min{nt ,nr}

}
. (3.10)

Particularly, for the MISO case we get

d∗MISO(r) = nt(1− r), 0≤ r ≤ 1. (3.11)

Here,d∗(r) indicates an optimal tradeoff between the multiplexing gainr and the
diversity gain, and is thus also termed thediversity-multiplexing tradeoff(DMT) of
a Rayleigh fading channel. It is also proved in [58] thatd∗(r) can be achieved by
using i.i.d. length-nt complex Gaussian random vectors, provided that the asym-
metric MIMO Rayleigh fading channel is quasi-static and the channel matrixH
remains fixed forT channel uses withT ≥ nt +nr −1.

Invigorated by this remarkable result, a considerable amount of research activ-
ity has been devoted to constructing coding schemes [5, 7, 29, 8, 52] to achieve
the optimal tradeoffd∗(r) in (3.10). In particular, Eliaet al. [8] have provided
a sufficient condition for having deterministic DMT optimal codes. Furthermore,
they have proposed an algebraic construction ofnt ×nt code matrices meeting this
sufficient condition for allnt ≥ 2 andT ≥ nt , using a cyclic division algebra with
degreen2

t over its centerQ(i), wherei =
√−1. One step further was taken in

[16], where Hollantiet al. showed that, with the aid of maximal orders, the CDA-
based DMT-achieving constructions can be further improved in terms of density. A
denser code provides a better error performance even at low and moderate SNRs,
whereas DMT optimality is an asymptotic measure.

Remark 3.3.3. The relationship of the above spatial multiplexing gain to the trans-
mission rate is similar to that of the diversity gain to the probability of error in (3.9).
In other words, multiplexing gain measures how far the rateR is from capacity.

Let us quickly go back to Example 3.2.3 before moving on to the next section.

Example 3.3.4.The Alamouti code is DMT-achieving for the2×1 MISO case,
but fails to do so in the2× 2 MIMO case, as it is rate-one and hence not fully
multiplexing.

Let us now assume a2×1 channel and take look at the received signal when
an Alamouti codewordq is transmitted. It takes the form

(y1 y2) = (h1 h2)
(

z1 −z∗2
z2 z∗1

)
+(n1 n2)

and can be rewritten as
(

y1

y∗2

)
=

(
h1 h2

h∗2 −h∗1

)(
z1

z2

)
+

(
n1

n∗2

)
. (3.12)
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Let us denote byH the matrix in (3.12) containing the channel coefficients. The
columns ofH are orthogonal to each other and have the same Euclidean norms.
Thus, when we multiply (3.12) from the left byH†, the received vector takes the
new form

(
y′1
y′2

)
=

( |h1|2 + |h2|2 0
0 |h1|2 + |h2|2

)(
z1

z2

)
+

(
n′1
n′2

)
, (3.13)

wheren′1,n
′
2 remain i.i.d.. The channel now actually corresponds to two parallel

SISO channels and hence (see [44, Section 3.4.1, p. 33]) the error probability is
asymptotically given by

Pe,Alamouti≈ SNR−2(1−r).

By settingnt = 2 in Equation (3.11), we can conclude that the Alamouti code is
optimal in terms of the DMT of a2×1 channel.
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Chapter 4

Space-time codes from cyclic
division algebras

In this chapter, we will introduce cyclic division algebras and their orders as a tool
for space-time coding. We begin by mentioning that it was a long and rocky path
to discovering that cyclic algebras could be used and that indeed we were dealing
with objects called orders.

When we began this work, our intention was just to produce ST codes for the
4×1 MISO system [14]. As specified by the code design criteria, we wanted these
codes to have full rank and a minimum determinant as large as possible. Already in
[14] we managed to build codes with the NVD property. The tools at hand at that
time were not very sophisticated, so this took a lot more effort than was necessary.
Thanks to Sethuramanet al. [48], cyclic division algebras were finally introduced
in 2003 and the first ST codes were built using them. The use of CDAs enabled
full multiplexing as they produced full lattices. For the first time, the code matrix
was fully packed with no wasted space. These codes, however, did not enjoy the
NVD property as transcendental elements were used instead of algebraic numbers.

Later in 2003, Belfiore and Rekaya [4] pointed out that one should use a spe-
cific subring instead of the whole algebra in order to guarantee a non-vanishing
determinant. Whilst working on [14] we realized that there exists something called
order, and the above mentioned subring as well as our example rings in [14] are
occurrences of such orders. We also managed to prove with some ad hoc meth-
ods that the densest code in [14] corresponds to a maximal order. This led us to
further investigate orders and their properties [16]. It was noticed that by using a
maximal order within a given CDA, we obtain the densest possible codes. If the
algebra is not fixed, then we first pick an algebra that has maximal orders with a
minimal discriminant, as these are the densest among all the maximal orders within
anyCDA [15] (see the framed statements at the end of Sections 4.1 and 4.3). This
observation provided us with codes that are already very close to the outage bound
[32]. With practical numbers of antennas there is hardly any gap between the per-
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formance of a maximal order code and the outage bound, even at low SNRs.
Achieving promising results with the symmetric (#Tx antennas = #Rx anten-

nas) ST codes motivated us to try the same with the asymmetric (#Tx antennas >
#Rx antennas) space-time (AST) codes as well. In [19] we generalized the den-
sity results from [15] to the asymmetric scenario. The situation was now more
complicated as rather that only having two principal options for the center of the
algebra, as in the symmetric scenario (see Corollaries 4.3.2 and 4.3.4), the center
could be almost any field of a suitable degree. When we started this work, we
did not even know how to construct AST codes with a suitable rate and the NVD
property. One way to construct AST codes was proposed in [25], but we were not
aware of this work until we had independently discovered the same method and
noticed that the performance it provided was not satisfactory. Also the block struc-
ture we introduced in [22] was independently discovered in [57] in the context of
amplify-and-forward relay codes.

Finally in [22, 23, 19] different construction methods for asymmetric codes
were proposed, one of them based on maximal orders. Not surprisingly, the codes
from maximal orders outperformed all competing codes. Later on, both transmit
antenna selection (TAS) [21, 38] and the situation where one wants to effectively
use all the transmit antennas [18, 20] were considered, and optimal constructions
with excellent error performance were given.

4.1 Lattices: normalized minimum determinant and den-
sity

We define alattice to be a discrete finitely generated free abelian subgroupL of a
real or complex finite dimensional vector space, called the ambient space. In the
space-time (ST) setting a natural ambient space is the spaceMn(C) of complex
n×n matrices. TheGram matrixis defined as

G(L) =
(

ℜ(Tr(xix
†
j ))

)
1≤i, j≤k

, (4.1)

where Tr is the matrix trace, andxi ∈ Mn(C), i = 1, ...,k, form aZ-basis ofL.
The rankk of the lattice is upper bounded by2n2. We remark that we need to take
the real part of the trace in the Gram matrix, as the matricesxix

†
j are not necessary

real for i 6= j. The Gram matrix has a positive determinant equal to the squared
measure of the fundamental parallelotopem(L)2. A change of basis does not affect
the measurem(L).

Any lattice L with the NVD property can be scaled, i.e. multiplied by a real
constantt, either to satisfy detmin(L) = minM∈L\{0}{det(M)} = 1 or to satisfy
m(L) = 1. This is because detmin(tL) = tndetmin(L) andm(tL) = tkm(L). As the
minimum determinant determines the asymptotic pairwise error probability, this
gives rise to natural numerical measures for the quality of a lattice.
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Definition 4.1.1. We shall denote byδ (L) thenormalized minimum determinantof
the latticeL, i.e. here we first scaleL to have a unit size fundamental parallelotope.
Dually we denote byρ(L) = 1/m(L) thenormalized densityof the latticeL, having
first scaled the lattice to have unit minimum determinant, and only then computing
the quantity1/m(L). In other words, we define

δ (L) =
detmin(L)
m(L)n/k

,

ρ(L) =
(detmin(L))k/n

m(L)
.

There are two different point of views one can adopt related to the density.
Firstly, assume that both of the lattices we consider have a unit minimum determi-
nant. Now a denser code means that we can pack more codewords within a same
space as compared to a lattice having a lower density. That is, the data rate (3.5)
is improved. Secondly, if instead of increasing the rate we normalize the lattices
to have a unit measure, then according to the above definition the (normalized)
minimum determinant of the denser lattice is bigger than that of the other lattice.

Definition 4.1.2. A MIMO codeor space-time coderefers to the infinite codeC∞
which is a lattice inMn(C).

In this thesis, we consider only codes that are subsets in an infinite complex
lattice. Then, for an infinite code latticeC∞ in Section 3.2, we can just look at
non-zero matrices instead of the differences, as the difference of two lattice points
is again a point in the same lattice.

Remark 4.1.3. The minimum determinant defined here is actually the square root
of the minimum determinant defined in Section 3.2.

Remark 4.1.4. When comparing the minimum determinants of different codes,
one should always use the normalized minimum determinant. Otherwise the no-
tion of minimum determinant would be somewhat meaningless, as for example
detmin(2L) = 2ndetmin(L). Therefore we need the above normalization. According
to Definition 4.1.1 and Section 3.2, we can refer toδ (L)2 as the coding gain of the
corresponding MIMO code.

Remark 4.1.5. To avoid confusion let us mention that from now on, when we
talk about the minimum determinant we always mean the minimum determinant
detmin(L) of the infinite code latticeL = C∞. For our purposes it suffices to consider
infinite lattices, thus we can ignore the side effects caused by the finiteness of the
actual code.

According to Definition 4.1.1, the above can be formalized as follows:
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Proposition 4.1.6. The coding gain of a latticeL equals

δ (L)2 = ρ(L)2n/k.

Now we can conclude this section by stating:

Maximizing the coding gain is equivalent to maximizing

the density of the corresponding lattice.

We emphasize that this is one of the main contributions of this work, as we have
now produced a well-defined criterion for maximizing the coding gain. Later on in
Section 4.4, we will see that the previously known methods for code construction
are insufficient, if one hopes to achieve maximal coding gains. Indeed, in Section
4.4 it will be shown that there exists a2×2 MIMO code havingδ (L) = 0.562as
opposed to the Golden code that hasδ (L) = 0.447.

4.2 Lattices from matrix representations of orders

Why do we want to use cyclic division algebras and their orders to construct ST
codes? Firstly, division algebras have no zero divisors, so the rank criterion (cf.
Section 3.2) is automatically met. The cyclic representation is moreover simple
to deal with. Secondly, orders help us to increase the coding gain by providing
us with the NVD property. When we choose the center carefully, a discrete set of
determinants is guaranteed.

Some authors have made the assumption that the so-called linear dispersion en-
coding is used. Therein a fixed subset of a complex alphabet lattice (such as QAM
or HEX, corresponding to Gaussian or hexagonal lattice, respectively) is chosen,
and sequences of symbols from that subset are then turned into lattice points by
the simple process of using them as coefficients of a fixed basis (as a module over
a ring generated by the alphabet) of the actual lattice. From our point of view this
approach places undue emphasis on the encoding process, so we largely ignore this
aspect. Therefore questions like whether our lattices are ‘information lossless’ (cf.
[49],[43]) are meaningless, because that concept is defined only under the assump-
tion of linear dispersion encoding.

This change means that we often need to resort to the use of a codebook, and
thus the complexity of encoding is higher. But, consequently, we are also free to
do optimal spherical shaping. In other words, we choose our finite codebook to
consist of shortest vectors (not necessarily all of them) of the lattice or of a coset
of the lattice, and thus minimize the transmission power.

Our lattices ofn×n matrices are of rank2n2. This implies that if we impose a
constraint on the transmission power and require that Tr(XX†)≤ P for all the ma-
tricesX in a codebook, then the number of signalsX meeting this constraint grows
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like O(Pn2
) as a function of maximal transmission powerP. Thus, they automat-

ically share this property with the full-rate linear dispersion codes. Therefore, we
are entitled to use Theorem 3 from [8] and conclude that, also for the maximal
order codes, the NVD property implies DMT-optimality.

Again letE/F be a cyclic Galois extension withGal(E/F) = 〈σ〉 (cf. Section
2.4).

Definition 4.2.1. Let a= x0+ux1+ · · ·+un−1xn−1 ∈Λ⊂A = (E/F,σ ,γ), where
Λ is a maximal order. The basic form of a cyclic division algebra based space-time
code coming from a maximal order is

C ⊂ C∞ =








x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) γσn−1(x2)
x2 σ(x1) σ2(x0) γσn−1(x3)
...

...
xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)








, (4.2)

whereγ ∈ F is a suitable non-norm element. Here, the above infinite code lattice
C∞ can be identified with the standard matrix representation of the orderΛ. Notice
that as opposed to the natural order, the elementsxi ∈ E in (4.2) are not necessarily
integral!

If we denote the basis ofE overF by {1,e1, ...,en−1}, then the elementsxi , i =
0, ...,n−1, in the above matrix take the formxi = ∑n−1

k=0 fkek, where fk ∈ F for all
k = 0, ...,n−1. Hencek = n2 information symbols, e.g. Gaussian or Eisensteinian
integers corresponding to QAM and HEX signaling respectively, are transmitted
inside the matrix (n per channel use). This is equal to saying that the design has a
full rate k

n = n2

n = n (cf. (3.6)).

Remark 4.2.2. We recall that the natural order only exists, whenγ is an algebraic
integer. In this case an immediate consequence of Lemma 2.5.7 is thatΛNAT has a
finite index in the maximal orderΛ. In particular, as lattices,ΛNAT andΛ share the
same rank.

A full rate is guaranteed when using full lattices, i.e. lattices that have rank
equal to2n2. For the asymmetric scenario, however, full lattices are out of the
question, at least if we wish to preserve the ability to perform simple decoding,
e.g. sphere decoding, at the receiver (cf. Remark 3.2.6). In this case, we need to
modify the dimension of the algebra and the degrees of the extensions appropri-
ately, or we can choose a certain subset of the corresponding symmetric code [19].
In particular, a two-dimensional center is now out of our reach. Taking into ac-
count that for the use of the famous QAM and HEX modulation alphabets we need
Q(i) ⊆ A or Q(ω) ⊆ A , it can be seen that the set of possible centers stretches
significantly when compared to the symmetric scenario.
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Remark 4.2.3. There exist practical methods for picking the right non-norm ele-
ment, so this is not a hard task. It may be impossible to find a unitγ. In this case,
we can either suffer from an antenna energy imbalance, or we can try to force the
γ to have a unit modulus by dividing it by some suitable element with the same
absolute value [9]. The latter option means a loss in the minimum determinant (as
we will not have an order anymore) but, due to the additive way in which we form
the codeword from the basis matrices, it will still be non-vanishing. This loss is
often compensated by an improved error performance [19].

Albeit there is no question of energy balance being important, one ought to be
careful and notice that sometimes a unit non-norm element may still lead to higher
average energy requirements. This is due to the fact that sometimes we cannot
simply replace a non-unitγ with a unit one without having to change the whole
algebra. It is well possible that despite a unitγ this change in the algebra will
result in a higher average energy.

The shaping of the code is also important [43]. The closer the code is to being
orthogonal, the easier the encoding, decoding and bit labeling will be. However,
restricting to orthogonal codes only would prevent us from achieving the best pos-
sible coding gains. Hence, we do not make this restriction, and instead of simple
encoding we will use a codebook or sphere encoding (see [32]) to guarantee opti-
mal spherical shaping.

We remark that the energy and shaping discussion is of very technical nature,
hence a reader with no sufficient background can safely ignore this remark.

A division algebra may be represented as a cyclic algebra in many ways as
demonstrated by the following example.

Example 4.2.4.The division algebraG A used in [5] to construct the Golden code
is the cyclic division algebra withF = Q(i), E = Q(i,

√
5), γ = i, when theF-

automorphismσ is determined byσ(
√

5) = −√5. We also note that in addition
to this representationG A can be given another construction as a cyclic algebra.
As u2 = i we immediately see thatF(u) is a subfield ofG A that is isomorphic
to the eighth cyclotomic fieldE′ = Q(ζ ), whereζ = (1+ i)/

√
2. The relation

u
√

5 =−√5u read differently means that we can viewu as the complex numberζ
and

√
5 as the auxiliary generatoru′ =

√
5. We thus see that the cyclic algebra

E′⊕u′E′ = (E′/F,σ ′,γ ′)

is isomorphic to the Golden algebra. Hereσ ′ is theF-automorphism ofE′ deter-
mined byζ 7→ −ζ andγ ′ = u′2 = 5.

Remark 4.2.5. We remark that two different, algebraically isomorphic construc-
tions may still yield codes with significant differences in performance. In addition
to the minimum determinant, the shape of the code lattice also plays a key role.

When research into CDA-based ST codes began, transcendental elements were
used as non-norm elements and thus the resulting codes did not have the NVD
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property [48]. Later on, it was noticed, [4], that by choosing the elements in the
codeword matrix (2.5) to be algebraic integers instead of transcendental elements,
i.e. by using a certain subring of an algebra with an integral non-norm element,
one could obtain codes with the NVD property. Soon after this, it was pointed
out in [13, 14] that these subrings are examples oforders, and that some further
optimization can still be done by exploiting the algebraic properties of orders [16,
15].

The reason for concentrating on orders when constructing MIMO lattices is
summarized in the following proposition. This is simply Proposition 2.5.4 rephrased
to fit the language of MIMO-lattices. We often identify an order (and its subsets)
with its standard matrix representation.

Proposition 4.2.6.LetΛ be an order in a cyclic division algebra(E/F,σ ,γ). Then
for any non-zero elementa ∈ Λ its reduced normnr(a) is a non-zero element of
the ring of integersOF of the centerF. In particular, if F is Q or an imaginary
quadratic number field, then the minimum determinant of the latticeΛ is equal to
one.

Note that ifγ is not an algebraic integer, thenΛ fails to be closed under mul-
tiplication. This may adversely affect the minimum determinant of the resulting
matrix lattice, as elements not belonging to an order may have non-integral (and
hence small) norms.

The power of orders in ST code construction is based on two things:

1) They yield codes that satisfy the NVD property, and

2) they provide us with a tool called a discriminant which reveals the
algebra and order that will result in the best coding gain.

4.3 Discriminant vs. density

The definition of the discriminant closely resembles that of the Gram matrix of
a lattice, so the following results are not very surprising. Nevertheless, they are
extremely important in our hunt for denser lattice codes.

For explicit code constructions, see Example 4.4.16.

Lemma 4.3.1. Assume thatF is an imaginary quadratic number field and that1
andθ form aZ-basis of its ring of integersR. Assume further that the orderΛ is a
freeR-module (an assumption automatically satisfied whenR is a principal ideal
domain). Then the measure of the fundamental parallelotope equals

m(Λ) = |ℑθ |n2|d(Λ/R)|.

Proof. [15, Lemma 5.1]
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In the casesF =Q(i) andF =Q(
√−3), we haveθ = i andθ = (−1+

√−3)/2
respectively, so we immediately get the following two corollaries.

Corollary 4.3.2. Let F = Q(i),R = Z[i], and assume thatΛ ⊂ (E/F,σ ,γ) is an
R-order. Then the measure of the fundamental parallelotope equals

m(Λ) = |d(Λ/Z[i])|.

Example 4.3.3.When we scale the Golden code [5] to have a unit minimum de-
terminant, all8 elements of itsZ-basis will have length51/4 and the measure of the
fundamental parallelotope is thus25. This is also a consequence of the fact that the
Z[i]-discriminant of the natural order of the Golden algebra is equal to25. As was
observed in [13], the natural order happens to be maximal in this case. Therefore
the Golden code cannot be improved upon by enlarging the order withinG A .

Corollary 4.3.4. Let ω = (−1+
√−3)/2, F =Q(ω), R= Z[ω], and assume that

Λ⊂ (E/F,σ ,γ) is anR-order. Then the measure of the fundamental parallelotope
equals

m(Λ) = (
√

3/2)n2|d(Λ/Z[ω])|.
The upshot of this is that in both cases we have the following:

Maximizing the density of the code is equivalent

to minimizing the discriminant.

Thus, in order to get the densest MIMO-codes we need to look for division
algebras that have a maximal order with as small a discriminant as possible. If we,
for one reason or another, want to stick with a specific algebra, then we should at
least use a maximal order.

Example 4.3.5.Let us use the notation from Example 2.5.8. In [29], Kiran and
Rajan have shown that the family of cyclic algebrasA` = (Q(ζ`)/Q(i),σ(ζ`) =
ζ 5

` ,2+ i), with ` ≥ 3, consists entirely of division algebras. LetΛNAT,` be the
natural order of the algebraA`. We can conclude from Lemma 2.5.10, Proposition
2.5.8, and Corollary 4.3.2 that

d(ΛNAT,`/Z[i]) = (2+ i)n(n−1)(1+ i)2n2(`−2),

and that
m(ΛNAT,`)2 = 22n2(`−2)5n(n−1).

For instance, in the2 antenna casè= 3,n = 2, we havem(ΛNAT,`) = 80, and thus
the Golden code is denser than the corresponding latticeA3 of the same minimum
determinant. However, the natural order ofA3 is not maximal. We will return to
this example later on.
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To conclude the section, we include the following simple but interesting result
on orders which explains why using a principal one-sided (left or right) ideal in-
stead of the entire order will not change the density of the code. For the proof, see
[15, Lemma 10.1].

Lemma 4.3.6. Let Λ be an order in a cyclic division algebra of indexn over an
imaginary quadratic number field. Letx ∈ Λ be any non-zero element. Then the
normalized minimum determinants of the two lattices coincide:

δ (Λx) = δ (Λ).

4.4 Discriminant bounds for symmetric and asymmetric
constructions

In this section, we present a fundamental lower bound for the discriminant. With
the aid of this bound we are able to give upper bounds for the code density in both
the symmetric and asymmetric case. In the symmetric case the bound was derived
by R. Vehkalahti, [15, 55], and generalized to the asymmetric case in [18]. Most of
the contents of this section can be found in [15, 18]. The main goal of this section
is to motivate the use of maximal orders and to give an insight into the main results
in [15, 18, 14].

Again letF be an algebraic number field that is finite dimensional overQ, OF

its ring of integers,P a prime ideal ofOF andF̂P the completion. In what follows
we discuss the size of ideals ofOF . By this we mean that ideals are ordered by
the absolute values of their norms toQ, so e.g. in the caseOF = Z[i] we say that
the prime ideal generated by2+ i is smaller than the prime ideal generated by3 as
they have norms 5 and 9, respectively.

The following relatively deep result from class field theory was the key to de-
riving the discriminant bound. Assume that the fieldF is totally complex. Then
we have thefundamental exact sequence of Brauer groups(see e.g. [45] or [40])

0−→ Br(F)−→⊕Br(F̂P)−→Q/Z−→ 0. (4.3)

Here the first nontrivial map is obtained by mapping the similarity class of a
central divisionF-algebraD to a vector consisting of the similarity classes of all
simple algebrasDP obtained fromD by extending the scalars fromF to F̂P, where
P ranges over all prime ideals ofOF . Observe thatDP is not necessarily a division
algebra, but by Wedderburn’s theorem [27, p. 203] it can be written in the form

DP = MκP(AP),

whereAP is a division algebra with a center̂FP, andκP is a natural number called
the local capacity. The second nontrivial map of the fundamental exact sequence
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is then simply the sum of the Hasse invariants of the division algebrasAP repre-
senting elements of the Brauer groupsBr(F̂P).

Albeit implicitly, this exact sequence tells us that, for all but finitely many
primesP, the resulting algebraDP is actually in the trivial similarity class of̂FP-
algebras. In other words,DP is isomorphic to a matrix algebra overF̂P. More
importantly, the sequence tells us that the sum of the nontrivial Hasse invariants
of any central division algebras must be an integer. Furthermore, this is the only
constraint for the Hasse invariants, i.e. any combination of Hasse invariantsa/mP

such that only finitely many of them are non-zero, and such that their sum is an
integer, is realized as a collection of the Hasse invariants of some central division
algebraD overF .

Let us now suppose that for a given number fieldF , we would like to produce
a division algebraA of a given indexn, havingF as its center and having the
smallest possible discriminant. We proceed to show that while we cannot give an
explicit description of the algebraA in all cases, we can derive an explicit formula
for its discriminant.

Theorem 4.4.1.Assume that the fieldF is totally complex and thatP1, . . . ,Pn are
some prime ideals ofOF . Assume further that a sequence of rational numbers
a1/mP1, . . . ,an/mPn satisfies

n

∑
i=1

ai

mPi

≡ 0 (mod 1),

1≤ ai ≤mPi , and(ai ,mPi ) = 1.
Then there exists a central divisionF-algebraA that has local indicesmPi and

the least common multiple (LCM) of the numbers{mPi} as an index.
If Λ is a maximalOF -order inA , then the discriminant ofΛ satisfies

d(Λ/OF) =
n

∏
i=1

P
(mPi−1) [A :F ]

mPi
i .

Proof. [15, Theorem 6.11]

At this point it is clear that the discriminantd(Λ) of a division algebra only
depends on its local indicesmPi .

We now have an optimization problem to solve: given the centerF and an
integern, we should decide how to choose the local indices and the Hasse invariants
so that the LCM of the local indices isn, the sum of the Hasse invariants is an
integer, and the resulting discriminant is as small as possible. We immediately
observe that at least two of the Hasse invariants must be non-integral.

Observe that the exponentd(P) of the prime idealP in the discriminant formula
is

d(P) = (mP−1)
[A : F ]

mP
= n2

(
1− 1

mP

)
.

40



As for the nontrivial Hasse invariantsn ≥ mP ≥ 2, we see thatn2/2 ≤ d(P) ≤
n(n− 1). Therefore the nontrivial exponents are roughly of the same size. For
example, whenn = 6, d(P) will be either 18, 24 or 30 according to whethermP

is 2, 3 or 6, respectively. Not surprisingly, it turns out that the optimal choice is
to have only two non-zero Hasse invariants and to associate these with the two
smallest prime ideals ofOF .

Theorem 4.4.2 (Main Theorem). Assume thatF is a totally complex number
field, and thatP1 andP2 are the two smallest prime ideals inOF . Then the smallest
possible discriminant of all central division algebras overF of indexn is

(P1P2)n(n−1).

Proof. [15, Theorem 6.12]

We remark that in the most interesting (for the symmetric MIMO) casesn = 2
and n = 3, the proof of Theorem 4.4.2 is more or less an immediate corollary
of Theorem 4.4.1. We also remark that the division algebra which achieves our
bound is by no means unique; any pair of Hasse invariantsa/n,(n−a)/n, where
0 < a < n, and(a,n) = 1, leads to a division algebra with the same discriminant.

4.4.1 Symmetric codes

The smallest primes of the ringZ[i] are1+ i and2± i. They have norms 2 and 5,
respectively. The smallest primes of the ringZ[ω] are

√−3 and2 with respective
norms 3 and 4. Together with Corollaries 4.3.2 and 4.3.4 we have arrived at the
following bounds.

Corollary 4.4.3 (Discriminant bound). Let Λ be an order of a central division
algebra of indexn over the fieldQ(i). Then the measure of a fundamental paral-
lelotope of the corresponding lattice is

m(Λ)≥ 10n(n−1)/2.

Corollary 4.4.4 (Discriminant bound). Let Λ be an order of a central division
algebra of indexn over the fieldQ(ω), ω = (−1+

√−3)/2. Then the measure of
a fundamental parallelotope of the corresponding lattice is

m(Λ)≥ (
√

3/2)n2
12n(n−1)/2.

Corollary 4.4.5 (Density bounds).From the above corollaries we also obtain the
corresponding density bounds. LetΛ be an order of a central division algebra of
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indexn over the field (1)Q(i) or (2)Q(ω). Then the normalized densityρ(Λ) of
the corresponding lattice satisfies the inequality

(1) ρ(Λ)≤ 10n(1−n)/2 or

(2) ρ(Λ)≤ (2/
√

3)n2
12n(1−n)/2,

respectively.

Remark 4.4.6. The Golden algebra reviewed in Example 4.2.4 has its nontrivial
Hasse invariants corresponding to the primes2+ i and2− i and hence cannot be
an algebra which achieves the bound of Theorem 4.4.2.

A clue for finding the optimal division algebra is hidden in the alternative de-
scription of the Golden algebra given in Example 4.2.4. It turns out that in the case
F = Q(i), E = Q(ζ ) instead of usingγ ′ = 5 as in the case of the Golden algebra
we can use its prime factorγ = 2+ i.

Proposition 4.4.7. The maximal orders of the cyclic division algebra

A3 = (Q(ζ )/Q(i),σ ,2+ i)

of Example 4.3.5 achieve the bound of Theorem 4.4.2.

Proof. [15, Proposition 7.3]

Remark 4.4.8. By Corollary 4.3.2, we see that the fundamental parallelotope of
the maximal order in Proposition 4.4.7 has measure 10. Thus this code has 2.5
times the density of the Golden code.

Remark 4.4.9. The algebraA3 has the drawback that the parameterγ is quite
large. This leads to an antenna power imbalance in both space and time domains.
To some extent these problems can be alleviated by conjugating the matrix lattice
by a suitable diagonal matrix (a trick used in [56] and elsewhere). One of the motifs
underlying the Perfect codes [43] is the requirement that the variableγ should
have a unit modulus. To meet this requirement we proceed to give a different
construction for this algebra. In [15, 32] it was shown that theGolden+ codebased
on a maximal order of the algebraG A + below outperforms the Golden code.
Prior to our result, this was not thought to be possible [42].

Theorem 4.4.10.Let λ be the square root of the complex number2+ i belonging
to the first quadrant of the complex plane. The cyclic algebra

G A + = (Q(λ )/Q(i),σ , i),

where the automorphismσ is determined byσ(λ ) = −λ , is a division algebra.
The maximal orders ofG A + achieve the bound of Theorem 4.4.2. Furthermore,
the algebrasG A + andA3 of Theorem 4.4.7 are isomorphic.
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Proof. [15, Theorem 7.4]

We refer to the algebraG A + as theGolden+ algebra. This is partly motivated
by the higher density and partly by the close relationship between the algebraA3

and the Golden algebra. After all, the algebraA3 is obtained when in the alter-
native description of the Golden algebra (cf. Example 4.2.4) the variableγ = 5 is
replaced with its prime factor2+ i. In [15, Section IX-C] we have also provided
an alternative proof for Theorem 4.4.10 by explicitly producing a maximal order
within G A + and verifying that it has the prescribed discriminant. It is immediate
from the discussion in the early parts of this section that in this case there is only
one cyclic division algebra (up to isomorphism) with that discriminant.

It turns out that all algebrasA` in the Kiran & Rajan family of Example 4.3.5
have maximal orders achieving the discriminant bound. The following observation
is the key to proving this.

Lemma 4.4.11.LetF be either one of the fieldsQ(i) orQ(ω), and letP1 andP2 be
the two smallest ideals of its ring of integersR. LetD be a central division algebra
over F, and letΛ be anyR-order in D . If the discriminantd(Λ/OF) is divisible
by no prime other thanP1 and P2, then any maximal orderΓ of D achieves the
discriminant bound of Theorem 4.4.2.

Proof. [15, Lemma 7.5]

Corollary 4.4.12. Let` > 2be an integer. The maximal orders of the cyclic division
algebraA` = (Q(ζ`)/Q(i),σ ,2+ i) from Example 4.3.5 achieve the discriminant
bound.

Proof. Proposition 2.5.8 and Lemma 2.5.10 indicate that the only prime factors
of the discriminant of the natural order inA` are1+ i and2+ i. The claim then
follows from Lemma 4.4.11.

Example 4.4.13.Let F = Q(
√−3), so thatOF = Z[ω]. In this case, the two

smallest prime ideals are generated by2 and1−ω and have norms 4 and 3 respec-
tively. By Theorem 4.4.2 the minimal discriminant is4(1−ω)2 whenn = 2. As
the absolute value of1−ω is

√
3, an application of the formula in Corollary 4.3.4

shows that the latticeL of the code achieving this bound hasm(L) = 27/4. In [16]
we show that a maximal order of the cyclic algebra(E/F,σ(i) = −i,γ =

√−3),
whereE =Q(i,

√−3), achieves this bound.

As noted in [15], maximal orders can provide significant density gains without
compromising either the coding gain or the transmission power. We demonstrate
this using the following example.
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Example 4.4.14.Consider again the family of cyclic division algebrasA` of index
n = 2`−2 from Example 4.3.5. IfΛ` is a maximal order ofA`, then according to
Corollary 4.4.12

d(Λ`/Z[i]) = (1+ i)n(n−1)(2+ i)n(n−1).

On the other hand, by Example 4.3.5 we know that

d(ΛNAT,`/Z[i]) = (1+ i)2n2(`−2)(2+ i)n(n−1).

Hence, by Lemma 2.5.7 we may conclude that the natural order is of index

[Λ` : ΛNAT,`] = 2((2`−5)n+1)n/2.

In the cases̀ = 3,4,5 this index thus equals23, 226 and2164, respectively.

Remark 4.4.15. It has now become evident that the natural orders of the algebras
A` of Example 4.3.5 are very far from being maximal. In other words, by using a
maximal order as opposed to the natural order ofA`, one can send1.5, 6.5, or 20.5
more bits per channel use without compromising either the transmission power or
the minimum determinant in the respective cases of2, 4, and8 antennas. Hence
the problem of actually finding these maximal orders, rather than simply knowing
that they exist, becomes relevant.

In Section IV of [15], we describe briefly how maximal orders can be con-
structed in general. A more detailed version of the algorithm can be found in [26].

In practice, however, it is less time consuming to compute the maximal orders
with the aid of the MAGMA software [1] (see [24]). The implementation of the
algorithm in the software package is due to Willem van de Graaf and makes use of
an algorithm proposed in [26]. MAGMA is a commercial computer program, but
has a free 20-second online calculator that is convenient enough for the smallest
cases.

Next we give two explicit code constructions tying together the above concepts.

Example 4.4.16.The Golden division algebra [5] mentioned in Example 4.2.4
is the cyclic division algebraG A = (E/F,σ ,γ), whereE = Q(i,

√
5), F = Q(i),

γ = i, n = 2, andσ(
√

5) =−√5. The natural orderΛ of G A is already maximal
[13]. The ring of algebraic integers isOE = Z[i][θ ], when we denote the golden

ratio byθ = 1+
√

5
2 . The authors of [5] further optimize the code by using an ideal

(α) = (1+ i− iθ), and the Golden code is then explicitly defined as

GC=

{
1√
5

(
αx0 iσ(α)σ(x1)
αx1 σ(α)σ(x0)

) ∣∣∣∣∣ x0,x1 ∈OE

}
.

The factor1/5 is added to getρ(GC) = 1. Without this factor, we have
detmin(GC) = 1, and thereforeδ (GC) = 1/

√
5 (cf. Definition 4.1.1). Notice that

the idealα does not have an impact on the normalized measures (cf. Lemma 4.3.6).
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The Golden plus division algebra [15], for its part, is the cyclic division algebra
G A + = (Q(λ )/Q(i),σ , i) (cf. Theorem 4.4.10), whereλ is the square root of the
complex number2+ i belonging to the first quadrant of the complex plane. The
automorphismσ is determined byσ(λ ) =−λ .

In order to give a concrete description of the maximal order used for the Golden+
code (GC+), we describe it in terms of itsZ[i]-basis. The maximal orderΛ consists
of the matricesaM1 + bM2 + cM3 + dM4, wherea,b,c,d are arbitrary Gaussian
integers andMi , i = 1,2,3,4, are the following matrices.

M1 =
(

1 0
0 1

)
, M2 =

(
0 1
i 0

)
,

M3 =
1
2

(
i + iλ i−λ

−1+ iλ i− iλ

)
, M4 =

1
2

( −1− iλ i + iλ
−1+λ −1+ iλ

)
.

One of the ingredients in the construction of the Perfect codes was the use of
ideals in improving the shape of the code lattices. A way of doing that is to choose
an elementx of the maximal order in such way that the left (or right) idealxΛ is
contained in the natural order. By moving the code inside the natural order we
then, to some extent, recover the layered structure of the natural order. Hence, we
also recover some of the advantages of the inherent orthogonality between layers.

In the case of the Golden+ algebra we can use the element(1−λ )3 from the
ring of integersOE of the larger fieldE = Q(

√
2+ i) as a multiplier. Thus, by

denoting

M =
(

(1−λ )3 0
0 (1+λ )3

)
,

we get the idealI consisting of matrices of the form

aMM1 +bMM2 +cMM3 +dMM4, (4.4)

where the coefficientsa,b,c,d are Gaussian integers and the matricesM j , j =
1,2,3,4 are as above. This ideal is a subset of the natural orderOE⊕uOE.

For the Golden+ code consisting of codewords of the form (4.4), we have
δ (GC+) = 1/ 4

√
10 (see Definition 4.1.1). Once more, according to Lemma 4.3.6,

the ideal does not change the normalized measures.

We conclude the treatment of symmetric codes by the following remark on Per-
fect codes and their performance as compared to the denser maximal order codes.

Remark 4.4.17. The Perfect codes are based on the natural orders (or their ideals
to be more specific) of the corresponding algebras. For the two- and three-antenna
codes, the natural order happens to be a maximal order as well. This is not the case
with the four- and six-antenna codes, where the natural order is properly contained
in a maximal one. Even in the two- and three-antenna cases, the maximal order in
use does not achieve the discriminant bound, as already noted in Remark 4.4.6 for
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Figure 4.1: Block error rates of the Golden and Golden+ codes at 4, 5, and 6 bpcu.

the Golden code. The consequences of this fact are demonstrated in Figures 4.1
and 4.2.

In both figures, thex-axis describes the SNR, and the block error rate (i.e. the
probability of decoder deciding in favor of a matrixX′ 6= X, whenX was transmit-
ted) is depicted on they-axis. Thus, with a fixed data rate, the lower the position of
the curve in the picture, the better the performance of the corresponding code.

The Golden+ code constructions (cf. Theorem 4.4.10) in Figure 4.1 are based
on spherical shaping. In other words, on selecting the prescribed number of lowest
energy matrices, i.e. shortest codewords, from a chosen additive coset of a certain
ideal of the Golden+ algebra (see [15] for details). In order to reach a target band-
width utilization of 4, 5 or 6 bpcu we thus selected 256, 1024 or 4096 matrices.
In this sense, we have done some coset optimization for the Golden+ codes, but
make no claims as to having found the best coset. For the rival Golden code from
[43], the coset corresponding to assigning the value of(1+ i)/2 to all Gaussian
integers stands out. With this assignment, the code will consist of 256 matrices all
having the minimal energy, thus the Golden code also naturally admits spherical
shaping at 4 bpcu. Therefore, pulse amplitude modulation (PAM) can be used to
good effect. We began by doing some simulations using a PAM-type rule for larger
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Figure 4.2: Block error rates of different3×3 MIMO codes at 6 and 24 bpcu.

subsets of the Golden code. The desired bandwidth efficiency was achieved by ar-
bitrarily selecting a suitable number of coefficients of the basis matrices from the
set{−3/2,−1/2,1/2,3/2}. This is a natural choice, well suited for example to the
sphere decoding algorithm. While we ended up having a tie in terms of the block
error rate at 4.0 bpcu, the Golden code lost to the Golden+ code by about 0.9 dB
at the rates 5 and 6 bpcu (see Figure 4.1). In the interest of a fair comparison, we
then tried coset optimization for the Golden code as well. This narrowed down the
gap to about 0.3 dB. However, the resulting subsets of the Golden code no longer
had a structure that would be suited to PAM. In other words, both the rival codes
must resort to the use of a codebook. Alternatively, sphere encoding could be used
[32].

In Figure 4.2 we depict the performance of different3×3 MIMO codes. Again,
we see that the codes optimized in terms of density (named Eisenstein codes, see
[15] for the algebra in use) win over the Perfect codes. The denser maximal order
codes even slightly outperform or have tie with the structured lattice code based on
the Leech latticeΛ18 [32].
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4.4.2 Asymmetric codes

Let us now move on to the asymmetric situation. The discriminant bound in The-
orem 4.4.2 can be applied directly in the asymmetric case, as it does not make any
assumptions on the degree of the center. As opposed to the very simple density
bounds obtained in Corollary 4.4.5 for the symmetric codes, deriving such explicit
bounds becomes much more challenging in the asymmetric case. The reason for
this is that, whereas the centers used for symmetric codes always have degree two,
the centers in use for asymmetric codes will have degree at least four. Moreover
taking into account the fact that there are typically only two centers,Q(i) andQ(ω)
(corresponding to the QAM or HEX signaling, respectively), used for symmetric
codes, it can readily be seen that the set of possible centers has now stretched con-
siderably. In the simple, and possibly also the most interesting, case of 4Tx and
2Rx antennas, the center has degree four overQ. Now the requirement (again
for signaling reasons) is that the algebra will containQ(i) or Q(ω) as a subfield,
hence allowing the center to be almost anything. Any field of the formQ(i,α) with
α ∈A of degree two overQ(i) meets this requirement, giving an indication of the
variety of different possibilities. In what follows, we summarize the main results
from [18].

The above symmetricn×n codes can also be used in the asymmetric scenario,
as they are DMT optimal for any number of receiversnr ≤ n, but there is no simple
decoding method whennr < n; e.g. a sphere decoder cannot be used. Hence,
one needs to think of other construction methods in order to also enable simple
decoding. There are different construction methods that one can choose from.
According to our experience and simulations, there is no universal method which
one should always use, but the best method depends on the algebra and the SNR
range. The different methods we have proposed in [18, 38] are

1) the trivial puncturing method (TPM),
2) the block diagonal method (BDM),
3) the subfield construction method (SCM),
4) the smart puncturing method (SPM), and
5) the transmit antenna selection method (TAS).

Method 1 was independently proposed in [25], and a structure similar to Method
2 was independently considered in [57] in the amplify-and-forward cooperative
setting. The structure in Method 2 is very similar to that of a multi-block code
[35, 36], and it did turn out that the density results obtained in [18] for Method 2
also hold for multi-block codes. Method 4 is a somewhat trivial generalization of
Method 3, allowing the use of any number of receiversnr < nt , while Method 2 and
3 always requirent = knr for some integerk. None of the Methods 1-4 are known
to yield DMT optimal codes, but it has been conjectured [34] that Method 2 would
be DMT optimal in the special case of minimal delay, i.e. square matrices. The
codes proposed in [38] are DMT optimal, but they have non-minimum delay. That
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means that the lattices in use have quite a high dimension, hence complicating the
decoding process. One ought to remember also that the DMT is an asymptotical
measure, and hence when dealing with a low or moderate (finite) SNR, the perfor-
mance order of different codes has to be confirmed by computer simulations. Of
course the determinant criterion also has asymptotic nature. However, only few
of the simulations we have carried out during the past few years have violated the
order determined by the normalized minimum determinants. The normalized min-
imum determinant thus seems to give us a good way to compare different codes
without simulations, even at low SNRs.

Let us next take a closer look to the block diagonal method. The proofs for
the propositions and corollaries in this section can be found in [18]. Consider an
extension towerF ⊆ L⊆ E with the degrees[E : L] = nr , [L : F ] = m and with the
Galois groupsGal(E/F) = 〈τ〉, Gal(E/L) = 〈σ = τm〉. Let

B = (E/L,σ ,γ) = E⊕uE⊕·· ·⊕unr−1E

be an indexnr division algebra, where the centerL is fixed byσ = τm. We denote
by #Tx= nt = nrm.

If one has a symmetric, indexnt = nrm CDA-based STBC, the algebraB can
be constructed by just picking a suitable intermediate fieldL⊆E of the appropriate
degree as the new center.

An elementb = x0+ · · ·+unr−1xnr−1, xi ∈ E, i = 0, ...,nr −1 of the algebraB
has the standard representation as annr ×nr matrix B = (bi j )1≤i, j≤nr as given in
Sections 2.4 and 4.2.

However, we can ‘afford’ annt × nt packing as we are usingnt transmit an-
tennas. This can be achieved by using the isomorphismτ. Let us denote by
τk(B) = (E/L,σ ,τk(γ)), k = 0, ...,m−1 the m isomorphic copies ofB and the
respective matrix representations by

τk(B) = (τk(bi j ))1≤i, j≤nr , k = 0, ...,m−1. (4.5)

The next proposition shows that by using these copies as diagonal blocks we obtain
an infinite lattice with non-vanishing determinant.

Proposition 4.4.18 (BDM). Let b ∈ Λ ⊆ B and F = Q(d), whered ∈ {i,ω}.
Assume thatγ ∈ OL. The block diagonal lattice

C (Λ) =





M =




B 0 · · · 0
0 τ(B) 0
...

...
...

0 · · · 0 τm−1(B)








built from (4.5) has a non-vanishing determinantdet(M) = ∏m−1
i=0 det(τ i(B)) ∈

Z[d]. Thus, the minimum determinant is equal to one for allm. The code rate
equalsn2

r m/nrm= nr .
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Proof. See [18, Proposition 5.1].

Now the natural question is how should one choose a suitable division alge-
bra. In [8] and [37] several systematic methods for constructing extensionsE/L
are provided. All of these methods make use of cyclotomic fields. Next we will
show that, as in the symmetric case, maximizing the code density (i.e. minimizing
the volume of the fundamental parallelotope, see [15]) with a given minimum de-
terminant is equivalent to minimizing a certain discriminant. Later in this section
we shall show that this also holds for the multi-block codes from [35].

As a generalization to Lemma 4.3.1, we give the following proposition.

Proposition 4.4.19. Assume thatF is an imaginary quadratic number field and
that{1,ν} forms aZ-basis of its ring of integersOF . Letnr = [E : L], m= [L : F ],
nt = nrm, ands= |ℑν |mn2

r . If the orderC (Λ) defined as in Proposition 4.4.18 is a
freeOF -module (which is always the case ifOF is a PID), then the measure of the
fundamental parallelotope equals

m(C (Λ)) = s|d(Λ/OF)| (4.6)

= s|d(OL/OF)n2
r NL/Fd(Λ/OL)| (4.7)

= s|d(OL/OF)n2
r

m−1

∏
i=0

τ i(d(Λ/OL))|. (4.8)

Proof. See [18, Proposition 5.3].

Corollary 4.4.20. In the caseF =Q(i) the volume equals

m(C (Λ)) = |d(Λ/Z[i])| .
Corollary 4.4.21. In the caseF =Q(ω) we get

m(C (Λ)) = (
√

3
2

)mn2
r |d(Λ/Z[ω])| .

Now we can conclude (cf. (4.7)) that the extensionsE/L,L/F and the or-
derΛ ⊆B should be chosen in such a way that the discriminantsd(OL/OF) and
d(Λ/OL) are as small as possible. By choosing a maximal order within a given
division algebra we can minimize the norm ofd(Λ/OL) (cf. Remark 2.5.9). As, in
practice, an imaginary quadratic number fieldF is contained inL, we know thatL
is totally complex. In that case the fact that

d(Λ/OL)≥ (P1P2)nr (nr−1), (4.9)

whereP1 andP2 are prime ideals∈ OL with the smallest norms (toQ) helps us in
picking a good algebra (for the proof, see [15, Theorem 3.2]). However, one must
realize that optimization with respect tod(OL/OF) may result in a loss ind(Λ/OL)
and vice versa.

Keeping the above notation, we have now arrived at the following theorem.
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Theorem 4.4.22 (Density bound for lattices from the BDM).For the density of
the latticeC (Λ),Λ⊆A it holds that

ρ(C (Λ)) =
1

m(C (Λ))
≤ s−1|d(OL/OF)|−n2

r |NL/F(P1P2)|nr (1−nr ). (4.10)

Proof. See [18, Theorem 5.6].

Remark 4.4.23. We emphasize that, as opposed to Corollaries 4.4.3 and 4.4.4
(cf. [15]), here we do not automatically achieve nice, explicit lower bounds for
m(C (Λ)). This is a consequence of the fact that the centerL can now be any field
containingQ(i) or Q(ω), and thus determining the smallest idealsP1 andP2 or
even the minimald(OL/OF) is not at all straightforward. An exact lower bound
is hard to derive in the general case as the calculation of minimal number field
discriminants is known to be a tricky problem. The reader may ponder over the
fact that tables for minimal discriminants do exist in literature (though only for
certain degrees, see e.g. [6]) so why not use them. We want to emphasize that
these tables cannot be adapted here, as the fields in question do not necessarily
contain the desired subfieldQ(i) orQ(ω). Also it may be the case thatP1 andP2

actually take smaller values in a field that is not included in the table. However,
in the smallest (and perhaps the most practical) case of4Tx+2Rx antennas, we are
able to give an explicit and even achievable upper bound for the density. We believe
that the best one can do in the other cases is to take advantage of the known bounds
of a more general nature, such as Odlyzko’s bound [41]. We could also continue
calculations by hand in order to get exact bounds, but whether this is worth the
effort is questionable.

