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Chapter 1

Introduction

Radio broadcasting was perhaps the first successful wireless application. Other
important examples of wireless applications have been, and still are, television

broadcasting and satellite communication. However, the establishment of the first

generation cellular phones back in the early 1980s has undoubtedly been the main
initiator of the adrenaline boosting research race we are experiencing in wireless
communications today.

Wireless transmission in the modern world is a challenging task. Huge build-
ings, slow and fast moving vehicles, and even the flora and fauna cause the signals
to get reflected and distorted. Predicting the channel statistics which describe such
fading caused by the environment is difficult, hence it is important to design codes
that are able to fight against not just certain type of fading, but againgtypes
of fading. In addition to fading, the presence of thermal noise at the receiver makes
the extraction of the transmitted message from the received signal even more diffi-
cult.

In this thesis, aodecan be thought of as a finite set of matrices with complex
entries, with the purpose @ncodingthe information bits in such a way that re-
vealing the original message becomes feasible, even in the presence of fading and
noise.

About a decade ago, it was noticed that by increasing the number of antennas
at both the transmitting and receiving end of a wireless channel and by sending
multiple copies of the data stream, the quality of the transmission can be signif-
icantly improved. The notion of a code matrix for the coded modulation scheme
was introduced by Guegt al. in [10], where its design criteria were also estab-
lished. Thespace-time (ST) codehich spreads the transmitted signal in both
space (antennas) and time (consecutive channel uses for the same information) in
this way was invented by Tarokh, Seshadri, and Calderbank [51] in 1998. Their
original construction was based on trellis codes. However, block codes were easier
to implement, and the first explicit space-time block code (STBC) construction for
this multiple-input multiple-output (MIMO}¥cenario was given by Alamouti [2]
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later in 1998. Alamouti's construction was actually an examplerafittiple-input
single-output (MISOxode which are nowadays commonly used in telecommu-
nications technology. MIMO systems significantly increase the channel capacity
and link robustness of wireless communications, and have been widely adopted in
many future wireless communication standards such as WiMAX (Worldwide In-
teroperability for Microwave Access), and 3GPP LTE (3rd Generation Partnership
Project, Long Term Evolution).

Five years ago, Sethuraman al. [48] showed that the transmission rate of
a space-time code, i.e. how many bits of information can be transmitted in each
channel use, can be increased by usindic division algebras (CDAs)Division
algebras were already in use prior to this, albeit seldom, due to the full diversity
they provide. In addition to diversity gain, CDAs can also provide multiplexing
gain [48]; Zheng and Tse showed in their landmark paper [58] that there exists a
fundamentativersity-multiplexing trade-off (DMTXiversity can be increased at
the cost of reduced multiplexing, and vice versa. Sethurahahtook advantage
of transcendental elements in order to achieve full diversity. However, this caused
the minimum determinant of the code matrices to vanish when increasing the code
size, i.e. when taking a bigger set of matrices. As the coding gain is directly
proportional to the minimum determinant, this result was not welcome. In 2003,
Belfiore and Rekaya [4] suggested that, instead of using transcendental elements
and the whole algebra, one could use a certain subring that would guarantee a non-
vanishing minimum determinant (NVD). Codes having this NVD property have
raised a vast amount of interest, especially after Etial. [8] showed that the
NVD property is a sufficient condition for a CDA-based code to achieve the optimal
DMT. The most famous example of such DMT optimal codes are, by no doubt, the
Perfect codes by Oggiet al. [43]. Later on, the construction of Perfect codes was
generalized to an arbitrary number of antennas by &l&. [9].

One crucial observation still remained to be made. In 2006 we pointed out that
the subring almost exclusively used in the construction of CDA-based space-time
codes, later on referred to as th&tural order, is not the optimal one [13] in terms
of coding gain. Also the fact that this subring is actually an example of an algebraic
object calledorder was revealed only then. We proved that if we usaaximal
order instead, we can increase the size of the code within the given energy limits
without any penalty in the coding gain. In other words, maximal orders allow us
to increase the cod#ensity A counterpart of this observation can be found in the
traditional theory of error correcting codes.

The notion of maximal orders in the context of space-time codes was intro-
duced in [13], and the first results in this direction were given for the MISO case
in Publication I. In Publication Il we proposed a systematic construction of codes
from maximal orders fonTx+nRx antennas for any, and gave explicit exam-
ples for all practical values af. It was also shown that one should pick algebras
which have maximal orders with the smallest possible discriminant, as these give
the highest density for the code. Our explicit constructions2fer2 and3 x 3
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systems have been shown to outperform the Perfect codes of the same size, de-
spite the fact that the Perfect codes were considered unbeatable. The only penalty
is the loss of orthogonality. Using a non-orthogonal code does introduce some
practical problems. For instance, bit labeling becomes more complicated, as we
cannot use the traditional Gray mapping for this purpose. Maintaining a codebook
or sphere encoding is necessary in order to take full advantage of the density of
the code. Suboptimal decoders may be required to reduce decoding complexity.
Nevertheless, Kumar and Caire [32] have shown in their recent paper that using
sphere encoding and a suboptimal decoder for maximal order codes still results in
excellent performance. Our work in [24, 17] also deals with the decoding issues.