ThentTx+nrRx antenna AST code from Proposition 4.4.18 can be transformed
into an nrTx+nrRx antenna multi-block code [35] by rearranging the blocks as
shown below:




B 0 · · · 0
0 τ(B) 0
...

...
...

0 · · · 0 τm−1(B)


↔ (

B · · · τm−1(B)
)
. (4.11)

As the Gram matrices of an AST lattice and a multi-block ST lattice coincide,
Lemma 4.4.19 also holds for multi-block ST codes with the same parameters. Let
the notation be as above.

Proposition 4.4.24.Letb∈ Λ⊆B andF =Q(d), whered ∈ {i,ω}. Assume that
γ ∈ OL. As the lattice

C ′(Λ) =
{

M =
(
B,τ(B), . . . ,τm−1(B)

)}

built from (4.5) satisfies the generalized non-vanishing determinant property (cf.
[35],[29]), it is optimal with respect to the DMT for all numbers of fading blocks
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m. Again, as in Proposition 4.4.18,|∏m−1
i=0 det(τ i(B))| ≥ 1. The code rate equals

n2
r m/nrm= nr .

Proof. For the proof, see [35].

Proposition 4.4.25.The Gram determinants (cf.(4.1)) of the latticesC (Λ) and
C ′(Λ) coincide:

detG(C (Λ)) = detG(C ′(Λ)).

Proof. This is obvious.

Corollary 4.4.26. The latticesC (Λ) andC ′(Λ) share the same density, i.e. Propo-
sition 4.4.19 also holds for the multi-block scheme.

Proposition 4.4.27 (Density Bound fornt = 4, F = Q(i)). Let m= nr = 2, i.e.
nt = 4. For the density of the latticeC (Λ) it holds that

ρ(C (Λ)) = 1/m(C (Λ))≤ 1
22 ·36 ≈ 0.00034. (4.12)

Proof. See [18, Proposition 5.10].

The following example introduces an explicit code construction achieving the
density bound. The density upper bound is achieved e.g. by the maximal order of
the algebraI A , see the example and Table 4.1 below.

Example 4.4.28.We obtain a rate-2 AST codeI A 1 by introducing the another
algebraI A = (E/L,σ = τ2,γ =

√−3), whereF = Q(i), L = Q(i,
√

3), E =
L(a =

√
1+ i), andτ :

√
3 7→ −√3,

√
1+ i 7→ −√1+ i. If we order theZ-basis of

the natural order ofI A as

{ei}1≤i≤16 = {1,u, i,γ,a,ui,uγ,ua, iγ, ia,aγ,uiγ,uia,uaγ, iaγ,uiaγ},

then (according to the MAGMA software [1]) the maximal orderΛMAX⊆I A has
aZ-basis

{1
2
(e1 +e2 +e3 +e6),

1
2
(e2 +e6 +e9 +e12+e14+e16),

1
2
(e3 +e6 +e7 +e9 +e14+e15),

1
2
(e4 +e6 +e7 +e9 +e12 ),

1
2
(e5 +e8 +e10+e13), e6, e7,

1
2
(e8 +e13+e15+e16),

e9,
1
2
(e10+e13+e14+e15),

1
2
(e11+e14+e15+e16),

e12, e13, e14, e15, e16

}
.
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Now the codebookC ⊆ ΛMAX (cf. Definition 2.3.3 and (2.5) for the matrix
representation) of an arbitrary size can be produced as

C ⊆ {M ∈ ΛMAX | ||M|| ≤ P},

where again|| · || denotes the Frobenius norm, andP is some desired energy limit.
For the natural order ofI A , we haveδ (ΛNAT) = 2−5/2 ·3−3/2≈ 0.0340. The

maximal order ofI A hasδ (ΛMAX) = 1
3
√

2
√

3
≈ 0.1361(cf. Definition 4.1.1).

For the explicit constructions of the other example algebras in Table 4.1, see
[18].

Table 4.1: Normalized minimum determinantδ (C (Λ)) and normalized density
ρ(C (Λ)) = 1/m(C (Λ)) of natural and maximal orders of different algebras.

QA C A I A PA

ΛNAT ΛNAT ΛNAT ΛNAT

δ 0.0894 0.0361 0.0340 0.0298

ρ 5−6 = 2−16 ·3−2 = 2−10 ·3−6 = 3−4 ·5−6 =

6.4·10−5 1.7·10−6 1.4·10−6 7.9·10−7

I A C A QA PA

ΛMAX ΛMAX ΛMAX ΛMAX

δ 0.1361 0.1214 0.0894 0.0894

ρ 2−2 ·3−6 = 2−9 ·3−2 = 5−6 = 5−6 =

3.4·10−4 2.2·10−4 6.4·10−5 6.4·10−5

We conclude the treatment of asymmetric codes by the following remark on the
DMT-optimal TAS codes and simulation results. The asymmetric codes based on
the algebrasI A andQA clearly outperform the best previously known asym-
metric codes. For a thorough description of our simulation results, see [18, Section
VII].

Remark 4.4.29. The above asymmetric codes are not necessarily DMT optimal.
We have derived lower bounds for their DMTs, but these do not coincide with the
optimal DMT. Nevertheless, they are only lower bounds and the upper bounds are
not known to us. We conjecture that they do not achieve the optimal DMT. On
the other hand, we believe that the block diagonal method produces DMT opti-
mal codes, if we require minimum delay. The TAS codes [38] based on transmit
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Figure 4.3: Block error rates at 4 bpcu of different BDM and TAS codes, when
using a codebook for BDM and 2-PAM for TAS.

antenna selection are DMT-optimal. However, as Figures 4.3 and 4.4 show, quite
large SNRs are required before the power of the DMT kicks in. At low or moderate
SNRs, one is probably better off using some other construction method, such as the
BDM.

Figure 4.3 shows that when we take advantage of the spherical shape of the
maximal orders, they clearly outperform the TAS codes at low and moderate SNRs.
For the TAS codes making a codebook is so complex due to the high dimension
of the lattice, that we simply used the PAM signaling in both Figure 4.3 and 4.4.
Figure 4.4 indicates that when we use the PAM signaling also for the maximal
order codes, the gap between the TAS codes andQA becomes somewhat smaller.
In particular, the algebraI A loses all of its benefits now, as it is highly non-
orthogonal. The maximal order of the algebraQA happens to also be the natural
order, so the loss is smaller andQA still wins over the TAS codes at SNRs up to
15.
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Chapter 5

Conclusions and future prospects

In this thesis, we have presented various methods for constructing space-time block
codes from division algebras and their orders. The key contribution, as compared
to the rest of the work in the field, was the introduction of maximal orders of cyclic
division algebras in the context of ST coding. Both symmetric and asymmetric
scenarios were considered, and explicit, DMT optimal constructions with a non-
vanishing determinant were provided.

As a main design criterion, we adopted the maximization of the coding gain.
In other words, our aim was to produce code lattices that are as dense as pos-
sible, hence maximizing the normalized (non-vanishing) minimum determinant.
Computer simulations were used to demonstrate the robustness of the proposed
methods. The simulations further indicated that, for practical numbers of antennas
and SNRs, the best of the newly proposed codes outperform all previously known
codes in terms of block error performance. We confess that the optimization to
encode may also be a drawback in scenarios where rate adaptation is needed.

Taking also into consideration the work in Vehkalahti’s dissertation [55], we
would like to encourage the ST audience to further exploit maximal orders and the
notion of density. Natural orders are already widely used — even when they are
not orthogonal. While orthogonality can be a very good reason for using a natural
order, in the skewed case there is no point in using a natural order instead of a
maximal one.

We have started to extend our theory to multi-user settings as well, see [39] for
the promising preliminary results. In the future, it would be interesting to know
whether, in general, denser lattices can be produced by means other than maximal
orders. It would be also worth a try to implement the algorithm for constructing
maximal orders more efficiently, taking use of the module bases rather than the
Z-bases as in the MAGMA software.

One may have noticed that in the asymmetric case, density analysis was pro-
vided only for the lattices constructed using the block-diagonal method. We aim
to consider the other methods in the immediate future. We anticipate that for the
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subfield construction method this should be fairly easy, whereas for the smart punc-
turing method giving a universal density analysis probably turns out to be impos-
sible. The TAS codes were designed with the DMT optimality in mind, so giving
a density analysis for them makes little sense.
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List of abbreviations

(A)ST = (asymmetric) space time

(A)STBC = (asymmetric) space time block code

BDM = block diagonal method

BLER = block error rate

bpcu = bits per channel use

CDA = cyclic division algebra

DMT = diversity-multiplexing gain tradeoff

HEX = hexagonal constellations

i.i.d. = independent, identically distributed

MIMO = multiple-input multiple-output

MISO = multiple-input single-output

MU-MIMO = multi-user MIMO

NVD = non-vanishing determinant

PAM = pulse amplitude modulation

PAPR = peak-to-average power ratio

PEP = pairwise error probability

PID = principal ideal domain

QAM = quadrature amplitude modulation

SCM = subfield construction method

SNR = signal to noise ratio

SPM = smart puncturing method

TAS = transmit antenna selection

TPM = trivial puncturing method
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Maximal Orders in the Design of Dense Space-Time
Lattice Codes

Camilla Hollanti, Jyrki Lahtonen,Member IEEE, and Hsiao-feng
(Francis) Lu

Abstract— We construct explicit rate-one, full-diversity, geometrically
dense matrix lattices with large, non-vanishing determinants (NVD) for
four transmit antenna multiple-input single-output (MISO) space-time
(ST) applications. The constructions are based on the theory of rings of
algebraic integers and related subrings of the Hamiltonian quaternions
and can be extended to a larger number of Tx antennas. The usage of
ideals guarantees a non-vanishing determinant larger than one and an
easy way to present the exact proofs for the minimum determinants.
The idea of finding denser sublattices within a given division algebra
is then generalized to a multiple-input multiple-output (MIMO) case
with an arbitrary number of Tx antennas by using the theory of cyclic
division algebras (CDA) and maximal orders. It is also shown that the
explicit constructions in this paper all have a simple decoding method
based on sphere decoding. Related to the decoding complexity, the
notion of sensitivity is introduced, and experimental evidence indicating
a connection between sensitivity, decoding complexity and performance
is provided. Simulations in a quasi-static Rayleigh fading channel show
that our dense quaternionic constructions outperform both the earlier
rectangular lattices and the rotated ABBA lattice as well as the DAST
lattice. We also show that our quaternionic lattice is better than the
DAST lattice in terms of the diversity-multiplexing gain tradeoff.

Index Terms— Cyclic division algebras, dense lattices, maximal orders,
multiple-input multiple-output (MIMO) channels, multiple-input single-
output (MISO) channels, number fields, quaternions, space-time block
codes (STBCs), sphere decoding.

I. I NTRODUCTION AND BACKGROUND

Multiple-antenna wireless communication promises very high data
rates, in particular when we have perfect channel state information
(CSI) available at the receiver. In [1] the design criteria for such
systems were developed and further on the evolution of ST codes took
two directions: trellis codes and block codes. Our work concentrates
on the latter branch.

The very first ST block code for two transmit antennas was
the Alamouti code[2] representing multiplication in the ring of
quaternions. As the quaternions form a division algebra, such matrices
must be invertible, i.e. the resulting STBC meets the rank criterion.
Matrix representations of other division algebras have been proposed
as STBCs at least in [3]-[15], and (though without explicitly saying
so) [16]. The most recent work [6]-[16] has concentrated on adding
multiplexing gain, i.e. multiple input-multiple output (MIMO) appli-
cations, and/or combining it with a good minimum determinant. In
this work, we do not specifically seek any multiplexing gains, but
want to improve upon e.g. the diagonal algebraic space time (DAST)
lattices introduced in [5] by using non-commutative division algebras.
Other efforts to improve the DAST lattices and ideas alike can be
found in [17]-[19].

The main contributions of this work are:

• We give energy efficient MISO lattice codes with simple de-
coding that win over e.g. the rotated ABBA [20] and the
DAST lattice codes in terms of the block error rate (BLER)
performance.
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Technology, Turku Centre for Computer Science, Joukahaisenkatu 3-5 B, FIN-
20520 Turku, Finland.
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• It is shown that by using a non-rectangular lattice one can
gain major energy savings without significant increasement in
decoding complexity. The usage of ideals moreover guarantees
a non-vanishing determinant> 1 and an easy way to present
the exact proofs for the minimum determinants.

• In addition to the explicit MISO constructions, we present a
general method for finding dense sublattices within a given CDA
in a MIMO setting. This is tempting as it has been shown in
[15] that CDA-based square ST codes with NVD achieve the
diversity-multiplexing gain tradeoff (DMT) introduced in [21].
When a CDA is chosen the next step is to choose a correspond-
ing lattice or, what amounts to the same thing, choose an order
within the algebra. Most authors, among which e.g. [11], [15],
and [16], have gone with the so-called natural order (see Section
III-B, Example 3.2). In a CDA based construction, the density of
a sublattice is lumped together with the concept of maximality
of an order. The idea is that one can, on some occasions, use
several cosets of the natural order without sacrificing anything
in terms of the minimum determinant. So the study of maximal
orders is easily motivated by an analogy from the theory of
error correcting codes: why one would use a particular code of
a given minimum distance and length, if a larger code with the
same parameters is available.

• Furthermore, related to the decoding complexity, the notion of
sensitivity is introduced for the first time, and evidence of its
practical appearance is provided. Also the DMT behavior of our
codes will be given.

At first, we are interested in the coherent MISO case with perfect
CSI available at the receiver. The received signaly ∈ Cn has the
form

y = hX + n,

where X ∈ Cm×n is the transmitted codeword drawn from a ST
codeC, h ∈ Cm is the Rayleigh fading channel response and the
components of the noise vectorn ∈ Cn are i.i.d. complex Gaussian
random variables.

A lattice is a discrete finitely generated free abelian subgroup of
a real or complex finite dimensional vector spaceV , also called the
ambient space. Thus, ifL is a k-dimensional lattice, there exists a
finite set of vectorsB = {b1,b2, . . . ,bk} ⊂ V such thatB is
linearly independent over the integers and that

L = {
kX

i=1

zibi | zi ∈ Z,bi ∈ V for all i = 1, 2, . . . , k}.

In the space-time setting a natural ambient space is the spaceCn×n

of complexn×n matrices. When a code is a subset of a latticeL in
this ambient space, therank criterion [22] states that any non-zero
matrix in L must be invertible. This follows from the fact that the
difference of any two matrices fromL is again inL.

The receiver and the decoder, however, (recall that we work in the
MISO setting) observe vector lattices instead of matrix lattices. When
the channel state ish, the receiver expects to see the latticehL. If
h 6= 0 and L meets the rank criterion, thenhL is, indeed, a free
abelian group of the same rank asL. However, it is well possible
that hL is not a lattice, as its generators may be linearly dependent
over the reals — the lattice is said tocollapse, whenever this happens.

From the pairwise error probability (PEP) point of view [22], the
performance of a space-time code is dependent on two parameters:
diversity gainandcoding gain. Diversity gain is the minimum of the
rank of the difference matrixX − X ′ taken over all distinct code
matricesX, X ′ ∈ C, also called therank of the codeC. When C
is full-rank, the coding gain is proportional to the determinant of
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the matrix(X −X ′)(X −X ′)H , whereXH denotes the transpose
conjugate of the matrixX. The minimum of this determinant taken
over all distinct code matrices is called theminimum determinantof
the codeC and denoted byδC . If δC is bounded away from zero even
in the limit as SNR→ ∞, the ST code is said to have thenon-
vanishing determinantproperty [8]. As mentioned above, for non-
zero square matrices being full-rank coincides with being invertible.

The data rateR in symbols per channel use is given by

R =
1

n
log|S|(|C|),

where |S| and |C| are the sizes of the symbol set and code re-
spectively. This is not to be confused with therate of a code
design (shortly, code rate) defined as the ratio of the number of
transmitted information symbols to the decoding delay (equivalently,
block length) of these symbols at the receiver for any given number
of transmit antennas using any complex signal constellations. If this
ratio is equal to the delay, the code is said to havefull rate.

The paper is organized as follows: basic definitions of algebraic
number theory and explicit MISO lattice constructions are provided in
Section II. As a (MIMO) generalization for the idea of finding denser
lattices within a given division algebra, the theory of cyclic algebras
and maximal orders is briefly introduced in Section III. In Section
IV, we consider the decoding of the nested sequence of quaternionic
lattices from Section II. A variety of results on decoding complexity
is established in Section IV, where also the notion of sensitivity is
taken into account. Simulation results are discussed in Section V
along with energy considerations. Finally in Section VI, the DMT
analysis of the proposed codes will be given.

This work has been partly published in a conference, see [3] and
[4]. For more background we refer to [22]-[29].

II. R INGS OF ALGEBRAIC NUMBERS, QUATERNIONS AND

LATTICE CONSTRUCTIONS

We shall denote the sets of integers, rationals, reals, and complex
numbers byZ, Q, R, andC respectively.

Let us recall the set

H = {a1 + a2i + a3j + a4k | at ∈ R ∀t},
where i2 = j2 = k2 = −1, ij = k, as the ring ofHamiltonian
quaternions. Note thatH ' C ⊕ Cj, when the imaginary unit is
identified with i. A special interest lies on the subsets

HL = {a1 + a2i + a3j + a4k | at ∈ Z ∀t} ⊆ H and

HH = {a1ρ+a2i+a3j+a4k | at ∈ Z ∀t, ρ =
1

2
(1+i+j+k)} ⊆ H

called theLipschitz’ andHurwitz’ integral quaternionsrespectively.
We shall use extension rings of the Gaussian integers

G = {a + bi | a, b ∈ Z}
inside a given division algebra. It would be easy to adapt the con-
struction to use the slightly denser hexagonal ring of the Eisensteinian
integers

E = {a + bω | a, b ∈ Z},
whereω3 = 1, as a basic alphabet. However, the Gaussian integers
nicely fit with the popular 16-QAM and QPSK alphabets. Natural
examples of such rings are the rings of algebraic integers inside an
extension field of the quotient fields ofG, as well as their counterparts
inside the quaternions. To that end we need division algebrasA that
are also 4-dimensional vectors spaces over the fieldQ(i).

A. Base lattice constructions

Let now ζ = eπi/8 (resp.ξ = eπi/4 = (1+ i)/
√

2) be a primitive
16th (resp.8th) root of unity. Our main examples of suitable division
algebras are the number field

L = Q(ζ),

and the following subskewfield

H = Q(ξ)⊕ jQ(ξ) ⊆ H
of the Hamiltonian quaternions. Note that aszj = jz∗ for all
complex numbersz, and as the fieldQ(ξ) is stable under the usual
complex conjugation(∗), the setH is, indeed, a subskewfield of the
quaternions.

As always, multiplication (from the left) by a non-zero element of
a division algebraA is an invertibleQ(i)-linear mapping (withQ(i)
acting from the right). Therefore its matrix with respect to a chosen
Q(i)-basisB of A is also invertible. Our example division algebras
L andH have the setsBL = {1, ζ, ζ2, ζ3} andBH = {1, ξ, j, jξ}
as naturalQ(i)-bases. Thus we immediately arrive at the following
matrix representations of our division algebras.

Proposition 2.1:Let the variablesc1, c2, c3, c4 range over all the
elements ofQ(i). The division algebrasL andH can be identified
via an isomorphismφ with the following rings of matrices

L =

8>><>>:ML = ML(c1, c2, c3, c4) =

0BB@ c1 ic4 ic3 ic2

c2 c1 ic4 ic3

c3 c2 c1 ic4

c4 c3 c2 c1

1CCA
9>>=>>;

and

H =

8>><>>:M = M(c1, c2, c3, c4) =

0BB@ c1 ic2 −c∗3 −c∗4
c2 c1 ic∗4 −c∗3
c3 ic4 c∗1 c∗2
c4 c3 −ic∗2 c∗1

1CCA
9>>=>>; .

The isomorphismφ from L into the matrix ring is determined by
Q(i)-linearity and the fact thatζ corresponds to the choicec2 =
1, c1 = c3 = c4 = 0. The isomorphismφ from H into the matrix
ring is determined byQ(i)-linearity and the facts thatξ corresponds
to the choicec2 = 1, c1 = c3 = c4 = 0, and j corresponds to the
choicec3 = 1, c1 = c2 = c4 = 0. In particular, the determinants of
these matrices are non-zero whenever at least one of the coefficients
c1, c2, c3, c4 is non-zero.

In order to get ST lattices and useful bounds for the minimum
determinant, we need to identify suitable subringsS of these two
algebras. Actually, we would like these rings to be free rightG-
modules of rank 4. This is due to the fact that then the determinants
of the matrices of Proposition 2.1 that belong to the subringφ(S)
must be elements of the ringG. We repeat the well-known reason
for this for the sake of completeness: the determinant of the matrix
representing the multiplication by a fixed elementx ∈ S does not
depend on the choice of the basisB and thus we may assume that it is
a G-module basis. However, in that casexB ⊆ S, so the matrix will
have entries inG as all the elements ofS areG-linear combinations
of B. The claim follows.

In the case of the fieldL we are only interested in its ring of
integersOL = Z[ζ] that is a freeG-module with the basisBL. In
this case the ringφ(OL) consists of those matrices ofL that have
all the coefficientsc1, c2, c3, c4 ∈ G. Similarly, theG-module

L = G ⊕ ξG ⊕ jG ⊕ jξG
spanned by our earlier basisBH is a ring of the required type. We
call this the ring ofLipschitz’ integers ofH. Again φ(L) consists of
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those matrices ofH that have all the coefficientsc1, c2, c3, c4 ∈ G.
While OL is known to be maximal among the rings satisfying our
requirements, the same is not true aboutL. The ringHH also has an
extension of the prescribed type insideH, called the ring ofHurwitz’
integers ofH. This ring, denoted by

H = ρG ⊕ ρξG ⊕ jG ⊕ jξG,

is the rightG-module generated by the basisBHur = {ρ, ρξ, j, jξ},
where againρ = (1+ i + j + k)/2. The fact thatH is a subring can
easily be verified by straightforward computations, e.g.ξρ = ρξ−jξ.
For future use we express the ringH in terms of the basisBH of
Proposition 2.1. It is not difficult to see that the element

q = c1 + ξc2 + jc3 + jξc4 ∈ H

is an element ofH, if and only if the coefficientsct satisfy the
requirements(1+i)ct ∈ G for all t = 1, 2, 3, 4 andc1+c3, c2+c4 ∈
G. As the ideal generated by1 + i has index two inG, we see that
L is an additive, index four subgroup inH. We summarize these
findings in Proposition 2.2. The bound on the minimum determinant
is a consequence of the fact that all the elements ofG have a norm
at least one.

Proposition 2.2: The following rings of matrices form ST lattices
with minimum determinant equal to one.

L1 = {ML(c1, c2, c3, c4) | c1, c2, c3, c4 ∈ G} ,

L2 = {M(c1, c2, c3, c4) | c1, c2, c3, c4 ∈ G} ,

L3 = {M(c1, c2, c3, c4) | c1, c2, c3, c4 ∈ 1 + i

2
G,

c1 + c3 ∈ G, c2 + c4 ∈ G}.

Remark 2.1:The latticeL1 is quite similar to the DAST lattice in
the sense that all of its matrices can be simultaneously diagonalized.
See more details in Section IV-B. The latticeL2, for its part, is
a more developed case from the so-calledquasi-orthogonalSTBC
suggested e.g. in [30]. The matrixM(c1, c2, c3, c4) of Proposition
2.1 can also be found as an example in the landmark paper [6], but
no optimization has been done there by using, for example, ideals as
we shall do here.

A drawback shared by the latticesL1 andL2 is that in the ambient
space of the transmitter they are isometric to the rectangular lattice
Z8. The rectangular shape does carry the advantage that the sets
of information carrying coefficients of the basis matrices are simple
and all identical which is useful in e.g. sphere decoding. But, on
the other hand, this shape is very wasteful in terms of transmission
power. Geometrically denser sublattices ofZ8, e.g. the checkerboard
lattice

D8 =

(
(x1, ..., x8) ∈ Z8

���� 8X
i=1

xi ≡ 0 (mod 2)

)
and the diamond lattice

E8 =

(
(x1, ..., x8) ∈ Z8

���� xi ≡ xj (mod 2),

8X
i=1

xi ≡ 0 (mod 4)

)
,

are well-known (cf. e.g. [31]). However, we must be careful in picking
the copies of the sublattices, as it is the minimum determinant we
want to keep an eye on (see Remark 2.3).

B. Dense sublattices inside the base latticeL2

As our earlier simulations [3],[4] have shown thatL2 outperforms
L1, we concentrate on finding good sublattices ofL2. The units of
the ring L2 are exactly the non-zero matrices whose determinants
have the minimal absolute value of one. Thus a natural way to find
a sublattice with a better minimum determinant is to take the lattice
φ(I), whereI ⊂ S is a proper ideal. This idea has appeared at least
in [3], [4], and [8]. Even earlier, ideals of rings of algebraic integers
were used in [27] to produce dense lattices. Let us first record the
following simple fact.

Lemma 2.3:Let A and B be diagonalizable complex square
matrices of the same size. Assume that they commute and that their
eigenvalues are all real and non-negative. Then

det (A + B) ≥ det A + det B

with a strict inequality if bothA andB are invertible.

Proof: As A and B commute, they can be simultaneously
diagonalized. Hence, we can reduce the claim to the case of diagonal
matrices with non-negative real entries. In that case the claim is
obvious.

In Proposition 2.4 we give a construction isometric to the checker-
board latticeD8

Proposition 2.4:Let I be the prime ideal of the ringG generated
by 1 + i. Define

IL = {(c1 + ξc2) + j(c3 + ξc4) ∈ L | c1 + c2 + c3 + c4 ∈ I}.
ThenIL is an ideal of index two inL. The corresponding lattice

L4 = {M(c1, c2, c3, c4) ∈ L2 | c1 + c2 + c3 + c4 ∈ I}
is an index2 sublattice inL2. Furthermore, the absolute value of
det(MMH), M ∈ L4 \ {0}, is then at least4.

Proof: It is straightforward to check thatIL is stable under
(left or right) multiplication with the quaternionsξ and j, so IL is
an ideal inL.

Let us consider a matrixM ∈ L4 and write it in the block form

M =

�
A −BH

B AH

�
.

We see that

MMH =

�
AAH + BBH 0

0 AAH + BBH

�
,

and

AAH + BBH =

�
α k∗

k α

�
,

whereα =
P4

j=1 |cj |2 is a non-negative integer andk = −ic1c
∗
2 +

c2c
∗
1− ic3c

∗
4 + c4c

∗
3 is a Gaussian integer with the propertyk∗ = ik.

We are to prove thatdet MMH =
�
α2 − |k|2�2 ≥ 4. Assume first

that c3 = c4 = 0, i.e. the blockB = 0. Thendet(A) is the relative
norm

det(A) = N
Q(ξ)

Q(i) (c1 + ξc2),

which is a Gaussian integer. Asc1 +ξc2 is a non-zero element of the
ideal I, we conclude thatdet(A) is a non-zero non-unit. Therefore
det(A) det(AH) ≥ 2, and the claim follows.

Let us then assume that bothA andB are non-zero. Thendet(A)
anddet(B) are non-zero Gaussian integers and have a norm at least
one. The matricesA, AH , B, BH all commute, so by Lemma 2.3 we
get

det(MMH) > det(AAH)2 + det(BBH)2 ≥ 2.
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As det(MMH) =
�
α2 − |k|2�2 is a square of a rational integer, it

must be at least 4.

Remark 2.2:It is easy to see that in the previous propositiona +
bi ∈ I, if and only if a + b is an even integer. Thus geometrically
the matrix latticeL4 is, indeed, isometric toD8.

We proceed to describe two more interesting sublattices ofL2 with
even better minimum determinants. To that end we use the ringH
(or the latticeL3). The first sublattice is isometric to the direct sum
D4 ⊥ D4 [31] of two 4-dimensional checkerboard lattices.

Proposition 2.5: Let againI be the ideal(1 + i)G. The lattice

L5 = {M(c1, c2, c3, c4) ∈ L2 | c1 + c3, c2 + c4 ∈ I}
has a minimum determinant equal to 16. The index ofL4 in L2 is
4.

Proof: The coefficientsc1 and c3 can be chosen arbitrarily
within G. The the idealI has index2 in G, and the coefficientsc2

andc4 now must belong to the cosetsc1 +I andc3 +I respectively.
Whence, the index ofL5 in L2 is 4. The matricesA in the latticeL5

are of the formA = (1 + i)M , whereM is a matrix in the lattice
L3 of Proposition 2.2. Thusdet(AAH) = 16 det(MMH) and the
claim follows from Proposition 2.2.

The diamond latticeE8 can be described in terms of the Gaussian
integers as (cf. [32])

E8 =
1

1 + i
{(c1, c2, c3, c4) ∈ G4 | c1 + I = ct + I,

t = 2, 3, 4,

4X
t=1

ct ∈ 2G}.

By our identification of quadruples(c1, c2, c3, c4) ∈ G4 and the
elements ofH it is straightforward to verify that(1 + i)E8 has
{2, (1 + i) + (1 + i)ξ, (1 + i)ξ + (1 + i)j, 1 + ξ + j + jξ} ⊆ L as a
G-basis, whence the set{1+ i, 1+ξ, ξ +j, ρ+ρξ} ⊆ H is aG-basis
for E8. By another simple computation we see thatE8 = H(1 + ξ),
i.e. E8 is the left ideal of the ringH generated by1 + ξ.

Proposition 2.6: The lattice

L6 = {M(c1, c2, c3, c4) ∈ L2 | c1 + I = ct + I,

t = 2, 3, 4,

4X
t=1

ct ∈ 2G}

is an index 16 sublattice ofL2. Furthermore, the minimum determi-
nant ofL6 is 64.

Proof: Let MI = M(1, 1, 0, 0) be the matrixφ(1 + ξ) under
the isomorphism of Proposition 2.1. We see thatdet(MIMH

I ) =
4. By the preceding discussion any matrixA of the lattice L6

has the formA = MMI(1 + i), where M is a matrix in L3.
As in the proof of Proposition 2.5, we see thatdet AAH =
16det(MIMH

I ) det(MMH). The claim on the minimum determi-
nant now follows from Proposition 2.2. We see that the coefficientc1

can be chosen arbitrarily withinG. The coefficientsc2 and c3 then
must belong to the cosetc1 + I, and c4 must be chosen such that
c1 + c2 + c3 + c4 ∈ 2G = I2. As I has index two inG, we see that
the index ofL6 in L2 is 16 as claimed.

Remark 2.3:We have now produced anested sequence of lattices

2Z8 = 2L2 ⊆ L6 ⊆ L5 ⊆ L4 ⊆ L2 = Z8(⊆ L3). (1)

We concentrate on the lattices that are sandwiched between2Z8 and
Z8. It is worthwhile to note that these lattices are in a bijective
correspondence with a binary linear code of length 8 by projection

TABLE I
LATTICES FROM A CODING THEORETICAL POINT OF VIEW

L2 ↔ The 8-dimensional rectangular gridZ8

↔ no coding
↓

L4 ↔ The checkerboard latticeD8

↔ overall parity check code of length8
↓

L5 ↔ The latticeD4 ⊥ D4

↔ two blocks of the overall parity check code of length4
↓

L6 ↔ The diamond latticeE8

↔ extended Hamming-code of length8

modulo 2, see Table I above. As it happens, within this sequence of
lattices the minimum Hamming distance of the binary linear code
and the minimum determinant of the lattice are somewhat related.

Thereupon it is natural to ask that what if we simply concatenate
the use ofL2 with a good binary code (extended over severalL2-
blocks, if needed), and be done with it. While the binary linear codes
appearing above are the first ones that come to one’s mind, we want to
caution the unwary end-user. Namely, it is possible that there are high
weight units in the ring in question. If such binary words are included,
then the minimum determinant of the corresponding lattice is equal to
1, i.e. no coding gain will take place. E.g. the unit(1−ξ3)/(1−ξ) =
1 + ξ + ξ2 = (1 + i) + ξ of the ringL corresponds to the matrix
M(1 + i, 1, 0, 0) of determinant 1, and thus we must not allow such
words of weight 3. If the latticeL1 were used, the situation would
be even worse, as then we have units like(1 − ζ7)/(1 − ζ) in the
ring OL that would be mapped to a word of Hamming weight 7.
A construction based on ideals provides a mechanism to avoid this
problem caused by high weight units.

III. C YCLIC ALGEBRAS AND ORDERS

In Section II we produced a nested sequence (1) of quaternionic
lattices with the property that as the lattice gets denser after rescaling
the increased minimum determinant back to one, the BLER perfo-
mance gets better. As the sequence (1) lies within a specific division
algebra, an obvious question evokes how to generalize this idea. The
theory of cyclic division algebras and their maximal orders offer us
an answer. When designing square ST matrix lattices for MIMO use,
cyclic division algebras are of utmost interest as it has been shown
in [15] that a non-vanishing determinant is a sufficient condition for
full-rate CDA based STBC-designs to achieve the upper bound on
the optimal DMT, hence proving that the upper bound itself is the
optimal DMT for any number of transmitters and receivers. Given the
number of transmittersn, we pick a suitable cyclic division algebra
of indexn (more on this in a forthcoming paper, see Section VII and
[33]. See also [15] ). The matrix representation of the algebra, with
some constraints on the elements, will then correspond to the base
lattice, similarly as did the latticeL2 in Section II. Now in order to
make the lattice denser, we choose the elements in the matrices from
an order. The natural first choice for an order is the one corresponding
to the ring of algebraic integers of the maximal subfield inside the
algebra. The densest possible sublattice is the one where the elements
come from a maximal order.

All algebras considered here are finite dimensional associative
algebras over a field.

A. Cyclic algebras

The basic theory of cyclic algebras and their representations as
matrices are thoroughly considered in [[34], Chapter 8.5] and [6].
We are only going to recapitulate the essential facts here.
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In the following, we consider number field extensionsE/F , where
F denotes the base field.F ∗ (resp. E∗) denotes the set of non-
zero elements ofF (resp.E). Let E/F be a cyclic field extension
of degreen with the Galois groupGal(E/F ) = 〈σ〉, where σ
is the generator of the cyclic group. LetA = (E/F, σ, γ) be the
corresponding cyclic algebra ofindexn, that is,

A = E ⊕ uE ⊕ u2E ⊕ · · · ⊕ un−1E,

with u ∈ A such thatxu = uσ(x) for all x ∈ E andun = γ ∈ F ∗.
An elementa = x0 +ux1 + · · ·+un−1xn−1 ∈ A has the following
representation as a matrixA =0BBBBB@

x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) γσn−1(x2)
x2 σ(x1) σ2(x0) γσn−1(x3)
...

...
xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)

1CCCCCA . (2)

Let us compute the third column as an example:

u2 7→ au2 = x0u
2 + ux1u

2 + · · ·+ un−1xn−1u
2

= uσ(x0)u + u2σ(x1)u + · · ·+ γσ(xn−1)u

= u2σ2(x0) + u3σ2(x1) + · · ·+ uγσ2(xn−1),

and hence as the third column we get the vector

(γσ2(xn−2), γσ2(xn−1), σ
2(x0), . . . , σ

2(xn−3))
T .

Let us denote the ring of algebraic integers ofE by OE . A basic,
rate-n MIMO STBC C is usually defined asC =8>>>>><>>>>>:
0BBBBB@

x0 γσ(xn−1) · · · γσn−1(x1)
x1 σ(x0) γσn−1(x2)
x2 σ(x1) γσn−1(x3)
...

...
xn−1 σ(xn−2) · · · σn−1(x0)

1CCCCCA
����� xi ∈ OE

9>>>>>=>>>>>; . (3)

Further optimization might be carried out by using e.g. ideals. If we
denote the basis ofE overOF by {1, e1, ..., en−1}, then the elements
xi, i = 0, ..., n − 1 in (3) take the formxi =

Pn−1
k=0 fkek, where

fk ∈ OF for all k = 0, ..., n − 1. Hencen complex symbols are
transmitted per channel use, i.e. the design has raten. In literature
this is often referred to as having afull rate.

Definition 3.1: An algebraA is calledsimpleif it has no nontrivial
ideals. AnF -algebraA is central if its centerZ(A) = {a ∈ A|aa′ =
a′a ∀a′ ∈ A} = F .

Definition 3.2: An ideal I is callednilpotent if Ik = 0 for some
k ∈ Z+. An algebraA is semisimpleif it has no nontrivial nilpotent
ideals. Any finite dimensional semisimple algebra over a field is a
finite and unique direct sum of simple algebras.

Definition 3.3: The determinant (resp. trace) of the matrixA is
called thereduced norm(resp.reduced trace) of an elementa ∈ A
and is denoted bynr(a) (resp.tr(a)).

Remark 3.1:The connection with the usual norm mapNA/F (a)
(resp. trace mapTA/F (a)) and the reduced normnr(a) (resp.
reduced tracetr(a)) of an elementa ∈ A is NA/F (a) = (nr(a))n

(resp.TA/F (a) = ntr(a)), wheren is the degree ofE/F .

In Section II we have attested that the algebraH is a division
algebra. The next old result due to A. A. Albert [[35], Chapter V.9]
provides us with a condition for when an algebra is indeed a division
algebra.

Proposition 3.1: The algebraA = (E/F, σ, γ) of index n is a
division algebra, if and only if the smallest factort ∈ Z+ of n such
that γt is the norm of some element inE∗, is n.

B. Orders

We are now ready to present some of the basic definitions and
results from the theory of maximal orders. The general theory of
maximal orders can be found in [36].

Let S denote a Noetherian integral domain with a quotient field
F , and letA be a finite dimensionalF -algebra.

Definition 3.4: An S-order in the F -algebraA is a subringΛ of
A, having the same identity element asA, and such thatΛ is a
finitely generated module overS and generatesA as a linear space
over F .

As usual, anS-order inA is said to bemaximal, if it is not properly
contained in any otherS-order inA. If the integral closureS of S in
A happens to be anS-order inA, thenS is automatically the unique
maximalS-order inA.

Let us illustrate the above definition by the following example.

Example 3.1:(a) Orders always exist: IfM is a full S-lattice in
A, i.e. FM = A, then theleft order of M defined asOl(M) =
{x ∈ A | xM ⊆ M} is anS-order inA. The right order is defined
in an analogous way.

(b) If A = Mn(F ), the algebra of alln × n matrices overF ,
thenΛ = Mn(S) is anS-order inA.

(c) Let a ∈ A be integral overS, that is,a is a zero of a monic
polynomial overS. Then the ringS[a] is anS-order in theF -algebra
F [a].

(d) Let S be a Dedekind domain, and letE be a finite separable
extension ofF . Denote byS the integral closure ofS in E. ThenS
is anS-order inE. In particular, takingS = Z, we see that the ring
of algebraic integers ofE is aZ-order inE.

Hereafter,F will be an algebraic number field andS a Dedekind
ring with F as a field of fractions.

Proposition 3.2:LetA be a finite dimensional semisimple algebra
over F and Λ be a Z-order in A. Let OF stand for the ring of
algebraic integers ofF . ThenΓ = OF Λ is anOF -order containing
Λ. As a consequence, a maximalZ-order inA is a maximalOF -order
as well.

The following proposition provides us with a useful tool for finding
a maximal order within a given algebra.

Proposition 3.3:Let Λ be anS-order inA. For eacha ∈ Λ we
havenr(a) ∈ S and tr(a) ∈ S.

Proposition 3.4:Let Γ be a subring ofA containingS, such that
FΓ = A, and suppose that eacha ∈ Γ is integral overS. ThenΓ is
anS-order inA. Conversely, everyS-order inA has these properties.

Corollary 3.5: Every S-order inA is contained in a maximalS-
order inA. There exists at least one maximalS-order inA.

Remark 3.2:As the previous corollary indicates, a maximal order
of an algebra is not necessarily unique.

Remark 3.3:The algebraH can also be viewed as a cyclic division
algebra. As it is a subring of the Hamiltonian quaternions, its center
consists of the intersectionH∩R = Q(

√
2). AlsoQ(ξ) is an example

of a splitting field ofH. In the notation above we have an obvious
isomorphism

H ' (Q(ξ)/Q(
√

2), σ,−1),

whereσ is the usual complex conjugation.

Remark 3.4:In principle, the lattices from Section II could also
be used as MIMO codes, but when we packH in the form of (2),
δC becomes vanishing and the DMT cannot be achieved.
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One extremely well-performing CDA based code taking advantage
of a maximal order is the celebratedGolden code[8] (also indepen-
dently found in [9]) treated in the following example.

Example 3.2:In any cyclic algebra where the elementγ happens
to be an algebraic integer, we have the followingnatural order

Λ = OE ⊕ uOE ⊕ · · · ⊕ un−1OE ,

whereOE is the ring of integers of the fieldE. We note thatOE

is the unique maximal order inE. In the so-calledGolden Division
Algebra(GDA) [8], i.e. the cyclic algebra(E/F, σ, γ) obtained from
the dataE = Q(i,

√
5), F = Q(i), γ = i, n = 2, σ(

√
5) = −√5,

the natural orderΛ is already maximal [37]. The ring of algebraic
integersOE = Z[i][θ], when we denote the golden ratio byθ =
1+
√

5
2

. The authors of [8] further optimize the code by using an ideal
(α) = (1 + i− iθ), and the Golden code is then defind as

GC =

(
1√
5

�
αx0 iσ(α)σ(x1)
αx1 σ(α)σ(x0)

� ����� x0, x1 ∈ OE

)
. (4)

The Golden code achieves the DMT as the elementγ = i is not in
the image of the norm map. For the proof, see [8].

Remark 3.5:We feel that in [8], the usage of a maximal order is
just a coincidence, as in this case it coincides with the natural order
which is generally used in ST code designs (cf. (3)). At least the
authors do not mention maximal orders. As far as we know, but our
constructions (see also [33]) there does not exist any designs using
a maximal order other than the natural one.

Next we prove that the latticeL6 is optimal within the cyclic
division algebraH in the sense that the diamond latticeE8 = H(1+
ξ) corresponds to a proper ideal of a maximal order inH.

Proposition 3.6: The ring

H = {q = c1 + ξc2 + jc3 + jξc4 ∈ H | c1, . . . , c4 ∈ Q(i),

(1 + i)ct ∈ G ∀t, c1 + c3, c2 + c4 ∈ G}
is a maximalZ-order of the division algebraH.

Proof: Clearly theQ-span ofH is the whole algebraH, and
we have seen thatH is a ring, so it is an order ofH. Furthermore, if
Λ is any order ofH, then so isΛ[

√
2] = Λ · Z[

√
2], as the element√

2 is in the center ofH (cf. Proposition 3.2). Therefore it suffices to
show thatH is a maximalZ[

√
2]-order. In what follows, we will call

rational numbers in the coset(1/2) + Z half-integers. Assume for
contradiction that we could extend the orderH into a larger order
Γ = H[q] by adjoining the quaternionq = a1 + a2j, where the
coefficients

at = mt,0 + mt,1ξ + mt,2ξ
2 + mt,3ξ

3, mt,` ∈ Q for all t, `

are elements of the fieldQ(ξ). As ξ − ξ3 =
√

2, andξ∗ = −ξ3, we
see that

tr(q) = a1 + a∗1 = 2m1,0 +
√

2(m1,1 −m1,3).

By Proposition 3.3 this must be an element ofZ[
√

2], so we may
conclude thatm1,0 must be an integer or a half-integer, and that
m1,1 −m1,3 must be an integer. Similarly

tr(qξ) = −2m1,3 +
√

2(m1,0 −m1,2)

must be an element ofZ[
√

2]. We may thus conclude that all the
coefficientsm1,`, ` = 0, 1, 2, 3 are integers or half-integers, and
that the pairsm1,0, m1,2 (resp. m1,1, m1,3) must be of the same
type, i.e. either both are integers or both are half-integers. A similar

study of tr(qj) and tr(qjξ) shows that the same conclusions also
hold for the coefficientsm2,`, ` = 0, 1, 2, 3. BecauseZ[ξ] ⊆ H,
replacingq with any quaternion of the formq − ν, whereν ∈ Z[ξ]
will not change the resulting orderΓ. Thus we may assume that
the coefficientsm1,`, ` = 0, 1, 2, 3 all belong to the set{0, 1/2}.
Similarly, if needed, replacingq with q − ν′j for someν′ ∈ Z[ξ]
allows us to assume that the coefficientsm2,`, ` = 0, 1, 2, 3 also all
belong to the set{0, 1/2}. Further replacements ofq by q − ρ or
q − ρξ then permit us to restrict ourselves to the casem2,` = 0, for
all ` = 0, 1, 2, 3. If we are to get a proper extension ofH, we are left
with the casesq = (1+i)/2, q = ξ(1+i)/2 andq = (1+ξ)(1+i)/2.
We immediately see that none of these have reduced norms inZ[

√
2],

so we have arrived at a contradiction.
Remark 3.6:Another related well known maximal order is the

icosian ring. It is a maximal order in another subalgebra of the
Hamiltonian quaternions, namely

(Q(i,
√

5)/Q(
√

5), σ,−1),

whereσ is again the usual complex conjugation. This order made
a recent appearance as a building block of a MIMO-code in a
construction by Liu & Calderbank. We refer the interested reader
to their work [38] or [31] for a detailed description of this order.

The icosian ring and our order share one feature that is worth
mentioning. As2 × 2 matrices they do not have the non-vanishing
determinant property. Algebraically this is a consequence of the fact
the respective centers,Q(

√
5) or Q(

√
2) both have arbitrarily small

algebraic integers, e.g. the sequence consisting of powers of the units
(
√

5−1)/2 (resp.
√

2−1) converges to zero. We shall return to this
point in the next section, where a remedy is described.

IV. D ECODING OF THE NESTED SEQUENCE OF LATTICES

In this section, let us consider the coherent MIMO case where the
receiver perfectly knows the channel coefficients. The received signal
is

y = Bx + n,

wherex ∈ Rm, y, n ∈ Rn denote the channel input, output and noise
signals, andB ∈ Rn×m is the Rayleigh fading channel response. The
components of the noise vectorn are i.i.d. complex Gaussian random
variables. In the special case of a MISO channel (n = 1), the channel
matrix takes a form of a vectorB = h ∈ Rm (cf. Section I).

The information vectors to be encoded into our code matrices are
taken from the pulse amplitude modulation (PAM) signal setX of
the sizeQ, i.e.,

X = {u = 2q −Q + 1 | q ∈ ZQ}
with ZQ = {0, 1, ..., Q− 1}.

Under this assumption, the optimal detectorg : y 7→ x̂ ∈ Xm that
minimizes the average error probability

P (e)
∆
= P (x̂ 6= x)

is the maximum-likelihood (ML) detector given by

x̂ = arg minx∈Zm
Q
| y −Bx |2, (5)

where the components of the noisen have a common variance equal
to one.

A. Code controlled sphere decoding

The search in (5) for theclosest lattice pointto a given pointy
is known to be NP-hard in the general case where the lattice does
not exhibit any particular structure. In [39], however, Pohst proposed
an efficient strategy of enumerating all the lattice points within a
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sphereS(y,
√

C0) centered aty with a certain radius
√

C0 that works
for lattices of a moderate dimension. For background, see [40]-[43].
For finite PAM signals sphere decoders can also be visualized as a
bounded searchin a tree.

The complexity of sphere decoders critically depends on the
preprocessing stage, the ordering in which the components are
considered, and the initial choice of the sphere radius. We shall use
the standard preprocessing and ordering that consists of theGram-

Schmidt orthonormalizationB = (Q, Q′)
�

R
0

�
of the columns of the

channel matrixB (equivalently,QR decompositionon B) and the
natural back-substitution component ordering given byxm, ..., x1.
The matrix R is an m × m upper triangular matrix with positive
diagonal elements,Q (resp.Q′) is an n × m (resp.n × (n − m))
unitary matrix, and0 is an (n−m)×m zero matrix.

The conditionBx ∈ S(y,
√

C0) can be written as

| y −Bx |2≤ C0 (6)

which after applying theQR decomposition onB takes the form

| y′ −Rx |2≤ C′0, (7)

where y′ = QT y and C′0 = C0 − |(Q′)T y|2. Due to the upper
triangular form ofR, (7) implies the set of conditions

mX
j=i

���y′j − mX̀
=j

rj,`x`

���2 ≤ C′0, i = 1, ..., m. (8)

The sphere decoding algorithm outputs the pointx̂ for which the
distance

d2(y, Bx) =

mX
j=1

���y′j − mX̀
=j

rj,`x`

���2 (9)

is minimum. See details in [43].
The decoding of the base latticeL2 can be performed by using

the algorithm below proposed in [43].

Algorithm II, Smart Implementation (Input C′0, y′, R. Output
x̂.)

STEP 1: (Initialization) Set i := m, Tm := 0, ξm := 0, and
dc := C′0 (current sphere squared radius).

STEP 2: (DFE on xi) Set xi := b(y′i − ξi)/ri,ie and ∆i :=
sign(y′i − ξi − ri,ixi).

STEP 3: (Main step) Ifdc < Ti+ | y′i− ξi− ri,ixi |2, then go to
STEP 4 (i.e., we are outside the sphere).

Else if xi /∈ ZQ go to STEP 6 (i.e., we are inside the sphere but
outside the signal set boundaries).

Else (i.e., we are inside the sphere and signal set boundaries) if
i > 1, then {let ξi−1 :=

Pm
j=i ri−1,jxj , Ti−1 := Ti+ | y′i − ξi −

ri,ixi |2, i := i− 1, and go to STEP 2}.
Else (i=1) go to STEP 5.

STEP 4: If i = m, terminate, else seti := i + 1 and go to STEP
6.

STEP 5: (A valid point is found) Letdc := T1+ | y′1 − ξ1 −
r1,1x1 |2, savex̂ := x. Then, leti := i + 1 and go to STEP 6.

STEP 6: (Schnorr-Euchner enumeration of leveli) Let xi := xi +
∆i, ∆i := −∆i − sign(∆i), and go to STEP 3.

Note that given the valuesxi+1, ..., xm, taking the ZF-DFE (zero-
forcing decision-feedback equalization) onxi avoids retesting other
nodes at leveli in case we fall outside the sphere. Settingdc = ∞
would ensure that the first point found by the algorithm is the ZF-
DFE point (or the Babai point) [43]. However, if the distance between

TABLE II
CCSD: ADDITIONAL CASE CONSIDERATIONS

CASE L4

∑8
i=1 xi ≡ 0 (mod 2)

CASE L5 x1 + x2 ≡ x5 + x6,
x3 + x4 ≡ x7 + x8 (mod 2)

CASE L6 x1 + x2 ≡ x3 + x4 ≡ x5 + x6 ≡ x7 + x8,∑
2|i xi ≡

∑
2-i xi ≡ 0 (mod 2)

the ZF-DFE point and the received signal is very large this choice
may cause some inefficiency, especially for high dimensional lattices.

The decoding of the other three lattices in (1) also relies on this
algorithm, but we need to run some additional parity checks. This
simply means that in addition to the checks concerning the facts that
we have to be both inside the sphere radius and inside the signal
set boundaries, we also have to lie inside a given sublattice. This
will be taken care of by a method we callcode controlled sphere
decoding(CCSD), that combines the algorithm above with certain
case considerations. To this end, let us write the constraints on the el-
ementsci asmodulo2 operations. Denote byx = (x1, x2, ..., x8) =
(<c1,=c1, ...,<c4,=c4) ∈ R8 the real vector corresponding to the
channel input. Note that when exploiting these relations in the CCSD
algorithm, we have to use different orderings for the basis matrices
of the lattice in different cases in order to make the parity checks as
simple as possible. Let us first order the basis matrices asB1 =
M(1, 0, 0, 0), B2 = M(i, 0, 0, 0), ..., B7 = M(0, 0, 0, 1), B8 =
M(0, 0, 0, i). Then when decoding e.g. theL5 lattice, we reorder
the basis matrices asB1, B2, B5, B6, B3, B4, B7, B8 in order to get
the sumc1 + c3 as the sum of the first4 components and the sum
c2 + c4 as the sum of the last4 components (cf. Proposition 2.5).
The conditions for the Gaussian elements of Propositions 2.4-2.6 can
clearly be translated into the following modulo2 integer conditions,
see for instance Remark 2.2. The additional parity check steps will
hence be as shown in Table II above.

As the Alamouti scheme [2] has a very efficient decoding algorithm
available, and our quaternionic lattices have an Alamouti-like block
structure, it is natural to ask whether any of the benefits of Alamouti
decoding will survive for our lattices. We shall see that the block
structure allows us to decode the two blocks independently from each
other. The following simple observation is the underlying geometric
reason for our ability to do this.

Lemma 4.1:Let A andB be twon×n matrices with the property
that the matricesA, B, AH , BH commute. Leth ∈ C2n be any (row)
vector and write

M(A, B) =

�
A B

−BH AH

�
.

Then the vectorshM(A, 0) and hM(0, B) are orthogonal to each
other when we identifyC2n with R4n and use the usual inner product
of a vector space over the real numbers.

Proof: With the identificationC2n = R4n the real inner product
is the real part of the hermitian inner product〈 , 〉 of C2n. Write
the vectorh in the block formh = (h(1), h(2)), where the blocks
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Fig. 1. Average complexity of4 tx-antenna matrix lattices at rates (approximately)R = 4 andR = 8 bpcu.

h(j), j = 1, 2, are (row) vectors inCn. Then we can compute

〈hM(A, 0),hM(0, B)〉
= 〈hM(A, 0)M(0, B)H ,h〉
= 〈hM(A, 0)M(0,−B),h〉
= 〈hM(0,−AB),h〉
= 〈h(2)AHBH , h(1)〉 − 〈h(1)AB, h(2)〉.

As 〈uM,v〉 = 〈vMH ,u〉∗ for all vectorsu,v and matricesM , we
see that the above hermitian inner product is pure imaginary.

Corollary 4.2: Let A and B range over sets ofn × n-matrices.
Let h andr be vectors inC2n. Then the Euclidean distance between
r andhM(A, B) is minimized for theA = A0 andB = B0, when
A0 minimizes the Euclidean distance betweenr andhM(A, 0) and
B0 minimizes the Euclidean distance betweenr andhM(0, B).

Proof: Write VA (resp.VB) for the real vector space spanned
by the vectorshM(A, 0) (resp. hM(0, B)). These subspaces are
orthogonal to each other in the sense of Lemma 4.1. Whence we can
uniquely writer = rA + rB + r⊥, whererA ∈ VA, rB ∈ VB andr⊥
is in the (real) orthogonal complement of the direct sumVA ⊕ VB .
A similar decomposition for the vectorhM(A, B) is hM(A, B) =
hA+hB , wherehA = hM(A, 0) ∈ VA andhB = hM(0, B) ∈ VB .
By the Pythagorean theorem

|r−hM(A, B)|2 = |rA−hM(A, 0)|2+ |rB−hM(0, B)|2+ |r⊥|2.
Furthermore, here

|rA − hM(A, 0)|2 = |r− hM(A, 0)|2 − |rB |2 − |r⊥|2,
so the quantities|rA − hM(A, 0)|2 and |r − hM(A, 0)|2 are
minimized for the same choice of the matrixA. A similar argument
applies to theB-components, so the claim follows.

B. Complexity issues and collapsing lattices

The number of nodes in the search tree is used as a measure
of complexity so that the implementation details or the physical
environment do not affect it. We have analyzed many different kinds
of situations concerning the change of complexity of the sphere
decoder when moving in (1) from right to left.

In Fig. 1 we have plotted the average number of points visited
by the algorithm in different cases at the rates approximately4 and
8 bpcu. The SNR regions cover the block error rates between≈
10%−0.01%. As can be seen, in the low SNR end, the difference in
complexity between the different lattices is clear but evens out when
the SNR increases. For the sublatticesL4, L5, andL6 the algorithm
visits 1.1 − 2.1 times as many points as for the base latticeL2.
In the larger SNR end, the performance is fairly similar for all the
lattices. E.g. at4 and8 bpcu, when all the lattices reach the bound
of maximum 20 points visited, the block error rates ofL4, L5, and
L6 are still as big as5%, 2%, and1% respectively.

Definition 4.1: In a MISO setting we say that a matrix latticeL of
rankm collapses at a channel realizationh, if the receiver’s version
of the latticehL spans a real vector space of dimension< m. We
call the set of such channel realizations the critical set. We say that
the sensitivitys(L) (towards collapsing) of the latticeL is r, if the
critical set is a union of finitely many subspaces of real dimension
≤ r.

So we e.g. immediately see that a lattice residing in an orthogonal
design will have zero sensitivity. While we have no precise results
the thinking underlying the concept can be motivated as follows.
When the infinite lattice collapses into a lower dimensional space,
its linear structure is severely mutilated. For example the minimum
Euclidean distance drops to zero — for anyε > 0 there will be
infinitely many other lattice points within a distance< ε. Even when
we restrict ourselves to a finite subset of the lattice, the coordinates
of the nearby points may differ drastically. Thus even an ML-decoder
will have problems, and an algorithm relying on the orderly linear
structure of the lattice (like the sphere decoder) cannot work very
efficiently. Similar problems are still there, when the actual channel
realizationh is close to a critical vector.

The sensitivity then enters the scene as a crude measure for the
probability of this happening. It is easy to see that in a Rayleigh
fading channel the probability of the channel vectorh to be within
ε of a critical vector behaves likeO(ε2n−s). Thus the lower the
sensitivity, the lower the probability of the lattice becoming distorted
by the channel.

We lead off by determining the sensitivity of the DAST-lattices.

Example 4.1:There exist 8-dimensional lattices [5] of4 × 4
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matrices of the form

MDAST =

0BB@ x1 x2 x3 x4

x1 −x2 x3 −x4

x1 x2 −x3 −x4

x1 −x2 −x3 x4

1CCA .

These matrices are simultaneously diagonalizable as they have com-
mon orthogonal eigenvectorsh1 = (1, 1, 1, 1), h2 = (1,−1, 1,−1),
h3 = (1, 1,−1,−1) and h4 = (1,−1,−1, 1)4. Write the channel
vector in terms of this basish =

P4
j=1 ajhj . If any of the

coefficients vanishes, sayak = 0, then the DAST-lattice collapses,
because the receiver’s version of the lattice will belong to the complex
span of the other three eigenvectorshj , j 6= k. On the other hand,
if all the coefficientsaj 6= 0, j = 1, 2, 3, 4, this channel vector will
not be critical. One way of seeing this is that applying the linear
mapping determined byhj 7→ (1/aj)hj to the receiver’s lattice
then recovers the original full rank lattice of vectors(x1, x2, x3, x4).
Such a mapping obviously cannot affect the dimension of the space
spanned by the vectors, so the lattice won’t collapse.

We have shown that the sensitivity of the DAST-lattice is six.

We proceed to determine the sensitivities of the latticesL1 of
Proposition 2.2 and the ones within the nested sequence (1). Let us
first considerL1. Let

U =

0B@ h1

...
h4

1CA
be the 4 × 4 matrix with rows h1,h2,h3,h4 of the form
(1, ζj , ζ2j , ζ3j) for j = 1, 5, 9, 13. Recall that earlier we have
used{1, ζ, ζ2, ζ3} as an integral basis, so the rows ofU are the
images of this ordered basis under the action of the Galois group
G of the extensionQ(ζ)/Q(i). Now it happens that the matrix
U is unitary (up to a constant factor) asUU∗ = 4I4. Let z =
c1 + c2ζ + c3ζ

2 + c4ζ
3 be an arbitrary algebraic integer ofQ(ζ),

andM(z) = ML(c1, c2, c3, c4) ∈ L1 be the corresponding matrix of
Proposition 2.2. According to the theory of algebraic numbers (and
also trivially verified by hand) the rows ofU are (left) eigenvectors
of M(z), and

UM(z)U−1 =

0BB@ z 0 0 0
0 σ2(z) 0 0
0 0 σ3(z) 0
0 0 0 σ4(z)

1CCA
is a diagonal matrix with entries gotten by applying the elements of
the Galois groupG = {σ1 = id, σ2, σ3, σ4} to the numberz.

So all the matricesML(c1, c2, c3, c4) are diagonalized byU .
Therefore we might call the latticeL1 ‘DAST-like’, as it shares this
property with the lattices from [5].

Proposition 4.3: The latticeL1 has sensitivity six.

Proof: The situation is completely analogous to that of Example
4.1. The latticeL1 will collapse, iff the channel realization belongs
to any of the 4 complex vector spaces spanned by any three of the
common eigenvectors.

In order to study the quaternionic lattices we first observe that the
2 × 2-matricesA and B appearing as blocks of a matrixM ∈ L2

all have(1,±ξ) as their common (left) eigenvectors. The same holds
for the adjointsA∗, B∗ as they also appear as blocks ofM∗ that also
happens to belong to the latticeL2. From the proof of Proposition
2.4 we see that the matrixMM∗, M = M(c1, c2, c3, c4), has
eigenvaluesα ± |k| with respective (left) eigenvectors(1,±ξ, 0, 0)
and (0, 0, 1,±ξ). Hereα =

P4
j=1 |cj |2 and k = −ic1c

∗
2 + c2c

∗
1 −

ic3c
∗
4 + c4c

∗
3. We make this more precise before we determine the

sensitivity of the quaternionic lattices.
There is a connection between our MISO-code and the multi-block

codes introduced by Belfiore in [45] and Lu in [44] that can be
best explained with the notation of the present section. Consider the
unitary matrix with the above basis vectors as columns

U =
1√
2

0BB@ 1 1 0 0
ξ −ξ 0 0
0 0 1 1
0 0 ξ −ξ

1CCA .

If we conjugate the matrices of the algebraH by U we get matrices
of the form 0BB@ x1 −x∗2 0 0

x2 x∗1 0 0
0 0 τ(x1) −τ(x2)
0 0 τ(x2) τ(x1)

∗

1CCA ,

where the elementsx1, x2 belong to the fieldQ(ξ) = Q(i,
√

2),
and τ : Q(ξ) → Q(ξ) is the automorphism determined byτ(i) =
i, τ(

√
2) = −√2. Thus we see that our MISO-code is unitarily

equivalent to a multi-block code with a structure similar to [44] —
only our center is smaller.

The upshot here, as well as in [45], [44], and in the icosian
construction from [38] is that while the individual diagonal blocks
may have arbitrarily small determinants, when we use them together
with their algebraic conjugates, the diagonal blocks together conspire
to give a non-vanishing determinant. This is because the algebraic
conjugates of small numbers are necessarily just large enough to
compensate as the algebraic norms are known to be integers.

Another benefit enjoyed by our matrix representation of the algebra
H over the above multi-block representation is that the signal
constellation is better behaved. Surely the simple QAM-constellation
of our matrices is to be preferred over the linear combinations of two
rotated QAM-symbols of the multi-block representation.

This feature clearly begs to be generalized to a MIMO-setting. One
such construction is the previously mentioned icosian construction of
Liu & Calderbank [38], where they managed to add a multiplexing
gain of 2 to a similar multi-block representation of the icosians. It
turned out that the question of how to best do this in the spirit of
the present article is somewhat delicate. The resulting codes will
necessarily be asymmetric MIMO-codes, and we refer the reader to
[46].

We return to the sensitivity of the quaternionic lattices. The
following result is now easy to verify

Proposition 4.4:Let V+ (resp. V−) be the complex subspace
of C4 generated by the vectors(1, ξ, 0, 0) and (0, 0, 1, ξ) (resp.
by (1,−ξ, 0, 0) and (0, 0, 1,−ξ)). The subspacesV+ and V− are
orthogonal complements of each other inC4, so any channel vector
can be uniquely written as

h = h+ + h−,

whereh± ∈ V± respectively. Ifh belongs to one of the subspaces
V+, V−, the latticehL2 collapses. Otherwise the latticeL2 does not
collapse. In particular the sensitivity of the latticesL2, L3, L4, L5, L6

is four.

Our simulations, indeed, show that the complexity of a sphere
decoder increases sharply, when we approach the critical set. A
comparison between the latticesL1 andL2 does not show a dramatic
difference between the average complexities of a sphere decoder,
but the difference becomes very apparent, when studying the high-
complexity tails of the complexity distribution.
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Fig. 2. The impact of sensitivity on complexity,L1 (≈ LDAST ) vs L2.

In Fig. 2 we have plotted the complexity distribution of 5000
transmissions for different data rates. On the horizontal axis the
quantity min( |hi|2 ) (resp. min( |h+|2, |h−|2 )) describes how
close the latticeL1 (resp. L2) is to the situation where it would
collapse. That is, how close to zero the minimum of the components
hi ∈ Vi, i = 1, 2, 3, 4, (resp.h± ∈ V±) gets (cf. Remark 4.3
and Proposition 4.4). For bothL1 andL2 the figure shows that the
smaller the quantity, the higher the complexity. We can also conclude
that the latticeL1 nearly collapses a lot more often than the lattice
L2. In addition, the number of points visited by the sphere decoding
algorithm is much higher forL1 than forL2. These are phenomena
caused by the higher sensitivity ofL1. In Fig. 3 the scaled impact
of sensitivity is depicted.

Note that asLDAST has the same sensitivity asL1, we can equally
well analyze the behavior of the DAST lattice on the basis of Fig. 2
and Fig. 3.

V. ENERGY CONSIDERATIONS AND SIMULATIONS

As a summary of Propositions 2.2–2.6 we get the following.

Proposition 5.1: (1) The latticeL2 is isometric to the rectangular
latticeZ8 and has a minimum determinant equal to1.

(2) The latticeL4 isometric toD8 is an index two sublattice of
L2 and has a minimum determinant equal to4.

(3) The latticeL5 isometric toD4⊥D4 is an index four sublattice
of L2 and has a minimum determinant equal to16.

(4) The latticeL6 isometric toE8 is an index 16 sublattice ofL2

and has a minimum determinant equal to64.

In order to compare these lattices we scale them to the same
minimum determinant. When a real scaling factorρ is used the
minimum determinant is multiplied byρ2. As all the lattices have
rank 8, the fundamental volume is then multiplied byρ8. Let us
choose the units so that the fundamental volume ofL2 is m(L2) = 1.
Then after scalingm(L4) = 1/2, m(L5) = 1/4, andm(L6) = 1/4.
As the density of a lattice is inversely proportional to the fundamental
volume, we thus expect the codes constructed within e.g. the lattices
L4 andL6 to outperform the codes of the same size withinL2.

The exact average transmission power data in Fig. 4 is computed
as follows. Given the sizeK of the code we choose a random set of
K shortest vectors from each lattice. The average energy of the code

Eav =

P
x∈C ‖x‖2

K
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Fig. 3. The scaled impact of sensitivity on complexity,L1 (≈ LDAST ) vs L2.

is then computed with the aid of theta functions [31]. All the lattices
were normalized to have minimum determinant equal to 1. When
using the matricesM(c1, c2, c3, c4) of Proposition 2.1, in some cases
we are better off selecting the input vectors(c1, c2, c3, c4) from the
coset 1

2
(1 + i, 1 + i, 1 + i, 1 + i) + G4 instead of letting them range

overG4. Obviously such a translation does not change the minimum
determinant of the code, but it sometimes results in significant energy
savings. E.g. to get a code of size 256 it is clearly desirable to let
the coefficientsc1, c2, c3, c4 range over the QPSK-alphabet.

Fig. 5 shows the block error rates of the various competing lattice
codes at the rates approximately 2, 4, 6, and 8 bpcu, i.e. all the
codes contain roughly28, 216, 224 or 232 matrices respectively. For
the latticesL1, L2, LDAST , andLABBA [20] this simply amounted
to letting the coefficientsc1, c2, c3, c4 take all the values in a QPSK-
alphabet. Therefore, it would have been easy to obtain bit error rates
as well. For the latticesL4, L5, L6 the rate is not exact, see (10)
below and the preceding explanation. Of course also the exact rate
equal to a power of two could be achieved by just choosing a more
or less random set of shortest lattice vectors. As there is no natural
way to assign bit patterns to vectors ofD8, D4⊥D4 or E8, we chose
to show the block error rates instead of the bit error rates.

The simulations were set up, here, so that the 95 per cent reliability
range amounts to a relative error of about 3 per cent at the low SNR
end and to about 10 per cent at the high SNR end (or to about 4000
and 400 error events respectively). One receiver was used for all the
lattices.

When moving left in (1) the minimum determinant increaces while
the BLER decreases at the same time. However, the other side of
the coin is that improvements in the BLER performance cause a
slightly more complex decoding process by increasing the number
of points visited in the search tree. Still after this increasement, even
the latticeL6 admits a fairly low average complexity as compared
to the latticesL1 andLDAST due to its lower sensitivity. In part of
the pictures in Fig. 5, the order of the curves seems not to respect
the above mentioned order, but this only happens because the rates
are not exactly the same for all the lattices. E.g. at the rate≈ 4
bpcu, the exact rates forL2, L4, L5, and L6 are 4, 3.75, 4.14, and
4.17 bpcu respectively. Consequently, the latticeL4 seems to perform
better than what it actually does. Let us shortly explain how these
rates follow: when picking the elementsx1, ..., x8 from the setZQ

(cf. Section IV (5) and the discussion after Algorithm II), the size
of the code within the latticeLi, i = 2, 4, 5, 6, will be Q8

[L2:Li]
=
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Fig. 5. Block error rates of4 tx-antenna lattices at approximately2.0, 4.0, 6.0, and8.0 bpcu with one receiver.

2
log Q8

[L2:Li] , where[L2 : Li] is the index of the sublatticeLi inside
L2 (cf. Proposition 5.1). Hence, the data rate in bits per channel use
can be computed as

R =
log Q8

[L2:Li]

4
. (10)

Now, for instance, to get as close to the rateR = 4 bpcu as possible,
we have to chooseQ = 4, Q = 4, Q = 5, andQ = 6 for the lattices
L2, L4, L5, andL6 respectively. By substitutingQ and the sublattice
index in question to (10) we obtain the above rates.

Simulations at the rate6 bpcu with one receiver show that the
lattice L6 wins by approximately1 dB over the latticeL2 and by
at least2.5 dB overLDAST . At the rate2 bpcu, the rotated ABBA
lattice LABBA is already beaten by theL2 lattice by a fraction of a
dB. The difference betweenL2 andLDAST is even clearer:L2 gains
1− 2 dB overLDAST , depending on the SNR. At all data rates the
lattice L6 outperforms all the other lattices.

Prompted by the question of one of the reviewers, we make the
following remark in case that the reader is familiar with the Icosian
code [38] and ponders over whether and how it relates to the codes
presented in this paper.

Remark 5.1:The Icosian latticeLICOSIAN presented in [38]
takes use of the Icosian ring (cf. Remark 3.6) and has a similar
looking structure to the Golden code [11], where the matrix elements
are replaced with Icosian Alamouti blocks

A = A(a1, a2, a3, a4) =

�
a1 + a2i −a3 + a4i
a3 + a4i a1 − a2i

�
andB = B(b1, b2, b3, b4) respectively:

LICOSIAN =

��
A KB

B A

� ��� ai, bi ∈ Z[(1 +
√

5)/2] ∀i
�

,

whereA denotes the algebraic conjugate ofA with respect to the
mapping

√
5 7→ −√5 and

K =

�
i 0
0 −i

�
.

A code within this lattice is calledIcosian code. Note that Jafarkhani’s
quasi-orthogonal code [30] in the simulations of [38] is exactly our
base latticeL2.

First of all, note that the Icosian code has code rate two, as the
lattice is 16-dimensional over the reals. Hence, in order to enable
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efficient linear decoding, at least two antennas are required at the
receiving end. Taking this into consideration, there is no good way
to make fair comparison between the Icosian lattice and the 8-
dimensional lattices proposed in this paper. If the application at
hand allows us to use one receiving antenna only, we either have
to punctureLICOSIAN (e.g. by settingB = 0) which will cause it
to lose its benefits, or, we need to perform complex decoding process
(e.g. a sphere decoder cannot be used).

However, if we still want to compare these codes with two
receivers, our codes will of course lose due to the lower code rate
as they are designed for MISO use only. Similar comparison could
be done e.g. with the4 × 4 Perfect code [11] and the Icosian code
resulting to the loss of the Icosian code due to its lower rate (two
vs. four). When using one receiver for the Icosian code by punctring
the block B, it will lose to L2 by 0.5-1 dB at 2 bpcu depending
on the SNR as depicted in Figure 4. But, as noted above, in this
way LICOSIAN will of course lose its benefits (as we are not really
using the whole Icosian ring) so this is not a comparison on which
we should put too much value.

To conclude, the codes in this paper and the Icosian code are
targeted into different types of applications: the first ones are aimed

for systems with one receiving antenna, whereas the Icosian code
naturally fits into systems with two receiving antennas.

VI. D IVERSITY-MULTIPLEXING TRADEOFF ANALYSIS

This section contains the DMT analysis of the MISO codes
constructed in this paper. We denote bynt (resp.nr) the number of
transmitting (resp. receiving) antennas. For the rest of the notation,
see [21].

Let us first consider the number field construction. Denote (cf.
Proposition 2.2)

L1 =

8>><>>:
0BB@ c1 ic4 ic3 ic2

c2 c1 ic4 ic3

c3 c2 c1 ic4

c4 c3 c2 c1

1CCA , ci ∈ A

9>>=>>; ,

whereA ⊂ Z[i] is some constellation set. This code is for the MISO
system withnt = 4 transmit andnr = 1 receive antennas. Given the
transmit code matrixX ∈ L1, the received signal vector is

yT = θhT X + nT ,

whereh ∼ CN (0, I4).
Let r be the desired multiplexing gain; then we need

|L1| .
= SNR4r .

= |A|4

and the above in turn gives

|A| .
= SNRr. (11)

Hence we see for everyci ∈ A
‖ci‖2 ≤̇ SNRr (12)

and

θ2 .
= SNR1−r. (13)

Let λ := ‖h‖2F = SNR−α and let δ1 ≥ · · · ≥ δ4 be the ordered
eigenvalues ofXX†; then the random Euclidean distancedE is lower
bounded by

d2
E ≥ θ2λδ4

.
=

θ2λQ3
i=1 δi

≥̇ SNREL1 (14)

where

EL1 = 1− r − α− 3r = 1− 4r − α. (15)

Now the DMT of this code is given by

dL1(r) ≥ inf
EL1<0

4α = 4(1− 4r), for 0 ≤ r ≤ 1

4
, (16)

while the optimal tradeoff in this channel is actually

d∗(r) = 4(1− r) for 0 ≤ r ≤ 1. (17)

The quaternionic construction is

L2 =

8>><>>:
0BB@ c1 ic2 −c∗3 −c∗4

c2 c1 ic∗4 −c∗3
c3 ic4 c∗1 c∗2
c4 c3 −ic∗2 c∗1

1CCA , ci ∈ A

9>>=>>; .

First of all, as pointed out in the proof of Proposition 2.4, the matrix
M ∈ L2 is of the following form:

M =

�
A −BH

B AH

�
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and

MMH =

�
AAH + BHB 0

0 AHA + BBH

�
=

�
AAH + BBH 0

0 AAH + BBH

�
since AB = BA. Thus the ordered eigenvalues ofMMH satisfy
δ1 = δ2 ≥ δ3 = δ4 and in particular,δ1 ≥ δ3 are the ordered
eigenvalues ofAAH +BBH . Secondly, note thatMMH satisfies the
non-vanishing determinant property, and so does the matrixAAH +
BBH . Now the bound for the random Euclidean distance is

d2
E ≥ θ2λδ4

.
=

θ2λ

δ3
≥̇SNREL2 , (18)

where
EL2 = 1− r − α− r = 1− 2r − α. (19)

Now the DMT of this code is given by

dL2(r) ≥ inf
EL2<0

4α = 4(1− 2r), for 0 ≤ r ≤ 1

2
. (20)

The same of course also holds for codes within the sublattices
L4, L5, L6 ⊆ L2.

Remark 6.1:While our codes are not DMT optimal, it has to
be noticed that without using a full-rate code the DMT cannot be
achieved. Hence, if one wishes to enable efficient decoding process
with one receiving antenna only (see the remark below), sacrifices
in terms of the DMT have to be made. However, our quaternionic
latticesL2, L4, L5, L6 admit higher DMT as e.g. the DAST lattice,
as the DMT of the DAST lattice coincides with that ofL1.

Remark 6.2:One might ponder why not use e.g. the full-rate CDA
based codes (cf. [6], [11]) as they are DMT optimal provided that they
have non-vanishing determinant. The answer to this is in principle
the same as the one provided in Remark 5.1. We could naturally do
this, but considering that we only want to use one receiving antenna it
should be clear that a full-rate code cannot be efficiently used. Indeed,
using a full-rate code would destroy the lattice structure and cause
exponential complexity at the receiver. To enable efficient decoding
with one receiver we have to limit ourselves to rate-one codes, which
exactly we have done in this paper. We want the reader to note that
full-rate codes (e.g. the perfect codes [11]) are optimally suited for
systems withnt = nr > 1, hence inapplicable to the purposes of
this paper where we havent = 4 andnr = 1.

VII. C ONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

In this paper, we have presented new constructions of rate-one,
full-diversity, and energy efficient4× 4 space-time codes with non-
vanishing determinant by using the theory of rings of algebraic
integers and their counterparts within the division rings of Lipschitz’
and Hurwitz’ integral quaternions. A comfortable, purely number
theoretic way to improve space-time lattice constellations was in-
troduced. The use of ideals provided us with denser lattices and an
easy way to present the exact proofs for the minimum determinants.
The constructions can be extended also to a larger number of transmit
antennas, and they nicely fit with the popular Q2-QAM and QPSK
modulation alphabets. The idea of finding denser sublattices within
a given division algebra was also generalized to a MIMO case
with arbitrary number of Tx antennas by using the theory of cyclic
division algebras and, as a novel method, their maximal orders. This
is encouraging as the CDA based square ST constructions with NVD
are known to achieve the DMT. We have also shown that the explicit
constructions in this paper all have a simple decoding method based
on sphere decoding. Related to the decoding complexity, the notion

of sensitivity was introduced for the first time in this paper. The
experimental results have given evidence about the relevance of this
new notion.

Comparisons with the four antenna DAST block code have shown
that our codes provide lower energy and block error rates due to their
good minimum determinant, i.e. high density and lower sensitivity.
At the moment, we are searching for well-performing MIMO codes
arising from the theory of crossed product algebras and maximal
orders of cyclic division algebras. We have noticed that also the
discriminant of a maximal order plays an important role in code
design. It is desirable to choose cyclic division algebras for which
the discriminant of a maximal order is as small as possible [33].
By now, we are able to construct an explicit cyclic division algebra
of an arbitrary index overQ(i) (or Q(ω)) that has a maximal
order with minimal discriminant. Despite the fact that we have not
yet fully analyzed the practical performance of codes arising from
these constructions, the preliminary results have been very promising.
Further details on this and on the algorithmic properties of maximal
orders (see also [47]-[49]) will be given in a forthcoming paper [33].
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On the Densest MIMO Lattices from Cyclic
Division Algebras

Camilla Hollanti, Jyrki Lahtonen,Member, IEEE, Kalle Ranto, and Roope Vehkalahti

Abstract— It is shown why the discriminant of a maximal order
within a cyclic division algebra must be minimized in order
to get the densest possible matrix lattices with a prescribed
nonvanishing minimum determinant. Using results from class
field theory, a lower bound to the minimum discriminant of a
maximal order with a given center and index (= the number
of Tx/Rx antennas) is derived. Also numerous examples of
division algebras achieving the bound are given. For example,
a matrix lattice with QAM coefficients that has 2.5 times as
many codewords as the celebrated Golden code of the same
minimum determinant is constructed. Also a general algorithm
due to Ivanyos and Rónyai for finding maximal orders within
a cyclic division algebra is described and enhancements to this
algorithm are discussed. Also some general methods for finding
cyclic division algebras of a prescribed index achieving the lower
bound are proposed.

Index Terms— Cyclic division algebras (CDAs), dense lat-
tices, discriminants, Hasse invariants, maximal orders, multiple-
input multiple-output (MIMO) channels, multiplexing, space-
time block codes (STBCs).

I. OVERVIEW

Multiple-antenna wireless communication promises very
high data rates, in particular in the coherent case, where we
have perfect channel state information (CSI) available at the
receiver. In [1] the design criteria for such systems were
developed, and further on the evolution of space-time (ST)
codes took two directions: trellis codes and block codes. Our
work concentrates on the latter branch. In this paper, we will
be interested in the coherent and symmetric multiple input-
multiple output (MIMO) case, where we have an equal number
of transmit and receive antennas.

To motivate our work, we discuss certain properties of
lattices. Below, we only give a short description, for a more
detailed introduction to abstract lattices, see Section II.

A lattice is a discrete finitely generated free abelian sub-
groupΛ of a real or complex finite dimensional vector space
V, called the ambient space. In the space-time setting, a
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natural ambient space is the spaceMn(C) of complexn× n
matrices. Due to the symmetric situation, we only consider
full-rank lattices that have a basisx1, x2, . . . , x2n2 consisting
of matrices that are linearly independent over the field of real
numbers. We can form a2n2 × 2n2 matrix M having rows
consisting of the real and imaginary parts of all the basis
elements. It is well known that the measure, or hypervolume,
m(Λ) of the fundamental parallelotope of the lattice then
equals the absolute value ofdet(M). Alternatively we may
use theGram matrix

G(Λ) = MMT =
(
<tr(xix

†
j)

)
1≤i,j≤2n2

,

where x† indicates the complex conjugate transpose of the
matrix x. The Gram matrix has a positive determinant equal
to m(Λ)2.

From the pairwise error probability (PEP) point of view [2],
the performance of a space-time code is dependent on two
parameters:diversity gainand coding gain. Diversity gain is
the minimum of the rank of the difference matrixX − X ′

taken over all distinct code matricesX, X ′ ∈ C, also called
the rank of the codeC. WhenC has a full rank, the coding
gain is proportional to the determinant of(X−X ′)(X−X ′)†.
The minimum of this determinant taken over all distinct code
matrices is called theminimum determinantof the codeC.
If it remains bounded away from zero even in the limit as
the size of the constellation→ ∞, the ST code is said to
have thenonvanishing determinant(NVD) property [3]. For
nonzero square matrices, having a full rank coincides with
being invertible.

Definition 1.1: The data rateR in bits per channel use is
given by

R =
1
n

log2|C|,

where|C| is the size of the code.
This is not to be confused with therate of a code design(or

code rate, in short), defined as the ratiok/n, wherek is the
number of information symbolsk (coming from a complex
signal alphabet, e.g. a QAM-alphabet) in a code matrix, and
n is the decoding delayn of these symbols. If this ratio is
equal to the delay (=block lengh), the code is said to have a
full rate.

The very first space-time block code (STBC) for two
transmit antennas was theAlamouti code[4] representing
multiplication in the ring of quaternions. As the quaternions
form a division algebra, such matrices must be invertible,
i.e. the resulting STBC meets the rank criterion. Matrix
representations of other division algebras have been proposed
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as STBCs at least in [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], and (though without explicitly saying so) in [15].
The work in [7]-[15] has concentrated on adding multiplexing
gain, i.e. increasing the code rate (see Definition 1.1), and/or
combining it with a good minimum determinant. It has been
shown in [14] that CDA-based square ST codes with the
NVD property achieve the diversity-multiplexing gain tradeoff
(DMT) introduced in [16]. The codes proposed in this paper
all fall into this category and are in that sense optimal.
Furthermore, algebras with an imaginary quadratic field as a
center yield lattices with a good minimum determinant, as
the corresponding rings of integers have no short nonzero
elements.

Some authors have made the assumption that the so-called
linear dispersion encoding is used. Therein a fixed subset of
a complex alphabet lattice (such as QAM or HEX) is chosen,
and sequences of symbols from that subset are then turned
into lattice points by the simple process of using them as
coefficients of a fixed basis (as a module over a ring generated
by the alphabet) of the actual lattice. From our point of view
this approach places undue emphasis on the encoding process,
so we largely ignore this aspect. Therefore questions like
whether our lattices are ‘information lossless’ (cf. [13],[10])
are meaningless, because that concept is defined only under
the assumption of linear dispersion encoding.

This change means that we often need to resort to the use
of a codebook, and thus the complexity of encoding is higher.
But, consequently, we are also free to do optimal spherical
shaping. In other words, we choose our finite codebook to
consist of shortest vectors (not necessarily all of them) of
the lattice or of a coset of the lattice, and thus minimize the
transmission power.

Our lattices of n × n matrices are of rank2n2. This
implies that if we impose a constraint on the transmission
power and require thattr(XX†) ≤ P for all the matrices
X in a codebook, then the number of signalsX meeting
this constraint grows likeO(Pn2

) as a function of maximal
transmission powerP . Thus, they automatically share this
property with the full-rate linear dispersion codes. Therefore,
we are entitled to use Theorem 3 from [14] and conclude that,
also for the maximal order codes, the NVD property implies
DMT-optimality.

In this paper, yet another design criterion is brought into
the playground, namely an explicit criterion for maximizing
the density of the code. The field of ST coding seems to be
lacking a general, precise notion for the density in the case of
noncommutative structures. Normally, when studying density
of the lattices, e.g. in [17], one is concerned with the relation of
the squared minimum Euclidean distanced2(Λ) of the lattice
and its relation to the fundamental volumem(Λ). For rankN
lattices, these scale by factorsr2 and rN , respectively, when
Λ is scaled by a factorr. Therefore, one often uses the ratio
(also known as Hermite’s parameter)

γ =
d2(Λ)

m(Λ)2/N

that has the virtue of being invariant under scaling. In ST
applications an appropriate density measure has the minimum

squared determinant in the numerator instead of the minimum
squared Euclidean distance. There are several alternative ways
of normalizing the scale of a ST lattice code. One alternative is
to scale the lattice to have a unit fundamental volume. This is
the scaling used in e.g. [10]. It has the benefit that when unitary
linear dispersion is used, then signal transmission power is
the sum of the symbol powers. With this normalization one
then naturally seeks to maximize the minimum determinant
to minimize the PEP. Alternatively, we can normalize the
lattices to have a unit minimum determinant instead. The
motivation for this normalization comes from the fact that
algebraic constructions produce lattices with determinants that
are algebraic integers of a quadratic imaginary number field,
hence≥ 1. With this normalization, one then seeks to mini-
mize the fundamental volume in order to be able to pack the
maximum number of constellation points into a given power
constrained region of the signal space, i.e. we maximize the
data rate within a fixed ‘power sphere’.

A third natural way of carrying out the minimum determi-
nant vs. fundamental volume comparison of lattices would be
to study the ratio

γST =
min | det(∆X∆X†)|1/n

m(Λ)2/2n2

that is again invariant under scaling. Whichever normalization
is adopted, the relative order of lattices will not change, so
any one will do.

After a cyclic division algebra has been chosen, the next
step is to choose a corresponding lattice, or what amounts
to the same thing, to choose an order within the algebra.
Most authors [15], [14] have gone with the so-called natural
order (see Section IV for a definition). One of the points
we want to emphasize in this article is to use the maximal
orders instead. The idea is that one can sometimes use several
cosets of the natural order without sacrificing anything in
terms of the minimum determinant. So the study of maximal
orders is clearly motivated by an analogy from the theory
of error correcting codes: why one would use a particular
code of a given minimum distance and length, if a larger
code with the same parameters is available. The standard
matrix representation of the natural order results in codes
that have a so-called threaded layered structure [18]. When a
maximal order is used, the code will then also extend ‘between
layers’. However, our simulations suggest that restoring the
layered structure by replacing the maximal order with its
smartly chosen ideal yields codes with better performance.
For more details on this, see Section XII below. Earlier, we
have successfully used maximal orders in a construction of
some 4Tx antenna MISO lattices [5]. Maximal orders have
turned out to be useful also in the design of certain asymmetric
and multi-user space-time codes, more details to follow in the
forthcoming papers [19] and [20].

In some cases the index of the natural order as a sublattice
of a maximal order is quite large. For example in the cases
of a family of cyclic algebras suggested in [11] one can
theoretically increase the data rate by 1.5, 6.5 and 20.5 bits
per channel use for 2, 4 and 8 antenna codes respectively.
The lattice of a fully multiplexing 8Tx+8Rx antenna MIMO
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code has dimension 128. The nearest vector problem in
such high-dimensional lattices is used in some cryptographic
applications, so it is safe to say that ML-based decoding, e.g.
sphere decoding, of such lattices will have prohibitively high
complexity. Thus, we emphasize that such increments of data
rates are mostly theoretical in nature. These numbers, however,
motivated us to look for methods for locating maximal orders.
A general purpose algorithm for this task has been developed
by Ivanyos and Rónyai [21]. A commercially available version
of their algorithm is implemented by W. van de Graaf as part
of the computer algebra system MAGMA [22]. It turned out
that this general purpose algorithm was not able to handle
the aforementioned algebras of index eight. To deal with
these special cases we developed some enhancements to their
algorithm.

Given that maximal orders provide the best codes in terms of
minimum determinant vs. average power, we are left with the
question: Which division algebra should we use? To continue
the analogy from the theory of error-correcting codes we want
to find the codes with the highest possible density. That is, with
the smallest fundamental parallelotope. To that end we need
a suitable tool for parameterizing the cyclic division algebras
with a given center and index. Luckily, relatively deep results
from class field theory provide us with the necessary tool of
Hasse invariants. The measure of a fundamental parallelotope
of a maximal order (that later on will be referred to as the
discriminant of the division algebra) can be expressed in terms
of Hasse invariants [23]. With these results at hand we then
derive a lower bound to the discriminant. The proof of the
lower bound is not constructive per se, but it does show that
our lower bound is achievable. In the latter parts of this article
we describe some techniques for constructing division algebras
with a minimal discriminant.

It is worth mentioning that in [24] the authors have made a
similar approach in the reduced case of commutative number
fields.

While our interest in these problems is mostly theoretical,
some of the densest lattices we have found also perform well
in computer simulations. Our construction of the densest2×2
matrix lattice improves upon the deservedly celebrated Golden
code in block error rates by about 0.9 dB at data rates from
5 to 6 bpcu. The performance of both the rival codes can
be further improved by coset optimization and this also cuts
down the gap to about 0.3 dB. Observe that at the data rate
of 4 bpcu we have a tie. This is easily explained by the fact
that for codes of that size there is a particularly attractive
choice for the coset of the Golden code — at that data rate
the Golden code has spherical shaping! Our work could be
viewed as a study of the further gains available, when the
assumption of linear dispersion is dropped. Also as explained
in [25], spherical encoding is a viable alternative to the use of
a codebook when using our lattice.

This article places somewhat high demands on the reader’s
exposure to algebraic number theory and its machinery. Some
readers may only be interested in the constructions, and with
those readers in mind we have a coding theoretical main track
outlined in the last paragraph of this section, so that such
a reader can skip the heavy duty algebra to a large extent.

On the other hand, many researchers working in this area
are quite familiar with algebraic number fields. However, it
would be pointless to attempt to give an overview of class field
theory to even those readers. So we have adopted the policy
of injecting hopefully clarifying examples into the sections,
where the necessary tools and results from class field theory
are presented. They form a poor substitute to a serious study
of class field theory, but seek to serve the function of tying
the concepts together with something the reader might already
be familiar with.

The paper is organized as follows. The early sections II–V
give an overview of the basic algebraic concepts and their
relation to the density of MIMO-lattices. Section VI then
introduces some deeper machinery and proves the general
Discriminant Bound that is one of our main results. The
specific instances of the discriminant bound that occur most
often in practice are then collected into section VII. Section
VIII, then gives the first examples of algebras achieving the
discriminant bound. Then in section IX, we tackle the problem
of finding maximal orders or, equivalently, of constructing
the actual MIMO-lattices within the cyclic division algebras.
Section X is dedicated to the study of the perfect codes in the
context of our theory. The problem of locating the best CDAs
is dissected in the longish section XI. We then wrap up with
some simulation results and concluding remarks. The appendix
contains certain results from algebraic number theory that are
well known, but are not usually covered in an introductory
course to the topic. They are needed in section XI are included
mostly for easy reference. The appendix also contains a proof
for the fact that in order to achieve the discriminant bound
it is necessary to leave the domain of layered codes (that we
refer to as natural orders).

A reader who does not want to spend much time on number
theoretic details can follow a coding theoretical main track
within the article. It begins with the introductory Sections II,
IV and V. Main track reader can largely ignore the derivation
of discriminant bound, but we recommend cherry-picking the
most common instances of it from Section VII. After that a
main track reader might just peruse the Tables III and IV from
the end of Section X for numerical data pitting the perfect
codes against the discriminant bound, and then finish off with
Section XII.

II. A BSTRACT LATTICE CODES

In this section we define in more detail thecoding gain
and normalized densityof an infinite MIMO-lattice. These
measures are essential if we like to compare two MIMO-
lattices.

Our take on MIMO codes is rather abstract and we define:
Definition 2.1: A MIMO code C is a full lattice inMn(C).
By full we mean that the lattice has a basisx1, x2, . . . , x2n2

consisting of matrices inMn(C) that are linearly independent
over the field of real numbers. As discussed in the previous
section, we only consider MIMO latticesΛ, whereΛ is full
in Mn(C).

The PEP oriented design criteria give us a natural measure
related to the coding gain:
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Definition 2.2: The minimum determinant detmin (Λ) of
the latticeΛ is defined to be the infimum of the absolute values
of the determinants of all non-zero matrices in the lattice.
Yet this definition is not very satisfactory. If we use the mini-
mum determinant of a code lattice as a measure of the quality
of the lattice, we will get nonsensical results. For example, the
lattice 2Λ has a lot better minimum determinant thanΛ. It is
now evident that we need some kind of normalization.

We can flatten the matricesA of Mn(C) to 2n2 vectors
φ(A) ∈ R2n2

by first forming a vector of lengthn2 out of
the entries (e.g. row by row) and then replacing a complex
numberz with the pair of its real and imaginary parts<z
and =z. This mappingφ is clearly R-linear and maps full
Mn(C) lattices to fullR2n2

lattices. We also have the equality
||A||F = ||φ(A)||E , where F and E denote the Frobenius
and Euclidean norms, respectively. Therefore,φ is also an
isometry.

We denote the measure (or hypervolume) of the fundamental
parallelotope of the latticeφ(Λ) by m(Λ) and we call it the
volume of the fundamental parallelotope of the latticeΛ. If
x1, . . . , x2n2 is a basis ofΛ, we can form a matrixM by
using the vectorsφ(xi) as column blocks. Then theGram
matrix of the latticeΛ is

G(Λ) = MMT =
(
<tr(xix

†
j)

)
1≤i,j≤2n2

.

The Gram matrix has a positive determinant equal tom(Λ)2.
Any full lattice Λ can be scaled ( i.e. multiplied by a real

constantr) to satisfym(Λ) = 1. As the minimum determinant
determines the asymptotic pairwise error probability (PEP),
this gives rise to natural numerical measures for the quality of
a lattice. We shall denote byδ(Λ) the normalized minimum
determinantof the latticeΛ, i.e. here we first scaleΛ to have
a unit size fundamental parallelotope. A simple computation
shows that

δ(Λ) =
detmin (Λ)
m(Λ)1/2n

. (1)

Definition 2.3: Let Λ be a full lattice inMn(C) having the
NVD property. We then refer toδ(Λ)2 as thecoding gainof
the latticeΛ.
As explained in the introduction we can as well use the
normalized densityof the code

ρ(Λ) =
detmin (Λ)2n

m(Λ)
.

It is directly seen thatδ(Λ) = (1/ρ(Λ))1/2n. Therefore
both these measures are essentially the same thing and we
will use them interchangeably. In numerical examples we
usually choose to use the normalized minimum determinant
for obvious reasons.

The rest of the paper can be seen either as a quest for
constructing the best possible space time codes or as a
mathematical study of normalized minimum determinant of
matrix lattices.

III. C ENTRAL SIMPLE ALGEBRAS, ORDERS AND

DISCRIMINANTS

The cyclic division algebras (Definition 3.4) are the main
object of interest for us, but in order to fully understand these

algebras we have to widen our view and consider a larger
class of algebras. As we will see the class ofcentral simple
algebras(Definition 3.3) is a proper context for this theory.

In this section we give a short introduction to the theory of
central simple algebras. The proofs for the following results
can be found from a nice book by Irving Reiner [23].

In this section the reader can suppose that all the fields are
algebraic number fields (see the appendix). The results are true
also in the case where we considerP -adic fields, but these we
will need only in Sections VI, VIII, IX and X. In order to
understand our main results noP -adic theory is needed.

Definition 3.1: Let F be any field and assume thatE/F is
a cyclic Galois extension of degreen with the Galois group
Gal(E/F ) = 〈σ〉. We can define an associativeF -algebra

A = (E/F, σ, γ) = E ⊕ uE ⊕ u2E ⊕ · · · ⊕ un−1E,

whereu ∈ A is an auxiliary generating element subject to the
relationsxu = uσ(x) for all x ∈ E and un = γ ∈ F ∗. We
call this type of algebracyclic algebra.

Definition 3.2: An algebraA is calledsimple if it has no
non-trivial ideals. AnF -algebraA is central if its center
Z(A) = {a ∈ A | aa′ = a′a ∀a′ ∈ A} = F .

Definition 3.3: A central simple F -algebra is a simple
algebra which is finite dimensional over its centerF .