The general construction of ST codes from maximal orders with minimal dis-
criminants was considered more thoroughly in Roope Vehkalahti’s dissertation [55]
in 2008. Here one can also find interesting bounds for the coding gain, revealing
that orthogonal codes can never achieve the density provided by non-orthogonal
codes.

Until recently, most of the research in algebraic space-time coding concentrated
on thesymmetric scenariavhere the number of transmitting and receive antennas
are equal. Often the portable receiving device, e.g. a mobile phone, laptop or
a portable digital TV, is so small in physical size that only very few antennas fit
inside. In this case, it is more practical to considerdbgmmetric scenarjavhere
we have more transmit antennas than receive antennas. In Publication V some
of the results of Publication Il were generalized to the asymmetric scenario and
different construction methods were proposed. The best construction was shown
to outperform all potential challengers [25, 33].

In addition to the record breaking symmetric and asymmetric space-time con-
structions, we feel that bringing maximal orders into the field as well as clarifying
and explicitly laying out the notions of normalized minimum determinant and den-
sity should help the ST audience to design better codes and to compare different
codes in algebraic terms rather than by simulations only. The methods and results
in this thesis, at least to some extent, also apply to e.g. distributed and multi-user
space-time coding. Especially the asymmetric methods can be exploited in the
multi-user scenario.

Part | of this thesis is dedicated to explaining the required theory and summa-
rizing the results from the original publications, that will form Part Il. As most
of the material in Part | can also be found in the publications, our aim is to give
an overview of the theory and results without too many technicalities, and to in-
troduce some down-to-earth examples. Part | consists of five chapters. After this
introductory Chapter 1, Chapter 2 provides some algebraic preliminaries, intro-
ducing the reader to cyclic division algebras and maximal orders. Unfortunately,
the explicit construction of maximal or even natural orders is not at all simple.
There exist algorithms for maximality testing and for constructing maximal orders,
both of which heavily exploit the local properties of orders. Therefore, some local
properties of orders are also provided at the end of Chapter 2. Chapter 3 gives an
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insight to the coding theoretic aspects of our problems. Chapter 4 brings us to the
use of cyclic division algebras and their orders as lattice space-time codes. It is
shown that by using the proposed methods, one can construct codes that perform
extremely well both at low and high signal-to-noise ratios (SNRs). We remark that
the beginning of Section 4.4 contains some deeper algebra, hence a reader with
a modest mathematical background can skip the beginning and pick the explicit
bounds from the following subsections. The main results from Publications I, Il,
V, and VI are summarized in Chapter 4, omitting the proofs as they can be found in
the original publications. Finally, Chapter 5 will leave the reader with conclusions
and some future prospects.

The organization of Part Il of this thesis follows the chronological submission
order of the original papers. In Publication I, we construct explicit codes with full
diversity and non-vanishing minimum determinants for 4he1 MISO channel.

The constructions have straightforward generalizations tmariyor 2n x 1 MISO
system. Our work on MISO codes has its origins in [11, 12, 13]. Whilst carrying
out the research for Publication |, we came to realize that there exist remarkable
algebraic objects, namely maximal orders of crossed product algebras, with the aid
of which we would be able to generalize the promising results tothe MIMO
scheme as well. This led us to the work upon which Publication Il is based. There,
we consider the construction of cyclic division algebras that have maximal orders
with minimal discriminants, and hence provide the largest possible coding gain.
We also enhance the Rényai-lvanyos algorithm to better suit our purposes, as the
original implementation of their algorithm tends to fall short of memory when the
index of the algebra is larger than six. Publications Ill and IV are related to decod-
ing, and have been added here only for the sake of completeness. In Publication
I, only the symmetria x n scenario was considered. The proposed codes are also
DMT optimal for any number of receivers less than or equal but, unlessh re-
ceivers are used, cannot be efficiently decoded. In Publication V, we move on to the
asymmetric scenario and solve the problem of constructing sphere decodable codes
with large coding gains for the asymmetric MIMO systems. Various construction
methods for asymmetric ST codes are proposed. For one of these constructions,
we are able to generalize the density results from Publication Il to also hold in this
more challenging asymmetric case. And once more, maximal orders will play a
role. In Publication VI, non-minimum delay, DMT optimal codes are constructed
for different asymmetric scenarios.

Publications I-VI appear also in the references list, and from now on we will
mostly use the respective numbers in the references list when referring to these
papers.