Proposition 3.1:Every cyclic algebra is central simple.
Also the reverse is true if we are consideringF -central

simple algebras, whereF is an algebraic number field.
Theorem 3.2:Let F be an algebraic number field. Every

F -central simple algebra is cyclic.
Definition 3.4: A central simpleF -algebraA is a division

algebra, if every non-zero element ofA is invertible.
We need a tool for identifying the division algebras among

the cyclic algebras. The next proposition due to Albert [26,
Theorem 11.12, p. 184] serves as a starting point.

Proposition 3.3 (Norm condition):The cyclic algebraA =
(E/F, σ, γ) of degreen is a division algebra if and only if
none of the elementsγt, 0 < t < n, are norms of some
element ofE∗.

This result is most often stated in the above way. We
proceed to describe equivalent conditions that relax the con-
ditions, as now the number of powers ofγ to be tested drops
quite a bit. The relaxed conditions simply combine Albert’s
result and the following trivial observation.

Lemma 3.4:Assume thatE/F is a cyclic extension of
number fields, soGal(E/F ) = 〈σ〉 is cyclic of ordern. Let
γ ∈ F ∗ be an arbitrary element of the smaller field. Consider
the setS of such exponentst of γ thatγt belongs to the norm
group NE/F (E∗). ThenS is an additive subgroup ofZ and
we have

S = kZ

for somek that is a factor ofn.
Proof: Consider the homomorphismf : Z → F ∗ from

the additive group of integers to the multiplicative groupF ∗

given by the formulaf(t) = γt. We can then deduce that the
setS = f−1(NE/F (E∗)) is a subgroup of(Z, +). Elementary
group theory then tells us thatS = kZ for a unique non-
negative integerk. BecauseNE/F (γ) = γn we see thatn ∈ S.
Therefore the generatork of S must dividen.
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Proposition 3.5 (Norm condition):The cyclic algebraA =
(E/F, σ, γ) of degreen is a division algebra if and only if
the smallest factort ∈ Z+ of n such thatγt is the norm of
some element ofE∗ is n.

Proof: If there are integerst, 0 < t < n, such thatγt is
a norm, then Lemma 3.4 tells us that the smallest sucht must
be a factor ofn. Therefore it is enough to test the factors of
n as opposed to all the integers up ton− 1.

To take full advantage of Lemma 3.4 we record the follow-
ing ultimate version of the norm condition.

Proposition 3.6 (Norm condition):The cyclic algebraA =
(E/F, σ, γ) of degreen is a division algebra if and only if
γn/p is not the norm of some element ofE∗ for any prime
divisor p of n.

Proof: Again, if γt is a norm for some proper divisort
of n, then some integer multiple oft is of the formn/p for
some prime factorp of n, saykt = n/p, k ∈ Z, k > 0, so it
suffices to test the exponents of this prescribed form. For if
γt were a norm, so would beγn/p = γkt = (γt)k.

Due to the above proposition, the elementγ is often referred
to as thenon-norm element.

Example 3.1:The division algebraGA used in [3] to con-
struct the Golden code is a cyclic algebra withF = Q(i),
E = Q(i,

√
5), γ = i, when theF -automorphismσ is

determined byσ(
√

5) = −√5. We also note that, in addition
to this representation,GA can be given another construction
as a cyclic algebra. As nowu2 = i we immediately see that
F (u) is a subfield ofGA that is isomorphic to the eighth
cyclotomic field E′ = Q(ζ), where ζ = (1 + i)/

√
2. The

relation u
√

5 = −√5u read differently means that we can
view u as the complex numberζ and

√
5 as the auxiliary

generator, call itu′ =
√

5. We thus see that the cyclic algebra

E′ ⊕ u′E′ = (E′/F, σ′, γ′)

is isomorphic to the Golden algebra. Hereσ′ is the F -
automorphism ofE′ determined byζ 7→ −ζ andγ′ = u′2 = 5.

A. Orders and discriminants of a division algebra

The main algebraic object in the design of code lattices from
algebraic number fields is the ring of algebraic integers. In the
division algebras the analogy of this concept is the maximal
order. We begin with two examples.

Example 3.2:Suppose thatE/F is a cyclic extension of
algebraic number fields. LetA = (E/F, σ, γ) be a cyclic
division algebra and letγ ∈ F ∗ be an algebraic integer. We
immediately see that theOF -module

Λ = OE ⊕ uOE ⊕ · · · ⊕ un−1OE ,

whereOE is the ring of integers, is a subring in the cyclic
algebra(E/F, σ, γ). We refer to this ring as thenatural order.
Note also that ifγ is not an algebraic integer, thenΛ fails to
be closed under multiplication.

We use the previous notation.
Definition 3.5: An OF -order Λ in A is a subring ofA,

having the same identity element asA, and such thatΛ is a
finitely generated module overOF and generatesA as a linear
space overF .

Remark 3.1:We use the notationΛ interchangeably for
both orders and lattices, as the orders we shall use are also
lattices.

Proposition 3.7:Any F -central division algebraA has a
maximalOF -order and any order insideA is contained in at
least one maximal order.

The following example illustrates the fact that non-trivial
maximal orders are not just some rare and abstract objects,
but come up in the most common situations.

Example 3.3:In the algebra of rational Hamiltonian quater-
nions H(Q) = (Q(i)/Q, σ,−1), whereσ is the usual com-
plex conjugation, standard notation is to denote the auxiliary
generator byj instead ofu, and to writek = ij. Soi2 = j2 =
k2 = −1, andji = −ij.

In this case the natural orderΛ = Z[i, j, k] is known as the
Lipschitz order. A maximal order known as Hurwitz order is
ΛH = Zρ⊕ Zi⊕ Zj ⊕ Zk, whereρ = (1 + i + j + k)/2.

See [5] for MISO codes constructed from the above quater-
nion orders.

In order to study the relation between the ringOF and
theOF -order Λ, it can be beneficial to consider the division
algebraA as a subalgebra in a matrix algebra.

Theorem 3.8:Let A be a division algebra with centerF .
Every maximal subfieldE of A containsF . Further, if [A :
F ] = n2, then

[E : F ] = n.

Remark 3.2:It is clear that any division algebra contains at
least one maximal subfield.

Let A be anF -central division algebra where[A : F ] = n2

and suppose thatE is a maximal subfield ofA. Then we
can considerA as ann-dimensional right vector space and
the left multiplication with an elementc of A is anE-linear
transformation ofA. Therefore,c can be seen as a matrix
C ∈ Mn(E). So described representation gives us an injective
F -algebra homomorphismψ from A to Mn(E). To shorten
the notation we often identify the algebraA and its matrix
representation. We refer to mapsψ by calling themmaximal
representations. We refer the reader to [7, Chapter 6, Section
A] for details of this map.

Definition 3.6: The determinant (resp. trace) of the matrix
C above is called thereduced norm(resp.reduced trace) of the
elementc ∈ A and is denoted bynrA/F (c) (resp.trA/F (c)).

Remark 3.3:The connection with the usual norm map
NA/F (a) (resp. trace mapTA/F (a)) and the reduced norm
nr(a) (resp. reduced tracetr(a)) of an elementa ∈ A is
NA/F (a) = (nr(a))n (resp.TA/F (a) = ntr(a)), wheren is
the degree ofE/F .

Proposition 3.9:LetA be anF -central division algebra and
a an element ofA. Thennr(a) and tr(a) ∈ F.

Example 3.4:Suppose thatE/F is a cyclic extension of
algebraic number fields. LetA = (E/F, σ, γ) be a cyclic
division algebra.

We can considerA as a right vector space overE and every
elementa = x0+ux1+· · ·+un−1xn−1 ∈ A has the following
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representation as a matrixψ(a) = A

=




x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) γσn−1(x2)
x2 σ(x1) σ2(x0) γσn−1(x3)
...

...
xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)




.

Proposition 3.10:The norm and trace maps do not depend
on the maximal representation.

Proposition 3.11:Let Λ be anOF -order in anF -central
division algebraA. Then for any elementa ∈ Λ its reduced
norm nrA/F (a) and reduced tracetrA/F (a) are elements of
the ring of integersOF of the fieldF . If a is non-zero, then
so isnrA/F (a).

Now we are ready to define one of the main algebraic
objects of this paper.

Definition 3.7: Let A be anF -central division algebra and
m = dimFA. TheOF -discriminantof theOF -orderΛ is the
ideal d(Λ/OF ) in OF generated by the set

{det(trA/F (xixj))m
i,j=1 | (x1, ..., xm) ∈ Λm}.

To shorten the notation, we denoted(Λ/OF ) = d(Λ), when-
ever there is no danger of confusion.

In the interesting cases ofF = Q(i) (resp.F = Q(
√−3))

the ring R = Z[i] (resp.R = Z[ω], ω = (−1 +
√−3)/2)

is a Euclidean domain, so in these cases (as well as in the
caseR = Z) it makes sense to speak of the discriminant
as an element ofR rather than as an ideal. We simply pick a
generator of the discriminant ideal, and call it the discriminant.
Equivalently we can compute the discriminant as

d(Λ/R) = det(tr(xixj))m
i,j=1,

where {x1, . . . , xm} is any R-basis ofΛ. It is readily seen
that wheneverΛ ⊆ Γ are twoR-orders, thend(Γ) is a factor
of d(Λ). The index[Γ : Λ] is related to discriminants by the
following lemma.

Lemma 3.12:

[R : d(Λ)R] = [Γ : Λ]2[R : d(Γ)R]
Proposition 3.13:All the maximal orders of anF -central

division algebra share the same discriminant.
Now we can define the following.
Definition 3.8: Let A be an F -central division algebra

and let Λ be some maximal order inA. Then we refer to
d(Λ/OF ) = dA as thediscriminant of the algebraA.

We include as an easy reference (see [27, Theorem 1.61,
p. 42]) the following formula for the discriminant of certain
cyclotomic fields.

Proposition 3.14:Let ζ` = exp(2πi/2`) be a complex
primitive root of unity of order2`, where` ≥ 2 is an integer.
Thenn = [Q(ζ`) : Q(i)] = 2`−2 and

d(Z[ζ`]/Z[i]) = (1 + i)`(n/2).

IV. ORDER CODES

Let F be a complex quadratic field. Again, we assume that
E/F is a cyclic field extension of degreen with the Galois
group Gal(E/F ) = 〈σ〉. Let A = (E/F, σ, γ) be a cyclic
division algebra of indexn. That is,

A = E ⊕ uE ⊕ u2E ⊕ · · · ⊕ un−1E,

as a (right) vector space overE. Further, letun = γ be an
algebraic integer,γ ∈ OF .

Let us now consider the mapψ described in Example 3.4
and identify the algebraA and its matrix representation.

In order to produce a MIMO lattice satisfying the NVD
property, the authors of [3] restricted the coefficientsxi ∈ E
of uj and the non-norm element to be algebraic integers, i.e.
γ ∈ OF , xi ∈ OE . As a result, we get a natural order

Λn = OE ⊕ uOE ⊕ u2OE ⊕ · · · ⊕ un−1OE .

Proposition 3.11 and Lemma 13.2 then assure that
|det(ψ(a))| ≥ 1, for every non-zeroa ∈ Λn. It is also easily
proved (Lemma 5.1) that the latticeψ(Λn) is full in Mn(C).
These properties show thatΛn is a promising space-time code
in terms of this paper.

However, these remarkable properties are not true only for
natural orders. We could have chosen anyOF -order (and any
maximal representationψ) and still maintain all the benefits
of the natural order. In the following, we discuss the coding
theoretic properties ofOF -orders supposing always that we
use some maximal representationψ. As we are considering
F -central division algebras, the reader can always suppose
that we are using some cyclic generation and representation
ψ attached to it. At this point, the volumes of fundamental
parallelotopes of the orders could depend on the chosen map
ψ. Let A be anF -central division algebra of indexn andψ
some maximal representation.

Proposition 4.1:Let Λ be anOF -order inA. Then

detmin (ψ(Λ)) = 1.
Proof: This result is a direct corollary of Proposition

3.11 and Lemma 13.2.
Corollary 4.2: Suppose we have anOF -order Λ in an F -

central division algebraA of index n. Then

δ(ψ(Λ)) =
(

1
m(ψ(Λ))

) 1
2n

and
ρ(ψ(Λ)) =

1
m(ψ(Λ))

.

This reveals that in order to measure the normalized minimum
determinant and density of an order, it is enough to determine
the volume of the fundamental parallelotope.

Corollary 4.3: Let Λ1 ⊆ Λ2 be twoOF -orders inside an
F -central division algebraA. Then

δ(ψ(Λ1)) ≤ δ(ψ(Λ2)),

ρ(ψ(Λ1)) ≤ ρ(ψ(Λ2))

and we have an equality if and only ifΛ1 = Λ2.
Proposition 4.4:Suppose we have two maximal orders

Λ1, Λ2 ⊆ A. Then

δ(ψ(Λ1)) = δ(ψ(Λ2))

and
ρ(ψ(Λ1)) = ρ(ψ(Λ2))

Proof: The proof is postponed to Section V.
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It is now evident that in order to maximize the minimum
determinant we have to use maximal orders as any other order
is always contained in a maximal one having a better minimum
determinant.

V. THE CODING GAIN AND DENSITY OF AN ORDER CODE

Previously, we have seen that the normalized minimum
determinant and the density of an order code depend only on
the volume of the fundamental parallelotope. In this section,
we are going to show how this volume actually depends on
the algebraic properties of the order.

The definition of the discriminant closely resembles that of
the Gram matrix of a lattice, so the following results are not
very surprising.

Lemma 5.1:Assume thatF is an imaginary quadratic num-
ber field and that1 and θ form a Z-basis of its ring of
integersR. Assume further that the orderΛ is a free R-
module (an assumption automatically satisfied, whenR is a
principal ideal domain). Let us further assume thatψ is some
maximal representation. Then the measure of the fundamental
parallelotope of the latticeψ(Λ) equals

m(ψ(Λ)) = |=θ|n2 |d(Λ/R)|.
Proof: Let A = (aij) be ann× n complex matrix. We

flatten it out into a2 × 2n2 matrix L(A) by first forming a
vector of lengthn2 out of the entries (e.g. row by row) and
then replacing a complex numberz by a diagonal two by two
matrix with entriesz and z∗ (= the usual complex conjugate
of z). If A and B are two square matrices withn rows we
can easily verify the identities

L(A)L(B)H =
(

tr(ABH) 0
0 tr(AHB)

)
(2)

and

L(A)L(BT )T =
(

tr(AB) 0
0 tr(AB)∗

)
. (3)

Next let B = {x1, x2, . . . , xn2} be anR-basis forψ(Λ).
We form the2n2× 2n2 matrix L(B) by stacking the matrices
L(xi) on top of each other. Similarly we getR(B) by using the
matricesL(xT

i )T as ‘column blocks’. Then by (3) the matrix
M = L(B)R(B) consists of two by two blocks of the form

L(xi)L(xT
j )T =

(
tr(xixj) 0

0 tr(xixj)∗

)
.

Clearly det R(B) = ±det L(B), anddet M = |d(Λ/R)|2, so
we get

|d(Λ/R)| = | detL(B)|.
Next we turn our attention to the Gram matrix. By our

assumptions the setB ∪ θB is a Z-basis forΛ. Let us denote

D =
(

1 1
θ θ∗

)
.

From the identities<(xy∗) = (xy∗ + x∗y)/2 and

D

(
x 0
0 x∗

)
=

(
x x∗

θx θ∗x∗

)

together with (2) it follows that for any twon×n matricesA
andB we have

1
2

(DL(A)) (DL(B))H =
( <(tr(ABH)) <(tr(A(θB)H)
<(tr(θABH)) <(tr(θA(θB)H))

)
.

Therefore, if we denote byD[n] the2n2×2n2 matrix having
n2 copies ofD along the diagonal and zeros elsewhere, we
get the following formula for the Gram matrix

G(ψ(Λ)) =
1
2

(
D[n]L(B)

)(
D[n]L(B)

)H

.

Thus,

m(ψ(Λ)) = det G(ψ(Λ))1/2 = |detL(B)|
∣∣∣∣
1
2

detD

∣∣∣∣
n2

.

Our claim now follows from all these computations and the
fact that(detD)/2 = (θ∗ − θ)/2 = −=θ.

We have now seen that the density of an order code
does not depend on the representation. Thus, as we are only
interested in the questions concerning the density, we will
forget about the representationψ and simply identify the order
and its matrix representation. Now we also have a proof for
Proposition 4.4, as all the maximal orders share the same
discriminant.

In the cases ofF = Q(i) andF = Q(
√−3), we haveθ = i

andθ = (−1 +
√−3)/2, respectively. Thus, we immediately

get the following two corollaries.
Corollary 5.2: Let F = Q(i), R = Z[i], and assume that

Λ ⊆ (E/F, σ, γ) is an R-order. Then the measure of the
fundamental parallelotope equals

m(Λ) = |d(Λ/Z[i])|.
Example 5.1:When we scale the Golden code [3] to have

a unit minimum determinant, all the 8 elements of itsZ-basis
will have length 51/4 and the measure of the fundamental
parallelotope is thus 25. In view of all of the above this is
also a consequence of the fact that theZ[i]-discriminant of
the natural order of the Golden algebra is equal to 25. As was
observed in [28] the natural order happens to be maximal in
this case, so the Golden code cannot be improved upon by
enlarging the order withinGA.

Corollary 5.3: Let ω = (−1 +
√−3)/2, F = Q(ω), R =

Z[ω], and assume thatΛ ⊂ (E/F, σ, γ) is an R-order. Then
the measure of the fundamental parallelotope equals

m(Λ) = (
√

3/2)n2 |d(Λ/Z[ω])|.
The upshot is that in both casesmaximizing the density

of the code, i.e. minimizing the fundamental parallelotope,
is equivalent to minimizing the discriminant. Thus, in
order to get the densest MIMO-codes we need to look for
division algebras that have a maximal order with as small a
discriminant as possible.

For an easy reference we also include the following result.
Lemma 5.4:Let E/F be as above, assume thatγ is an

algebraic integer ofF , and let Λ be the natural order of
Example 3.2. Ifd(E/F ) is theOF -discriminant ofOE (often
referred to as the relative discriminant of the extensionE/F ),
then

d(Λ/OF ) = d(E/F )nγn(n−1).



PREPRINTED, WITH PERMISSION, FROM IEEE TRANSACTIONS ON INFORMATION THEORY. (c©2008 IEEE). 8

Proof: In the expansion

Λ = OE ⊕ uOE ⊕ · · · ⊕ un−1OE

we see thatuiOE andujOE are orthogonal to each other with
respect to the bilinear form given by the reduced trace except
in the cases wherei + j ≡ 0 (mod n). Assume thati + j is
divisible byn for somei, j in the range0 ≤ i, j < n, and that
x1, . . . , xn are elements ofOE . Then the multiplication rules
of the cyclic algebra together with Lemma 13.6 imply that

det(tr(uixkujx`))n
k,`=1 = ±det(ui+jtr(xkx`))n

k,`=1

= ±γε det(tr(xkx`))n
k,`=1,

where the exponentε is equal to zero orn according to whether
i + j equals zero orn. The former case occurs only once and
the latter case occurs exactlyn−1 times. The claimed formula
then follows.

Example 5.2:We use the notation from Proposition 3.14.
In [11] Kiran and Rajan have shown that the family of cyclic
algebrasA` = (Q(ζ`)/Q(i), σ(ζ`) = ζ5

` , 2 + i), with ` ≥ 3,
consists entirely of division algebras. LetΛnat,` be the natural
order of the algebraA`. We may now conclude from Lemma
5.4, Proposition 3.14, and Corollary 5.2 that

d(Λ`,nat/Z[i]) = (2 + i)n(n−1)(1 + i)`(n/2)n,

and that

m(Λnat,`)2 = 2`(n/2)n5n(n−1).

For instance, in the 2 antenna case` = 3, n = 2, we have
m(Λnat,`) = 40, and thus the Golden code is denser than the
corresponding latticeA3 of the same minimum determinant.
However, the natural order ofA3 is not maximal and we will
return to this example later on.

VI. T HE DISCRIMINANT BOUND

In the previous section, we studied the relation between
the normalized minimum determinant of an order and its
discriminant. In the case of a maximal order it thus depends
on the discriminant of the algebra. It is now evident that there
are some optimal algebras that have minimal discriminants. In
order to describe and hopefully also identify these optimal
algebras we need to gain a deeper understanding of the
discriminant of an algebra.

In this section, we leave coding theory behind and only
consider the discriminants of division algebras (and also all
central simple algebras). The emphasis is on the problem of
finding the minimal possible discriminant. In Section VII we
return to our main track and apply our general results to get
bounds for normalized minimum determinants and densities
of codes from orders of division algebras.

Due to space limitations, we cannot perform a comparison
to the commutative case or give a deep insight here. We refer
the interested reader to [29] for a more thorough discussion
on the discriminant bounds and the underlying principles.

For more details and for the proofs of this Section, we refer
the reader to [23], especially to its Chapters 3, 7, and 8.

A. Localization and Hasse invariants of an algebra

We are mostly interested in such cyclic division algebrasA,
where the centerF is an algebraic number field. However, in
order to understand these algebras, we also have to consider
their localizations. These localizations force us out of the
world of simple division algebras.

If F ′ is an extension field ofF andA is a central simple
F -algebra, then the tensor productA′ = A⊗F F ′ is a central
simple F ′-algebra. We refer to this algebra as the algebra
obtained fromA by extending the scalars toF ′.

Definition 6.1: Let F be an algebraic number field that is
finite dimensional overQ and letP be some prime ofF . If
A is an F -central simple algebra, then we call the algebra
AP = F̂P ⊗F A the localizationof A at P .

Proposition 6.1:With the notation of the previous defini-
tion,

[A : F ] = [AP : F̂P ].
A theorem of Wedderburn reduces the classification of

central simple algebras to the case of division algebras.
Theorem 6.2 (Wedderburn):If A is an F -central simple

algebra, then
A ' Mn(D),

whereD is someF -central division algebra. The integern and
the algebraD are uniquely determined (up to isomorphism).

Definition 6.2: Let A be the algebra of the previous theo-
rem. We callindex[A] =

√
[D : F ] the indexof the algebra

A. We note that the index is always an integer.
Definition 6.3: Let A be anF -central simple algebra. We

call √
[A : F ]

the degreeof the algebra.
Remark 6.1:One should notice that anF -central simple

algebraA is a division algebra if and only ifindex[A] =√
[A : F ].
Theorem 6.2 gives us that̂FP ⊗F A ' Ms(DP ), whereDP

is someF̂P -central division algebra. This leads us to consider
those division algebras, wherêFP is some completion ofF .

Let F be an algebraic number field that is finite dimensional
over Q and letP be a finite prime ofF .

Proposition 6.3:The cyclic algebra

A(n, r) = (Ê/F̂P , σ, πr), (r, n) = 1, 0 ≤ r < n,

whereÊ is the unique unramified extension ofF̂P of degreen,
σ is the Frobenius automorphism, andπ is a prime element of
F̂P , is a division algebra. The algebrasA(n, r1) andA(n, r2)
are isomorphic if and only ifr1 = r2.

Theorem 6.4:Let A be a F̂P -central division algebra of
index n. Then

A ' A(n, r)

for somer.
Definition 6.4: Let A be theF̂P -central division algebra of

the previous theorem. We call the rational numberinv[A] = r
n

the Hasse invariant ofA.
Now we are ready to define the following.
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Definition 6.5: Suppose thatF is an algebraic number field
andP some prime ofF . LetA be anF -central simple algebra
and

F̂P ⊗F A = MκP
(DP ),

where DP is a F̂P -central division algebra. We refer to
inv[DP ] = hP = rP /mP as the Hasse invariant ofA at
P and tomP as thelocal index. The integerκP is referred to
as thelocal capacity(at P ).

Remark 6.2:The fact that the local capacity and Hasse
invariants are well defined follows from the uniqueness part
of Theorem 6.2.

Note thatmP = 1 if and only if

AP ' MκP
(F̂P ).

We say that a primeP is ramified in the algebraA if the
corresponding local index is not1.

Theorem 6.5:Let A be anF -central simple algebra. There
exist only a finite set{P1, . . . , Pn} of primes inF that have
non-zero Hasse invariants and

index[A] = LCM{mPi
}.

Corollary 6.6: Suppose thatA is anF -central simple alge-
bra of degreen. If A has such a local indexmP that

mP = n,

thenA is a division algebra.

B. The Brauer group

In order to get a better grip of the central simple algebras
it is beneficial to consider them as elements in a group. This
deceivingly simple step, taken by Richard Brauer, gives us a
great insight on central simple algebras.

Proposition 6.7:LetA andB beF -central simple algebras.
ThenA⊗F B is anF -central simple algebra.

Let us now consider the family of allF -central simple
algebras. Two central simpleF -algebrasA = Mn(DA) and
B = Ms(DB) are said to besimilar, if DA ' DB. We denote
the similarity class of a central simple algebraA by [A].

Similarity classes ofF -central simple algebras form a group
(under tensor product overF ), called theBrauer groupBr(F )
of the fieldF . The identity element ofBr(F ) is the similarity
class ofF and the inverse of the element[A] ∈ Br(F ) is the
similarity class of theopposite algebraAopp.

Theorem 6.8:Let F be an algebraic number field and
suppose thatA andB areF -central simple algebras. Then

A ∼ B ⇐⇒ AP ∼ BP ∀P ∈ F.
This theorem now allows us to introduce the following map.
Lemma 6.9:Let A be anF -central simple algebra where

F is an algebraic number field andP a prime inF . Then the
map defined by

A 7−→ F̂P ⊗F A,

is a group homomorphism fromBr(F ) to Br(F̂P ).
The following theorem gives us a concrete view on the

previous map.
Theorem 6.10:Suppose thatL/F is a cyclic Galois ex-

tension,Gal(L/F ) = 〈σ〉 and a ∈ F ∗. Let E be any field

containingF , and letEL be the compositum ofE andL in
some larger field containing bothE andL. We may write

H = 〈σk〉 = Gal(L/L ∩ E) ' Gal(EL/E),

wherek is the least positive integer such thatσk fixes L∩E.
Then

E ⊗F (L/F, σ, a) ∼ (EL/E, σk, a).

C. Proving the Discriminant Bound

The following relatively deep result from class field theory
is the key for deriving the discriminant bound. Assume that
the fieldF is totally complex. Then we have thefundamental
exact sequence of Brauer groups(see e.g. [23, Equation 32.13,
p. 277] or [30])

0 −→ Br(F ) −→ ⊕Br(F̂P ) −→ Q/Z −→ 0. (4)

Here the first nontrivial map is obtained by mapping the
similarity class of aF -central simple algebraA to a vector
consisting of the similarity classes of all the simple algebras
AP obtained fromA by extending the scalars fromF to F̂P ,
where P ranges over all the primes ofOF . Note that the
injectivity of this map is stated in Theorem 6.8. That such a
mapping is well defined is due to Lemma 6.9 and Theorem
6.5.

The second nontrivial map of the fundamental exact se-
quence is then simply the sum of the Hasse invariants of
the division algebrasAP representing elements of the Brauer
groupsBr(F̂P ).

The sequence tells us that the sum of the nontrivial Hasse
invariants of any central simple algebra must be an integer.
Furthermore, this is the only constraint for the Hasse invari-
ants, i.e. any combination of Hasse invariants(a/mP ) such
that only finitely many of them are non-zero, and that they
sum up to an integer, is realized as a collection of the Hasse
invariants of some central simple algebraA over F .

Example 6.1:For example, whenF = Q(i), the funda-
mental exact sequence tells us that there is a 16-dimensional
division algebraD1 over F with non-trivial Hasse invariants
1/4 at the primeP1 = 1 + i and 3/4 at the primeP2 = 3.
There is also another 16-dimensional division algebraD2 with
non-trivial Hasse invariants1/4 at P1, 1/4 at P2 and 1/2
at primeP3 = 2 + i. Then D1 ⊗F D2 has Hasse invariants
1/4 + 1/4 = 1/2 at P1, 3/4 + 1/4 = 1 ≡ 0 at P2 and
0 + 1/2 = 1/2 at P3. Wedderburn’s theorem tells us that
D1 ⊗F D2 ' Mm(D3) for a division algebraD3. The non-
trivial local indices ofD3 are both equal to 2, so we know that
D3 is a 4-dimensionalF -algebra. A calculation of dimensions
tells us thatm = 8.

Let us now suppose that, with a given number fieldF , we
would like to produce a division algebraA of a given indexn,
havingF as its center and the smallest possible discriminant.
We proceed to show that, while we cannot give an explicit
description of the algebraA in all the cases, we can derive an
explicit formula for its discriminant.

Theorem 6.11:Assume that the fieldF is totally complex
and thatP1, . . . , Pn are some prime ideals ofOF . Assume fur-
ther that a sequence of rational numbersa1/mP1 , . . . , an/mPn
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satisfies
n∑

i=1

ai

mPi

≡ 0 (mod 1),

1 ≤ ai ≤ mPi
, and(ai,mPi

) = 1.
Then there exists a central divisionF -algebraA that has

local indicesmPi
and the least common multiple (LCM) of

the numbers{mPi} as an index.
If Λ is a maximalOF -order inA, then the discriminant of

Λ is

d(Λ/OF ) =
n∏

i=1

P
(mPi

−1)
[A:F ]
mPi

i .

Proof: By exactness of the sequence (4) we know that
there exists a central division algebraA overF which has local
indicesmPi

. We also know that
√

[A : F ] = LCM{mPi
}. By

[23, Theorem 32.1] the discriminant then equals

d(Λ/R) =

(
n∏

i=1

Pi
(mPi

−1)κPi

)√[A:F ]

, (5)

whereκPi
is the local capacity.

A simple calculation of dimensions shows that

κP =

√
[A : F ]
mP

.

Substituting this into (5) we get the claim.
At this point it is clear that the discriminantd(Λ) of a

division algebra only depends on its local indicesmPi .
Now we have an optimization problem to solve. Given the

centerF and an integern we should decide how to choose the
local indices and the Hasse invariants so that the LCM of the
local indices isn, the sum of the Hasse invariants is an integer,
and that the resulting discriminant is as small as possible. We
immediately observe that at least two of the Hasse invariants
must be non-integral.

Observe that the exponentd(P ) of the prime idealP in the
discriminant formula is

d(P ) = (mP − 1)
[A : F ]

mP
= n2

(
1− 1

mP

)
.

As for the nontrivial Hasse invariantsn ≥ mP ≥ 2, we
see thatn2/2 ≤ d(P ) ≤ n(n − 1). Therefore the nontrivial
exponents are roughly of the same size. For example, when
n = 6, d(P ) will be either 18, 24 or 30 according to whether
mP is 2, 3 or 6. Not surprisingly, it turns out that the optimal
choice is to have only two non-zero Hasse invariants and to
associate these with the two smallest prime ideals ofOF .

Theorem 6.12 (Main Theorem):Assume thatF is a totally
complex number field, and thatP1 andP2 are the two smallest
prime ideals inOF . Then the smallest possible discriminant
of all central division algebras overF of index n is

(P1P2)n(n−1).
Proof: By Theorem 6.11 the division algebra with Hasse

invariants1/n and(n−1)/n at the primesP1 andP2 has the
prescribed discriminant, so we only need to show that this
is the smallest possible value. When there are only two non-
trivial Hasse invariants, the two local indices are clearly equal

to n, so we cannot do better than this with only two non-trivial
Hasse invariants.

The next observation we make is that in order to min-
imize the discriminant one cannot have more than three
nontrivial Hasse invariants. This is because for prime ideals
P1, P2, P3, P4 (listed from the smallest to the largest) we
always have

P
d(P1)
1 P

d(P2)
2 P

d(P3)
3 P

d(P4)
4 > (P1P2)n(n−1),

as the exponentsd(Pi) ≥ n2/2 irrespective of the values of
the Hasse invariants. A possibility is that some combination
of three non-trivial Hasse invariants(ai/mPi

), i = 1, 2, 3
might yield a smaller discriminant. Let us study this in detail,
and assume that a division algebraD has these 3 non-trivial
Hasse invariants at the primesP1, P2, P3 (not necessarily in
increasing order).

If one of the local indices, saymP1 , has only a single prime
factor p, then mP1 = pt, t > 0. We write mP2 = p′2p

a

and mP3 = p′3p
b, where the integer factorsp′2 and p′3 are

coprime top. Without loss of generality (swapP2 and P3,
if necessary) we may assume thata ≤ b. Let first q be any
prime divisor of p′2 or p′3. Then a1/pt is a q-adic integer.
Because the sum of the three Hasse invariants is a rational
integer, theq-adic triangle inequality shows that any power of
q dividing eitherp′2 or p′3 must also divide the other. Therefore
p′2 = p′3. Let us next consider thep-adic values. By thep-
adic triangle inequality we have eithert = b, or a = b > t.
In both cases we havemP3 = LCM(mP1 ,mP2). Therefore
mP3 = LCM(mP1 ,mP2 ,mP3) = n.

We shall show that in this case the discriminant becomes
smaller, if we assign the sum of the two Hasse invariants

a1/mP1 + a2/mP2 = a′/m′
P ′ (mod 1)

to the smaller primeP ′ of the two prime idealsP1 and P2.
Let D′ be the division algebra with only non-trivial Hasse
invariantsa′/m′

P ′ atP ′ anda3/mP3 atP3. Becausea′/m′
P ′+

a3/mP3 is an integer, we immediately see thatm′
P ′ = mP3 .

Therefore the indexn′ of D′ is n′ = mP3 = n. As d(P1) +
d(P2) > n(n − 1) ≥ d′(P ′), whered′(P ′) is the exponent
corresponding to the local indexmP ′ , D′ will have a smaller
discriminant thanD.

The remaining case is that all the three local indices have
at least two distinct prime factors. In this case the three local
indices are all≥ 6. As thend(P1)+d(P2)+d(P3) > 2n(n−1),
we see that the discriminant of the division algebra with these
Hasse invariants also exceeds the stated lower bound.

We remark that in the most interesting (for MIMO) cases
n = 2, 3, 4, Theorem 6.12 is more or less an immediate
corollary of Theorem 6.11. We also remark that the division
algebra achieving our bound is by no means unique. For
example, any pair of Hasse invariantsa/n, (n− a)/n, where
0 < a < n, and (a, n) = 1, leads to a division algebra with
the same discriminant.

VII. D ENSITY BOUNDS FOR ORDER CODES

In this section, we return to our original route and derive
bounds and existence results for the coding gains and normal-
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ized densities of order codes. After we have given the bounds,
we proceed with examples of algebras achieving these bounds.

The smallest primes of the ringZ[i] are 1 + i and 2 ± i.
They have norms 2 and 5 respectively. The smallest primes of
the ringZ[ω] are

√−3 and2 with respective norms 3 and 4.
Together with Corollaries 5.2 and 5.3 we have arrived at the
following bounds.

Corollary 7.1 (Discriminant bound):Let Λ be an order of
a central division algebra of indexn over the fieldQ(i).
Then the measure of a fundamental parallelotope of the
corresponding lattice satisfies

m(Λ) ≥ 10n(n−1)/2

and the normalized minimum determinant satisfy the inequal-
ity

δ(Λ) ≤ 1/10(n−1)/4.

Furthermore, for everyn, there exist cyclic division algebras
with centerQ(i), whose maximal orders achieve equality in
both of these bounds.

Corollary 7.2 (Discriminant bound):Let Λ be an order of
a central division algebra of indexn over the fieldQ(ω),
ω = (−1 +

√−3)/2. Then the measure of the fundamental
parallelotope of the corresponding lattice satisfies

m(Λ) ≥ (
√

3/2)n2
12n(n−1)/2

and the normalized minimum determinant satisfy the inequal-
ity

δ(Λ) ≤ (2/
√

3)n/2/12(n−1)/4.

Furthermore, for everyn there exist cyclic division algebras
with centerQ(ω), whose maximal orders achieve equality in
both of these bounds.

We remark that in [29], it was shown that using the center
Q(
√−7) instead of the more common ones above, we get

even denser maximal orders provided thatn > 4. See also
[31] related to this center.

The Golden algebra reviewed in Example 3.1 has its nontriv-
ial Hasse invariants (both equal to1/2) at the primes2+i and
2− i and hence cannot be an algebra achieving the bound of
Theorem 6.12. A clue for finding the optimal division algebra
is hidden in the alternative description of the Golden algebra
given in Example 3.1. It turns out that in the caseF = Q(i),
E = Q(ζ), instead of usingγ′ = 5 as in the case of the
Golden algebra, we can use its prime factorγ = 2 + i.

Proposition 7.3:The maximal orders of the cyclic division
algebraA3 = (Q(ζ)/Q(i), σ, 2 + i) of Example 5.2 achieve
the bound of Theorem 6.12.

Proof: The algebraA3 is generated as aQ(i)-algebra by
the elementsζ andu subject to the relationsζ2 = i, u2 = 2+i,
anduζ = −ζu. The natural orderZ[ζ]⊕uZ[ζ] is not maximal.
Let us use the matrix representation ofA3 as2× 2 matrices
with entries inQ(ζ), so elements ofQ(i) are mapped to scalar
matrices andζ is mapped to a diagonal matrix with diagonal
elementsζ and−ζ. We observe that the matrix

w =
1
4

(
2i− (1− i)

√
2 (2 + i)(2i− (1 + i)

√
2)

(1 + i)(1 +
√

2 + i) 2i + (1− i)
√

2

)

is an element ofA3. Straightforward calculations show thatw
satisfies the equations

w2 = −i + iw and wζ = −1 + ζ3 − ζw.

From these relations it is obvious that the freeZ[ζ]-module
with basis elements1 andw is an orderΛ. Another straight-
forward computation shows thatd(Λ/Z[i]) = −8 + 6i =
(1 + i)2(2 + i)2. As this is the bound of Theorem 6.12 we
may conclude thatΛ is a maximal order.

By Corollary 5.2 we see that the fundamental parallelotope
of the maximal order in Proposition 7.3 has measure 10. We
compare this lattice to the Golden code, and scale both to have
unit minimum determinant. In a power constraint subset of the
signal space this lattice will then have approximately 2.5 times
as many codewords as the Golden code.

The algebraA3 has the drawback that the parameterγ is
quite large. This leads to an antenna power imbalance in both
space and time domains. To some extent these problems can
be alleviated by conjugating the matrix lattice by a suitable
diagonal matrix (a trick used in at least [15]). One of the
motifs underlying the perfect codes [10] is the requirement
that the variableγ should have a unit modulus. To meet this
requirement we proceed to give a different construction for
this algebra.

Theorem 7.4:Let λ be the square root of the complex
number2 + i belonging to the first quadrant of the complex
plane. The cyclic algebraGA+ = (Q(λ)/Q(i), σ, i), where
the automorphismσ is determined byσ(λ) = −λ, is a division
algebra. The maximal orders ofGA+ achieve the bound of
Theorem 6.12. Furthermore, the algebrasGA+ and A3 of
Theorem 7.3 are isomorphic.

Proof: The algebraGA+ is a central algebraF{u′, λ}
over the fieldF = Q(i) defined by the relationsλ2 = 2 + i,
u′2 = i, u′λ = −λu′. Comparing these relations with the
relations in the proof of Theorem 7.3 we get an isomorphism
of F -algebrasf : GA+ → A3 by declaringf(u′) = ζ, f(λ) =
u and extending this in the natural way. The other claims
follow immediately from this isomorphism and Theorem 7.3.

We refer to the algebraGA+ as the Golden+ algebra.
This is partly motivated by the higher density and partly by
the close relation between the algebraA3 and the Golden
algebra. After all, the algebraA3 comes out when in the
alternative description of the Golden algebra (cf. Example
3.1) the variableγ = 5 is replaced with its prime factor
2 + i. In Section IX we will provide an alternative proof for
Theorem 7.4 by explicitly producing a maximal order within
GA+ and verifying that it has the prescribed discriminant. It is
immediate from the discussion in the early parts of this section
that in this case there is only one cyclic division algebra (up
to isomorphism) with that discriminant.

It turns out that all the algebrasA` in the Kiran & Rajan
family of Example 5.2 have maximal orders achieving the
discriminant bound. The following observation is the key to
proving this.

Lemma 7.5:Let F be either one of the fieldsQ(i) or Q(ω),
and letP1 andP2 be two smallest ideals of its ring of integers
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R. Let D be a central division algebra overF , and letΛ be
any R-order inD. If the discriminantd(Λ) is divisible by no
prime other thanP1 andP2, then any maximal orderΓ of D
achieves the discriminant bound of Theorem 6.12.

Proof: We know that there exists a maximal order, say
Γ0 containingΛ. The discriminant ofΓ0 is then a factor of
d(Λ), so P1 and P2 are the only prime divisors ofd(Γ0).
From Theorem 6.11 we infer that the only nontrivial Hasse
invariants ofD occur atP1 and P2. As the sum of the two
Hasse invariants is an integer, they have the same denominator.
This must then be equal to the index ofD. The discriminant
formula of Theorem 6.11 then shows thatd(Γ0) equals the
discriminant bound. Any other maximal order inD shares its
discriminant withΓ0.

Corollary 7.6: Let ` > 2 be an integer. The maximal orders
of the cyclic division algebraA` = (Q(ζ`)/Q(i), σ, 2 + i)
from Example 5.2 achieve the discriminant bound.

Proof: Proposition 3.14 and Lemma 5.4 indicate that the
only prime factors of the discriminant of the natural order in
A` are1 + i and2 + i. The claim then follows from Lemma
7.5.

At this point we remark that the natural orders of the
algebrasA` of Example 5.2 are very far from being maximal.
We will study this in greater detail in Section IX.

Example 7.1:Let F = Q(
√−3), soOF = Z[ω]. In this

case the two smallest prime ideals are generated by2 and
1−ω and they have norms 4 and 3 respectively. By Theorem
6.12 the minimal discriminant is4(1−ω)2 whenn = 2. As the
absolute value of1−ω is

√
3 an application of the formula in

Corollary 5.3 shows that the latticeL of the code achieving this
bound hasm(L) = 27/4. In [32] we showed that a maximal
order of the cyclic algebra(E/F, σ(i) = −i, γ =

√−3),
whereE = Q(i,

√−3), achieves this bound.
We remark that one of the codes suggested in [15] is

the natural order of the algebra of Example 7.1. However,
the authors there never mentioned the possibility of using a
maximal order. Nor did they mention that their lattice actually
is an order.

VIII. E XAMPLE ALGEBRAS ACHIEVING THE

DISCRIMINANT BOUND

In the previous section, we proved the existence of ex-
tremely attractive MIMO codes with the best known coding
gain and gave examples of algebras achieving the discriminant
bounds.

In this section, we begin a systematic study of methods to
construct the actual codes by giving an explicit construction
of division algebras with minimal discriminants and unit non-
norm elements. After the correct algebra is found we can use
the existing algorithms to find the maximal order. We will
return to this question in Section IX.

In the following, we concentrate on the cases where the
center of the algebra isQ(i) or Q(

√−3). When natural orders
are used for the code construction, large non-norm elements
may result in a power imbalance between transmit antennas.
While this is not so clear, when we are using maximal orders,
the test data we have collected suggests that a big non-norm

element may negatively affect the performance of the code.
Therefore, it is beneficial to aim at small non-norm elements.
However, as noted in [10], we can choose a unit (by a unit
we mean a unit of the ringF , separate this from an element
having a unit modulus, see [33]) non-norm element only when
n < 7. In what follows, we actually manage to build an
optimal division algebra with a unit non-norm element in all
the possible cases.

In Section XI, we relax the restriction on the size ofγ
and give a general construction forQ(i) andQ(

√−3)-central
division algebras with a minimal discriminant.

One should notice that none of the natural orders of the
algebras we shall construct will have a minimal discriminant.
This, unfortunately, is not just a coincidence. Later on in
Section XIII-B of Appendix, we prove that there are no natural
orders reaching the bound of Theorem 6.12.

A. The centerQ(i)

TABLE I

Q(i)-CENTRAL DIVISION ALGEBRAS WITH A UNIT γ

n γ fn

2 i x2 + (2 + i)

4 i x4 + (2 + i)

In Table I we give a cyclic generation for algebras of degree
2 and 4 with minimal discriminants. Proposition 3.6 implies
that 4 is the largest degree that we can hope to have a cyclic
division algebra with a unitγ. There does not exist such an
algebra of degree3. The reason for this is that in every cyclic
extensionE/Q(i) of degree 3, all the units ofQ(i) are third
powers and therefore are in the image of the normNE/Q(i).

In the following we use the generic notationQ(i) = F and
E = F (an), wherean is a zero of the polynomialfn, and
prove that the algebras in Table I are division algebras with
minimal discriminants. We refer to these algebras withDi,
wherei represents the index of the algebra.

AlgebraD2: The algebraD2 was previously shown to be a
division algebra with a minimal discriminant.

AlgebraD4: When consideringD4 we first have to check
whether it really is a division algebra. We note that(2 + i)
is a totally ramified prime inE/F . Consequently the lo-
cal extensionÊ(2+i)/F̂(2+i) is totally and tamely ramified
cyclic extension of degree4. We note that#(OF(2+i)/(2 +
i)OF(2+i)) = #(OF /(2 + i)) = 5.

Proposition 3.6 states thatD4 is a division algebra ifi
satisfies the norm condition, i.e.−1 is not a norm. While
proving this we see at the same time that none of the elements
{i,−1,−i} is a norm. This demonstrates that the difference
between Proposition 3.6 and its more stringent cousins is
marginal.

Hasse Norm Theorem [23, Theorem 32.8] states that it is
enough to show that the elements{i,−1,−i} are not norms
in the extensionÊ(2+i)/F̂(2+i). Elementary local theory [34,
Proposition 7.19] states that if we have any complete residue
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system{0, 1, a, b, c} of the groupOF̂(2+i)
/(2 + i)OF̂(2+i)

and

an arbitrary unite ∈ F̂(2+i) then

F̂ ∗(2+i) = {1, a, b, c}× (1 + (2 + i)OF̂(2+i)
)× 〈e(2 + i)〉. (6)

The prime(2 + i) is tamely ramified inÊ(2+i)/F̂(2+i) and
therefore the local conductor is(2 + i) (see Lemma 13.7).
The definition of the conductor now implies that(1 + (2 +
i)OF2+i

) ⊆ NÊ(2+i)/F̂(2+i)
(Ê(2+i)). Because the prime(2+ i)

is totally ramified, we havee1(2+i) ⊆ NÊ(2+i)/F̂(2+i)
(Ê(2+i))

for some unite1 ∈ F̂(2+i). The previous results now imply that
(1 + (2 + i)OE(2+i))× 〈e1(2 + i)〉 ⊆ NÊ(2+i)/F̂(2+i)

(Ê(2+i)).
On the other hand one of the main theorems of

local class field theory [30, Theorem 1.1] states that
F̂ ∗(2+i)/(NÊ(2+i)/F̂(2+i)

(Ê∗
2+i)) = Gal(Ê(2+i)/F̂(2+i)). By

considering (6) we see that the elements{a, b, c} are not
norms. Because the elements{0, i,−1,−i, 1} form a complete
residue system of the groupOÊ(2+i)

/(2 + i)OÊ(2+i)
we find

that none of the elements{i,−1,−i} is a norm.
The discriminant of the extensionE/F has only two prime

divisors(2+i) and(1+i) and therefore also the discriminant of
the natural order ofD4 has only two prime divisors. According
to Lemma 7.5 this implies that the discriminant of the algebra
is minimal.

B. The centerQ(
√−3)

TABLE II

Q(
√−3)-CENTRAL DIVISION ALGEBRAS WITH A UNIT γ

n γ fn

2 −ω x2 +
√−3

3 ω x3 − 2

6 −ω2 x6 − 3
√−3x4 + 4x3 − 9x2 + 12

√−3x + 3
√−3 + 4

In Table II we give cyclic generations for algebras of degrees
2, 3, and 6. The theorem of Albert 3.6 shows that6 is the
biggest degree we could hope to have a division algebra with
a unitγ. We cannot have a division algebras of degrees4 and
5 as tensoring these with a division algebraG3 (below) would
give us division algebras of degrees12 and 15 respectively
with a unit γ.

We use the same generic notation as in the case ofQ(i)-
central algebras expect that we refer to the algebras withGi,
wherei represents the index of the algebra.

Algebra G2: We use here the same methods that were
used with the algebraD4. We remark thatP = (

√−3) is
tamely ramified in the extensionE/F . If we pass to the
completionÊP /F̂P we get that the local conductor isP and
that {−ω, 1, 0} is a complete set of representatives of the
groupOF̂P

/P . As a result it is seen that−ω is not a norm
in the extensionÊP /F̂P and therefore it is not a norm in the
extensionE/F either. From this it follows thatG2 is a division
algebra.

By now it is obvious that the discriminant of the natural
order of the algebraG2 has only two divisors(

√−3) and(2),
and hence the maximal order admits a minimal discriminant.

AlgebraG3: The proof of this case is similar to that ofG2

except that the tamely ramified primeP is 2, and that the
suitable set of representatives is{1, ω, ω2}.

AlgebraG6: The algebraG6 we get as a tensor product from
the algebrasG2 andG3.

IX. F INDING MAXIMAL ORDERS

In the previous section, we gave examples of cyclic division
algebras with minimal discriminants. One of the interesting
features of these algebras is that none of the natural orders
is maximal. However, we already saw that in the case of
the Golden algebra the natural order is maximal. So clearly
natural orders can be maximal. So what is the problem with
our algebras? Why we did not construct such algebras that the
natural orders would be maximal? The answer is simple: it is
impossible. Natural orders can never reach our discriminant
bounds. This underlines the fact that, with the previously
known methods, the density of our maximal order codes is not
achievable. The proof of this result can be found in Section
XIII-B in the Appendix.

While these considerations reveal that we have, indeed,
constructed something fundamentally new, they also reveal
that we have a difficult problem to solve. How to construct
maximal orders when the algebra is given? Luckily there exists
an algorithm by Ivanyos and Rónyai that solves this problem.
In the following we first introduce some algebraic results that
will be needed in order to understand the algorithm. Then we
present the algorithm and finally, in Section IX-D, we will
give some enhancements to this algorithm in a certain special
case.

A. The radical and extremal orders

Definition 9.1: Let S denote an arbitrary ring with identity.
The Jacobson radicalof the ringS is the setRad(S) =

{x ∈ S | xM = 0 for all simple leftS-modulesM}.
Rad(S) is a two-sided ideal inS containing every nilpotent

(i.e. for which Ik = 0 for somek ∈ Z+) one-sided idealI
of S. Also, Rad(S) can be characterized as the intersection
of the maximal left ideals inS. If S is a finite dimensional
algebra over a field or, more generally, left or right Artinian
thenRad(S) is the maximal nilpotent ideal inS.

Definition 9.2: Let us suppose that we have anF -central
division algebra of indexn and thatR is a dedekind ring in
F . If M is a full R-lattice inA, i.e. FM = A, then theleft
order of M defined asOl(M) = {x ∈ A | xM ⊆ M} is an
R-order inA. The right order is defined in an analogous way.

The next proposition (see [35, proof of Theorem 3.2]) is
useful when computing left orders.

Proposition 9.1:Let A be a simple algebra overF andM
a finitely generatedOF -module such thatFM = A. Then
there exists an elements ∈ OF \ {0} such thats · 1 ∈ M .
Moreover,Ol(M) = {b ∈ s−1M | bM ≤ M} ≤ s−1M .

Here we need some facts from the local theory of orders.
For the basic properties of localization the reader can turn to
[36, Chapter 7] or [23, Chapters 1, 2]. For the proofs for the
rest of this section, see [21] and [35].
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If R is a Dedekind domain with a quotient fieldF , and
P is a prime ideal inR, then the ring of quotientsRP =
(R/P )−1R ⊂ F is a discrete valuation ring. For theR-lattices
M in A the localization atP is defined asMP = RP M ⊂ A.
MP is an RP -lattice. Moreover, ifM is a full (cf. Example
9.2) R-lattice inA, thenMP is a full RP -lattice inA. To be
more specific, let us define the ringZp.

Definition 9.3: For a rational primep let Zp denote the ring

Zp = {r

s
∈ Q | r, s ∈ Z, gcd(p, s) = 1}.

Zp is a discrete valuation ring with the unique maximal ideal
pZp. If Λ is a Z-order we use the notationΛp = ZpΛ.

We remark that one should not confuse the localizationRP

with the ring of integerŝRP of theP -adic completion. We use
the caret to indicate a complete structure. This is somewhat
non-standard in the case ofZp that is nearly universally used
to denote the complete ring ofp-adic integers. We usêZp for
the complete ring.

In the following, we work inside anF -central division
algebraA, R being the ring of algebraic integers inF .
The next statement illustrates a simple but useful connection
between the ordersΛ andΛP .

Proposition 9.2 (Proposition 2.8 [21]):Let Λ be aR-order
in A. The mapf : x 7→ x + PΛP , x ∈ Λ induces an
isomorphism of the ringsΛ/PΛ ∼= ΛP /PΛP .

Proposition 9.3 (Proposition 3.1 [21]):Let P be a prime
ideal of the ringR. The residue class ringΛP = ΛP /PΛP

is an algebra with identity element over the residue class
field RP = RP /PRP and dimFA = dimRP

ΛP . If φ :
ΛP → ΛP is the canonical epimorphism, thenPΛP ⊆
Rad(ΛP ) = φ−1 Rad(ΛP ) andφ induces a ring isomorphism
ΛP / Rad(ΛP ) ∼= ΛP / Rad(ΛP ). As a consequence, a left (or
right) idealI of ΛP is contained inRad(ΛP ) if and only if
there exists a positive integert such thatIt ⊆ PΛP .

Combining the last two results we get.
Corollary 9.4: Let P be a prime ideal of the ringR. We

then have

φ−1(Rad(Λ/PΛ)) = ψ−1(Rad(ΛP )),

whereψ is the embeddingΛ 7→ ΛP and φ is the canonical
epimorphismΛ → Λ/PΛ.

The following facts establish some practical connections
between the local and global properties of orders.

Proposition 9.5 (Theorem 2.3 [35]):Let A be a simple al-
gebra overF . Let P be a prime ideal ofR, and Γ be an
R-order inA. Then

(i) ΓP is anRP -order inA.
(ii) Γ is a maximalR-order inA if and only if ΓP is a

maximalRP -order inA for every prime idealP of R.
(iii) d(Γ/R)P = d(ΓP /RP ).
Corollary 9.6: If P does not divided(Λ/R), then ΛP is

maximalRP -order.
Proof: According to previous proposition we always have

d(Γ/R)RP = d(ΓP /RP ). On the other hand we supposed that
P - d(Λ/R) resulting thatd(ΓP /RP ) = d(Λ/R)RP = RP .
Lemma 3.12 then imply thatΛP is maximal.

Extremal orders and especially Proposition 9.10 below play
a key role in the method for constructing maximal orders.

Definition 9.4: We say thatΓP radically containsΛP if
and only if ΛP ⊆ ΓP and Rad(ΛP ) ⊆ Rad(ΓP ). The
orders maximal with respect to this partial ordering are called
extremal. Maximal orders are obviously extremal.

Proposition 9.7 (Proposition 4.1 [21]):An RP -order ΛP

is extremal if and only ifΛP = Ol(Rad(ΛP )).
Lemma 9.8 (Lemma 2.7 [21]):Let P be a prime ideal of

the ring R, Λ an R-order and suppose thatOl(Rad(ΛP )) ⊃
ΛP . Let I denote the inverse image ofRad(ΛP ) with respect
to the embeddingΛ 7→ ΛP . Then we haveI ⊇ PΛ and
Ol(I) ⊃ Λ.

The previous corollary together with Corollary 9.4 gives us
the following.

Lemma 9.9:If Ol(φ−1(Rad(Λ/PΛ)) = Λ, the orderΛP

is extremal.
Proposition 9.10 (Theorem 4.5 [21]):Let ΛP ⊂ ΓP be

RP -orders inA. Suppose thatΛP is extremal and thatΓP is
minimal among theRP -orders properly containingΛP . Then
there exists an idealJ of ΛP minimal among those containing
Rad(ΛP ) such thatOl(J ) ⊇ ΓP .

B. The algorithm

Consider again the family of cyclic division algebrasA` of
index n = 2`−2 from Example 5.2. IfΛ` is a maximal order
of A`, then according to Corollary 7.6

d(Λ`/Z[i]) = (1 + i)n(n−1)(2 + i)n(n−1).

On the other hand, by Lemma 5.4 we see that the discriminant
of the natural orderΛ`,nat of A` is

d(Λ`,nat/Z[i]) = (1 + i)`(n/2)n(2 + i)n(n−1).

Hence, we may conclude that the natural order is of index

[Λ` : Λ`,nat] = 2((2`−5)n+1)n/2.

In the cases̀ = 3, 4, 5 this index thus equals23, 226, and2164,
respectively. In other words, using a maximal order as opposed
to the natural order one can send1.5, 6.5, or 20.5 more bits per
channel use without compromising neither the transmission
power nor the minimum determinant in the respective cases
of 2, 4, or 8 antennas! Hence the problem of actually finding
these maximal orders rather than simply knowing that they
exist becomes quite relevant. In the following we shortly depict
how maximal orders can be constructed in general. A more
detailed version of the algorithm can be found in [21].

Let againF be an algebraic number field,A a finite dimen-
sional central simple algebra overF , and Λ be aOF -order
in A. To avoid overcomplicated notation we use shorthand
OF = R. Assume thatA is given by relations (e.g.u2 = γ),
and thatΛ is given by aR-basis. For instance, we can always
start with the natural orderΛ (cf. Example 3.2). We form a
set S = {P1, ..., Pr} consisting of the prime ideals dividing
d(Λ). According to Corollary 9.6ΛP is a maximalRP -order
if P /∈ S.

The basic idea of the algorithm is to test fori = 1, ..., r
whether Λ is maximal atPi. If the answer is yes,Λ is a
maximal R-order. If not, then at the first indexi for which
ΛPi is not maximal we can construct aR-orderΓ in A such
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thatΛPi ⊂ ΓPi , and henceΛ ⊂ Γ (cf. Propositions 9.2–9.10).
This can basically be done in two steps. LetP ∈ S and letφ
be the canonical reduction mapΛ 7→ Λ/PΛ.

STEP 1 REPEAT UNTIL "YES": Compute I =
φ−1(Rad(Λ/PΛ)) ≤ Λ. Does the equalityOl(I) = Λ hold?

"NO": Ol(I) ⊃ Λ
Λ ← Ol(I) (Iteration step)

STEP 2 REPEAT UNTIL "NO": Compute the minimal
idealsJ1,J2, ...,Jh (h < dimQA) of Λ/PΛ which contain
Rad(Λ/PΛ). FOR i = 1, ..., h computeIi = φ−1(Ji). Does
there exist an indexi for whichOl(Ii) > Λ?

"YES": Λ ← Ol(Ii) (Iteration step)
"NO": OUTPUT Λ is a maximalOF -order.

Let P ∈ S. First we test whetherΛP is an extremal (cf.
Definition 9.4)RP -order by using Lemma 9.9. If not, then we
shall construct anR-orderΓ > Λ. If ΛP passes this test, then
we can use the test of Proposition 9.10. If there exists an ideal
J minimal among the ideals properly containingRad(ΛP )
such thatOl(J ) > ΛP , then we construct anR-orderΓ > Λ.
Otherwise we correctly conclude thatΛ is maximal atP and
continue with the nextP in the listS. In the end, the algorithm
yields anR-order Λ which is now maximal. The algorithm
can be used similarly for constructingZ-orders, and in the
MAGMA software the implementations are forZ-orders only.

For more details concerning the computation of the prime
ideals in a ring, see [35]. A thorough explanation and an
algorithm for computing the radical can be found in [37].

Remark 9.1:According to Lemma 9.4 we could have as
well defined the idealI by I = ψ−1(Rad(ΛP ). This inter-
pretation will be used in Section IX-D.

Let us next exemplify the above algorithm.

C. A 2× 2 construction overZ[i]

In the Golden division algebra (cf. Example 3.1 or [3]),
i.e. the cyclic algebraGA = (E/F, σ, γ) obtained from the
data E = Q(i,

√
5), F = Q(i), γ = i, n = 2, σ(

√
5) =

−√5, the natural orderΛ is already maximal. The norm of
the discriminant ofΛ (with respect toQ) is 625, whereas the
norm of the minimal discriminant is 100 [32]. We will now
present a code constructed from a maximal order of the cyclic
division algebraGA+ of Example 7.4. The maximal order of
GA+ also admits the minimal discriminant and is in that sense
optimal. The algorithm now proceeds as follows.

The natural order of the algebraGA+ is Λ = Z[i]⊕u′Z[i]⊕
λZ[i]⊕u′λZ[i]. Hereafter, we will use a shorter notationΛ =
〈1, u′, λ, u′λ〉Z[i] for this. Let us considerΛ at the placeP =
1 + i as it is the only factor of the discriminant for which we
can enlargeΛ. The inverse image of the radical (9.3) isJ =
φ−1(Rad(Λ/PΛ)) = φ−1(〈1 + u′, 1 + λ, 1 + u′λ〉Z2) = 〈1 +
i, 1+u′, 1+λ, 1+u′λ〉Z[i] ⊂ Λ. A straightforward computation
shows us (cf. Proposition 9.1) that the element

ρ =
1 + u′ + λ + u′λ

1 + i
=

(1 + u′)(1 + λ)
1 + i

∈ Ol(J ),

which means that the answer to the question in STEP 1
is "NO", and hence we setΛ′ = 〈1, u′, λ, ρ〉Z[i] and iter-
ate. This time the inverse image of the radical isJ ′ =

φ−1(Rad(Λ′/PΛ′)) = φ−1(〈1 + u′, 1 + λ, 1 + ρ〉Z2) =
〈1 + i, 1 + u′, 1 + λ, 1 + ρ〉Z[i] ⊂ Λ′. By taking the element

τ =
u′ + λ

1 + i
∈ Ol(J ′)

we can again enlarge the orderΛ′ to Λ′′ = 〈1, u′, τ, ρ〉Z[i]

and computeJ ′′ = φ−1(Rad(Λ′′/PΛ′′)) = φ−1(〈1 + u′, 1 +
ρ, τ〉Z2) = 〈1 + i, 1 + u′, 1 + ρ, τ〉Z[i] ⊂ Λ′′. We need one
more iteration of STEP 1. Now the element

ν =
(1 + u′)(u′ + λ)

2
∈ Ol(J ′′)

and the orderΛ′′ is enlarged toΛ′′′ = 〈1, τ, ρ, ν〉Z[i]. From
this iteration we finally get the answer to be "YES".

In STEP 2 there is nothing to do, as the only minimal ideal
properly containing the radical is the radical itself. Hence we
have constructed a maximalZ[i]-order ofGA+ with a Z[i]-
basis{1, τ, ρ, ν}.

In order to give a concrete description of this order we
describe it in terms of itsZ[i]-basis. Let us again denote by
λ the first quadrant square root of2 + i. The maximal order
Λ consists of the matricesaM1 + bM2 + cM3 + dM4, where
a, b, c, d are arbitrary Gaussian integers andMi, i = 1, 2, 3, 4
are the following matrices.

M1 =
(

1 0
0 1

)
, M2 =

(
0 1
i 0

)
,

M3 =
1
2

(
i + iλ i− λ

−1 + iλ i− iλ

)
,

M4 =
1
2

( −1− iλ i + iλ
−1 + λ −1 + iλ

)
.

D. Enhancements to the Ivanyos–Rónyai algorithm in certain
special cases

The memory requirements of the above algorithm grow
quite rapidly as a function of the dimension of the algebra. For
example the MAGMA-implementation runs out of memory on
a typical modern PC, when given the index 8 cyclic algebra
A5 of Example 5.2 as an input.

In this subsection, we describe an algorithm that finds
maximal orders for the algebrasA`. It is an adaptation of the
Ivanyos–Rónyai algorithm that utilizes several facts special
to this family of algebras, and thus its applicability is rather
limited. We list these simple facts in the following lemmas.
We will denoteZ[ζ`] by O for short.

Lemma 9.11:The only prime ideal ofO that lies above the
prime 2 is the principal idealP` generated by1− ζ`.

Lemma 9.12:Let M be a finitely generated freeO-module
of rank k, and let andm1, . . . ,mk be a basis. LetN be a
submodule ofM such that the index[M : N ] is a power of
two (in particular this index is finite). ThenN is also a free
O-module of rankk, and we can find a basis ofN of the form

ni =
∑

j≤i

aijmj , aij ∈ O.

Proof: This is a straightforward modification of the
standard proof of the corresponding result for modules over a
PID. We first define the submodulesNt for all t = 0, 1, . . . k
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as consisting of those elements ofN whose (k − t) last
coordinates vanish,

Nt = N ∩
t∑

j=1

Omj .

Clearly Nk = N and N0 = 0. The idea is to sequentially
produce elementsnk, nk−1, . . . , n1 in such a way that at each
step the following two conditions are satisfied

1) for all j > 0, we havenj ∈ Nj ,
2) N = Nt ⊕

∑
j>tOnj .

We proceed by descending induction, so assume that we
have already producednk, . . . , nt+1, and we next work on
finding an elementnt (so t is a fixed index in the range0 <
t ≤ k). Consider the moduleN+

t = Nt⊕
∑

j>tOmj . Clearly
N ⊆ N+

t ⊆ M , so N+
t is also of a finite index inM , and

[M : N+
t ] is also a power of two. Consider the homomorphism

ft : M → O that maps the element
∑

j ajmj to the coordinate
at. Write It = ft(Nt) = ft(N+

t ). Becauseft is onto, we get a
surjective homomorphism fromM/N+

t ontoO/It. Therefore
the index of the idealIt in O is also a power of two, and
by Lemma 9.11,It is a principal ideal generated by a single
elementyt ∈ O. Setatt = yt. We may thus choose an element
nt ∈ Nt such thatft(nt) = yt, sont = attmt +

∑
j<t atjmj

for some elementsatj ∈ O. If x =
∑

j≤t bjmj is any element
of Nt, then bt = byt for someb ∈ O. Thereforex − bnt ∈
Nt−1, and becauseO is an integral domain this implies that
Nt = Nt−1 ⊕ Ont. Together with the induction hypothesis
N = Nt ⊕

∑
j>tOnj this implies the induction claimN =

Nt−1 ⊕
∑

j>t−1Onj .

In the end we get (becauseN0 = 0) N =
∑k

j=1Onj ,
so the elementsnj , j = 1, . . . , k, generate the moduleN .
Because the matrix(aij) is lower triangular, and the set
{m1,m2, . . . , mk} was assumed to be linearly independent,
the set{n1, n2, . . . , nk} is also linearly independent over the
integral domainO. ThusN is a freeO-module.

Corollary 9.13: The maximal orderΛ` of A` is a freeO-
module of rankn = 2`−2.

Proof: We already know thatΛ` containsΛ`,nat as a
submodule of a finite index. Thus, there exists an integerM >
0 with the property thatMΛ` is a submodule of a finite index
in Λ`,nat. The formula for the discriminants tells us that we
can further select the multiplierM to be a power of two.
Clearly, it suffices to prove thatMΛ` is a free module of the
right rank. As the natural order, obviously, is a freeO-module
of rank n, this is a consequence of Lemma 9.12.

Let thenΓ be any intermediate order, i.e. any order with
the propertyΛ`,nat ⊆ Γ ⊆ Λ`. We will denote byΓ2 the
ring obtained by localizingΓ at the prime1 + i. This is
naturally a subring of the corresponding localized version of
the maximal order and consequently also of the completion of
the maximal order̂Λ`. This latter ring is aZ2[i]-order in the
completion of the central simpleQ2(i)-algebraÂ` obtained
from A` by extending its scalars to the complete fieldQ2(i).
Because the algebraA` has a full local index2`−2 at the prime
1+i, Â` is actually a division algebra. By [23, Theorem 12.8]
and the surrounding discussion therein we know thatΛ̂` is a

non-commutative discrete valuation ring, and that the(1 + i)-
adic valuation of the reduced norm serves as a valuation.
E.g. it yields a metric subject to the non-archimedean triangle
inequality. So in the matrix representation the valuation of the
determinant distinguishes the units from the non-units in the
ring Λ̂`. We immediately see that the same then holds in the
ring Γ2 — the units are precisely the elements whose reduced
norm is a(1 + i)-adic unit. By the non-archimedean triangle
inequality the non-units ofΓ2 then form its unique maximal
ideal, which is then also the radicalRad(Γ2).

We distill the following two lemmas from the previous
discussion.

Lemma 9.14:Suppose thatA is an F -central division al-
gebra of indexn and thatΛ is an order inA. If A ⊗F F̂P

is a division algebra, thenΛP has a unique maximal ideal
RadΛP .

Proof: The only open question that was left open in the
previous discussion, is whether all the elements inΛP whose
reduced norm is aP -adic unit are really units inΛP . This
is true in the maximal orderΛ′P that includesΛP , because
Λ′P = A∩ Λ̂′P , whereΛ̂′P is the maximal order in the division
algebraA⊗F F̂P . The claim now follows from [23, Exercise
4, Section 25].

The following Lemma is the key to our modifications to
Step 1 in the main algorithm.

Lemma 9.15:Let Γ be any intermediate order. The ideal
I = Γ ∩ Rad(Γ2) consists of exactly those matrices which
determinants are divisible by1 + i.

The following lemma is a simple reformulation of the fact
thatP` is of index 2 inO. It will allow us to reduce the range
of certain searches fromO to the set{0, 1}.

Lemma 9.16:Assume thatp(x) =
∑k

i=0 pix
i ∈ Z[x]. Then

p(ζ`) ≡ p0 + p1 + · · ·+ pk (mod P`).

Let us denote bys` the complex number

s` =
1

1− ζ`
=

1 + i

2
(
1 + ζ` + ζ2

` + · · ·+ ζn−1
`

)
.

The fractional ideal generated bys` is thenP−1
` .

Proposition 9.17:Let Γ be an intermediate order. Assume
that it is a freeO-module, and thatg1, g2, . . . , gn is its basis.
Let I = ψ−1(Rad(Γ2)) (cf. STEP 1). ThenI is also a free
O-module of rankn that satisfiesΓ ⊆ s`I. We can find a
basis forI that is of the formr1, r2, . . . , rn, where for alli
either

ri = gi +
∑

j<i

εijgj ,

such that all the coefficientsεij ∈ {0, 1}, or

ri = (1− ζ`)gi.

Proof: Any element ofΓ has determinant (= its reduced
norm) in Z[i]. The reduced norm of1− ζ` is an associate of
1 + i. Therefore(1− ζ`)Γ ⊆ I ⊆ Γ. Thus the index ofI in Γ
is a power of two. Hence Lemma 9.12 implies thatI is a free
O-module of rankn. With the notation of Lemma 9.12 we
also see that the coefficientyn is always either1 or 1− ζ`. In
the former case Lemma 9.16 and the fact that2 ∈ P` allow us
to choose the coefficientsεij as required. In the latter case we
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have no reason not to chooseri = (1− ζ`)gi as this element
is in I by Lemma 9.15.

Proposition 9.18:Let Γ, I, and the basesg1, . . . , gn and
r1, . . . , rn be as in the previous proposition. Then the left
orderΓ′ = O`(I) is a freeO-module contained ins`Γ. It has
a basisg′1, . . . , g

′
n, where for alli either

g′i = s`(gi +
∑

j<i

εijgj),

such that all the coefficientsεij ∈ {0, 1}, or

g′i = gi.
Proof: The inclusion(1− ζ`)Γ ⊆ I immediately shows

that Γ ⊆ O`(I) ⊆ s`Γ. Therefore the index of(1 − ζ`)Γ′ in
Γ is a power of two. Again Lemma 9.12 shows thatΓ′ is a
freeO-module. We also have the inclusion(1 − ζ`)Γ′ ⊆ Γ.
An argument similar to the one in the proof of the previous
proposition then shows that the algorithm in the proof of
Lemma 9.12 yields a basis of the prescribed type.

When we use the natural orderΛnat of the algebraA` as a
starting point, the known discriminants ofA` and the maximal
order Λmax tell us that the index[Λmax : Λnat] is a power
of two. Thereforep = 1 + i is the only interesting prime in
Step 1 of the main algorithm. This step can now be completed
simply by lettingΓ to be the natural order, andg1, . . . , gn to
be itsO-module basis. We next find a basis forI by testing,
whether any element of the typeri = gi +

∑
j<i εijgj has a

determinant divisible by1+i (and if no such element is found
then includingri = (1− ζ`)gi into the basis instead). We then
proceed to compute anO-module basis for the left orderΓ′

of this I. Again we simply check, whether any elements of
the formg′i = s`(gi +

∑
j<i εijgj) belong toΓ′. Observe that

it suffices to test a candidate of this form against the basis
elementsri only. If such an element is found, we record that
Γ′ will be strictly larger thanΓ. If no such element is found,
we useg′i = gi instead. After we have done this for alli, we
will know, whetherΓ′ = Γ. If this is the case, we are done.
Otherwise we replaceΓ with Γ′ and repeat the process.

Now we have taken care of the STEP 1 and we know that
Γ(1+i) is an extremal order. Luckily for us STEP 2 is not
needed asΓ(1+i) is actually maximal. We describe the proof
shortly. We will use the term hereditary without defining it.
First, [23, Theorem 39.25 and the following remark] states that
Γ(1+i) is hereditary. Lemma 9.14 gives us thatRadΓ(1+i) is
the unique maximal two-sided ideal inΓ(1+i). Theorem 18.4 in
[23] then states that under these conditionsΓ(1+i) is a maximal
order.

We implemented this on the computer algebra system Math-
ematica, and on a typical modern PC it found a maximal
order in the casè = 5 in less than half an hour. We
believe that the memory savings due to the use ofO-bases
as opposed toZ-bases in the general purpose implementation
in MAGMA account for this enhancement in the performance
of the algorithm. This algorithm could naturally be ported into
any CAS to handle these very specific cases.

Example 9.1:Assume that we have the 4 antenna case` =
4. Let us denotes = s` in short. In this case, the above
algorithm yields an order with (left)O-basis consisting of the

elementsu1, . . . , u4:

u1 = 1,

u2 = (s2 + s3) + us3,

u3 = (s4 + 2s5 + 2s6 + s8 + s10) + u(s5 + s6) + u2s10,

u4 = (s + s4 + s5 + s8 + s9 + s10 + s11 + s12 + s13)
+ u(s9 + s11 + s13) + u2(s12 + s13) + u3s13.

We observe that the highest powers ofs appearing in these
basis elements are0, 3, 10, and13, respectively. This fits well
together with our earlier calculation showing that the index of
the natural order in a maximal one is226. The numbers−1

generates the prime ideal lying above 2, and0+3+10+13 =
26.

It is a basic fact from the theory of the cyclotomic rings
of integers that the conjugate of the elements is of the form
σ(s) = uσs, whereuσ is a unit of the ringZ[ζ]. Using this
observation and the relationus = σ(s)u we see that, instead of
the generatoru4 above, we could use the productu2u3. After
all, theO-module spanned by these elements is an order, so
we can utilize the fact that it is closed under multiplication.

Example 9.2:In the 8 antenna casè = 5 we get a free
O-module of rank 8 as a maximal order. The basis elements
u1, . . . , u8 are similar linear combinations of1, u, u2, . . . , u7

with coefficients of the formp(s), wherep(x) ∈ Z[x] and
s = s`. In this case, the polynomial coefficients of the various
basis elements have maximal degrees 0, 3, 10, 13, 28, 31, 38
and 41. As expected, these degrees sum up to 164. Taking
advantage of the fact that this module is also a ring we can
describe the elements of the basis by

u1 = 1,

u2 = (s2 + s3) + us3,

u3 = (s + s2 + s4 + 2s5 + 2s6 + s8 + s10)
+ u(s5 + s6) + u2s10,

u4 = u2u3,

u5 = s + 2s2 + s3 + 2s4 + 5s5 + 8s6 + 8s7 + 3s8

+ 5s9 + 6s10 + 5s11 + 7s12 + 6s13 + 7s14

+ 4s15 + 5s16 + 2s18 + 2s20 + s24 + s28

+ u
(
s5 + 2s6 + 4s7 + s8 + s9 + s10 + 2s11 + 2s12

+ 3s13 + 3s14 + s15 + 3s16
)

+ u2
(
s11 + 2s14 + 2s15 + s16 + s18 + s20

)

+ u3
(
s15 + s16

)
+ u4s28,

u6 = u2u5,

u7 = u3u5,

u8 = u2u3u5.

X. A NALYSIS OF THE PERFECT ALGEBRAS

In the following we will analyze the perfect codes of [10].
Specifically, we are going to discuss the structure of the
underlying algebras. In order to do so, we have to prove some
results that allow us to use our previous machinery also in this
situation.
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The following simple fact (also known to E. Viterbo, private
communication) explains why using a principal one-sided (left
or right) ideal instead of the entire order will not change the
density or normalized minimum determinant of the code.

Lemma 10.1:Let Λ be an order in a cyclic division algebra
of indexn over an imaginary quadratic number field. Letx ∈
Λ be any non-zero element. Then

δ(Λx) = δ(Λ).

Proof: By the multiplicativity of the norm the minimum
determinant ofΛx is equal to the absolute value ofnrA/F (x).
Let us now determine how the fundamental parallelotope of
Λx is related to the fundamental parallelotope ofΛ.

We have that[Λ : Λx] = |NA/F (x)| (see [23, Exercise 7,
p. 131]). On the other hand [23, Theorem 9.14, p. 119] tells
us that

|NA/Q(x)| = |NF/Q(NA/F(x))|
Remark 3.3= |NF/Q((nrA/F (x))n)|
[F :Q]=2

= |nrA/F (x)n|2
= |nrA/F (x)|2n.

Hence,[Λ : Λx] = |nrA/F (x)|2n. This implies

m(Λ)|nrA/F (x)|2n = m(xΛ),

and therefore

δ(Λx) =
|nrA/F (x)|

(m(Λx))1/2n
=

1
(m(Λ))1/2n

= δ(Λ).

We remark that the same fact obviously also holds for
principal left ideals of a maximal order.

Proposition 10.2:Let D1 = (E1/F, σ1, γ1) and D2 =
(E2/F, σ2, γ2) be division algebras that have coprime indices
m1 andm2. ThenD1⊗D2 is a division algebra with an index
m1m2. Furthermore,

D1 ⊗D2 ' (E1E2/F, σ1σ2, γ
m2
1 γm1

2 ),

whereσ1σ2 is an element ofGal(E1E2/F ) ' Gal(E1/F )×
Gal(E2/F ).

Let P1 and P2 be some pair of minimal prime ideals of
the fieldF . If D1 andD2 have minimal discriminants that are
only divisible by P1 and P2, thenD1 ⊗ D2 has a minimal
discriminant that is only divisible byP1 andP2.

Proof: For the proof of the first two claims we refer
the reader to [26, Theorem 20, p. 99]. The only nontrivial
Hasse invariants of the division algebrasD1 and D2 are
those associated with the primesP1 and P2. The mappings
in the fundamental exact sequence (4) are homomorphisms
of groups. Together with the fact that extending scalars to a
P -adic completion commutes with the formation of a tensor
product shows that the Hasse invariants ofD1 ⊗D2 are sums
of those ofD1 andD2. Hence, the discriminant ofD1 ⊗ D2

is only divisible by the prime idealsP1 andP2. By the proof
of Theorem 6.12 it is then minimal.

Suppose we have a finite cyclic extensionE/F of algebraic
number fields. LetP be a prime ofF andB some prime of

E that lies overP . We denote the completionEB by EP or
E · F̂P . This notation is valid in Galois extensions, because
the fieldsEB are isomorphic for all primesB that lie overP .

In the following we give an algebraic analysis of perfect
codes. The resulting numerical data is collected into Table III.

1) The2× 2 Perfect code:The first perfect algebra is the
same as the Golden algebraGA = (E/F, σ, γ), where the
extensionE/F = Q(i,

√
5)/Q(i) has discriminant(2+i)(2−

i). The discriminant of the natural order is therefore(2 +
i)2(2−i)2. Because the discriminant of the algebraGA divides
(2 + i)2(2 − i)2 it can have at maximum two prime divisors
(2+i) and(2−i). As a consequence the only Hasse invariants
that can be nontrivial areh(2+i) andh(2−i).

The algebraGA must have at least two nontrivial Hasse
invariants and thereforeh(2+i) andh(2−i) are both nontrivial.
Combining the equations

LCM [m(2+i),m(2−i)] = 2

andh(2+i) + h(2−i) = 1 we get thath(2+i) = h(2−i) = 1/2.
Theorem 6.11 states that the discriminant ofGA is (2+i)2(2−
i)2. Comparing this to the discriminant of the natural order we
see that the natural orderΛ2 is maximal. The actual code is
then

B2 =
1
c
Λ2a

wherea ⊆ OE andc ∈ R is normalizing factor. The element
a is chosen so that the vectorized codeφ(B2) (see Section II)
has shapeZ2n2

.
2) The3 × 3 Perfect code:The underlying algebra of the

3 × 3 perfect code isP3 = (E/F, σ, ω), where againω =
(−1 +

√−3)/2, F = Q(ω), E = Q(ζ7 + ζ−1
7 , ω) and σ :

ζ7 + ζ−1
7 7−→ ζ2

7 + ζ−2
7 . The algebraP3 has a representation

as
L⊕ u · L⊕ u2 · L

whereu3 = ω.
The discriminant of the extensionE/F is (2 +

√−3)2(2−√−3)2 = P 2
1 P 2

2 and the discriminant of the natural order
has therefore only two prime factors. By Lemma 7.5 the only
nontrivial Hasse invariants ofP3 are hP1 and hP2 . Because
LCM [mP1 , mP2 ] = 3. We get thatmP1 = mP2 = 3.

To calculate the Hasse invarianthP1 we pass to the com-
pletionPP1 = F̂P1 ⊗P3. From Theorem 6.10 we get a cyclic
generation

PP1 = (ÊP1/F̂P1 , σP1 , ω),

whereÊP1/F̂P1 is a totally ramified extension andσP1 is the
natural extension of the automorphismσ. Because the local
index mP1 = 3, we know thatPP1 is a division algebra.

Next we try to find another cyclic generation for this algebra
so that we can use the definition of Hasse invariant to calculate
the value ofhP1 .

It is readily verified that the fieldF̂P1(u) = T̂P1 ⊆ PP1

is a cyclic and totally inert extension of̂FP1 . The Frobenius
automorphism of the extension̂TP1/F̂P1 is defined by the
(T̂P1/F̂P1 , P1)(u) = u7. The Noether-Skolem Theorem ([23,
Theorem 7.21]) states that there is an elementx ∈ PP1 such
that

(T̂P1/F̂P1 , P1)(a) = x−1ax ∀a ∈ T̂P1 . (7)
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For an elementx to fulfill (7) it is enough to satisfy the
equation

(T̂P1/F̂P1 , P1)(u) = u7 = xux−1.

By considering the equationux = xu7 = xω2u we see that
x = ζ7 + ζ−1

7 +ω2(ζ2
7 + ζ−2

7 )+ω(ζ4
7 + ζ−4

7 ) ∈ L is a suitable
element.

We now prove thatx3 is an element ofF̂P1 , and that
vP1(x

3) = 1. The first statement follows fromuσ(x3) =
x3u = x2uω2x = ux3. The second statement is obtained
from the equationvP1(x

3) = vP1(nrE/F (x)) = vP1(7(2 +
(
√−3))ω) = 2.

Proposition 11.1 now states that B1 =
(T̂P1/F̂P1 , (T̂P1/F̂P1 , P1), x3) is a division algebra of
index 3. By (7) we can considerB1 as a subset of the algebra
P3. But B1 is a F̂P1-central division algebra and hence a
9 dimensional overF̂P1 . From this we can conclude that
(T̂P1/F̂P1 , (T̂P1/F̂P1 , P1), x3) = PP1 .

Proposition 11.4 now implies thathP1 = 2/3. Because the
sum of the Hasse invariants has to be an integer, the invariant
hP2 equals1/3.

By considering the local indices we see that the discriminant
of the maximal order isP 6

1 P 6
2 , that is, equal to the discriminant

of the natural orderΛ6. Thus, the natural order has to be
maximal.

The actual codeB3 is produced similarly to the2× 2 case
with exception that the vectorized code lattice has now shape
An2

2 , whereA2 is the hexagonal lattice.
3) The4×4 Perfect code:The underlying division algebra

under the4×4 perfect code isP4 = (E/F, σ, i), whereQ(i) =
F , Q(i, ζ15 + ζ−1

15 ) = E andσ : ζ15 + ζ−1
15 7−→ ζ2

15 + ζ−2
15 .

The extensionE/Q(i) has discriminantd(E/Q(i)) = (2+
i)3(2 − i)3(3)2, and the only Hasse invariants that can be
nontrivial areh(3), h(2+i) andh(2−i). We use similar methods
to those in the case ofP3 to get thath(2+i) = 3/4 and
h(2−i) = 1/4. The sumh(2−i) +h(2+i) = 1 and thereforeh(3)

must be trivial. Further, the local indices reveal that the dis-
criminant of the algebra is(2+i)12(2−i)12. The discriminant
of the natural order on the other hand is(2+i)12(2−i)12(3)8.

The codeB4 is again constructed by using a principal ideal
of the natural order.

4) The 6 × 6 Perfect code: In the 6 × 6 perfect code
construction the center isF = Q(ω) and the maximal subfield
E = K(θ), whereθ = ζ28 + ζ−1

28 .
In [10] where the perfect codes were introduced, the authors

gave the mappingσ1 by the equationσ1 : ζ28+ζ−1
28 7−→ ζ2

28+
ζ−2
28 . Unfortunately, this mapping is not anF -automorphism of

the fieldE. We replaceσ1 with the automorphismσ defined
by the equationσ : ζ28 + ζ−1

28 7−→ ζ5
28 + ζ−5

28 . The relative
discriminant of the extensionE/F is (2)6(2 +

√−3)5(2 −√
3)5 = (2)6(7)5. We denote the resulting algebra byP6.
Thus the Hasse invariants ofP6 that can be nontrivial are

h(2+
√−3), h(2−√−3), andh(2).

Now we are going to presentP6 as a product of two smaller
division algebras. We first calculate the Hasse invariants of
these smaller algebras and then from these derive the Hasse
invariants ofP6.

Let us first consider the algebra B2 =
(Q(

√
7, ω)/Q(ω), σ2,−ω). We use similar strategy as

in the case of the algebraD4.
The prime(2 +

√−3) = P1 is tamely ramified in the ex-
tensionE/F . By passing to theP1-adic completionÊP1/F̂P1

we find that the local conductor isP1. The image of the norm
NÊP1/F̂P1

includes〈(1 + P1)〉 × 〈e(2 +
√−3)〉, wheree is a

unit of F̂P1 .
The set{0, 1, ω,−ω, ω2,−ω2} is a complete residue system

of the groupOF̂P1
/P1OF̂P1

and whence

F̂ ∗P1
= 〈−ω〉 × (1 + P1)× 〈e(2 +

√−3)〉.
On the other hand,#((F̂P1)

∗/NÊP1/F̂P1
(Ê∗

P1
)) = 2 and

therefore−ω cannot be a norm. From this it follows that the
local algebra(B2)P1 is a division algebra of index two.

There is no other choice for the Hasse invarianthP1 than
1/2.

Replacing the primeP1 with P2 = (2−√−3) in the above
considerations we see thathP2 = 1/2.

The extensionE/F has only three ramified primes(2 −√−3), (2 +
√−3), and (2). Thus, the discriminant of the

algebraB2 can have three prime divisors at maximum. The
potential nontrivial Hasse invariants ofB2 are nowhP1 , hP2 ,
and h(2). The sum ofhP1 and hP2 is 1, and thereforeh(2)

must be trivial.
The algebraB2 is a division algebra with Hasse invariants

h(2−√−3) = h(2+
√−3) = 1/2.

The algebraP3 = (E/F, σ3, ω) was previously shown to
be a division algebra with Hasse invariantsh(2−√−3) = 2/3
and h(2+

√−3) = 1/3. We now consider the algebraB3 =
(E/F, σ3, ω

2). By [23, Theorem 30.4] we haveP3 ⊗ B3 ∼
(E/F, σ3, 1) ' M3(F ). This shows thatP3 ⊗ B3 has trivial
Hasse invariants and therefore the Hasse invariants ofB3 are
h(2−√−3) = 1/3 andh(2+

√−3) = 2/3.
If we now consider the algebraB2 ⊗ B3 '
' (Q(

√
7, ω) ·Q(ζ7 + ζ−1

7 , ω)/Q(ω), σ2σ3, (−ω)3 · (ω2)2)

it is seen that the corresponding Hasse invariants are
h(2−√−3) = 1/3 + 1/2 = 5/6 andh(2+

√−3) = 1/2 + 2/3 ≡
1/6 (mod 1).

By considering the equationσ3(ζ7 + ζ−1
7 ) = ζ2

7 + ζ−2
7 =

ζ5
7 + ζ−5

7 we notice thatσ2σ3 = σ6. Combining this and the
equation(−ω)3 · ω4 = −ω we get thatB3 ⊗ B2 ' P6.

The algebraP6 has only two nontrivial Hasse invariants
that areh(2+

√−3) = 5/6 and h(2−√−3) = 1/6. Whence,
the discriminant of the maximal order is(2 − √−3)30(2 +√−3)30 = (7)30. On the other hand the discriminant of the
natural order is(2)36(7)30.

The actual codeB6 now has form

1
c
ΛnI

where I is a non-principal ideal ofOE and c ∈ R is a
normalizing element. AgainI is chosen so that the shape of the
lattice is A62

2 . Here our methods fail to determine the exact
value of the normalized minimum determinant. In [10] the
authors represent an upper and lower bounds for the minimum
determinant.
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We have collected information about the normalized mini-
mum determinants of the perfect codes and of the underlying
natural orders into Table III. We have also added the informa-
tion, whether the natural orders are maximal.

As an example we show how the values for the first row
of the table III has been calculated. The discriminant of the
natural orderΛ2 of the golden algebraGA is (2+ i)2(2− i)2.
This implies that the volume of the fundamental parallelotope
is 25. Corollary 4.2 then gives that thatδ(Λ2) = 0.45.

The actual codeB2 is then aΛ2 where a is a suitable
element of the natural order. Lemma 10.1 states thatδ(Λ2a) =
δ(Λ2) = 0.45.

TABLE III

n maximal? δ(Λn) δ(Bn)
2 yes 0.45 0.45
3 yes 0.14 0.14
4 no 0.03 0.03
6 no 0.0001 ?

In Table IV we are comparing the normalized minimum
determinants of the perfect codes and the maximal order codes
(Λi

nandΛω
n) whose existence is guaranteed by the results in

Section VII.

TABLE IV

n δ(Λi
n) δ(Λω

n) δ(Bn)
2 0.562 0.620 0.447
3 0.316 0.358 0.14
4 0.177 0.207 0.030
5 0.100 0.119
6 0.056 0.069 ?

XI. GENERAL CONSTRUCTION OF DIVISION ALGEBRAS

ACHIEVING THE DISCRIMINANT BOUND

In their recent paper [14], Eliaet al. gave an explicit
construction for division algebras of an arbitrary degree with
centersQ(i) and Q(

√−3). In their general constructions
they used non-unit, but relatively small, non-norm elements.
As they were not interested in maximal orders nor the
discriminants of the corresponding division algebras, their
algebras (with few exceptions) did not happen to have minimal
discriminants.

We are now going to give a general construction for division
algebras of arbitrary degree and with minimal discriminants.
According to Proposition 10.2, it suffices to study the case,
where the index is a prime power. As a drawback our con-
structions will be dependent on the existence of certain prime
numbers. We discuss this existence problem in Section XI-A
which is purely number theoretic. We note that the fields we
use in our construction are just simple modifications of the
fields in [38].

We give one simple lemma for later use, slightly general-
izing [11, Theorem 1]. The proof is rather similar to the one
given in [11], and therefore we omit it.

Lemma 11.1:Let E be a Galois extension of a number field
F and letP be a prime ideal ofOF that lies under the prime
B of the ringOE . If the inertial degree ofP in the extension
E/F is f andγ is such an element ofF that (vP (γ), f) = 1,
thenγi /∈ NE/F (E) for any i = 1, 2, . . . , f − 1.

We first consider two easy prime powers and then move
forward to more complicated ones.

To ease the notation, we will denote byZm the residue class
ring modulom, i.e. Zm = Z/mZ. Thus e.g.Z∗m is logically
the group of units of that ring.

Lemma 11.2:Suppose thatE is a cyclic extension ofF ,
and thataOF = P1 and P2 are a pair of smallest primes in
F . Assume thatP1 is totally inert andP2 is the only ramified
prime in the extensionE/F . Then

A = (E/F, σ, a),

where 〈σ〉 = Gal(E/F ), is a division algebra that has a
minimal discriminant.

Proof: Lemma 11.1 combined with Proposition 3.6 gives
thatA is a division algebra. The minimality of the discriminant
follows from Lemma 7.5.

Example 11.1:Let ` > 2 be an integer. The maximal orders
of the cyclic division algebraA` = (Q(ζ`)/Q(i), σ, 2 + i)
from Example 5.2 achieve the discriminant bound.

Example 11.2:The fieldQ(ζ3k+1) has a unique subfieldZ
where[Z : Q] = 3k. The extensionQ(

√−3)Z/Q(
√−3) has

degree3k and the prime(2) is totally inert in this extension.
The extension also has a very limited ramification, the prime
(
√−3) is the only ramified one.

Primes(
√−3) and(2) are a pair of minimal primes in the

field Q(
√−3). Lemma 11.2 states now that the cyclic algebra

A = (Q(
√−3)Z/Q(

√−3), σ, 2) is a division algebra with a
minimal discriminant.

In Example 11.2 we found a suitable extensionE/Q(
√−3)

that only had one ramified prime (
√−3). However, we can

prove that for an arbitrary degree there usually does not exist
a cyclic extension that has ramification over (

√−3) or (2)
only. This assures that in general we cannot use such simple
methods. Next we will provide a construction method that
takes care of most of the prime power degrees. First we need
some preliminary results.

Recall the concept of the global Frobenius automorphism.
Suppose we have a finite Galois extensionE/F and thatB
is such a prime ideal ofOE that B ∩ OF = P is unramified
in the extensionE/F . There exists a unique elementσ of
the groupGal(E/F ) that is associated to the primeB and
satisfies

σ(B) = B (8)

σ(a) ≡ (a)[OF :P ] (mod B). (9)

We call this element the Frobenius automorphism ofB and
denote it with(B, E/F ).

If the extensionE/F is abelian, all the primesBi that lie
over P share the same Frobenius automorphism and we can
denote(B,E/F ) by (P,E/F ).

For the properties of the Frobenius automorphism we refer
the reader to [39, p. 379].
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Example 11.3:Let p1 6= p. Then the Frobenius automor-
phism (p1,Q(ζp)/Q) can be defined by

(p1,Q(ζp)/Q)(ζp) = ζp1
p .

We consider a tower of fieldsF1 ⊆ F2 ⊆ L of finite
extensions.

Proposition 11.3:If F1 ⊆ F2 ⊆ E, E/F1 and F2/F1 are
normal andB is such a prime ideal ofE that B ∩ F1 = P is
unramified inE/F1, then

(B,E/F1)|F2 = (B ∩ F2, F2/F1).

The primeP is totally inert in the extensionE/F1 if and only
if (B,E/F1) generates the groupGal(E/F1).

Proof: See [39, Theorem 7.10].
The next lemma is a rather direct consequence of the

definition of Hasse invariant.
Lemma 11.4:Let

A = (E/F, σ, γ)

be a division algebra where〈σ〉 = Gal(E/F ), γ ∈ F ∗, [E :
F ] = n and suppose thatP is a prime ideal ofF that is
totally inert in the extensionE/F . If k is the smallest possible
positive integer so thatσk is the Frobenius automorphism of
P then the Hasse invariant ofP

hP =
kvP (γ)

n
.

Proof: [23, p. 281].
Let us next consider a tower of fieldsF1 ⊆ F2 ⊆ E of finite

extensions. The proofs of the next two well known lemmas
will be omitted.

Lemma 11.5:Let B be a prime ideal ofE, P2 = OF2 ∩B
andP1 = OF1 ∩B.

1. Let f(B/P1), f(B/P2), andf(P2/P1) be the respective
inertia degrees ofB over P1, B over P2, and P2 over P1.
Then

f(B/P1) = f(B/P2)f(P2/P1).

2. Let e(B/P1), e(B/P2), ande(P2/P1) be the respective
ramification indices ofB over P1, B over P2, and P2 over
P1. Then

e(B/P1) = e(B/P2)e(P2/P1).
Lemma 11.6:Let E/F be a Galois extension,B a prime

ideal of E andP = F ∩B. Then

e(B/P ) | [E : F ]

and
f(B/P ) | [E : F ].

Lemma 11.7:Let p be a prime andn such an integer that
n|(p− 1). The fieldQ(ζp) has a unique subfieldZ with [Z :
Q] = n.

There exists a group isomorphismφ from Z∗p/(Z∗p)
n to

Gal(Z/Q) that takes any primep1 6= p to the corresponding
Frobenius automorphism(p1, Z/Q) in Gal(Z/Q).

The primep1 6= p is totally inert in the extensionZ/Q if and
only if pt

1 is not annth power( mod p ) for t = 1, . . . , n− 1.
Proof: It is well known that there exists a unique

isomorphismψ from Z∗p to Gal(Q(ζp)/Q) which takes prime
p1 6= p to (p1,Q(ζp)/Q). We denote the fixed field of the

group ψ(Z∗p)
n by Z. It is now clear thatZ is unique and

[Z : Q] = n. If we first map the elements ofZ∗p with ψ to
Gal(Q(ζp)/Q) and then restrict the resulting automorphisms
to the fieldZ, we obtain an isomorphismφ from Z∗p/(Z∗p)n

to Gal(Z/Q). Proposition 11.3 states thatφ has the claimed
properties.

The last claim follows from the properties ofφ combined
with the last statement of Proposition 11.3.

Proposition 11.8:Suppose thatF = Q(
√

c) is a quadratic
field, q 6= 2 is a given prime andn a given integer. We suppose
thatP1 andP2 are the smallest primes ideals inF andp1 and
p2 are the prime numbers that lie underP1 andP2.

Let p be such a prime thatqn|(p− 1), (p, c) = 1, and that
p1 andp2 are totally inert in the extensionZ/Q, whereZ is
the unique subfield ofQ(ζp) of degreeqn. We also suppose
that p is inert in the extensionF/Q.

The extensionFZ/F is a cyclic Galois extension of degree
qn where the prime idealsP1 and P2 are totally inert and
P = pOF is the only ramified prime ideal in the extension
FZ/F .

Proof: Let B be a prime ideal ofFZ, PZ = OZ ∩ B,
PF = OF ∩B andb = Q ∩B. We denote the corresponding
ramification indices bye(B/PZ), e(PZ/PF ) and e(PF /b).
According to Lemma 11.5

e(B/b) = e(B/PZ)e(PZ/b) = e(B/PF )e(PF /b).

Lemma 11.6 for its part states thate(B/PZ), e(PF /b) | 2
and e(PZ/b), e(B/PF ) | qn. This together with the previous
equation shows that the primePF ⊂ OF is ramified in the
extensionFZ/F if and only if the primeb is ramified in the
extensionZ/Q.

The primep is the only ramified prime inZ/Q and because
p is inert in the extensionF/Q we see thatP is the only
ramified ideal in the extensionZF/F .

If we chooseB so thatPF = P1 or PF = P2, then

f(B/b) = f(B/PZ)f(PZ/b) = f(B/PF )f(PF /b) = qn · g,

where g = 1 or g = 2. This combined with Lemma 11.6
implies thatf(B/PF ) = qn.

In the following propositions we use the notation from
Proposition 11.8. We set thatf1 = f(P1|p1) and f2 =
f(P2|p2).

Lemma 11.9:There exists a group isomorphismρ between
Gal(FZ/F ) andGal(Z/Q) such that

ρ((Pi, FZ/F )) = (pi, Z/Q)fi .
Proof: It is a well-known fact that there exists a

well defined surjective homomorphism fromGal(FZ/Q) to
Gal(Z/Q) for which σ 7−→ σ|Z . The kernel of this map
consists of those elements ofGal(FZ/Q) that act trivially
on the fieldZ. On the other hand, if we restrict the domain
of the map to those elements that act trivially onF this
map is an injection because the only element ofGal(FZ/Q)
that acts trivially on both fieldsF and Z is the identity
map. As we know that|Gal(FZ/F )| = |Gal(Z/Q)| the
described map must be an isomorphism. Now the statement
about Frobenius maps follows from the basic properties of the
Frobenius automorphism.
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Proposition 11.10:Let

pf1
1 pf2

2 = 1 (10)

in the groupZ∗p/(Z∗p)
qn

, P1 = a1OF , andP2 = a2OF . Then

A = (FZ/F, σ, a1a2)

with 〈σ〉 = Gal(FZ/F ) is a division algebra that has a
minimal discriminant.

Proof: The primeP1 is totally inert in the extension
FZ/F . Thus, Lemma 11.1 states thatA is a division algebra.

From the cyclic representation of the algebraA we instantly
see thatA has only three Hasse invariants that can be non-
trivial: hP1 , hP2 , andhP . In what follows we show that the
invarianthP must be trivial.

We first chooseσ to be the Frobenius automorphism ofP1.
Lemma 11.4 now shows that the Hasse invariant ofP1 is

1
qn

= hP1 .

Because the groupZ∗p/(Z∗p)qn

is cyclic we get from (10)
that pf2

2 = (pf1
1 )(q

n−1) in Z∗p/(Z∗p)
qn

. This implies that
(p2, Z/Q)f2 = ((p1, Z/Q)f1)(q

n−1). According to Lemma
11.9 then(P2, FZ/F ) = ((P1, FZ/F )qn−1. Lemma 11.4
now states that

qn − 1
qn

= hP2 .

The sum of the Hasse invariants ofA must be zero (mod
1), whence

hP1 + hP2 + hP ∈ Z.

But, we already saw thathP1 + hP2 ∈ Z, which implies that
hP ∈ Z. The discriminant of the algebraA has now only two
divisorsP1 andP2.

In the beginning of our proof we make the assumption that
σ is the Frobenius of the primeP1. However, the choice of
the generator of the groupGal(FZ/F ) in a cyclic generation
does not change the discriminant of the corresponding algebra.

Example 11.4:Suppose that the centerF = Q(i). The
primes(1 + i) and (2 + i) are a pair of smallest prime ideals
in this field. We want to produce a division algebra of index
10 that has a minimal discriminant. It is not difficult to check
that 2t and5t are not 5th powers (mod11) for t = 1, . . . , 4,
and that11 is inert in the extensionF/Q. Lemma 11.8 states
that Q(ζ11) has a subfieldZ, [Z : Q] = 5, and that2 and 5
are totally inert in the extensionZ/Q.

Proposition 11.8 states that the primes(1 + i) and (2 + i)
are totally inert in the extensionFZ/F and the prime ideal
11OF is the only ramified ideal in the extensionFZ/F .

We easily see that2 · 5 = 1 in Z∗11/(Z∗11)
5. Therefore,

(FZ/F, σ1, (1 + i)(2 + i))

is a division algebra with a minimal discriminant.
We previously saw thatA = (Q(ζ24)/F, σ2, 2 + i) is a

division algebra of index2 and has a minimal discriminant.
Finally, from Proposition 10.2

(Q(ζ24)Z/F, σ1σ2, (1 + i)2(2 + i)7)

is seen to be a division algebra of degree10 with a minimal
discriminant.

A. The existence of suitable primes

Propositions 11.8 and 11.10 have turned our construction
project into a hunt of suitable prime numbers. The problem
is that we do not know if there are “enough” suitable prime
numbers. The answer is that in most cases there are. This
will be proved in Theorem 11.14, but first we need some
preliminary results.

For the definition of the Kummer extension we refer the
reader to appendix and for a proper introduction to [40, p.
197].

Proposition 11.11:Let E/F be a Kummer extension with
E = F (α), αn = a ∈ OF , and letP be a prime ideal ofF
that is not a divisor ofa · n. Furthermore, lett be the largest
divisor of n such that the congruence

xt ≡ a (mod P )

has a solution inOF . ThenP decomposes inE into a product
of t prime ideals of degreen/t over P .

Lemma 11.12:Suppose thatq andp are prime numbers and
that qt|(p − 1) for some integert. If c is an integer and the
equation

c ≡ xq (mod p ) (11)

is not solvable, then neither is any of the equations

ck ≡ xqt

(mod p ), (12)

wherek = 1, . . . , qt − 1.
Proof: Let a be a generator of the cyclic groupZ∗p. Then

we can write thatc ≡ an (mod p) for some integern.
Let us assume that (11) has no solution. This implies that

q is not a factor ofn. Assume then that for somek there is
a solutiond for (12). If we writed ≡ as, then (12) gives that
kn− sqt = v(p− 1), wherev is some integer. Asqt|(p− 1)
this would mean thatqt|kn. That gives us a contradiction.

In the following we use the phrase “the primeP has inertia
in the extensionE/F ”. By that we mean that at least one
prime idealB of E that lies over theP has inertial degree
f(P |B) > 1.

Lemma 11.13:Suppose thatF1 and F2 are Galois exten-
sions of a fieldF andF1 ∩F2 = F . The primeP of OF has
inertia in the extensionF1F2 if and only if it has inertia in the
extensionF1 or F2. The primeP is ramified in the extension
F1F2 if and only if it is ramified inF1 or in F2.

Proof: For the proof the reader is referred to [41, p. 263].

The proof of the following theorem is a slightly modified
version of the proof of [38, Theorem 1]. We do not suppose
here that the center is totally complex nor that the ringOF is
a PID. However, we suppose thatp1 6= p2. For the simplicity
we also suppose thatf2 6= 2.

Theorem 11.14:Assume thatF = Q(
√

c) is a quadratic
field, P1 and P2 are the smallest primes inF , q - 2p1 is a
given prime, andn a given integer.

If q - c, then there exists infinitely many prime numbersp
so thatp is inert in F , Q(ζp) has a unique subfieldZ, [Z :
Q] = qn, wherep1 and p2 are totally inert, andpf1

1 pf2
2 = 1

in Z∗p/(Z∗p)qn

.
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Proof: Let us denoteqn = s, K = Q(ζs)((p
f1
1 pf2

2 )1/s),
K1 = K((p1)1/q) and suppose thatq 6= p1. By noticing
that p1 is unramified inQ(ζs) the ideal factorization ofp1p2

in Q(ζs) reveals that(pf1
1 pf2

2 )d cannot be ansth power (in
Q(ζs)) for any d = 1, . . . , s− 1. Therefore[K : Q(ζs)] = s.

As we have supposed thatq - c there has to be at least one
primep3 that has a ramification index2 in the extensionF/Q,
but which is not ramified in the extensionQ(ζs)/Q. Earlier,
we saw that[K : Q(ζs)] = s. Becausep3 is not ramified
in Q(ζs)/Q and 2 does not divide[K : Q(ζs)], none of the
prime idealsP3 in OK that lie overp3 has2 as a divisor of
the ramification indexe(P3|p3). This implies thatF 6⊆ K .

By [38, Lemma 2] we know that[K1 : K] = q. Because
q 6= 2 andF 6⊆ K, the extensionK1F/K is cyclic and[K1F :
K] = 2q.

Chebotarev’s density theorem [39, Lemma 7.14] states that
K has infinitely many prime ideals that have absolute degree
one and are totally inert in the extensionK1F/K. We choose
one,P , that not only has an absolute degree one but that is
also unramified in the extensionK/Q.

We denote the prime ofQ that lies underP by p. The field
Q(ζqn) is a subfield ofK and thereforep splits completely
in the extensionQ(ζqn)/Q. The theory of cyclotomic fields
[40, p. 195] now gives that

p ≡ 1 (mod qn ).

Next we are going to show thatpt
1 is not ansth power

(mod p) for t = 1, . . . , s− 1. Lemma 11.12 suggests that we
should consider the equationp1 ≡ xq (mod p). Suppose that
p1 ≡ aq (mod p) for some integera. Now p1 ≡ aq (mod
P ). This last equation however cannot be true becauseP is
totally inert in the Kummer extensionK1/K. Lemma 11.12
now states that equationpt

1 ≡ xqn

(mod p) does not have a
solution for anyt = 1, . . . , qn − 1.

Lemma 11.7 states thatQ(ζp) has a unique subfieldZ with
[Z : Q] = qn, and thatp1 is totally inert in the extension
Z/Q.

The primeP has inertial degree one in the extensionK/Q
and therefore(pf1

1 pf2
2 )1/qn ≡ g (mod P ), whereg is some

integer. This implies that

pf1
1 pf2

2 ≡ gqn

(mod p ).

If we use the notation of Lemma 11.7, the mapφ takesp1

to the generatorg of the groupGal(Z/Q) and pf1
1 · pf2

2 to
identity. Because2 - |Gal(Z/Q)| we have thatφ(p1)f1 is also
a generator ofGal(Z/Q). The mapφ is a homomorphism and
thereforeφ(p2)f2 andφ(p2) are again generators of the group
Gal(Z/Q). Lemma 11.7 now shows thatp2 is totally inert in
the extensionZ/Q.

To complete the proof we have to show that the primep is
inert in the extensionF/Q. The primeP must be inert in the
extensionFK/K and therefore the primep has at least some
inertia in the extensionFK/Q. Becausep is totally split in the
extensionK/Q it does not have any inertia in this extension
and therefore Lemma 11.13 states thatp must be inert in the
extensionF/Q.

Theorem 11.14 states that for the centerQ(i) the only
problematic prime power indices are of the form2k. Luckily,

the construction of example 11.1 covers these cases. As a
consequence, we can construct a division algebra with a
minimal discriminant for an arbitrary index. In Table V we
give explicit representations for division algebras with a prime
power index less than 20 and a minimal discriminant.

For each indexqn we have searched the primep of the The-
orem 11.14 along the lines of example 11.4. After the prime
p is found the actual minimal polynomial of the extension
FZ/F can be easily found by considering the subfields of
the extensionQ(ζp)/Q. Both tasks were done by the help of
computer algebra system PARI [42].

If the center isQ(
√−3), the problematic prime powers are

2n and3n. Algebras of degree3n we get from Example 11.2,
but degrees2n are more difficult. For index2 we can use the
division algebra of Section VIII-B. As a conclusion we can
construct a division algebra with a minimal discriminant if the
index is not divisible by4.

In Table VI we give explicit representations for our algebras.
Example 11.5:From Table V we get that

A3 = (Q(i)(a3)/Q(i), σ3, (1 + i)(2 + i))

and
A2 = (Q(i)(a2)/Q(i), σ2, (2 + i))

are division algebras with minimal discriminants.
According to Proposition 10.2 algebraA2 ⊗ A3 =
(Q(i)(a6)/Q(i), σ2σ3, (2 + i)5(1 + i)2), where a6 is a
zero of the polynomialx6 − 2x5 + (−3i − 51)x4 + (4i −
30)x3 +(−2i+755)x2 +(−298i+2134)x+−593i+1628, is
a division algebra of degree6 and has a minimal discriminant.

One of the unfortunate properties of our construction is
that when we produce division algebras of a composite index,
the resulting algebras tend to have relatively large non-norm
elementsγ. In the following example we solve this problem
in one specific case and show that we can always useγ =
(2+i)(1+i). The method has a straightforward generalization
to more general situations.

Example 11.6:In what follows we produce the algebraA6

as a tensor product of two smaller algebras.
Let a2 be a zero of the polynomialx2+i. The algebraB2 =

(F (a2)/F, σ2, (1+ i)(2+ i)) is a slightly modified version of
the algebraA2 of Table V. Using Proposition 11.1 to the prime
(2 + i) we see that it is a division algebra. Considering the
prime divisors of the natural order we see that it has a minimal
discriminant.

The algebraB3 = (F (a3)/F, σ3, (2 + i)−1(1 + i)−1) is a
modified version of the algebraA3. Using Proposition 11.1 to
prime (2 + i) gives us thatB3 is still a division algebra. By
considering the equationB3 ⊗ A3 ∼ Mn(F ) we see thatB3

has the same discriminant as the algebraA3.
BecauseB2 and B3 are division algebras with minimal

discriminants, it follows from Proposition 10.2 that the tensor
product

A6 = B3 ⊗ B2 = (F (a2, a3)/F, σ2σ3, (2 + i)(1 + i))

is a division algebra with a minimal discriminant. The polyno-
mial f6 is just simply the minimal polynomial of the generator
a6 of the fieldF (a2, a3).
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TABLE V

CONDUCTORp OF THE CYCLOTOMIC FIELDQ(ζp), THE NON-NORM ELEMENT γ , AND THE MINIMAL POLYNOMIAL fn OF THE EXTENSION

Q(i)(an)/Q(i)

n p γ fn

2 2 + i x2 + i

3 79 (1 + i)(2 + i) x3 + x2 − 26x + 41

4 2 + i x4 + i

5 11 (1 + i)(2 + i) x5 + x4 − 4x3 − 3x2 + 3x + 1

7 211 (1 + i)(2 + i) x7 + x6 − 90x5 + 69x4 + 1306x3 + 124x2 − 5249x− 4663

8 (1 + i)(2 + i) x8 + i

9 271 (1 + i)(2 + i) x9 + x8 − 120x7 − 543x6 + 858x5 + 6780x4 + 7217x3 − 2818x2 − 4068x− 261

11 859 (1 + i)(2 + i) x11 + x10 − 390x9 − 653x8 + 52046x7 + 146438x6 − 2723930x5 − 11558015x4 + 36326009x3 +
250960565x2 + 385923388x + 145865807

13 6163 (1 + i)(2 + i) x13 + x12 − 2844x11 − 6017x10 + 2908490x9 + 10238862x8 − 1340405033x7 − 6785664624x6 +
281925130086x5 + 1909036915713x4 − 21097272693753x3 − 192054635052100x2 −
235667966495418x + 213548387827457

16 2 + i x16 + i

17 239 (1 + i)(2 + i) x17 +x16−112x15−47x14 +3976x13 +4314x12−64388x11−136247x10 +422013x9 +1631073x8 +
411840x7 − 5840196x6 − 11894369x5 − 10635750x4 − 4739804x3 − 938485x2 − 54850x− 619

19 8779 (1 + i)(2 + i) x19 +x18−4158x17 +8463x16 +6281539x15−34466097x14−4291513699x13 +39454551948x12 +
1357034568541x11 − 17014625218525x10 − 184614267432185x9 + 3035523756071878x8 +
10088401800577582x7 − 253111326110358151x6 − 143208448461319868x5 +
10612439791376560471x4 − 3774559232798357892x3 − 220041647923912963182x2 +
86083932120501598139x + 1794221202297461499641

TABLE VI

THE CONDUCTORp OF THE CYCLOTOMIC FIELDQ(ζp), THE NON-NORM ELEMENT γ , AND THE MINIMAL POLYNOMIAL fn OF THE EXTENSION

Q(
√−3)(an)/Q(

√−3)

n p γ fn

2

3 2 x3 − 3x + 1

4

5 131
√−3 · 2 x5 + x4 − 52x3 − 89x2 + 109x + 193

7 449
√−3 · 2 x7 + x6 − 192x5 + 275x4 + 3952x3 + 4136x2 − 81x− 863

8

9 2 x9 − 9x7 + 27x5 − 30x3 + 9x + 1

11 23
√−3 · 2 x11 + x10 − 10x9 − 9x8 + 36x7 + 28x6 − 56x5 − 35x4 + 35x3 + 15x2 − 6x− 1

13 1613
√−3 · 2 x13 + x12 − 744x11 − 2071x10 + 172627x9 + 432959x8 − 17309406x7 − 33601543x6 + 751073656x5 +

1289004819x4 − 10171466974x3 − 28375196178x2 − 23821205823x− 6355270027

16

17 239
√−3 · 2 x17 + x16 − 112x15 − 47x14 + 3976x13 + 4314x12 − 64388x11 − 136247x10 + 422013x9 + 1631073x8 +

411840x7 − 5840196x6 − 11894369x5 − 10635750x4 − 4739804x3 − 938485x2 − 54850x− 619

19 14897
√−3 · 2 x19 + x18 − 7056x17 − 40523x16 + 17080680x15 + 72065222x14 − 20162799933x13 −

16167485303x12 + 12640227359901x11 − 36746089501267x10 − 4111622563682675x9 +
26076550916951212x8 +590517012904831394x7−5563085347769988171x6−18587019464594930404x5 +
249077297117976638868x4 + 89570134984571927459x3 − 2426443300138563199068x2 −
2514075921454926809076x + 1237664412718620444787
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XII. A N EXAMPLE CODE AND SIMULATION RESULTS

One of the ingredients in the construction of the perfect
codes was the use of ideals in improving the shape of the
code lattices. In [5] we did the same but for the purpose of
saving energy and making the lattice easier to encode.

A way of doing that is to choose an elementx of the
maximal order in such way that the left (or right) idealxΛ
is contained in the natural order. By moving the code inside
the natural order we then to some extent recover the layered
structure of the natural orders, and then, hopefully, also some
of the advantages of the inherent orthogonality between layers.

For example in the case of the Golden+ algebra we can use
the element(1−λ)3 from the ring of integersOE of the larger
field E = Q(

√
2 + i) as a multiplier. Thus by denoting

M =
(

(1− λ)3 0
0 (1 + λ)3

)

we get the idealI consisting of matrices of the formaMM1+
bMM2 + cMM3 + dMM4, where the coefficientsa, b, c, d
are Gaussian integers and the matricesMj , j = 1, 2, 3, 4 are
from Section IX-C. This ideal is a subset of the natural order
OE ⊕ uOE .

Our code constructions are based on selecting the prescribed
number of lowest energy matrices from a chosen additive coset
of the idealI. In order to reach a target bandwidth utilization
of 4, 5 or 6 bpcu we thus selected 256, 1024 or 4096 matrices.
In this sense we have done some coset optimization for the
Golden+ codes, but make no claims as to having found the
best coset. For the rival Golden code from [10] the coset
corresponding to assigning all the Gaussian integers the value
(1+i)/2 stands out. This is because then there are 256 matrices
all having the minimal energy, and more importantly because
in that case pulse amplitude modulation (PAM) can be used
to good effect. We first did some simulations using a PAM-
type rule for larger subsets of the Golden code as well by
arbitrarily selecting a suitable number of coefficients of the
basis matrices from the set{−3/2,−1/2, 1/2, 3/2} so that the
desired bandwidth efficiency was achieved. This is a natural
choice well suited for e.g. the sphere decoding algorithm.
While we ended up having a dead even race BLER-wise at 4.0
bpcu, the Golden code lost to the Golden+ code by about 0.9
dB at the higher rates (see Figure 1). In the interest of a fair
comparison we then tried coset optimization for the Golden
code as well. This narrowed down the gap to about 0.3 dB.
However, the resulting subsets of the Golden code no longer
have such a structure well suited to PAM. In other words
both the rival codes must resort to the use of a codebook. We
have not even attempted to solve the problem of optimizing
the codebook for the purposes of minimizing BER. This also
explains, why our performance plots only show the block error
rates (i.e. the probability of decoder deciding in favor of a2×2
matrix other than the transmitted one) rather than bit error
rates. Thus our simulations may also be viewed as measuring
the amount of power lost, when one insists on not needing a
codebook.

10-3

10-2

10-1

 10  12  14  16  18  20  22
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Golden PAM 6
Golden coset 6

Golden+ 6
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Golden PAM 4

Golden+ 4

Fig. 1. Block error rates at 4, 5, and 6 bpcu.

XIII. C ONCLUDING REMARKS AND SUGGESTIONS FOR

FURTHER WORK

We have derived a bound for the density of fully mul-
tiplexing MIMO matrix lattices resulting in codes with a
unit minimum determinant. The bound only applies to codes
obtained from the cyclic division algebras and their ideals.
While the bound is not constructive per se, we also showed
that it can be achieved for any number of transmit antennas,
and discussed techniques leading to the construction of CDAs
with maximal orders attaining the bound. For more details on
the number theoretic techniques we refer the interested reader
to the doctoral dissertation of Roope Vehkalahti [29]. We
also discussed the Ivanyos–Rónyai algorithm that is needed to
actually find these densest possible lattices inside these CDAs,
and gave as an example a construction of a fully multiplexing
2×2 code that outperforms the Golden code at least for some
data rates.

We concede the point that assigning bit labels to the
points on our lattice is more difficult than in the case of
linear dispersion codes. A very promising general method of
spherical encoding has been studied in [25], where supporting
simulation results are also provided. See [43] for the MAGMA
commands for explicitly producing maximal orders and for
a discussion onpower-controlled sphere decoding of the
maximal order codes.

There are also possibilities for applying these class field
theoretical techniques to slightly modified density problems of
ST-codes. For example, the bound of Theorem 6.12 has been
used in [19] to produce dense asymmetric and multi-block ST
codes. Asymmetric situations naturally arise in applications,
where the receiver may have a lower number of antennas than
the transmitter, e.g. in a broadcast application or in a cellular
phone downlink.

An immediate open problem is to utilize maximal orders
of the cyclic division algebra of index 2 with centerQ(ω).
When looking for the example code in the previous section a
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natural step was to use LLL-algorithm for finding a relatively
orthogonal basis for the lattice. That definitely aided the search
for a good coset. In the hexagonal case this step is somewhat
trickier and using a multiplier to put the maximal order inside
the natural order only lead to a code with a disappointing
performance. The best way of using this densest known lattice
of 2×2-matrices is not known to us. As another open problem
we ask, whether the discriminant bound can be broken by
a MIMO lattice that does not come from a cyclic division
algebra. We believe this to be a very difficult question.

APPENDIX

In this Appendix we first give some results on algebraic
number theory. The presentation is not intended to be a nice
introduction, but rather a collection of results and concepts
needed in this paper. In Section XIII-B, we give a proof of the
claimed result in the beginning of the Section IX that natural
orders can never reach our discriminant bounds.

A. Some results from algebraic number theory

In this paper, an algebraic number field is a finite algebraic
extension ofQ. Let K be an algebraic number field andOK

the ring of algebraic integers inK.
Definition 13.1: Let K/Q be a finite extension of degree

n. Suppose thatr1 and 2r2 are the numbers of real and
complex embeddings ofK to C. We call the 2-tuple(r1, r2)
the signatureof the fieldK.

Proposition 13.1:Let [K : Q] = n. Then

r1 + 2r2 = n.
Remark 13.1:A typical method to determine the number of

real and complex embeddings of an algebraic number field is
to pick a primitive elementa of the extensionK/Q and then
count the number of real and complex zeros of the minimal
polynomial ofa.

If the signature of a fieldK is (r1, 0), we say that the field
is totally real, and if the signature is(0, r2), we say that the
field is totally complex.

Lemma 13.2:Let us consider the fieldK = Q(
√−m),

wherem is a positive square free integer. Each of the elements
c in K can be uniquely presented in the formc = a+b

√−m,
wherea andb are rational numbers. We then have

nrK/Q(c) = (a + b
√−m)(a− b

√−m) = a2 + b2m = |c|2.
If the elementc is in OK , the algebraic norm takesc to Z.
The previous equation then gives us that

|c| ≥ 1

for everyc in O∗K .
Suppose thatK is an algebraic number field containing an

nth root of unity.
Proposition 13.3:Let us consider the fieldL = K[a],

where an ∈ K, and no smaller power ofa is in K. Then
L/K is a cyclic Galois extension of degreen.

We call such an extension aKummer extension.
Definition 13.2: Suppose thatL/K is an n-dimensional

extension of algebraic number fields and thattrL/K is the trace

function. Thediscriminantd(L/K) of the extensionL/K is
an ideal inOK generated by the set

{det(trL/K(xixj))n
i,j=1 | (x1, ..., xn) ∈ On

L}.
If we want to emphasize that we consider the relation between
OK andOL, we can also writed(OL/OK).
If OL is a freeOK-module, then

d(OL/OK) = det(tr(xixj))n
i,j=1,

where{x1, . . . , xn} is anyOK-basis ofOL.
The following theorem connects the ramification of finite

primes and the discriminant.
Theorem 13.4:Let P be a prime ideal of the ringOK and

p = char(OK/P ). Suppose that

POL = Be1
1 · · ·Beg

g

is the prime decomposition ofP in the ringOL. Let fi stand
for the inertial degreef(Bi|P ). Then

vP (d(L/K)) = (e1 − 1)f1 + · · ·+ (eg − 1)fg,

if p - ei, i = 1, 2, . . . , g, and

vP (d(L/K)) > (e1 − 1)f1 + · · ·+ (eg − 1)fg,

if p | ei for some indexi.
We say that a primeP is wildly ramified if and only ifp | ei

for somei, otherwise we say that it is tamely ramified. From
the previous proposition we see that the ramification of a tame
primeP defines totally theP power index of the discriminant.
For wildly ramified ideals we only get a lower bound.

We will need later the following two technical lemmas.
Lemma 13.5:Let K2 ⊇ K1 ⊇ F be a tower of finite

extensions ofQ. Then

d(K2/F ) = nrK1/F (d(K2/K1))d(K1/F )[K2:K1],

where nrK1/F is the usual relative norm from algebraic
number theory.

Proof: For the proof we refer the reader to [41, p.249].

Lemma 13.6:Suppose that we have an abelian extension
L/K of degreen, with a Galois group{σ1, . . . , σn}, and
suppose that{x1, x2, . . . , xn} is someOK-basis of the ring
OL. Then

det(trL/K(xixj))n
i,j=1 = ±det(trL/K(σk(xi)xj))n

i,j=1.
Proof: We defineXi = (σi(x1), . . . , σi(xn)) and con-

sider the matrixX which has vectorsXi as rows. We then
have that

det(trL/K(xixj))n
i,j=1 = det(XT X).

If we replace the rowsXi in the matrixX with the rows

σk(Xi) = (σk(σi(x1)), . . . , σk(σi(xn))),

we get a matrixσk(X). Then

det(trL/K(σk(xi)xj))n
i,j=1 = det(σk(X)T X).

Clearly
det(σk(X)) = ±det(X),
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and the claim follows.

We shall now recall some facts ofP -adic fields. Suppose
thatP is a finite prime of an algebraic number fieldK, K̂P the
P -adic completion, andp = char(OK/P ). We may consider
K̂P as a finite algebraic extension ofQ̂p and then refer to the
algebraic closure of the rinĝZp in K̂P asOK̂P

, and simply
call it the ring of integers inK̂P . In the following, we identify
the primeP and the unique prime idealPOK̂P

of the ring
OK̂P

, and denote both byP .
We extend the concept of wild and tame ramification to local

fields. LetL̂ be a finite algebraic extension of̂KP , andB the
unique prime ideal ofOL̂. We say thatP is wildly ramified,
if p divides the ramification indexe(B|P ); otherwise we say
that P is tamely ramified.

Definition 13.3: Let L̂ be a finite and totally inert Galois
extension ofK̂P , andB the unique prime ideal of the ring of
the P -adic algebraic integersOL in L. Suppose that[OK̂P

:
P ] = q. ThenGal(L̂/K̂P ) has an element(P, L̂/K̂P ) called
the (local)Frobenius automorphism. It is the unique element
of Gal(L̂/K̂P ) satisfying

(P, L̂/K̂P )(x) ≡ xq (mod B) forall x ∈ OL.
Suppose thatL is an abelian extension of̂KP and thatU

is the group of units inOK̂P
.

Definition 13.4: The smallestf such thatnrL̂/K̂P
(L∗) con-

tains 1 + P f is called theconductorof L/K̂P , except that,
whennrL̂/K̂P

(L̂∗) ⊂ U , the conductor is said to be 0.
Remark 13.2:In the previous definition we expected the

existence of somef . This is a nontrivial result.
In some special cases the determination of the conductor is

easy. For the proof we refer the reader to [30, p.12].
Lemma 13.7:The extensionL̂/K̂P is unramified if and

only if its conductor is 0, and tamely ramified if and only
if its conductor is≤ 1.

B. Natural orders do not have minimal discriminants

In the next lemma we use some basic results from the theory
of discriminants and differents. For these results and the notion
of different we refer the reader to [40, Chapter 3.12]. For the
definitions of tame and wild ramification we refer the reader
to the previous subsection of this appendix.

Lemma 13.8:Suppose we have a Galois extensionE/F of
degreen, and that there areg prime idealsBi of E lying over
the primeP of F . If the prime P is wildly ramified in the
extensionE/F , then

vP (d(E/F )) ≥ n.
Proof: Suppose thatDE/F is the different of the exten-

sionE/F . Then it is an easy exercise in Galois theory to show
that vBi(DE/F ) = vBj (DE/F ) for every i and j. BecauseP
was supposed to be wildly ramified,

s = vBi(DE/F ) ≥ e, (13)

wheree is the ramification index ofBi/P .
The theory of normal extensions states thatefg = n, where

f is the inertial degree ofBi/P . Taking into account this and

(13), we can conclude that

vP (d(E/F )) = vP (NE/F (DE/F )) = sgf ≥ egf = n.

Remark 13.3:The proof of the following proposition is
merely a sketch directed to a reader having sufficient knowl-
edge in algebraic number theory.

Proposition 13.9:Suppose we have a division algebraD =
(E/Q(i), σ, γ), where E/Q(i) = n and γ is an algebraic
integer. If Λ is the natural order of the division algebraD,
then

|d(Λ/OQ(i))| > |(2 + i)n(n−1))(1 + i)n(n−1)|.
Proof: The natural orderΛ is a subset of some maximal

orderΛmax and therefore

|d(Λ/OQ(i))| ≥ |(2 + i)n(n−1)(1 + i)n(n−1)|.
Let us then assume that

|d(Λ/OQ(i))| = |(2 + i)n(n−1)(1 + i)n(n−1)|.
According to Lemma 5.4, the only primes that could be

ramified in the extensionE/Q(i) are (1 + i), (2 + i), and
(2− i). Lemma 13.8 assures that none of these primes could
be wildly ramified.

One of the main results of the global class field theory [30,
p. 124] states that there exists a ray class fieldC(1+i)(2+i)(2−i)

that contains all the cyclic extensions ofQ(i), where(1 + i),
(2 + i), or (2− i) is tamely ramified.

We can now calculate the degree of the extension
C(2+i)(1+i)(2−i)/Q(i). By [30, Theorem 1.5], we have
[C(2+i)(1+i)(2−i) : Q(i)] = 2, which implies thatE =
C(2+i)(1+i)(2−i) andn = 2.

The ray class fieldsC(2+i)(1+i) andC(2−i)(1+i) that admit
tame ramification at(2+i) and(1+i) or at(2+i) and(1−i),
respectively, are both trivial extensions ofQ(i). Hence, both
(2+i) and(2−i) are ramified inE and divide the discriminant
of the extensionE/Q(i). The discriminant of the natural order
Λ now has to be divisible by at least(2 + i)2(2 − i)2. This
gives us a contradiction.

Proposition 13.10:Suppose we have a division algebra
D = (E/Q(

√−3), σ, γ), whereE/Q(
√−3) = n and γ is

an algebraic integer. IfΛ is the natural order of the division
algebraD, then

|d(Λ/OQ(
√−3))| > |(√−3)n(n−1))(2)n(n−1)|.

Proof: The proof is similar to that of the previous
proposition.

These considerations reveal that in order to reach the
optimal density of a code lattice maximal orders are forced
upon us.
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Abstract

Previously, it was shown why the discriminant of a
maximal order within a cyclic division algebra must
be minimized in order to get the densest possible ma-
trix lattices with a prescribed non-vanishing minimum
determinant. In this paper, the actual procedure of
constructing maximal orders is described in more de-
tail, aiming to provide a handy tool also for researchers
with only a modest mathematical background. For in-
stance, it is explicitly shown, step by step, how to con-
struct a matrix lattice with QAM coe�cients that has
2.5 times as many codewords as the famous Golden
code of the same minimum determinant.

In order to decode maximal order based space-time
codes, the usual sphere decoder has to be modi�ed.
A pseudo algorithm describing the additional steps is
given. For the algorithm to function it is essential that
we also speed up the search for the shortest lattice vec-
tors ensuring in this way that the usage of a codebook
becomes feasible. Both the search and the decoding
can be performed by adding an upper bound on the
energy of the single vector in use.

1. INTRODUCTION
1 Recently, maximal orders have been proposed in

[1]�[3] as a new design tool for cyclic division algebra
(CDA) based space-time block codes (STBCs) (see e.g.
[4],[5]). It was shown in [3] that in order to maximize
the number of codewords in the available signal space,
i.e. to maximize the code density, one should look for
CDAs having maximal orders with minimal discrimi-
nants. Luckily, the minimum determinant of the code

This work was supported in part by the Finnish Cultural
Foundation and the Academy of Finland, grant #108238. K.
Ranto is currently with Nokia, Box 86, 24101 Salo, Finland.

1Reprinted, with permission, from Proceedings of the 2008
International Symposium on Information Theory and its Appli-
cations (ISITA2008). ( c©2008 IEEE).

does not change when increasing the density in this
way. However, the construction of maximal orders is
somewhat di�cult and involves some serious number
theory. Therefore, our aim in this paper is to provide
computational tools at everyone's disposal while trying
to hide the theory behind.

2. A BRIEF OVERVIEW ON CYCLIC DIVI-
SION ALGEBRAS AND ORDERS

We refer the interested reader to [6] and [4] for a de-
tailed exposition of the theory of simple algebras, cyclic
algebras, their matrix representations and their use in
ST-coding. We only recall the basic de�nitions and
notations here. In the following, we consider number
�eld extensions E/F , where F denotes the base �eld
and F ∗ (resp. E∗) denotes the set of the non-zero el-
ements of F (resp. E). The ring of algebraic integers
are denoted by OF and OE , respectively. In the in-
teresting cases the center F is an imaginary quadratic
�eld, either Q(i) or Q(

√−3). We assume that E/F
is a cyclic �eld extension of degree n with the Galois
group Gal(E/F ) = 〈σ〉. Let A = (E/F, σ, γ) be the
corresponding cyclic algebra of degree n, that is

A = E ⊕ uE ⊕ u2E ⊕ · · · ⊕ un−1E,

as a (right) vector space over E. Here u ∈ A is an
auxiliary generating element subject to the relations
xu = uσ(x) for all x ∈ E and un = γ ∈ F ∗. An
element a = x0 + ux1 + · · · + un−1xn−1 ∈ A has the
following standard representation as a matrix A =



x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) · · · γσn−1(x2)
...

...
... . . . ...

xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)


 .

In the rest of this paper, we identify an element a ∈
A with its matrix representation. E.g. when we say
determinant of a ∈ A, we mean det(A).



The next proposition due to A. A. Albert [6, The-
orem 11.12, p. 184] tells us when a cyclic algebra is a
division algebra.

Proposition 1 (Norm condition) The cyclic alge-
bra A = (E/F, σ, γ) of degree n is a division algebra
if and only if the smallest factor t ∈ Z+ of n such that
γt is the norm of some element of E∗ is n.

Due to the above proposition, the element γ is often
referred to as the non-norm element.

We do not give a detailed description of orders here.
Instead, we try to express the notion of order as simply
as possible, yet clearly enough so that one can under-
stand the advantage it can o�er us.

One of the simplest examples of an order Λ is the
maximal order of an algebraic number �eld, which is
always unique and equal to the ring of algebraic inte-
gers. E.g. for the �eld F = Q(i), the maximal order is
the ring of Gaussian integers Λ = OF = Z[i]. For non-
commutative algebras, an order can be thought of as a
generalization to the ring of algebraic integers. How-
ever, for non-commutative algebras, a maximal order
is not necessarily unique, and the coe�cients xi ∈ E
in the representation a = x1 + · · · + un−1xn−1 of an
element a taken from an order Λ may be non-integral.
If one considers integer coe�cients only, the ring pro-
duced is what we call a natural or layered order :

De�nition 2 Let γ ∈ OF . We see that the OE-module

Λnat = OE ⊕ uOE ⊕ · · · ⊕ un−1OE

is an OF -order in the cyclic algebra (E/F, σ, γ). We
refer to Λnat as the natural order. It will also serve as
a starting point when searching for maximal orders.

For the purposes of constructing MIMO lattices the
reason for concentrating on orders is summarized in the
following proposition (e.g. [7, Theorem 10.1, p. 125]).
We simply rephrase it here in the language of MIMO
lattices.

Proposition 3 Let Λ be an order in a cyclic division
algebra (E/F, σ, γ). Then for any non-zero element
a ∈ Λ its reduced norm nr(a) := det(a) is a non-
zero element of the ring of integers OF of the center
F . In particular, if F is an imaginary quadratic num-
ber �eld (e.g. F = Q(i)), then the minimum deter-
minant of the lattice Λ is equal to one. Hence, when
using an order, the non-vanishing determinant (NVD)
property is automatically met and the corresponding
space-time code is optimal with respect to the diversity-
multiplexing tradeo� (DMT) [8].

De�nition 4 Let k = dimF A and let OF be a Eu-
clidean domain (this is the case e.g. when F = Q(i)
or F = Q(

√−3), that is, when we use QAM or HEX
modulation). The discriminant of the OF -order Λ is
the element

d(Λ/OF ) = det tr(xixj)k
i,j=1,

where {x1, . . . , xk} is any OF -basis of Λ.

Proposition 5 For the Z-discriminant we have

d(Λ/Z) = NF/Q(d(Λ/OF ))ddimF A
F/Q ,

where NF/Q (resp. dF/Q) denotes the usual �eld norm
(resp. discriminant). When F = Q(i), we have

m(Λ) = |d(Λ/Z[i])|

(see [3] for details). Here m(Λ) denotes the measure
of the fundamental parallelotope of Λ, i.e., the square
root of the Gram determinant of the lattice.

We know (see e.g. [3] or [7]) that all the maxi-
mal orders in the same CDA share the same discrim-
inant, and every order is contained in some maximal
order. Thus, maximal orders have the minimal dis-
criminant in a given CDA, as from Γ ⊂ Λ it follows
that d(Λ/OF )|d(Γ/OF ).

Example 6 Let us use the Golden code (GC) [5] and
the Golden+ code (GC+) [3] to illustrate the above
de�nitions. The GC is de�ned as the natural order of
the cyclic division algebra

GA = (Q(i, θ)/Q(i), σ : θ 7→ 1− θ, i),

where θ = (1 +
√

5)/2. Moreover, the ideal (α) = (1 +
i−θ) is used in order to get a hypercubical shape. That
is,

GC =
{(

αx0 iσ(αx1)
αx1 σ(αx0)

)
, x0, x1 ∈ Z[i, θ]

}
.

Actually, the natural order of the Golden algebra GA is
also a maximal order as was shown already in [2], so
it is not possible to get a denser lattice by using some
other order inside GA. For the order Λ corresponding
to the GC we get

m(Λ) = d(Λ/Z[i]) = 25

by De�nition 4 and Proposition 5.
In [3], the Golden+ code was constructed as a max-

imal order of the algebra

GA+ = (Q(s)/Q(i), σ : s 7→ −s, i),



where s =
√

2 + i. Further, the ideal (β) = ((1 − s)3)
was used to force the maximal order inside the natural
order. The resulting code lattice is as much as 2.5 times
denser than the Golden code lattice, as we now have

m(Λ) = d(Λ/Z[i]) = 10

by De�nition 4 and Proposition 5 (see [3] for more de-
tails).

3. CONSTRUCTING MAXIMAL ORDERS

Maximal orders are somewhat tricky to construct
by hand. Luckily, the construction algorithm from [9]
is implemented in the MAGMA software [10]. In what
follows, we explain the required steps for producing a
maximal order of the algebra GA+ (denoted by A in
Table 1). First of all, one needs to de�ne the algebra
with relations. In GA+ the following relations hold:

i2 = −1, s2 = 2 + i, u2 = i, su = −us.

Now we can start with MAGMA (an explicit sign * is
required for the multiplication).

Table 1: Constructing maximal orders with MAGMA

% magma
> Q:=Rationals();
> A<i, s, u> := FPAlgebra< Q, i, s, u |
i�2+1, s�2-2-i, u�2-i, s*u+u*s >;
> Dimension(A);
8
> S,s:=Algebra(A); Inv:=Inverse(s);
> for i:=1 to 8 do print Inv(Basis(S)[i]);
end for;
1, u, s, i, u*s, u*i, s*i, u*s*i
/* natural order basis */
> M:=MaximalOrder(S);
> Factorization(Discriminant(M));
[ <2, 10>, <5, 2> ]
/* Z-discriminant equals 210 · 52 */
> Basis(M);
[ (1/2 1/2 1/2 1/2 1/2 1/2 1/2 7/2),
(0 1/2 1/2 0 0 1/2 1/2 2),
(0 0 1 0 0 0 0 1),
(0 0 0 1/2 1/2 1/2 1/2 2),
(0 0 0 0 1 0 0 1),
(0 0 0 0 0 1 0 1),
(0 0 0 0 0 0 1 1),
(0 0 0 0 0 0 0 1) ]
/* maximal order basis */

In Table 1 above, FPAlgebra stands for �Finitely
Presented Algebra�, and S,s:=Algebra(A)
translates GA+ into an algebra S presented by a mul-
tiplication table, and a mapping s : GA+ → S is at-
tached to the algebra GA+. This step is needed for
the MaximalOrder command. For the GA the natural
order is also a maximal order. For the GA+ this is not
the case. Instead, we get a maximal order basis (see
the last output in Table 1)

{fj}1≤j≤8 = {1/2(
8∑

k=1

ei),

1/2(e2 + e3 + e6 + e7), e3,

1/2(e4 + e5 + e6 + e7), e5, e6, e7, e8},

where

{ej}1≤j≤8 = {1, u, s, i, us, ui, si, usi}

denotes the natural order basis. Note that we have
simpli�ed the basis by subtracting multiples of f8 from
the other (original) basis elements f1, ..., f7.

MAGMA is a commercial software but the com-
mands in Table 1 can be executed in a free online
MAGMA calculator [10]. This computation takes a
half a second time (there is a limit of 20 seconds) and
7.36MB total memory.

4. POWER CONTROLLED DECODING

We base our sphere decoder on the algorithm in [11]
(see also [12]). However, the basic sphere decoder has
to be modi�ed, as we need to use a codebook in order
to get the full advantage of the density provided by
maximal orders.

Example 7 For the orthogonal GC it is clear that the
28 PAM vectors giving the shortest codewords are those
with ±1 in every coordinate. For the non-orthogonal
GC+ (see [13] for the basis matrices) the situation is
completely di�erent: Even after the standard LLL pro-
cedure, e.g., the vector

(1, 1, 1, 1, 3, 1, 1,−1)

results in a substantially shorter codeword than the vec-
tor

(1, 1, 1, 1,−1,−1,−1, 1)

(and over 200 other vectors with ±1s).

The sphere decoding algorithm is quite �exible al-
lowing di�erent kind of modi�cations. In the so-called
code controlled sphere decoding (CCSD) [14] the algo-
rithm was modi�ed by adding certain parity checks to



distinguish the valid codewords. Here we do not as-
sume any simple structure for the codewords but iden-
tify the valid codewords by limiting the maximal Eu-
clidean norm.

Our main idea for the codebook construction and
sphere decoding was introduced already in [11, Section
V.A]: we take the codewords with integer coordinates in
some �xed interval I ⊂ Z that are in an m-dimensional
sphere with a given squared radius P 2. As the Eu-
clidean norm of the vectorized codeword corresponds
to the transmitted signal energy, we are actually tak-
ing the lattice points which are below some �xed power
limit P 2.

In contrast to [11] where the additional power limit
was checked only in the end, i.e., when the decoder
had found an otherwise valid point, we suggest this
check to be done cumulatively in the same manner as
the usual sphere decoding check (see STEP 3 in the
algorithm). In other words, in our modi�ed algorithm
the boundary condition check is conducted in various
intermediate steps while in [11] it was done only at leafs
of the equivalent tree search. This idea is useful also
in the search for the codebook: it is quite evident that
for larger lattice dimensions the running time for the
search decreases dramatically when using the proposed
cumulative approach.

Both the power controlled codebook construction
and the power controlled sphere decoding (PCSD) have
the same �rst steps of preprocessing: The complex
basis matrices Mi ∈ Cm×m of the code lattice are
vectorized and written as columns in a real matrix
B′ ∈ R2m2×m. Then applying QR decomposition on
B′ we get B′ = Q′R′ with an upper triangular matrix
R′ = (r′i,j)

m
i,j=1. Now, the integer vectors x that admit

to the allowed power limit satisfy

|B′x|2 = |Q′R′x|2 = |R′x|2 ≤ P 2.

In the search for the shortest vectors, we �rst assign
the last coordinate with some value in I similarly as in
the sphere decoding. Here it does not matter whether
we use Pohst or Schnorr�Euchner enumeration as we
want to check the whole interval. With the given power
limit P 2 we check all those coordinates in the search
tree which are in I and whose cumulative norms so far
do not violate the power limit P 2. The details of this
power limit check are integrated in the PCSD algorithm
given below.

In PCSD, the basis matrix B′ needs to be pre-
processed only once, whereas the usual QR decom-
position is carried out for every channel matrix H:
the channel matrix multiplied by the basis matrices,
HMi, are vectorized and written as columns in a real
matrix B = QR. Now the upper triangular matrix

R = (ri,j)m
i,j=1 is used to check whether the node in the

search tree is still inside the sphere of a given squared
radius C0 in the receiving end. On the other hand, the
upper triangular matrix R′ is used to check whether the
same node is still inside the sphere of a given squared
radius P 2 in the transmitting end.

Finally, we present here the new PCSD algorithm as
a pseudo-code. All modi�cations as compared to [11]
have been framed . The algorithm can be used di-
rectly with the lattice points themselves, i.e., the inter-
val I can equal e.g. {−3,−2, . . . , 2, 3}. We can equally
well use PAM coe�cients, e.g. {−3,−1, 1, 3}, by scal-
ing them to an interval {0, 1, 2, 3} but then the energy
counting in STEP 3 must be modi�ed. Another pos-
sibility with PAM coe�cients is to modify the update
rules for xi and ∆i in STEP 2 and 6.

Algorithm II, Smart Implementation (Input C ′0,
y′, R, R′, P 2 . Output x̂.)

STEP 1: (Initialization) Set i := m, Tm := 0, ξm := 0,
Pm := 0, ηm =: 0 , and dc := C ′0 (current sphere
radius).

STEP 2: (DFE on xi) Set xi := b(y′i − ξi)/ri,ie and
∆i := sign(y′i − ξi − ri,ixi).

STEP 3: (Main step) If dc < Ti + |y′i−ξi−ri,ixi|2, then
go to STEP 4 (i.e., we are outside the sphere).

Else if xi /∈ I or P 2 < Pi + |r′i,ixi + ηi|2 , go to
STEP 6
(i.e., we are inside the sphere but outside the sig-
nal set boundaries).
Else (i.e., we are inside the sphere and signal set
boundaries) if i > 1, then
{let ξi−1 :=

∑m
j=i ri−1,jxj ,

Ti−1 := Ti + |y′i − ξi − ri,ixi|2,
ηi−1 :=

∑m
j=i r′i−1,jxj , Pi−1 := Pi + |r′i,ixi + ηi|2 ,

i := i− 1, and go to STEP 2}.
Else (i=1) go to STEP 5.

STEP 4: (Backtracking) If i = m, terminate, else set
i := i + 1 and go to STEP 6.

STEP 5: (A valid point is found) Let
dc := T1 + |y′1 − ξ1 − r1,1x1|2, save x̂ := x, let
i := i + 1, and go to STEP 6.

STEP 6: (Schnorr�Euchner enumeration of level i) Let
xi := xi + ∆i, ∆i := −∆i − sign(∆i), and go to
STEP 3.



5. Conclusions

In this paper, we wanted to clarify the construction
and decoding of maximal order based space-time codes.
By introducing the required MAGMA commands and
by explicitly pointing out the additional steps needed
for (spherical) sphere decoding, we hope that we man-
aged to bring the topic more down-to-earth to non-
experts.

Maximal orders are used in space-time coding for
the reason that they provide denser lattices and hence
larger coding gains as compared to the conventional
CDA codes based on natural orders. Recently, Kumar
and Caire [15] have showed that the problem of main-
taining a codebook can be overcome by using sphere
encoding. By computer simulations they have shown
that the maximal order based codes [3] outperform all
the best previously known codes, e.g. the Perfect codes
[5], when using two or three antennas. Promising re-
sults have been achieved also in the asymmetric sce-
nario [16] and in the MIMO multiple access channels
[17]. Hence, our hope is that maximal orders would be
more widely adopted to the �eld of space-time coding.
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On the Algebraic Structure of the Silver Code:
a 2× 2 Perfect Space-Time Block Code

C. Hollanti, J. Lahtonen, K. Ranto, R. Vehkalahti, E. Viterbo

I. I NTRODUCTION

A family of full-rate, full-diversity STBCs for2×2 MIMO
was recently proposed in [1], [2], [3], [4] using a combina-
tion of Clifford-algebra and Alamouti structures [5], namely
twisted space–time transmit diversitycode. This family was
recently rediscovered in [6], where it was also pointed out
that such STBCs enable reduced-complexity ML decoding
(see also [7] for details). Independently, the same STBCs were
found in [8], and namedmulti-strataspace–time codes.

In this paper we show how this code can be constructed
algebraically from a particular cyclic division algebra. This
formulation enables to prove that the code has the non-
vanishing determinant property [9] and hence achieves the
diversity-multiplexing tradeoff (DMT) optimality [10]. The
fact that the normalized minimum determinant [11] is1/

√
7

places this code in the second position with respect to the
Golden code [9], which exhibits a minimum determinant of
1/
√

5, and motivates the namesilver code.
The silver code was originally designed to have the cubic

shaping property of perfect space–time codes [12], but not the
non-vanishing determinant property, which was only conjec-
tured, after it was verified up to 64–QAM.

II. SYSTEM MODEL AND NOTATION

We are interested in the coherentn× n MIMO-case where
the receiver perfectly knows the channel coefficients. Then×n
received signal matrix is

Y = HX + N,

whereH is the Rayleigh fading channel response matrix, the
elements of the noise matrixN are i.i.d. complex Gaussian
random variables andX is the n × n transmitted codeword
taken from the MIMO-latticeΛ ⊂ Mn(C), the set ofn × n
matrices over the complex fieldC.

A lattice, i.e., a discrete free abelian group, is determined
by its basisX1, X2, . . . , Xk consisting ofn×n matrices that
are linearly independent over the field of real numbers. The
rankk is thus bounded from above by2n2. A lattice is said to
have full rank, if k = 2n2. We are interested in the full rank
lattices since they yield the full rate space-time codes, with
the maximum multiplexing gain.

C. Hollanti, J. Lahtonen, K. Ranto, R. Vehkalahti are with Uni-
versity of Turku and Turku Centre for Computer Science, Finland. E-
mails:{cajoho, lahtonen, kara, roiive}@utu.fi. J. Lahtonen is also a Visiting
Fellow at NRC, Helsinki, Finland. E. Viterbo is with DEIS - Università della Calabria,
Via P. Bucci, 42/C, 87036 Rende (CS), Italy and Visiting Fellow at NRC, Helsinki,
Finland. E-mail: {viterbo}@deis.unical.it. This work was supported by the
STREP project No. IST-026905 (MASCOT) within the Sixth Framework Programme of
the European Commission.

The Gram matrixof Λ is defined by

G =
(
<[Tr(XiX

†
j )]

)
1≤i,j≤k

where< denotes the real part, Tr denotes the trace of the
matrix and† denotes Hermitian transposition. Thedeterminant
of Λ is defined asdet(Λ) = det(G). The measure, or
hypervolume,m(Λ) of the fundamental parallelotopeof the
lattice is related to the lattice determinant by det(Λ) = m(Λ)2.

Given that anyn × n codeword X from a space-time
codebookC ⊆ Λ corresponds to a lattice point ofΛ, we define
the minimum determinantof the code as

min
X 6=X′∈C

det(X −X ′).

For the infinite codeC = Λ this can be rewritten as

min
X∈C\{0}

det(X),

since the difference of any two lattice points is again a lattice
point.

As the minimum determinant determines the asymptotic
pairwise error probability (PEP), this gives rise to natural
numerical measures for the quality of a code.

If all the codebooks of any size contained inΛ have a
minimum determinant bounded from below by a non-zero
constant, we say thatΛ has thenon-vanishing determinant
propertyand we define

∆(Λ) = min
X∈Λ\{0}

det(X)

If we consider a scaled latticerΛ for some real constant
r > 0, we havem(rΛ) = rkm(Λ) and ∆(rΛ) = rn∆(Λ).
We can chooser to normalize either∆(Λ) = 1 or m(Λ) = 1.
In order to define a signal-to-noise ratio we can also chooser
so that the entries of the codeword matrices have unit average
energy, i.e.,E(xij) = 1.

Following [11], we first scaleΛ to have a unit size fun-
damental parallelotope, and denote byδ(Λ) the normalized
minimum determinantof the latticeΛ. We omit Λ from the
paranthesis, whenever the lattice is clear from the context. To
make fair comparisons between the minimum determinants of
various codes, one should always use the normalized minimum
determinant.

For example, the Golden code hasδ = 1/
√

5, when
considering unit hypervolume andδ = 4/

√
5, when assuming

±1,±3, . . . as integer components for the QAM symbols.
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III. S ILVER CODE AS A CYCLIC DIVISION ALGEBRA

The silver codeS is defined in [1], [2], [3], [4] as

S = {X = XA + TXB | x1, x2, x3, x4 ∈ Z[i]},
where

XA = XA(x1, x2) =
(

x1 −x∗2
x2 x∗1

)
,

XB = XB(z1, z2) =
(

z1 −z∗2
z2 z∗1

)
,

the twisting matrix

T =
(

1 0
0 −1

)
,

and (
z1

z2

)
= U

(
x3

x4

)

with a unitary matrix

U =
1√
7

(
1 + i −1 + 2i

1 + 2i 1− i

)
.

We can also think of the codeS as a (full) rank 8 lattice
⊆M2(C).

Let us first introduce the basic definitions that are used
throughout the paper. In the following, we consider number
field extensionsE/F , whereF denotes the base field andF ∗

(resp.E∗) denotes the set of the non-zero elements ofF (resp.
E). Usually,F is an imaginary quadratic field, eitherQ(i) or
Q(
√−3) in order to match the QAM and HEX modulation

schemes [12]. We assume thatE/F is a cyclic field extension
of degreen with Galois groupGal(E/F ) = 〈σ〉. Let A =
(E/F, σ, γ) be the corresponding cyclic algebra of degreen
(n is also called theindexof A), that is

A = E ⊕ uE ⊕ u2E ⊕ · · · ⊕ un−1E,

as a (right) vector space overE. Hereu ∈ A is an auxiliary
generating element subject to the relationsxu = uσ(x) for all
x ∈ E andun = γ ∈ F ∗. An element

a = x0 + ux1 + · · ·+ un−1xn−1 ∈ A
has the following representation as a matrix

A =




x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) γσn−1(x2)
x2 σ(x1) σ2(x0) γσn−1(x3)
...

...
xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)




.

We refer to this as thestandard matrix representationof A
and identify an element of a CDA with its standard matrix
representation.

Definition 3.1: The determinant of the matrixA above is
called thereduced normof the elementa ∈ A and is denoted
by nr(a).

The next proposition due to A. A. Albert [13, Theorem
11.12, p. 184] tells us when a cyclic algebra is a division
algebra.

Proposition 3.1 (Norm condition):The cyclic algebraA =
(E/F, σ, γ) of degreen is a division algebra if and only if
the smallest factort ∈ Z+ of n such thatγt is the norm of
some element ofE∗ is n.

Lemma 3.2:The silver codeS is contained as a subset in
the cyclic division algebraA defined as

A = (E/F, σ, γ),

where the center isF = Q(
√−7), E = F (i), γ = −1, and

σ :
{

i 7→ −i√
7 7→ −√7.

Proof. As σ(i) = −i = i∗, the matrix

XA =
(

x1 γσ(x2)
x2 σ(x1)

)
∈ A.

Let us calculate the basis matrices coming from the partTXB

of the code matrix, i.e. we computeTXB(z1, z2), where
(x3, x4) ranges over the set{(1, 0), (0, 1), (i, 0), (0, i)}. We
end up with the following four basis matrices:

1√−7

( −1 + i −2− i
2− i −1− i

)
,

1√−7

( −2− i 1− i
−1− i −2 + i

)
,

1√−7

( −1− i −1 + 2i
1 + 2i −1 + i

)
,

1√−7

(
1− 2i −1− i
1− i 1 + 2i

)
.

Here we have written1√
7

= 1
−i
√−7

= i√−7
and multipliedi

into the matrices. We see that all these basis matrices are of
the form

1√−7

(
a γσ(b)
b σ(a)

)
,

wherea, b ∈ Z[i]. Thus, both summands inX are elements
of A andX ∈ A.

Now it remains to prove thatA is a division algebra, i.e.
(according to A. A. Albert) there does not exist an element
x ∈ E for which NE/F (x) = −1.

We shall work in the extension fields of the 2-adic field
Q2 By Hensel’s lifting any integerm congruent to 1 modulo
8 has a square root inQ2. In particular

√−7 ∈ Q2. Thus
we can view the fieldF as a subfield ofQ2. For the sake of
being definite we may choose

√−7 ≡ 1 (mod 4). Similarly,
the fieldE can be viewed as a subfield ofQ2(i). Furthermore,
the norm mapNE/F : E → F is then a restriction of the norm
map N : Q2(i) → Q2, which, obviously, can be defined via
the formulaN(a + bi) = a2 + b2 for all a, b ∈ Q2.

Thus, in order to prove our claim, it is sufficient to show that
−1 is not in the image of the mapN . Assume, on the contrary,
that there are 2-adic numbersa and b such thata2 + b2 =
−1. We shall first show that then botha and b must be 2-
adic integers. So we assume that at least one of them has a
negative exponential 2-adic valuation. The non-archimedean
triangle inequality then implies thatv2(a) = v2(b). In other
words, there must exist an integert < 0 such thata = 2ta′,
b = 2tb′ with a′, b′ 2-adic units. But thena′2 ≡ b′2 ≡ 1
(mod 4), sov2(a2 +b2) = 2t+1 is an odd integer, and hence
a2 + b2 cannot be a 2-adic unit unless botha and b are 2-
adic integers. In this case our claim now easily follows from
a modulo 8 consideration: the square of an integer is always
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congruent to either 0, 1 or 4 modulo 8. Thus the sum of two
such squares cannot be congruent to 7 modulo 8. In particular,
it cannot be equal to−1.

In what follows, we denote the natural order ofA by

Λ = OE ⊕ uOE ,

where the ring of integers ofE is

OE = Z[i]⊕ 1 +
√−7
2

Z[i].

For the purposes of constructing MIMO lattices the reason
for concentrating on orders is summarized in the following
proposition (e.g. [14, Theorem 10.1, p. 125]). We simply
rephrase it here in the language of MIMO-lattices.

Proposition 3.3:Let Λ be an order in a cyclic division
algebra(E/F, σ, γ). Then for any non-zero elementa ∈ Λ
its reduced normnr(a) is a non-zero element of the ring of
integersOF of the centerF . In particular, ifF is an imaginary
quadratic number field, then the minimum determinant of the
lattice Λ is equal to one.

Theorem 3.4:The silver codeS has a nonvanishing deter-
minant andmindet(S) ≥ 1/7.

Proof. When looking at the codeword matricesX = XA +
TXB ∈ Λ ⊕ 1√−7

Λ, it is obvious that
√−7S ⊆ Λ and thus

S ⊆ 1√−7
Λ. Now

mindet(S) ≥
∣∣∣∣mindet(

1√−7
Λ)

∣∣∣∣ =
1
7

min det(Λ) =
1
7
.

The actual minimum determinant is better than1/7, it is
equal to 2/

√
7 (based on numerical calculations up to 64-

QAM) which corresponds to a normalized minimum determi-
nant1/

√
7.

Remark 3.1:In the draft [15] the non-vanishing determi-
nant property is proved numerically in the special cases of
PAM and QAM constellations by exploiting just the lattice
structure. They derive the normalized minimum determinant
4/
√

7 for QAM signal constellations.
Our proof extends the NVD property to any signal con-

stellationX ⊆ Z8 of an arbitrary size though we do not, at
least not yet, get the exact minimum determinant from our
algebraic proof. The code generates an ideal in the lattice,
and determining this ideal is the key point to the problem. At
this point, we know that the code is not a principal ideal of
the natural (nor maximal) order.

Here we have shown (at least up to 64-QAM) that
mindet(S) = 2/

√
7, corresponding to a normalized minimum

determinantδ(S) = 1/
√

7, which is only slightly worse than
δ(G) = 1/

√
5 for the Golden codeG and well worth the loss

due to much simpler decoding it enables.

Remark 3.2:The silver code is actually a Perfect code [12],
as its Gram matrix is orthogonal and the non-norm element is
a unit.

IV. CONCLUSIONS

We have presented the interesting algebraic structure of
the silver code, a2 × 2 perfect space-time code with a
non-vanishing (normalized) minimum determinant≥ 1/7. By
computer checks we have verified that the actual normalized
minimum determinant is equal to1/

√
7.

This code is very attractive for applications since its error
rate performance is only slightly (0.3dB) worse than the
one of the Golden code but offers the advantage of reduced
complexity decoding.
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Construction Methods for Asymmetric and
Multi-Block Space-Time Codes

Camilla Hollanti and Hsiao-feng (Francis) Lu,Member, IEEE

Abstract— In this paper, the need for the construction of
asymmetric and multi-block space-time codes is discussed. Above
the trivial puncturing method, i.e. switching off the extra layers
in the symmetric multiple input-multiple output (MIMO) setting,
two more sophisticated asymmetric construction methods are
proposed. The first method, called the Block Diagonal Method
(BDM), can be converted to produce multi-block space-time codes
that achieve the diversity-multiplexing tradeoff (DMT). It is also
shown that maximizing the density of the newly proposed block
diagonal asymmetric space-time (AST) codes is equivalent to
minimizing the discriminant of a certain order, a result that also
holds as such for the multi-block codes. An implicit lower bound
for the density is provided and made explicit for an important
special case that contains e.g. the systems equipped with 4Tx+2Rx
antennas. Further, an explicit scheme achieving the bound is
given. Another method proposed here is the Smart Puncturing
Method (SPM) that generalizes the subfield construction method
proposed in earlier work by C. Hollanti and K. Ranto and applies
to any number of transmitting and lesser receiving antennas.

The use of the general methods is demonstrated by building
explicit, sphere decodable codes using different cyclic division
algebras (CDAs). Computer simulations verify that the newly
proposed methods can compete with the trivial puncturing
method, and in some cases clearly outperform it. The conquering
construction exploiting maximal orders improves upon the punc-
tured perfect code and the DjABBA code as well as the Icosian
code. Also extensive DMT analysis is provided.

Index Terms— Asymmetric space-time block codes (AST-
BCs), cyclic division algebras (CDAs), dense lattices, discrim-
inants, diversity-multiplexing tradeoff, maximal orders, multi-
block codes, multiple-input multiple-output (MIMO) channels,
normalized minimum determinant.

I. I NTRODUCTION

Multiple-antenna wireless communication promises very
high data rates, in particular when we have perfect channel
state information (CSI) available at the receiver. In [1] the
design criteria for such systems were developed, and further
on the evolution of space-time (ST) codes took two directions:
trellis codes and block codes. Our work concentrates on
the latter branch and especially on the so-called asymmetric

The material in this paper was presented in part at the IEEE Information
Theory Workshop, Bergen, Norway, July 2007, and at the IEEE International
Symposium on Information Theory, Toronto, Canada, July 2008. The research
of C. Hollanti is supported in part by the Finnish Cultural Foundation, the
Finnish Academy of Science, and the Foundation of the Rolf Nevanlinna
Institute, Finland.

C. Hollanti is currently with Department of Mathematics, FI-20014 Uni-
versity of Turku, Finland (e-mail: cajoho@utu.fi). During this work she was
with Laboratory of Discrete Mathematics for Information Technology, Turku
Centre for Computer Science, Finland.

H.-f. Lu is with Department of Communications Engineering, National
Chiao Tung University, 1001 University Rd., Hsinchu 300, Taiwan ((e-mail:
francis@cc.nctu.edu.tw).

and multi-block space-time codes. We are interested in the
coherent multiple input-multiple output (MIMO) case where
the receiver perfectly knows the channel coefficients. The
received signal is

Y = HX + N,

whereX is the transmitted codeword taken from the Space-
Time Block Code (STBC)C, H is the Rayleigh fading channel
response matrix and the elements of the noise matrixN
are i.i.d. complex Gaussian random variables. Throughout the
paper,nt (resp.nr) denotes the number of transmitting (resp.
receiving) antennas #Tx (resp. #Rx).

From the pairwise error probability (PEP) point of view
[2], the performance of a space-time code is dependent on
two parameters:diversity gain and coding gain. Diversity
gain is the minimum of the rank of the difference matrix
X −X ′ taken over all distinct code matricesX, X ′ ∈ C, also
called therank of the codeC. For non-zero square matrices,
being full-rank coincides with being invertible. WhenC is
full-rank, the coding gain is proportional to the determinant
of the matrix (X − X ′)(X − X ′)†, where † indicates the
complex conjugate transpose of a matrix. The minimum of
this determinant taken over all distinct code matrices is called
the minimum determinantof the codeC. If it is bounded
away from zero even in the limit as the spectral efficiency
approaches infinity, the ST code is said to have thenon-
vanishing determinant(NVD) property [3]. Note that the
minimum determinant defined here is actually the square of
the minimum determinant of a lattice defined below.

Definition 1.1: The data rate R in bits per channel use
(bpcu) is given by

R =
1
T

log2(|C|),

where|C| is the size of the code, andT is the block length.
Here, thecode rateis defined as the ratio of the number of

transmitted information symbols (complex, e.g. QAM sym-
bols) to the decoding delay (equivalently, block length) of
these symbols at the receiver for any given number of transmit
antennas using any complex signal constellations. If this ratio
is equal to the delay, the code is said to havefull rate.

The very first STBC for two transmit antennas was the
Alamouti code[4] representing multiplication in the ring of
quaternions. As the quaternions form a division algebra, such
matrices must be invertible, i.e. the resulting STBC meets
the rank criterion. Matrix representations of other division
algebras have been proposed as STBCs in various papers,
e.g. [5]-[18] to name just a few. Major amount of the work
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in recent years has concentrated on adding multiplexing gain
and/or combining it with a good minimum determinant, so that
the resulting constructions can achieve the so-called diversity-
multiplexing tradeoff (DMT) in [19]. It has been shown in [15]
that cyclic division algebra (CDA) based square ST codes with
the NVD property achieve the DMT. This result also extends
over multi-block space-time codes [20]. The codes proposed
in [17] all fall into this category (as do many other codes too)
and are in that sense optimal. One of the goals of this paper
is to generalize some of the results of [17] to the asymmetric
and multi-block case.

After a cyclic division algebra has been chosen, the next
step is to choose a corresponding lattice, or what amounts
to the same thing, to choose an order within the algebra.
Most authors, including [10] and [15], have gone with the
so-called natural order (see the next section for a definition).
One of the points the authors wanted to emphasize in [17]
was to use maximal orders instead. The idea is that one can
sometimes use several cosets of the natural order and hence
transmit at a higher rate without sacrificing anything in terms
of the minimum determinant or the coding gain. So the study
of maximal orders is clearly motivated by an analogy from
the theory of error correcting codes: why one would use a
particular code of a given minimum distance and length, if a
larger code with the same parameters is available. The standard
matrix representation of the natural order results in codes
that have a so-called threaded layered structure [21]. When a
maximal order is used, the code will then also extend "between
layers". Earlier, maximal orders have been successfully used in
the construction of MISO and symmetric MIMO lattices, see
[5], [22], [17]. For more information on matrix representations
of division algebras and their use as MIMO STBCs the reader
can refer to [23], [7].

Recently, different methods for constructing asymmetric
[24],[25] and multi-block [20] space-time codes have been
proposed.Asymmetriccodes are targeted at the code design
for downlink transmission where the number of Rx antennas is
strictly less than the number of Tx antennas. Typical examples
of such situations are 3+G mobile phones and DVB-H (Digital
Video Broadcasting-Handheld) user equipment, where only a
very small number of antennas fits at the end user site. Multi-
block codes, for their part, are called for when one wishes
to obtain vanishing error probability in addition to the DMT
optimality.

Remark 1.1:We want to note that in this paper the em-
phasis is purely on the construction of sphere decodable
asymmetric schemes having a minimum delay, and hence we
do not intend to compete with the symmetric schemes that
will naturally have a higher rate. The problem of construct-
ing minimum-delay symmetric schemes has been efficiently
solved already, see e.g. [10], [17]. However, unless at leastnt

receiving antennas is used, such codes cannot be decoded by
using simple decoding methods such as a sphere decoder, and
this is the very reason why we now consider the construction
of sphere decodable codes fornr receiving antennas,nr being
strictly less than the number of transmittersnt.
We define alattice to be a discrete finitely generated free
abelian subgroupL of a real or complex finite dimensional

vector space, called the ambient space. In the space-time
(ST) setting a natural ambient space is the spaceMn(C) of
complexn× n matrices. TheGram matrix is defined as

G(L) =
(
<tr(xix

†
j)

)
1≤i,j≤k

, (1)

wheretr is the matrix trace (=sum of the diagonal elements),
andxi ∈Mn(C), i = 1, ..., k, form aZ-basis ofL. The rank
k of the lattice is upper bounded by2n2. Note that we really
need to take the real part of the trace in the Gram matrix,
as the matricesxix

†
j are not necessary real as themselves for

i 6= j. The Gram matrix has a positive determinant equal to
the squared measure of the fundamental parallelotopem(L)2.
A change of basis does not affect the measurem(L).

Any latticeL with the NVD property [8] can be scaled, i.e.
multiplied by a real constantt, either to satisfy detmin (L) =
minM∈L\{0} det(M) = 1 or to satisfym(L) = 1. This is be-
cause detmin (tL) = tndetmin (L) andm(tL) = tkm(L). As
the minimum determinant determines the asymptotic pairwise
error probability, this gives rise to natural numerical measures
for the quality of a lattice.

Definition 1.2: Following [26], we shall denote byδ(L) the
normalized minimum determinantof the latticeL, i.e. here
we first scaleL to have a unit size fundamental parallelotope.
Dually we denote byρ(L) = 1/m(L) the normalized density
of the latticeL, when we first scale the lattice to have unit
minimum determinant, and only then compute the quantity
1/m(L). In other words, we define

δ(L) =
detmin (L)
m(L)n/k

,

ρ(L) =
(detmin (L))k/n

m(L)
.

When comparing the minimum determinants of different
codes, one should always use the normalized minimum de-
terminant. To avoid confusion let us mention that from now
on, when we talk about minimum determinant we always mean
detmin (L) and not its square as in the traditional definition
of minimum determinant (see above). The squared normalized
minimum determinantδ(L)2 can be righteously identified with
the coding gain. According to the above definition, maximizing
the coding gain, i.e. the normalized minimum determinant, is
equivalent to maximizing the (normalized) density of the code.
Formally, we get

Proposition 1.1:The coding gain of a latticeL equals

δ(L)2 = ρ(L)2n/k.

Hence, increasing the density is equivalent to increasing the
coding gain.

Given that maximal orders provide the best codes in terms of
minimum determinant vs. average power we are left with the
question: Which division algebra should we use? To continue
the analogy from the theory of error-correcting codes we want
to find the codes with the highest possible density. That is, with
the smallest fundamental parallelotope. In [17] we developed
the required tools for parameterizing cyclic division algebras
with a given center and index. Also an achievable lower bound
for the measure of the fundamental parallelotope was derived.
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One aim in this paper is to generalize the notions and
results from [17] to theasymmetric schemewhere the number
of receiving antennas is strictly less than the number of
transmitting antennas. As the main contributions we

• propose new methods for constructing asymmetric space-
time codes, one of which is applicable for any number
of transmitting and receiving antennas (#Rx<#Tx),

• prove that similarly to the symmetric scheme, maximizing
the density (i.e. finding the most efficient packing in the
available signal space) of codes arising from the so-called
block diagonal method is equivalent to minimizing the
discriminant of an order. With the aid of this observa-
tion we generalize the density bound from [17] to the
asymmetric scheme,

• derive an explicit density upper bound for the4Tx+2Rx
case,

• provide an explicit 4Tx+2Rx construction achieving our
density bound,

• give a table comparing the normalized minimum deter-
minants and densities of different block diagonal AST
codes,

• show that the block diagonal method can be converted to
produce multi-block ST codes [20] that achieve the DMT,
and that the density bound is also applicable as such to
these multi-block codes,

• provide extensive DMT alalysis of the proposed codes,
• demonstrate by simulations that by using the newly pro-

posed methods we can outperform the punctured Perfect
code and the DjABBA code [25] as well as the Icosian
code [27] in BLER performance.

The paper is organized as follows. In Section II we will
shortly motivate this research and describe our solutions to
the stated problems. In Section III, various algebraic no-
tions related to cyclic algebras, orders, and discriminants
are introduced. If the reader is familiar with the standard
symmetric cyclic division algebra based space-time codes, this
introductory section can safely be skipped. Furthermore, it is
shown that maximizing the density of the code, i.e. minimizing
the fundamental parallelotope is equivalent to minimizing the
discriminant. This leads us to Section IV, where we recall
the achievable lower bound from [17] for the discriminant
in the symmetric case. In Section V we describe the block
diagonal construction method for asymmetric ST lattices. We
generalize the density bound from [17] to the block diagonal
AST codes in Section V-A, and show in Section V-B that it
also holds as such to the multi-block codes [20]. Also explicit
example codes are given in Section V-C accompanied with
a table comparing their densities and normalized minimum
determinants. Further, in Section V-D we derive an explicit,
achievable density bound for the4Tx+2Rx case and show that
it is achieved by one of the proposed constructions. The smart
puncturing method is described in Section VI, and finally
some simulation results and DMT analysis are provided in
Sections VII and VIII, respectively. Section IX contains the
conclusions.

II. M OTIVATION AND PROBLEM STATEMENT

In some applications the number of Rx antennas is required
to be strictly less than the number of Tx antennas. Typical
examples are 3+G mobile phones and DVB-H (Digital Video
Broadcasting-Handheld) user equipment, where only a very
small number of antennas fits at the end user site. One
may also think of downlink transmissions in wireless net-
works, where one can usually fit more antennas in the access
point than in a laptop. For such application, the symmetric,
minimum-delay MIMO constructions arising from the theory
of cyclic division algebras (see e.g. [10]) have to be modified.
For simplicity, the concrete examples given here concentrate
on the 4Tx+2Rx antenna case: if we could afford four Rx an-
tennas, the task would be easy – just to use the4×4 minimum-
delay, rate-optimal CDA-based construction transmitting 16
(complex, usually QAM / HEX) information symbols in four
time slots, i.e. four in each time slot. Now, however, the
reduced number of Rx antennas limits the transmission down
to two symbols per each time slot (cf. Definition 1.1) if we
wish to enable efficient decoding such as sphere decoding.

We have come up with two different types of solutions
to this problem. Both solutions take advantage of cyclic
division algebras and yield ratenr codes with a non-vanishing
determinant. Let us denote bynt = nrm the number of
transmitters in the usual symmetric CDA-based MIMO system
and suppose we want to construct a code forntTx+nrRx
antennas. In theBlock Diagonal Method (BDM)the idea is
to first pick an indexnr division algebra with a center that
is 2m-dimensional overQ, form isomorphic copies of it and
then use them asnr × nr diagonal blocks in annt × nt code
matrix. Another possibility is to take the symmetricnt × nt

MIMO code, but choose the elements in the matrix from an
intermediate field of degree2nr overQ instead of the maximal
subfield. This method can be generalized toany number of
transmitters and receivers (#Rx<#Tx)by performing so called
Smart Puncturing Method (SPM)instead of restricting the
elements to belong to some fixed subfield. In practice, this
means that we puncture at an arbitrary level, i.e. set a required
number of QAM/HEX coeffiecients of basis elements to zero.
These methods shall be explained in greater detail in Sections
V and VI accompanied with illuminating examples.

In this paper we will thoroughly analyze (in class field theo-
retic terms) the block diagonal method. The smart puncturing
method will be treated in more detail in a forthcoming paper.

III. C YCLIC ALGEBRAS, ORDERS, AND DISCRIMINANTS

We refer the interested reader to [23] and [7] for a detailed
exposition of the theory of simple algebras, cyclic algebras,
their matrix representations and their use in ST-coding. We
only recall the basic definitions and notations here. In the
following, we consider number field extensionsE/F , where
F denotes the base field andF ∗ (resp.E∗) denotes the set of
the non-zero elements ofF (resp.E). In the interesting cases
F is an imaginary quadratic field, eitherQ(i) or Q(

√−3)
corresponding to the QAM and HEX alphabets, respectively.
We assume thatE/F is a cyclic field extension of degreen
with the Galois groupGal(E/F ) = 〈σ〉. LetA = (E/F, σ, γ)
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be the corresponding cyclic algebra of degreen (n is also
called theindexof A, and in practicent = n), that is

A = E ⊕ uE ⊕ u2E ⊕ · · · ⊕ un−1E,

as a (right) vector space overE. Hereu ∈ A is an auxiliary
generating element subject to the relationsxu = uσ(x) for all
x ∈ E andun = γ ∈ F ∗. An elementa = x0 + ux1 + · · ·+
un−1xn−1 ∈ A has the following representation as a matrix
A =




x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) γσn−1(x2)
x2 σ(x1) σ2(x0) γσn−1(x3)
...

...
xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)




.

We refer to this as the standard matrix representation ofA.
Observe that some variations are possible here. E.g. one may
move the coefficientsγ from the upper triangle to the lower
triangle by conjugating this matrix with a suitable diagonal
matrix. Similarly one may arrange to have the first row to
contain the "pure" coefficientsx0, . . . , xn−1. Such changes do
not affect the minimum determinant nor the density of the
resulting lattices.

In practice, some restrictions to the elementsxi ∈ E andγ
have to be made, see Definition 3.4 and the comment below.
If we denote the integral basis ofE/F by {e0, e1, ..., en−1},
then the elementsxi, i = 0, ..., n − 1 in the above matrix
are restricted to take the formxi =

∑n−1
k=0 fkek, wherefk ∈

OF for all k = 0, ..., n − 1. Hencen information symbols
are transmitted per channel use, i.e. the design has raten. In
literature this is often referred to as having afull rate.

Definition 3.1: The determinant of the matrixA above is
called thereduced normof the elementa ∈ A and is denoted
by nr(a).

Remark 3.1:The connection between the usual norm map
NA/F (a) and the reduced normnr(a) of an elementa ∈ A
is NA/F (a) = (nr(a))n, wheren is the degree ofE/F .

Definition 3.2: An algebraA is calledsimple if it has no
nontrivial ideals. An F -algebraA is central if its center
Z(A) = {a ∈ A | aa′ = a′a ∀a′ ∈ A} = F .

All algebras considered in this paper are central simple.
A division algebra may be represented as a cyclic algebra

in many ways as demonstrated by the following example.

Example 3.1:The division algebraGA used in [3] to con-
struct the Golden code is a cyclic algebra withF = Q(i),
E = Q(i,

√
5), γ = i, when theF -automorphismσ is

determined byσ(
√

5) = −√5. We also note that in addition
to this representationGA can be given another construction
as a cyclic algebra. As nowu2 = i we immediately see that
F (u) is a subfield ofGA that is isomorphic to the eighth
cyclotomic field E′ = Q(ζ), where ζ = (1 + i)/

√
2. The

relation u
√

5 = −√5u read differently means that we can
view u as the complex numberζ and

√
5 as the auxiliary

generator, call itu′ =
√

5. We thus see that the cyclic algebra

E′ ⊕ u′E′ = (E′/F, σ′, γ′)

is isomorphic to the Golden algebra. Hereσ′ is the F -
automorphism ofE′ determined byζ 7→ −ζ andγ′ = u′2 = 5.

The elementγ is often called anon-norm elementdue to
Theorem 3.2 by A. A. Albert [28, Theorem 11.12, p. 184].
It provides us with a condition of when a cyclic algebra is
a division algebra. The original result was stated fort =
1, 2, ..., n− 1, but can be simplified after the next lemma.

Lemma 3.1:Let γ ∈ F ∗ and E/F be as above. Consider
the setS of exponentst ∈ Z such thatγt is a norm of an
element ofE. Then

S = kZ

for somek|n.
Proof: The mappingf : t 7→ γt is a homomorphism

of groups from(Z, +) to (F ∗, ·). BecauseH = NE/F (E∗)
is a subgroup ofF ∗, andS = f−1(H), we immediately see
that S is a subgroup of(Z,+). From basic algebra it now
follows thatS is cyclic, i.e.S = kZ for somek ∈ Z. On the
other hand, asγ ∈ F ∗ we get thatγn = NE/F (γ), and hence
n ∈ S. Thereforek|n.

Proposition 3.2 (Norm condition):The cyclic algebraA =
(E/F, σ, γ) of degreen is a division algebra if and only if
the smallest factort ∈ Z+ of n such thatγt is the norm of
some element ofE∗ is n.

Proof: We are to prove the equivalence of two conditions,
the original stating thatγt is not a norm for anyt in the range
1, 2, ..., n−1, and the relaxed version stating the same for those
t in the same range that are also divisors ofn. One implication
is clear, and the other follows from the above lemma. Namely,
if there are integerst in the range1, 2, ..., n− 1 such thatγt

happens to be a norm, then the lemma tells us that the smallest
sucht must be a divisor ofn.

Remark 3.2:We can even relax the above conditions fort.
The proof of the previous lemma shows that actually it suffices
to check thatγn/p is not a norm for any prime divisorp of n.
For example, whenn = 8, it suffices to check thatγ4 is not
a norm.

We are now ready to present some of the basic definitions
and results from the theory of maximal orders. The general
theory of maximal orders can be found in [29].

Let R denote a Noetherian integral domain with a quotient
field F (e.g.R = Z[i] and F = Q(i)), and letA be a finite
dimensionalF -algebra.

Definition 3.3: An R-order in theF -algebraA is a subring
Λ of A, having the same identity element asA, and such that
Λ is a finitely generated module overR and generatesA as
a linear space overF . An orderΛ is calledmaximal, if it is
not properly contained in any otherR-order.

In the rest of the paper,Λ will always denote an order and
can be treated as an algebraic lattice. Let us illustrate the above
definition by concrete examples.

Example 3.2:(a) Orders always exist: IfM is a full R-
lattice inA, i.e. FM = A, then theleft order of M defined
asOl(M) = {x ∈ A | xM ⊆ M} is an R-order inA. The
right order is defined in an analogous way.
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(b) If R is the ring of integersOF of the number field
F , then the ring of integersOE of the extension fieldE is
the unique maximalR-order in E. For example, in the case
of the cyclotomic fieldE = Q(ζ), where ζ = exp(2πi/k)
is a primitive root of unity of orderk the maximal order is
OE = Z[ζ].

(c) The set of integral elements does not form a ring in the
non-commutative case. As an easy counter-example one can
use the ring of Lipschitz quaternions

L = {q = a + bi + cj + dk ∈ H | a, b, c, d ∈ Z,

i2 = j2 = k2 = −1, ij = k},
a subring of the Hamiltonian quaternionsH used for the
construction of the Alamouti code. For instance, consider the
polynomial f(x) = x2 + 1 having integral coefficients. The
elementt = 3i+4j

5 is one of the (infinitely many) roots of the
polynomialf(x), and hence may be called integral. However,
if we try to adjoin t to the ringL, we end up with a set that
will also contain the elementit. The reduced tracetr(it) ∈ Q
is not an integer, hence we cannot have an order that would
contain both the Lipschitz quaternions andt.

For the purposes of constructing MIMO lattices the reason
for concentrating on orders is summarized in the following
proposition (e.g. [29, Theorem 10.1, p. 125]). We simply
rephrase it here in the language of MIMO-lattices. We identify
an order (or its subsets) with its standard matrix representation.

Proposition 3.3:Let Λ be an order in a cyclic division
algebra(E/F, σ, γ). Then for any non-zero elementa ∈ Λ
its reduced normnr(a) is a non-zero element of the ring of
integersOF of the centerF . In particular, ifF is an imaginary
quadratic number field, then the minimum determinant of the
lattice Λ is equal to one.

Definition 3.4: In any cyclic algebra we can always choose
the elementγ ∈ F ∗ to be an algebraic integer. We immediately
see that theOF -module

ΛNAT = OE ⊕ uOE ⊕ · · · ⊕ un−1OE ,

whereOE is the ring of integers, is anOF -order in the cyclic
algebra(E/F, σ, γ). We refer to thisOF -order as thenatural
order. An alternative appellation would belayered order, as
the corresponding MIMO-lattice of this order has the layered
structure described in [21].

Remark 3.3:We want the reader to note that in any central
simple algebra a maximalZ-order is a maximalOF -order
as well. Note also that ifγ is not an algebraic integer, then
Λ fails to be closed under multiplication. This may adversely
affect the minimum determinant of the resulting matrix lattice,
as elements not belonging to an order may have non-integral
(and hence small) norms.

Definition 3.5: Let m = dimFA. The discriminantof the
R-orderΛ is the ideald(Λ/R) in R generated by the set

{det(tr(xixj))m
i,j=1 | (x1, ..., xm) ∈ Λm}.

In the interesting cases ofF = Q(i) (resp.F = Q(
√−3))

the ring R = Z[i] (resp.R = Z[ω], ω = (−1 +
√−3)/2)

is a Euclidean domain, so in these cases (as well as in the
caseR = Z) it makes sense to speak of the discriminant
as an element ofR rather than as an ideal. We simply pick a
generator of the discriminant ideal, and call it the discriminant.
Equivalently we can compute the discriminant as

d(Λ/R) = det(tr(xixj))m
i,j=1,

where{x1, . . . , xm} is anyR-basis ofΛ.

Remark 3.4:It is readily seen that wheneverΛ ⊆ Γ are two
R-orders, thend(Γ/R) is a factor ofd(Λ/R). It also turns
out (cf. [29, Theorem 25.3]) that all the maximal orders of a
division algebra share the same discriminant that we will refer
to as the discriminant of the division algebra. In this sense a
maximal order has the smallest possible discriminant among
all orders within a given division algebra, as all the orders are
contained in some maximal order.

The definition of the discriminant closely resembles that of
the Gram matrix of a lattice, so the following result proved
in [17] is unsurprising and immediately generalizes to the
asymmetric scheme as well as was shown in [24].

Lemma 3.4:Assume thatF is an imaginary quadratic num-
ber field and that1 andν form aZ-basis of its ring of integers
R. Assume further that the orderΛ is a freeR-module (an
assumption automatically satisfied, whenR is a principal ideal
domain). Then the measure of the fundamental parallelotope
equals

m(Λ) = |=ν|n2 |d(Λ/R)|.
In the respective casesF = Q(i) and F = Q(

√−3) we
have ν = i and ν = (−1 +

√−3)/2 respectively, so we
immediately get the following two corollaries.

Corollary 3.5: Let F = Q(i), R = Z[i], and assume that
Λ ⊂ (E/F, σ, γ) is an R-order. Then the measure of the
fundamental parallelotope equals

m(Λ) = |d(Λ/Z[i])|.
Example 3.3:When we scale the Golden code [3](cf. Ex-

ample 3.1) to have a unit minimum determinant, all the 8
elements of itsZ-basis will have length51/4 and the measure
of the fundamental parallelotope is thus 25. In view of all
of the above this is also a consequence of the fact that the
Z[i]-discriminant of the natural order of the Golden algebra
GA is equal to 25. As was observed in [30] the natural order
happens to be maximal in this case, so the Golden code cannot
be improved upon by enlarging the order withinGA.

Corollary 3.6: Let ω = (−1 +
√−3)/2, F = Q(ω), R =

Z[ω], and assume thatΛ ⊂ (E/F, σ, γ) is an R-order. Then
the measure of the fundamental parallelotope equals

m(Λ) = (
√

3/2)n2 |d(Λ/Z[ω])|.
The upshot in [17] was that in both cases maximizing

the density of the code, i.e. minimizing the fundamental
parallelotope, is equivalent to minimizing the discriminant.
Thus, in order to get the densest MIMO-codes one needs to
look for division algebras that have a maximal order with as
small a discriminant as possible.
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For an easy reference we also include the following result
[17] that is a relatively easy consequence of the definitions.

Lemma 3.7:Let E/F be as above, assume thatγ is an
algebraic integer ofF , and let Λ be the natural order of
Definition 3.4. Ifd(E/F ) is theOF -discriminant ofOE (often
referred to as the relative discriminant of the extensionE/F ),
then

d(Λ/OF ) = d(OE/OF )nγn(n−1).
To conclude the section, we include the following simple

but interesting result on maximal orders explaining why using
a principal one-sided (left or right) ideal instead of the entire
order will not change the density of the code. For the proof,
see [17, Lemma 7.1].

Lemma 3.8:Let Λ be a maximal order in a cyclic division
algebra over an imaginary quadratic number field. Assume that
the minimum determinant of the latticeΛ is equal to one. Let
x ∈ Λ be any non-zero element. Letµ > 0 be a real parameter
chosen so that the minimum determinant of the latticeµ(xΛ)
is also equal to one. Then the fundamental parallelotopes of
these two lattice have the same measure

m(Λ) = m(µ(xΛ)).

IV. T HE DISCRIMINANT BOUND

In this section, we recall some more material from [17] to
be used later on in Section V.

Again let F be an algebraic number field that is finite
dimensional overQ and OF its ring of integers. In what
follows by the size of ideals ofOF we mean that ideals are
ordered by the absolute values of their norms toQ, so e.g. in
the caseOF = Z[i] we say that the prime ideal generated by
2 + i is smaller than the prime ideal generated by3 as they
have norms 5 and 9, respectively.

Theorem 4.1:[17, Discriminant bound] Assume thatF is
a totally complex number field, and thatP1 and P2 are the
two smallest prime ideals inOF . Then the smallest possible
discriminant of all central division algebras overF of index
n is

(P1P2)n(n−1).

We remark that the division algebra achieving this bound is
by no means unique.

Example 4.1:The smallest primes of the ringZ[i] are1+ i
and2± i. They have norms 2 and 5 respectively. The smallest
primes of the ringZ[ω] are

√−3 and2 with respective norms
3 and 4. Together with Corollaries 3.5 and 3.6 we have arrived
at the following bounds.

Let Λ be an order of a central division algebra of index
n over the fieldQ(i). Then the measure of a fundamental
parallelotope of the corresponding lattice

m(Λ) ≥ 10n(n−1)/2.

Let Λ be an order of a central division algebra of indexn
over the fieldQ(ω), ω = (−1 +

√−3)/2. Then the measure
of a fundamental parallelotope of the corresponding lattice

m(Λ) ≥ (
√

3/2)n2
12n(n−1)/2.

Example 4.2:Let F = Q(
√−3), soOF = Z[ω]. In this

case the two smallest prime ideals are generated by2 and
1−ω and as noted above they have norms 4 and 3 respectively.
By Theorem 4.1 the minimal discriminant is4(1− ω)2 when
n = 2. As the absolute value of1 − ω is

√
3 an application

of the formula in Corollary 3.6 shows that the latticeL
of the code achieving this bound hasm(L) = 27/4. In
[22] we showed that a maximal order of the cyclic algebra
(E/F, σ(i) = −i, γ =

√−3), where E = Q(i,
√−3),

achieves this bound.

For more information on finding maximal orders and their
discriminants, see [17]. In practice maximal orders can easily
be computed with the aid of the (unfortunately commercial)
MAGMA software [31], or in small cases by hand following
[32] (see also [33],[34]). The computation and decoding of
maximal order will be treated in more detail in a forthcoming
paper by Hollanti and Ranto [35].

We conclude this section by a couple of remarks1 related to
the use of outer codes and our choice to consider only codes
having a minimum delay.

Remark 4.1:While the concatenation of the maximal-order
space-time code as the inner code and the conventional error
correction code as the outer code is beyond the scope of this
work, it is expected that such concatenation will result in a
smaller multiplexing gain as the outer code has rate less than 1.
However, the error performance will be significantly improved
due to the use of additional error correction techniques. On the
other hand, we must point out that since (1) the inner maximal-
order code makes use of sphere decoding, which is a hard-
decision based decoding, and (2) such inner decoder cannot
provide soft information for the input of output decoder,
it is technically impossible to use either low-density parity
check (LDPC) code or turbo code as the outer code as these
codes requires a soft-input-soft-output decoder in order to
deliver the promised near-capacity performance. Nevertheless,
some conclusion can be easily drawn. From simulation we
have already seen that, in the symmetric case, the maximal
order code outperforms the perfect code, meaning that the
former has lower error probability than the latter; the overall
error probability of the concatenated maximal-order code after
incorporating the outer decoder must be even lower than that of
the concatenated perfect code, simply because the BER curve
of the outer decoder is monotonically decreasing in SNR, and
such conclusion holds for all outer codes.

Remark 4.2:In this paper the focus is on square matrices,
i.e., on codes having a minimum delay. If longer delay is
allowed, then the optimal DMT can be achieved at least in
some special cases. The authors of the present paper have
submitted a separate work related to this subject, see [41].
Increasing the delay requires lattices with a higher dimension,
so also the decoding process will get more complex.

1The remarks are invoked by the comments of the anonymous reviewers
of this paper. We thank all the reviewers for the careful reading of our paper.
Also complexity issues were brought up by one of the reviewers, hence a
short discussion on the decoding complexity has been added in the simulation
results section.
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V. CONSTRUCTING ASYMMETRIC AND MULTI-BLOCK

SPACE-TIME CODES BY THEBLOCK DIAGONAL METHOD

(BDM)

A straightforward way to obtain AST lattices would be just
to "switch off the extra layers" (following [25] and [24]) in a
symmetric MIMO setting, i.e. by trivial puncturing. In the case
of 4Tx+2Rx antennas this would mean that in the standard
matrix representation we set e.g.x1 = x3 = 0 in order to
transmit a limited number of symbols that can be received
with only two receivers. In this and the following section we
present two more sophisticated methods for constructing AST
lattices that still admit efficient sphere decoding.

A. Block diagonal asymmetric ST lattices

In this section, we recallMethod 1from [24]. Let us rename
this method asBlock Diagonal Method(BDM).

Let us consider an extension towerF ⊆ L ⊆ E with the
degrees[E : L] = nr, [L : F ] = m and with the Galois groups
Gal(E/F ) = 〈τ〉, Gal(E/L) = 〈σ = τm〉. Let

B = (E/L, σ, γ) = E ⊕ uE ⊕ · · · ⊕ unr−1E

be an indexnr division algebra, where the centerL is fixed
by σ = τm. We denote by #Tx= nt = nrm.

Note that if one has a symmetric, indexnt = nrm CDA-
based STBC, the algebraB can be constructed by just picking
a suitable intermediate fieldL ⊆ E of a right degree as the
new center.

An elementb = x0 + · · · + unr−1xnr−1, xi ∈ E, i =
0, ..., nr − 1 of the algebraB has the standard representation
as annr × nr matrix B = (bij)1≤i,j≤nr as given in Section
III.

However, we can afford annt × nt packing as we
are usingnt transmitting antennas. This can be achieved
by using the isomorphismτ . Let us denote byτk(B) =
(E/L, σ, τk(γ)), k = 0, ...,m − 1 the m isomorphic copies
of B and the respective matrix representations by

τk(B) = (τk(bij))1≤i,j≤nr , k = 0, ..., m− 1. (2)

The next proposition shows that by using these copies as di-
agonal blocks we obtain an infinite lattice with non-vanishing
determinant.

Proposition 5.1 (BDM):Let b ∈ Λ ⊆ B and F = Q(δ),
whereδ ∈ {i, ω}. Assumeγ ∈ OL. The block diagonal lattice

C(Λ) =





M =




B 0 · · · 0
0 τ(B) 0
...

. . .
...

0 · · · 0 τm−1(B)








built from (2) has a non-vanishing determinantdet(M) =∏m−1
i=0 det(τ i(B)) ∈ Z[δ]. Thus, the minimum determinant is

equal to one for allm. The code rate equalsn2
rm/nrm = nr.

Proof: According to Definition 3.1 and Proposition 3.3,

det(M) =
m−1∏

i=0

det(τ i(B)) =
m−1∏

i=0

nr(τ i(b))

=
m−1∏

i=0

τ i(nr(b))) = NL/F (nr(b)) ∈ Z[δ],

and hence|det(M)| ≥ 1.

Remark 5.1:In [36] an approach similar to the BDM was
used for the MIMO amplify-and-forward cooperative channel.

Now the natural question is how to choose a suitable
division algebra. In [15] and [16] several systematic methods
for constructing extensionsE/L are provided. All of them
make use of cyclotomic fields. Next we will show that also
in the asymmetric scheme, maximizing the code density (i.e.
minimize the volume of the fundamental parallelotope, see
[17]) with a given minimum determinant is equivalent to
minimizing a certain discriminant. In the next section we shall
show that this also holds for the multi-block codes from [20].

First we need the following result. For the proof, see [29,
p. 223].

Lemma 5.2:SupposeΛ ⊆ A = (E/L, τ, γ) is anOF -order
and thatF ⊆ L. The discriminants then satisfy

d(Λ/OF ) = NL/F (d(Λ/OL)) d(OL/OF )dimLA.

The same naturally holds in the commutative case when we
replaceA with E.

As a generalization to Lemma 3.4, we prove the following
proposition.

Proposition 5.3:Assume thatF is an imaginary quadratic
number field and that{1, ν} forms a Z-basis of its ring of
integersOF . Let nr = [E : L], m = [L : F ], nt = nrm,
ands = |=ν|mn2

r . If the orderC(Λ) defined as in Proposition
5.1 is a freeOF -module (which is always the case ifOF is a
principal ideal domain), then the measure of the fundamental
parallelotope equals

m(C(Λ)) = s|d(Λ/OF )| (3)

= s|d(OL/OF )n2
rNL/F d(Λ/OL)| (4)

= s|d(OL/OF )n2
r

m−1∏

i=0

τ i(d(Λ/OL))|. (5)

Proof: In order to keep the notation simple let us assume
m = 2. The proof directly generalizes to an arbitrarym. Let
A = (aij) be annt×nt complex matrix. We flatten it out into a
4×4n2

t matrix L(A) by first forming a vector of lengthn2
t out

of the entries (e.g. row by row) and then replacing a complex
number z by a diagonal four by four matrix with entries
z, τ(z), z∗, and τ(z)∗ (z∗ is the usual complex conjugate of
z). If A andB are two square matrices withnt rows we can
easily verify the identitiesL(A)L(B)† =



tr(AB†) 0 0 0
0 τ(tr(AB†)) 0 0
0 0 tr(A†B) 0
0 0 0 τ(tr(A†B))


 (6)

andL(A)L(BT )T =



tr(AB) 0 0 0
0 τ(tr(AB)) 0 0
0 0 tr(AB)∗ 0
0 0 0 τ(tr(AB))∗


 . (7)

Next letX = {x1, x2, . . . , xn2
r
} be anOL-basis forΛ. We

form the 4n2
r × 4n2

r matrix L(X ) by stacking the matrices
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L(xi)4×4r2 on top of each other. Similarly we getR(X ) by
using the matricesL(xT

i )T as column blocks. Then by (7) the
matrix

M = L(X )R(X )

consists of four by four blocks of the formL(xi)L(xT
j )T =

diag(tr(xixj), τ(tr(xixj)), tr(xixj)∗, τ(tr(xixj))∗) .

Clearly

detR(X )R(X )† = ±det L(X )L(X )†

and
det M = |d(Λ/OL)|2|τ(d(Λ/OL))|2.

Thus,

|det L(X )L(X )†|1/2 = |d(Λ/OL)||τ(d(Λ/OL))|. (8)

Next we turn our attention to the Gram matrix. Let
{1, θ, ..., θ3} be aZ-basis forOL. Then by our assumptions
the setX ∪θX ∪· · ·∪θ3X is aZ-basis forΛ. From the theory
of algebraic numbers we know that

d(OF /Z) = det D(ν)2 andd(OL/Z) = det D(θ)2, (9)

whereD(ν) =
(

1 1
ν ν∗

)
and

D(θ) =




1 1 1 1
θ τ(θ) θ∗ τ(θ)∗

θ2 τ(θ2) (θ2)∗ τ(θ2)∗

θ3 τ(θ3) (θ3)∗ τ(θ3)∗


 .

From the identities<(xy∗) = (xy∗ + x∗y)/2 and

D(θ)L(x) =




x τ(x) x∗ τ(x)∗
...

...
θ3x τ(θ3x) (θ3x)∗ τ(θ3x)∗




together with (6) it follows that for any twont × nt matrices
A andB we have1

2 (D(θ)L(A)) (D(θ)L(B))† =



<(tr(AB†)) · · · <(tr(A(θ3B)†)
...

...
<(tr(θ3AB†)) · · · <(tr(θ3A(θ3B)†))


 .

Therefore, if we denote byD[nr ] the4n2
r×4n2

r matrix having
n2

r copies ofD(θ) along the diagonal and zeros elsewhere, we
get

G(C(Λ)) =
1
2

(
D[nr]L(X )

)(
D[nr]L(X )

)†
.

Thus,

m(C(Λ)) =
√

detG(C(Λ))

=
∣∣detL(X )L(X )†

∣∣1/2 · (1
4
)n2

r |detD(θ)|n2
r .

As

(
1
2
)2n2

r |det D(θ)|n2
r = |d(OL/OF )|n2

r |=ν|2n2
r

by (9) and Lemma 5.2, Equation (8) now gives us the claim
when we still note (again by Lemma 5.2) that

d(OL/OF )n2
rd(Λ/OL)τ(d(Λ/OL)) = d(Λ/OF ). (10)

Corollary 5.4: In the caseF = Q(i) the volume equals

m(C(Λ)) = |d(Λ/Z[i])| .
Corollary 5.5: In the caseF = Q(ω) we get

m(C(Λ)) = (
√

3
2

)mn2
r |d(Λ/Z[ω])| .

Now we can conclude (cf. (4)) that the extensions
E/L,L/F and the orderΛ ⊆ B should be chosen in such
a way that the discriminantsd(OL/OF ) andd(Λ/OL) are as
small as possible. By choosing a maximal order within a given
division algebra we can minimize the norm ofd(Λ/OL) (cf.
Remark 3.4). As in practice an imaginary quadratic number
field F is contained inL, we know thatL is totally complex.
In that case the fact that

d(Λ/OL) ≥ (P1P2)nr(nr−1), (11)

where P1 and P2 are prime ideals∈ OL with the smallest
norms (toQ) helps us in picking a good algebra (for the proof,
see [17, Theorem 3.2]). Note that optimization with respect to
d(OL/OF ) may result in a loss ind(Λ/OL) and vice versa.

Keeping the above notation, we have now arrived at the
following theorem.

Theorem 5.6 (Density bound for lattices from BDM):For
the density of the latticeC(Λ), Λ ⊆ A it holds that

ρ =
1

m(C(Λ))
≤ s−1|d(OL/OF )|−n2

r |NL/F (P1P2)|nr(1−nr).

(12)

Remark 5.2:Note that as opposed to Example 4.1 (cf. [17]),
here we do not automatically achieve nice, explicit lower
bounds form(C(Λ)). That is a consequence of the fact that the
centerL can now be any field containingQ(i) or Q(ω), and
thus determining the smallest idealsP1 and P2 or even the
minimal d(OL/OF ) is not at all straightforward. An exact
lower bound is hard to derive in the general case as the
calculation of minimal number field discriminants is known to
be a tricky problem. The reader may ponder over the fact that
tables for minimal discriminants do exist in literature (though
only for certain degrees, see e.g. [37]) so why not use them.
We want to emphasize that these tables cannot be adapted
here, as the fields in question do not necessarily contain the
desired subfieldQ(i) or Q(ω). However, in the smallest (and
perhaps the most practical) case of4Tx+2Rx antennas we are
able to give an explicit and even achievable upper bound for
the density. We believe that the best one can do in the other
cases is to take advantage of known bounds of more general
nature such as Odlyzko’s bound [38].

B. Minimum-delay multi-block ST codes

The ntTx+nrRx antenna AST code from Proposition 5.1
can be transformed into annrTx+nrRx antenna multi-block
code [20] by an evident rearrangement of the blocks:


B 0 · · · 0
0 τ(B) 0
...

. . .
...

0 · · · 0 τm−1(B)


 ↔ (

B · · · τm−1(B)
)
.

(13)
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As the Gram matrices of an AST lattice and a multi-block
ST lattice coincide, Lemma 5.3 also holds for multi-block ST
codes with the same parameters. Let the notation be as in
Section V-A.

Proposition 5.7:Let b ∈ Λ ⊆ B and F = Q(δ), where
δ ∈ {i, ω}. Assumeγ ∈ OL. As the lattice

C′(Λ) =
{
M =

(
B, τ(B), . . . , τm−1(B)

)}

built from (2) satisfies the generalized non-vanishing deter-
minant property (cf. [20],[12]), it is optimal with respect to
the DMT for all numbers of fading blocksm. Similarly as
in Proposition 5.1,|∏m−1

i=0 det(τ i(B))| ≥ 1. The code rate
equalsn2

rm/nrm = nr.

Proof: For the proof, see [20].

Proposition 5.8:The Gram determinants (cf. (1)) of the
latticesC(Λ) andC′(Λ) coincide:

detG(C(Λ)) = det G(C′(Λ)).

Proof: This is obvious, as

tr(diag(BB†, .., τm−1(B)τm−1(B)†))

=
m−1∑

i=0

tr(τ i(B)τ i(B)†)

= tr(
m−1∑

i=0

(τ i(B)τ i(B)†)).

An immediate consequence of Proposition 5.8 is

Corollary 5.9: The latticesC(Λ) andC′(Λ) share the same
density, i.e. Proposition 5.3 can be adapted as such to the
multi-block scheme.

C. Explicit codes using BDM

In this section we provide explicit asymmetric constructions
for the important case of4Tx + 2Rx antennas. These codes can
be modified for2× 2 multi-block use (cf. (13). The primitive
nth root of unity will be denoted byζn. The first three
examples are given in terms of an asymmetric construction,
whereas the last one is described as a multi-block code.
However, with the aid of (13), an asymmetric code can always
be transformed into a multi-block code and vice versa.

1) Perfect algebraPA: Let us consider an algebra with the
same maximal subfield that was used for the4×4 Perfect code
in [10]. We have the nested sequence of fieldsF ⊆ L ⊆ E,
where F = Q(i), L = Q(

√
5, i), and E = Q(θ, i) with

θ = ζ15 + ζ−1
15 = 2cos(2π/15). We denote this algebra by

PA = (E/L, σ = τ2, γ) = E ⊕ uE, whereu2 = γ = i and
τ(θ) = θ2 − 2. As τ(

√
5) = −√5, the fieldL is indeed fixed

by σ = τ2. By embedding the algebraPA as in Proposition
5.1 we obtain the AST code

PA1 ⊆








x0 iσ(x1) 0 0
x1 σ(x0) 0 0
0 0 τ(x0) iτ(σ(x1))
0 0 τ(x1) τ(σ(x0))








,

where xi ∈ OE . As the center isL with [L : Q(i)] = 2
and OL = Z[i, π = (1 +

√
5)/2], the elementsxk in the

matrix are of the formxk = ak,0 + ak,1π + ak,2θ + ak,3πθ,
whereak,j ∈ Z[i]. Thus, the code transmits, on the average,
2 independent QAM symbols per channel use.

We can further improve the performance by taking the
elementsxi from the idealaOE , wherea = 1−3i+iθ2 ∈ OE .
Moreover, a change of basis given by




1 0 0 0
0 1 0 0
0 −3 0 1
−1 −3 1 1




guarantees an orthogonal lattice.
2) Cyclotomic algebraCA: The algebraCA = (E/L, σ =

τ2 : ξ 7→ −ξ, γ = 1 + s− i) = E ⊕ uE (cf. [12], [22], [24]),
for its part, has the nested sequence of fieldsF ⊆ L ⊆ E
with F = Q(i), L = Q(s = ζ8), andE = Q(ξ = ζ16). As
we haveτ : ξ 7→ iξ, s 7→ −s, the fieldL is fixed byσ = τ2.
Again by embedding the algebraCA as in Proposition 5.1, the
AST code

CA1 ⊆








x0 γσ(x1) 0 0
x1 σ(x0) 0 0
0 0 τ(x0) τ(γ)τ(σ(x1))
0 0 τ(x1) τ(σ(x0))








with xi ∈ OE is obtained. The center isL with [L : Q(i)] = 2
andOL = Z[s]. The elementsxk in the matrix are of the form
xk =

∑3
j=0 ak,jξ

j , whereak,j ∈ Z[i], hence the above code
transmits on the average,2 independent QAM symbols per
channel use.

Note that we have chosen here a suitable non-norm element
γ from OL instead ofOF (cf. Section V-A). We get some
energy savings as|1 + s− i| < |2 + i|.

The codeCA1 can be made perfect (see [11]) by forcing
γ to be unit, i.e. we can chooseγ = 2+i

2−i . The loss in the
minimum determinant is compensated by an improvement in
performance. We denote the perfect version of the code by
CA1 PERF .

By doing this, we need not sacrifice the NVD property:
Let X = (X1 X2 X3 X4)T ∈ CA1 PERF . If we denote
by M the matrix where we have multiplied the matrix rows
containingγ by 2− i, that is

M = ((2− i)X1 X2 (2− i)X3 X4)T ∈ CA1,

then we have

|det(M)| = |(2− i)2 det(X)| ≥ 1

and hence

| det(X)| ≥ 1
5

> 0.

Note also that this is only possible because of theaddi-
tive structure of the code. Taking powers of the elements
X ∈ CA1 PERF into the code would result in a vanishing
determinant (cf. Remark 3.3).
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3) AlgebraIA – an improved maximal order:Similarly as
in the two previous subsections, we obtain a rate-2 AST code
IA1 by introducing yet another algebraIA = (E/L, σ =
τ2, γ =

√−3), whereF = Q(i), L = Q(i,
√

3), E = L(a =√
1 + i), and τ :

√
3 7→ −√3,

√
1 + i 7→ −√1 + i. Among

our example algebras,IA has the densest maximal order. In
Section V-D we will show that its maximal order is also the
densest in general, whenF = Q(i) andm = nr = 2.

Let us now describe the code explicitly. If we order the
Z-basis of the natural order ofIA as{ei}1≤i≤16 =

{1, u, i, γ, a, ui, uγ, ua, iγ, ia, aγ, uiγ, uia, uaγ, iaγ, uiaγ},
then (according to the MAGMA software [31]) the maximal
orderΛMAX ⊆ IA has aZ-basis

{ 1
2

( e1 + e2 + e3 + e6 ),

1
2

( e2 + e6 + e9 + e12 + e14 + e16 ),

1
2

( e3 + e6 + e7 + e9 + e14 + e15 ),

1
2

( e4 + e6 + e7 + e9 + e12 ),

1
2

( e5 + e8 + e10 + e13 ), e6, e7,

1
2

( e8 + e13 + e15 + e16 ), e9,

1
2

( e10 + e13 + e14 + e15 ),

1
2

( e11 + e14 + e15 + e16 ),

e12, e13, e14, e15, e16 }.
Now the codebookC ⊆ ΛMAX of an arbitrary size can be
produced as

C ⊆ {M ∈ ΛMAX | ||M || ≤ E},
where || · || denotes the Frobenius norm (corresponds to the
squared Euclidean norm of the vectorized matrix, i.e. the sum
of the squares of all the matrix elements), andE is some
desired energy limit.

4) AlgebraQA – an improved natural order:Let us use the
multi-block notation for a change. Here we consider another
tower of number fieldsF ⊂ L ⊂ E, whereE = Q(ζ5, i),
F = Q(i), and whereL = Q(θ, i) with θ = ζ5 +ζ−1

5 . Clearly
we have Gal(E/F ) = 〈τ〉, τ(ζ5) = ζ2

5 , and τ(θ) = θ2 − 2.
Thus we obtain the CDAQA = (E/L, σ = τ2, γ) = E⊕uE,
andγ = u2 = i is a non-norm element. Embedding the algebra
QA as in Proposition 5.1 yields the following multi-block ST
code with coding over2 consecutive fading blocks:

QA1 ⊆ {(B τ(B)) | xi ∈ OE} ,

where

B =
(

x0 iσ(x1)
x1 σ(x0)

)

and

τ(B) =
(

τ(x0) iτ(σ(x1))
τ(x1) τ(σ(x0))

)
.

The elementsxk in the above are of the formxk =∑3
j=0 ak,jζ

j
5 , where ak,j ∈ Z[i], hence the above code

transmits on the average,2 independent QAM symbols per
channel use.

Among our example algebras,QA has the densest natural
order.

TABLE I

NORMALIZED MINIMUM DETERMINANT δ AND NORMALIZED DENSITY

ρ = 1/m(Λ) OF NATURAL AND MAXIMAL ORDERS OF DIFFERENT

ALGEBRAS.

QA CA IA PA
ΛNAT ΛNAT ΛNAT ΛNAT

δ 0.0894 0.0361 0.0340 0.0298

ρ 5−6 = 2−16 · 3−2 = 2−10 · 3−6 = 3−4 · 5−6 =

6.4 · 10−5 1.7 · 10−6 1.4 · 10−6 7.9 · 10−7

IA CA QA PA
ΛMAX ΛMAX ΛMAX ΛMAX

δ 0.1361 0.1214 0.0894 0.0894

ρ 2−2 · 3−6 = 2−9 · 3−2 = 5−6 = 5−6 =

3.4 · 10−4 2.2 · 10−4 6.4 · 10−5 6.4 · 10−5

Example 5.1:Let us calculate the normalized minimum
determinant of the algebraIA as an example (cf. Section
I, Definitions 3.4, 3.5, and Propositions 5.1,5.3). The other
algebras can be treated likewise. In Table I we have listed the
normalized minimum determinantsδ and densitiesρ of the
natural and maximal orders of the algebrasPA, CA, IA, and
QA. Note that forQA these two actually coincide. We can
conclude that among the natural orders, that of the algebra
QA has the largest normalized minimum determinant, i.e. the
highest density. The algebraIA, for its part, has the densest
maximal order. The corresponding numbers are shownbold
in Table I.

For the natural order ofIA we havedetmin(C(ΛNAT )) =
1 and ρ−1 = m(C(ΛNAT )) = 210 · 36, hencet = 2−5/8 ·
3−3/8. Now m(tC(ΛNAT )) = 1 and the normalized minimum
determinant isδ = detmin(tC(ΛNAT )) = 2−5/2 · 3−3/2 · 1 ≈
0.0340.

The maximal order ofIA hasdetmin(C(ΛMAX)) = 1 and
m(C(ΛMAX)) = 22 · 36, thus t = 2−1/8 · 3−3/8 and δ =
detmin(tC(ΛMAX)) = 1

3
√

2
√

3
≈ 0.1361.

D. An explicit density upper bound for the latticesC(Λ) with
F = Q(i) and nt = 4

As shown in Example 5.1, for the maximal orderΛ of IA
we have

m(C(Λ)) = d(OL/OF )dimLIANL/F (d(Λ/OL))
= d(OL/OF )4NL/F (P 2

1 P 2
2 )

= 34 · 22 · 32 = 2916,

whereP1 andP2 are the norm wise smallest ideals ofOL. In
what follows, we will show that whenF = Q(i) and m =
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nr = 2 we cannot go below this, i.e. the maximal order of
IA has optimal density.

Let us now assume that we would have such an ex-
tension L/Q(i) that the corresponding lattice would have
m(Λ) < 2916. If the prime 1 + i splits, this would mean
that d(OL/Z[i]) <

√
27 ≈ 5.196. If 1 + i does not split, then

the discriminant should be even smaller so this is a sufficient
upper bound ford(OL/Z[i]).

Let α ∈ OL such that{1, α} is an integral basis forL/Q(i).
Now this degree two extension has a minimal polynomial of
the form fα(x) = x2 + bx + c, where b, c ∈ Z[i], and the
discriminant

d(OL/OF ) = b2 − 4c ∈ Z[i].

Note that a minimal polynomial of the formx2 + c is out of
the question, as then|d(OL/OF )| = 4|c| ≥ 4

√
2 > 5.196.

Furthermore,d(OL/OF ) cannot be a square, as then it would
trivially follow that α ∈ Q(i) and L = Q(i). Now we are
left with the choicesd(OL/OF ) ∈ {1+ i, (1+ i)3, 2+ i, (1+
i)(2+i), (1+i)2(2+i), 3(1+i), 3, 2+3i, (1+i)(2+3i), 4+i}
or the obvious translates with the same absolute value.

Let us treat in detail the casesd(OL/OF ) = (1 + i)j , j =
1, 3 to set an example. As the prime1 + i ramifies in this
extension, we know that the smallest ideal isP1 ∈ OL

above 1 + i and N(P1) = 1 + i. The second idealP2

would depend on the behavior of the primes2 + i and 3.
However, asd(OL/OF ) = b2 − 4c = (r + si)2 − 4(t + ui) =
(r2 − s2 − 4t) + (2rs − 4u)i = (1 + i)j , r, s, t, u ∈ Z,
it immediately follows that neither ofj = 1, 3 fit into the
equation.

The other cases are equally straightforward. In the case
d(OL/OF ) = ±3 we note that we end up into an isomorphic
extension L/Q(i) ' Q(ζ12) ' Q(i,

√
3)/Q(i) that we

already have. Ford(OL/OF ) = 1 + 4i it would require that
1 + i splits which is not the case.

We have now proved the following proposition. For the
notation, cf. Proposition 5.1.

Proposition 5.10 (Density Bound fornt = 4, F = Q(i)):
Let m = nr = 2, i.e. nt = 4. For the density of the lattice
C(Λ) it holds that

ρ = 1/m(C(Λ)) ≤ 1
22 · 36

≈ 0.00034. (14)

The lower bound is achieved e.g. by the maximal order of
the algebraIA, see Table I.

VI. CONSTRUCTINGAST LATTICES BY THE SMART

PUNCTURING METHOD (SPM)

Another way to construct AST lattices would be as follows
(cf. [24]). LetA = (E/F, τ, γ) be an indexnt division algebra
and [E : L] = m, [L : F ] = nr. If in the standard matrix
representation the elementsxi are restricted to belong toL
(rather than toE), we obtain another division algebraA′.
Obviously also the algebraA′ is a division algebra as it is
contained inA. This construction also yields ratenr codes
for ntTx+nrRx antennas with a non-vanishing determinant.
As L is fixed byσ = τnr we have

lunr = uτ(l)unr−1 = · · · = unrτnr (l) = unrσ(l) = unr l

for all l ∈ L. Thus, the centerF of A is extended by the
elementunr .

Proposition 6.1:Let OL be the ring of algebraic integers
of L andF = Q(i). The lattice

C2 =








x0 γτ(x3) · · · γτnt−1(x1)
x1 τ(x0) · · · γτnt−1(x2)
...

...
xnt−1 τ(xnt−2) · · · τnt−1(x0)








,

xi ∈ OL has a non-vanishing determinantdet(C2) ∈ Z[i].
Thus, the minimum determinant is equal to one.

Proof: This immediately follows from the way of con-
struction.

As we consider the construction of Proposition 6.1 only for
natural orders, we denote it byC2 as opposed to the notation
C1(Λ) where we needed to specify the order in use. The above
subfield construction method[24] can be generalized so that
it applies to any number of receiving antennas #Rx<#Tx. The
idea is that instead of restricting the elementsxi to belong to
a subfield, we can puncture atany level. By this we mean that
we can set an arbitrary number of the QAM/HEX coefficients
equal to zero. More formally, let us denote

xj =
nt−1∑

k=0

ak,jej ∈ OE (j = 0, ..., nt − 1),

where ak,j ∈ Z[δ] and e0, ..., ent−1 is an integral basis of
E/F . If we wish to usenr receiving antennas, we set anynt−
nr of the coefficientsak,j to zero for eachxj . Nevertheless,
to enable efficient decoding one should choose the same set
of indicesk at where to puncture for eachxj . We call this the
Smart Puncturing Method (SPM).

For instance, one option is to defineak,j = 0 for nr ≤ k ≤
nt − 1, that is

xj =
nr−1∑

k=0

ak,jej

for j = 0, ..., nt − 1.

A. Explicit codes using SPM

Let us now use the SPM for constructing AST codes. To
simplify the notation, we use the subfield construction as a
special case of SPM. To set an example, we write down the
constructions for the algebrasPA andCA, the other algebras
can be treated similarly.

1) AlgebraPA: By using the algebraPA (cf. Section V-
C.1) and the subfield construction 6.1, we get

PA2 ⊆








x0 iτ(x3) ix2 iτ(x1)
x1 τ(x0) ix3 iτ(x2)
x2 τ(x1) x0 iτ(x3)
x3 τ(x2) x1 τ(x0)




∣∣∣∣∣ xi ∈ OL





.

Each of the elementsxk is of the formxk = ak,0 + ak,1π,
whereak,j ∈ Z[i]. Thus, the code rate is again equal to two.
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2) AlgebraCA: Let us then construct a code usingCA (cf.
Section V-C.2) and 6.1. This time we have

CA2 ⊆








x0 γτ(x3) γx2 γτ(x1)
x1 τ(x0) γx3 γτ(x2)
x2 τ(x1) x0 γτ(x3)
x3 τ(x2) x1 τ(x0)




∣∣∣∣∣ xi ∈ OL





with γ = 2 + i.
Each of the elementsxk is of the formak,0 + ak,1s, where

ak,j ∈ Z[i]. Thus, the code rate equals two.
Again we could also use a unit non-norm elementγ = 2+i

2−i .

VII. S IMULATION RESULTS

In Figure 1, the different construction methods are denoted
by subscripts:0 = Trivial Puncturing Method,1 = Block
Diagonal Method (cf. V-C), and2 = Subfield Construction
Method (cf. VI-A).

The use of a maximal order instead of the natural order will
be indicated by ’MAX ’, e.g. we writeIA1,MAX for the code
designed using the BDM and a maximal order of the algebra
IA.
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Fig. 1. Block error rates at 4 bpcu.

First of all, we have to admit that we have not carried
out optimization as much as would have been possible. For
example, the use of ideals has not been taken advantage of,
except in the case of the punctured Perfect codePA0 and the
codePA1, for which we used the ideal given in V-C.1. Still,
the simulation results are indeed very satisfactory.

The codesCA1, PA2, PA1, and PA0 perform more or
less equally. The codeCA2 is beaten by these by 0.2-0.7 dB,
depending on the SNR. Next comesCA0 (x1 = x3 = 0),
losing still by0.7−1 dB to CA2. Despite of its lower density,
the codePA1 performs equally well as the codeCA1, possibly
because of the careful optimization ofPA1 carried out in [10]
such that it falls into the category ofinformation lossless (IL)
codes (see [40] for the definition) and has a good (orthogonal)
lattice shaping. Probably for the same reason, it appears to
be irrelevant to which construction method is used forPA,
whereas the same is not true at all for the other algebras. Thus,

the simulation results of thePA codes suggest that having a
good shaping is also important at low SNR regime and it is
better that the code has this property.

Do note that information losslessness is a property defined
for linear dispersion (LD) codes and as such does not concern
the maximal order codes (they are not linear dispersion codes
when optimally used). Orthogonal shaping, for its part, has
many other justifications than that of yielding information
lossless codes. As mentioned earlier, orthogonal (or hexago-
nal) shaping enables simple bit labeling and usually makes
the decoding less complex. Hence, in addition to density
(maximization of the normalized minimum determinant), it is
preferable to have orthogonal or nearly orthogonal shaping.
In our simulations we did not do lattice reduction or use any
other methods to simplify the decoding, as we feel that these
concepts should be treated in a paper of their own.

To summarize the above, by orthogonal shaping one can
compensate somewhat the lower density. That is, if we have
two equally dense codes, then one might prefer the one that is
closer to being orthogonal. But do note that by using orthogo-
nal codes only, one cannot achieve the excellent performance
provided by the maximal order codes as is clearly shown
by the simulations. Also the data rate used in Figure 1 is
very much in favor ofPA as its shape fits perfectly with
the constellation. At a different data rate (e.g. at 5 bpcu),
however, the performance ofPA can be expected to get
worse as compared to the maximal order codes as then the
orthogonal shape does not help that much and the density
has more impact. Similar phenomenon was experienced when
comparing the Golden code with the Golden+ code [17]: At
the rate 4 bpcu that is ideal for the Golden code it could not
be beaten, but immediately when taking a bigger data rate
the difference became clear and the denser Golden+ code was
shown to outperform the Golden code.

The codeIA1,MAX obtained by combining BDM with the
use of a maximal order (cf. V-C.3 and [22]) triumphs over
all the other codes. It outperforms the next best codeQA1

by approximately0.3 dB andPA1,MAX by 0.5 dB. In [25]
the authors show that the DjABBA code wins the punctured
Perfect code by0.5 dB or less in the BER performance at
the rate 4 bpcu. The same holds for the BLER performance
and thus our code improves even upon the DjABBA code.
Also the Icosian code for 4Tx+2Rx antennas exploiting the
Icosian ring (which also happens to be a maximal order) loses
to IA1,MAX by 0.7-1 dB. The curves depicting the DjABBA
code, the Icosian code and the perfect version ofCA1 are not
shown in the picture in order to keep it readable. The perfect
version of the codeCA1,PERF performs almost equally to
PA1,MAX being just slightly better.

Remark 7.1:There are some practical problems related to
maximal order codes in general. Using maximal orders or
more generally highly skewed lattices can make the bit label-
ing less obvious and the decoding process more complex even
when the same decoding procedure is used. E.g. comparing
the number of points in the search tree visited by a sphere
decoder shows that usually a skewed lattice causes more visits
than an orthogonal one. So these are purely properties the
system designer can choose to use or not to use, depending
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on the situation. Nevertheless, the decoding complexity can be
significantly reduced by using sphere encoding together with
some suboptimal decoding techniques getting very close to
the maximal-likelihood (ML) performance, see [42] for the
promising results.

Here, a suitably modified (more details will follow in a
forthcoming paper, see [35]) sphere decoder was used for
decoding the lattices. Briefly, the sphere decoder performs an
additional energy check, checking that the decoded codeword
is valid and within the desired energy sphere. This step is
required because of the spherical shape used for the constella-
tion. The codebook can be formed beforehand, so it has to be
carried out only once. Alternatively, maintaining a codebook
can be overcome by using sphere encoding as mentioned
above. The maximal order codes can be also used as linear
dispersion codes, but then the full advantage of the density
of maximal orders is not achieved. If used as LD codes, no
additional steps are needed for decoding.

The DMT analysis (Section VIII) tells us that asymptotically
BDM should outperform the other constructions methods, but
we want to emphasize that, as suggested by Figure 1, at the low
SNR this is not necessarily the case. Indeed it seems that at the
low SNRs, the best construction method depends on the very
algebra (and especially on its density) that is in use. Figure
1 also shows that the trivial puncturing method used by other
authors [25] is not always the first choice (as again implied by
the DMT analysis too, see Section VIII), hence proving the
point of new construction methods. Actually, for the algebra
CA puncturing actually yields the worst performance.

VIII. D IVERSITY-MULTIPLEXING TRADEOFF ANALYSES

Diversity-Multiplexing Tradeoff (DMT) analyses of several
constructions of asymmetric space-time codes will be given in
this section. We try to make this section self contained. In a
MIMO communication system withnt transmit andnr receive
antennas, under the quasi-static MIMO Rayleigh block fading
channel model, it is known that the ergodic MIMO channel
capacityC equals [39]

C = min{nt, nr} log2 SNR + O(1) bits/channel use (15)

at high SNR regime.
Let R denote that data rate of a space-time codeX defined

in Definition 1.1, and letr denote thenormalized rateof X ,
also known as themultiplexing gain[19], given by

r :=
R

log2 SNR
. (16)

From (15) it can be seen that the maximum achievable
multiplexing gain equalsmin{nt, nr}. Given the codeX with
multiplexing gainr, we sayX achievesdiversity gaind(r) if
at high SNR regime, the codeword error probability ofX is
on the order of

Pe(r)
.= SNR−d(r). (17)

By
.= we mean the exponential equality [19], i.e. we say the

function f(SNR) .= SNRb if and only if

lim
SNR→∞

log f(SNR)
log SNR

= b. (18)

The notations of≥̇ and ≤̇ are defined similarly.
Zheng and Tse [19] showed that there exists a fundamental

tradeoff between the multiplexing and the diversity gains,
referred to as thediversity-multiplexing tradeoff(DMT). For
the cases whenT ≥ nt + nr − 1 and when the codeX
spans overm independent block fading channels, the DMT
asserts that the maximum possible diversity gaind∗(r) for
any space-time coding scheme with multiplexing gainr is
a piecewise linear function connecting the points(k, d∗(k)),
k = 0, 1, · · · ,min{nt, nr}, and

d∗(k) = m (nt − k) (nr − k) . (19)

Furthermore, it has been shown in [20] using explicit con-
structions that the tradeoff (19) holds wheneverT ≥ nt. On
the other hand, ifT < nt, only upper and lower bounds on
d∗(r) are available in [19].

A. DMT for the trivial puncturing construction

Let D0 denote the cyclic division algebra(E/F, σ, γ) where
[E : F ] = nt and E/F is cyclic Galois. LetF = Q(i) and
let D0 be the corresponding(nt × nt) cyclic algebra:

D0 =








x0 γσ(xnt−1) · · · γσnt−1(x1)
x1 σ(x0) · · · γσnt−1(x2)

...
...

.. .
...

xnt−1 σ(xnt−2) · · · σnt−1(x0)








,

where xi ∈ E. The puncturing constructionX0 is thus
obtained by settingxnr = · · · = xnt−1 = 0 in D0 and by
restricting the elementsx0, · · · , xnr−1 to be of form

xi =
nt−1∑

j=0

ai,jei, ai,j ∈ A0, i = 0, · · · , nr − 1,

whereA0 ⊂ Z[i] is the underlying base-alphabet and where
{e0, · · · , ent−1} is an integral basis forE/F .

Remark 8.1:If |γ| = 1, it does not matter which ones of the
coefficientsxi we set equal to zero. However, if|γ| > 1, then
we should choose the indices for whichxi = 0 in such a way
that the overall energy is minimized. It can be easily verified
that the above puncturing method, i.e.xnr = · · · = xnt−1 = 0,
is the most efficient in energy.

To achieve multiplexing gain at valuer, we require

|X0| = |A0|ntnr .= SNRntr, (20)

hence
|A0| = SNR

r
nr . (21)

Given the transmitted code matrixX0 ∈ X0, the received
signal matrixY0 at the receiver end is

Y0 = θ0HX0 + W (22)

where we set
θ2
0 = SNR1− r

nr (23)

to ensure the power constraint1nt
E ‖X0‖2 ≤ SNR. Let λ1 ≤

· · ·λnr be the ordered eigenvalues ofHH†, and for anyX0 6=
X ′

0 ∈ X0, let δ1 ≥ · · · ≥ δnt be the ordered eigenvalues
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of ∆X0∆X†
0 , where∆X0 = X0 − X ′

0. Then givenH, the
squared Euclidean distance betweenθ0HX0 andθ0HX ′

0 is

d2
E (X0, X

′
0) := θ2

0 ‖H∆X0‖2 ≥ θ2
0

nr∑

i=1

λiδnt−nr+i

≥ θ2
0

nr∑

i=nr−k+1

λiδnt−nr+i

≥̇ θ2
0

(
nr∏

i=nr−k+1

λiδnt−nr+i

) 1
k

for k = 1, 2, · · · , nr. In particular,
nr∏

i=nr−k+1

δnt−nr+i ≥ 1∏nt−k
i=1 δi

≥̇ ‖∆X0‖−2(nt−k)

.= SNR−
r(nt−k)

nr .

Combining the two results above and settingαi =
− logSNR λi we haved2

E (X0, X
′
0) ≥̇SNREk and

Ek = 1− r

nr
− 1

k

nr∑

i=nr−k+1

αi − r(nt − k)
knr

=
1
k

[
nr∑

i=nr−k+1

(1− αi)−mr

]
.

Now we see the DMT for the puncturing construction is
lower bounded by

d0(r) ≥ inf
αi:Ek<0

nr∑

i=1

(2i− 1 + nr(m− 1))αi (24)

and the right-hand-side is given by the lines connecting the
points (nt −mr)(nr −mr) for integral values ofmr.

B. DMT for the block diagonal construction

Let E/F be cyclic Galois with[E : F ] = nt, Gal(E/F ) =
〈τ〉 and F = Q(i). Let L ⊂ E be such that[E : L] = nr

and [L : F ] = m with Gal(E/L) = 〈σ〉 whereσ = τm. It
should be noted that we have assumednt = mnr. Let D1

be the cyclic division algebra(E/L, σ, γ) and letD1 be the
corresponding(nr × nr) algebra:

D1 =








x0 γσ(xnr−1) · · · γσnr−1(x1)
x1 σ(x0) · · · γσnr−1(x2)

...
...

. ..
...

xnr−1 σ(xnr−2) · · · σnr−1(x0)








,

xi ∈ E. The block diagonal constructionX1 is

X1 =
{

diag(X1, τ(X1), · · · , τm−1(X1))
}

, (25)

where X1 ∈ D1 with xi =
∑nt−1

j=0 ai,jei, ai,j ∈
A1. A1 ⊂ Z[i] denotes the underlying base-alphabet and
{e0, · · · , ent−1} is an integral basis forE/F .

To achieve multiplexing gain at valuer, we require

|X1| = |A1|ntnr .= SNRntr, (26)

hence
|A1| = SNR

r
nr . (27)

Given the transmitted code matrix

diag(X, τ(X), · · · , τm−1(X)) ∈ X1,

the received signal matrixY1 at the receiver end is

Y = θ1Hdiag(X, τ(X), · · · , τm−1(X)) + W (28)

where we set
θ2
1 = SNR1− r

nr (29)

to ensure the power constraint. On the other hand, we may
partition the matricesY , H, andW into

Y = [Y0 Y1 · · · Ym−1] , H = [H0 H1 · · · Hm−1] ,
W = [W0 W1 · · · Wm−1]

and rewrite (28) as

Yi = θ1Hiτ
i (X) + Wi

for i = 0, 1, · · · ,m− 1. Let

λi,1 ≤ · · · ≤ λi,nr

be the ordered eigenvalues ofHiH
†
i , and for any

diag(X, τ(X), · · · , τm−1(X))

6= diag(X ′, τ(X ′), · · · , τm−1(X ′)) ∈ X1,

let
δi,1 ≥ · · · ≥ δi,nr

be the ordered eigenvalues of∆Xi∆X†
i , where ∆Xi =

τ i (X −X ′). We will re-order and re-index the set of eigen-
values{λi,j} and {δi,j} such thatλ1 ≤ λ2 · · · ≤ λnt and
δ1 ≥ δ2 ≥ · · · ≥ δnt . Thus the squared Euclidean distance
between the two noise-free received signal matrices can be
lower bounded by

d2
E (X,X ′) = θ2

1

m−1∑

i=0

‖Hi∆Xi‖2 ≥ θ2
1

nt∑

i=1

λiδi

≥ θ2
1

nt∑

i=nt−k+1

λiδi

≥̇ θ2
1

(
nt∏

i=nt−k+1

λiδi

) 1
k

.

Moreover,

nt∏

i=nt−k+1

δi ≥ 1∏nt−k
i=1 δi

≥̇
(

m−1∑

i=0

‖∆Xi‖2
)−(nt−k)

.= SNR−
r(nt−k)

nr .

Combining the two results above and settingαi =
− logSNR λi we haved2

E (X, X ′) ≥̇SNREk and

Ek = 1− r

nr
− 1

k

nt∑

i=nt−k+1

αi − r(nt − k)
knr

=
1
k

(
nt∑

i=nt−k+1

(1− αi)− rm

)
.
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Now we see the DMT for the block-diagonal construction is
given by

d1(r) = inf
αi:Ek<0

nt∑

i=1

(2i− 1) αi (30)

and is obtained by the lines connecting the points(nt −
mr)(nr − r) for integral values ofr.

C. DMT for the subfield construction

The DMT derived here for the subfield construction also
holds for the more general codes designed using the smart
puncturing method.

Let E/F be a cyclic Galois extension withGal(E/F ) =
〈σ〉 and [E : F ] = nt, andF = Q(i). Let D2 be the cyclic
division algebra(E/F, σ, γ) and let

D2 =








x0 γσ(xnt−1) · · · γσnt−1(x1)
x1 σ(x0) · · · γσnt−1(x2)

...
...

. . .
...

xnt−1 σ(xnt−2) · · · σnt−1(x0)








,

where xi ∈ L, L ⊂ E and [L : F ] = nr. The subfield
constructionX2 is thus obtained by restricting the elements
x0, · · · , xnt−1 to be of form

xi =
nr−1∑

j=0

ai,jei, ai,j ∈ A2, i = 0, · · · , nt − 1,

whereA2 ⊂ Z[i] is the underlying base-alphabet and where
{e0, · · · , enr−1} is an integral basis forL/F .

To achieve multiplexing gain at valuer, we require

|X2| = |A2|ntnr .= SNRntr, (31)

hence

|A2| = SNR
r

nr . (32)

Given the transmitted code matrixX2 ∈ X2, the received
signal matrixY2 at the receiver end is

Y2 = θ2HX2 + W (33)

where we set

θ2
2 = SNR1− r

nr (34)

to ensure the power constraint. Now we see the DMT for
this construction has the same lower bound as that for the
puncturing construction, hence

d2(r) ≥ inf
αi:Ek<0

nr∑

i=1

(2i− 1 + nr(m− 1))αi (35)

and the right-hand-side is obtained by the lines connecting the
points (nt −mr)(nr −mr) for integral values ofmr.

D. DMT for the original CDA construction

Let E/F be a cyclic Galois extension withGal(E/F ) =
〈σ〉 and [E : F ] = nt, andF = Q(i). Let D3 be the cyclic
division algebra(E/F, σ, γ) and let

D3 =








x0 γσ(xnt−1) · · · γσnt−1(x1)
x1 σ(x0) · · · γσnt−1(x2)

...
...

.. .
...

xnt−1 σ(xnt−2) · · · σnt−1(x0)








,

xi ∈ E. The original constructionX3 (cf. e.g. [15]) is obtained
by restricting the elementsx0, · · · , xnt−1 to be of form

xi =
nt−1∑

j=0

ai,jei, ai,j ∈ A3, i = 0, · · · , nt − 1,

whereA3 ⊂ Z[i] is the underlying base-alphabet and where
{e0, · · · , ent−1} is an integral basis forE/F .

To achieve multiplexing gain at valuer, we require

|X3| = |A3|ntnt .= SNRntr, (36)

hence
|A3| = SNR

r
nt . (37)

Given the transmitted code matrixX3 ∈ X3, the received
signal matrixY3 at the receiver end is

Y3 = θ3HX3 + W (38)

where we set
θ2
3 = SNR1− r

nt (39)

to ensure the power constraint. Letλ1 ≤ · · ·λnr be the
ordered eigenvalues ofHH†, and for anyX3 6= X ′

3 ∈ X3,
let δ1 ≥ · · · ≥ δnt be the ordered eigenvalues of∆X3∆X†

3 ,
where∆X3 = X3−X ′

3. Then givenH, the squared Euclidean
distance betweenθ3HX3 andθ3HX ′

3 is

d2
E (X0, X

′
0) := θ2

3 ‖H∆X3‖2 ≥ θ2
3

nr∑

i=1

λiδnt−nr+i

≥ θ2
3

nr∑

i=nr−k+1

λiδnt−nr+i

≥̇ θ2
3

(
nr∏

i=nr−k+1

λiδnt−nr+i

) 1
k

.

for k = 1, 2, · · · , nr. In particular,
nr∏

i=nr−k+1

δnt−nr+i ≥ 1∏nt−k
i=1 δi

≥̇ ‖∆X0‖−2(nt−k)

.= SNR−
r(nt−k)

nt .

Combining the two results above and settingαi =
− logSNR λi we haved2

E (X3, X
′
3) ≥̇SNREk and

Ek = 1− r

nt
− 1

k

nr∑

i=nr−k+1

αi − r(nt − k)
knt

=
1
k

[
nr∑

i=nr−k+1

(1− αi)− r

]
.
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Now we see the DMT for the CDA construction is given by

d3(r) = inf
αi:Ek<0

nr∑

i=1

(2i− 1 + nr(m− 1))αi (40)

and the right-hand-side is obtained by the lines connecting the
points (nt − r)(nr − r) for integral values ofr.

Remark 8.2:One might ponder why not use the original
symmetric construction with a smaller constellation as it is
DMT optimal. In principle, AST codes can indeed be designed
just by using the standard CDA-based MIMO code with a
smaller constellation. Nevertheless, this destroys the lattice
structure and causes exponential complexity at the receiver.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

9

r

d

 

 

d
0

d
1

d
2

d
3

Fig. 2. DMT for nt = 4, nr = 2, andm = 2.

IX. CONCLUDING REMARKS AND SUGGESTIONS FOR

FURTHER WORK

We have introduced new construction methods for asymmet-
ric space-time codes based on cyclic division algebras and their
orders. Part of the results were reviewed from [24] and [17].
One of the methods, the so-called smart puncturing method, is
suitable for an arbitrary number of transmitting antennas and
lesser receiving antennas.

The density bound from [17] was generalized to the block
diagonal asymmetric case and made explicit for the 4Tx+2Rx
antenna case when building uponQ(i). Also a construction
achieving this bound was provided. It was noted that in the
more general case, the most reasonable way to derive density
bounds is with the aid of Odlyzko bound as the computation
of minimal discriminants is in general a hard problem.

We proved the connection between the block diagonal
asymmetric and multi-block codes, hence showing that the
density results hold as such in the multi-block case.

We have not yet exhausted the box of optimization tools
on our code. E.g. the codes can be pre- and post-multiplied
by any complex matrix of determinant one without affecting
neither its density nor its good minimum product distance.
In particular, if we use non-unitary matrix multipliers, the

geometry of the lattice will change. While we cannot always
turn the lattice into a rectangular one in this manner, some
energy savings and perhaps also shaping gains are available.
The simulations were carried out by using a suitably modified
sphere decoder (on which more details in a forthcoming
paper [35]). It was shown that the newly proposed codes
outperform in block error performance the punctured Perfect
code, the DjABBA code as well as the Icosian code, all
aimed at transmission with four transmitting and two receiving
antennas.

Also extensive DMT analysis was provided, showing that
amongst the previously and newly proposed methods, the
BDM is the best way to construct asymmetric codes in this
respect.
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