Chapter 2

Algebraic preliminaries

In this chapter, we will recall some preliminaries from algebraic number theory.
Throughout this thesis, we will deal with algebraic number fields, Galois groups,
algebras, discriminants, and many other algebraic objects. We will give the most
crucial definitions in Sections 2.1 and 2.2. For further background information, the
reader can refer to e.g. [31] or [50]. For those with a background in information
theory, we also recommend the early chapters of [44]. Sections 2.4 to 2.7 are
devoted to introducing in more detail the non-commutative algebraic and class field
theoretic tools that were used in the original publications. Throughout the whole
thesis, we denote the fields of integers, rationals, reals, and complex numbers by
7,Q,R, andC, respectively. The capital letteFs, L and E will denote number
fields.

2.1 Algebraic number fields

Let us start with the very basics of algebraic number theory.

A number fieldF is a finite extension of). Let E/F be a finite extension of
number fields, and let theéegreeof the extension b¢E : F] = n (< »). Now E
can be seen as andimensional vector space over the fiéld Hence,E has a
basis{b1,by,...,bn} overF. The extensiorE/F is algebraic i.e. each element
ec E is algebraic. This means that there exists a polynomial with coefficiefts in
havinge as a root. The (unique) minimal polynomial@is the monic, irreducible
polynomial

pe(X) = XM+ fx™ 14 4 f e F[X,

for which pe(e) = 0. The integem = degy is called thedegreeof e overF and it
always divides.

A finite extensiorE /F of number fields is alwaysimple i.e. it can be written
askE = F(a), wherea is algebraic oveF. The single generating elememt(not
unique) is callegrimitive. The degree of a primitive elementris= [E : F]. This
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means that the elements Bf can be written as polynomial(a) € F[a] with
degf <n-—1.

Definition 2.1.1. Let S be an integral domain ard its subdomainRC S An
elementa € Sis calledintegral overR, if there exists a monic polynomidl(x) €
R[x] for which f (a) = 0. A complex numbet € C that is integral oveZ is called
analgebraic integer

Remark 2.1.2. Algebraic integers of a number field form a ring. In Chapter 3 we
will see that this is not the case when we consider the set of integers of a division
algebra (see Remark 3.2.4).

An algebraic numbea is an algebraic integer if and only if its minimal poly-
nomial (overQ) Ly (X) € Z[x]. Thering of (algebraic) integerof F is denoted
by 0r. The above statement can be generalized to any field exteBgien an
algebraic numbea € E is integral overF if and only if its minimal polynomial
(overF) g (X) € Ok [X].

Remark 2.1.3.If F=Q,F =Q(i) or F = Q(w), w = {3 =exp(2mi/3), andE is

an extension oF, thendk is a free0r-module that has rank equalte= [E : F].

This property will be needed later when we consider the rate of a code design
constructed from a cyclic division algebra (see Equation (3.6) and Section 4.2).

Definition 2.1.4. A finite extensionE /F is separable if for all a € E the roots
of the minimal polynomialug (x) € F[x] are simple. A number field extension is
always separable.

A finite extensiork /F is normal if E is the splitting field for some polynomial
f(x) € F[x] overF, in other wordsE is the smallest extension &f, where f (x)
splits into linear factors.

Now suppose again th&t/F is a number field extension afi : F] = n. Con-
sider the set of field homomaorphismas: E — C that areF-embeddings, i.e. ho-
momorphisms that fik, o(f) = f for everyf € F, and that maj& isomorphically
to o(E). Let us denot&e = F(a), and letpq (x) € F[x] be the minimal polyno-
mial of a overF. Leta; = a,d»,...,a, be the roots ofuy(x) in C. Now the
F-monomorphisms are completely described by

ok(a) = Q. (2.1)

Hence, there are exactly F-embeddings (cf. Definition 2.1.4). The setef
embeddings oE will be denoted by Hom(E,C).

Definition 2.1.5. An extension i$5aloisif it is both normal and separable. Equiv-

alently, an extensiok /F is Galois, ifE is the splitting field of a separable poly-

nomial with coefficients if-. Yet another equivalent way of stating this is that all
the roots ofu, (X) belong to the field, henceo(E) = E for all o € Homg (E, C).
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Definition 2.1.6. In the case when the extensi@)F is Galois, the set of-
embeddings forms a group, called t@alois groupof E/F, and is denoted by
Gal([E/F).

Definition 2.1.7. Let E/F be a number field extension with the set of embeddings
Homg (E,C) = {01,...,0n} and lete € E. The (relative)normandtrace of E/F
are defined as

n

Neje(6) = []1(6) and Tye(e) = 5 ai(e)

respectively.

Definition 2.1.8. The discriminantof the basis{bs,by,...,b,} of a number field
extensiorE /F is

d(by, ..., bn) = det(ai(bj))? = det(Te ) (bibj)) (1<i,j <n),
where Hom (E,C) = {01, 02, ..., On}.

Definition 2.1.9. The basis{bs,by,...,b,} is calledintegral, if it forms an OF-
module basis forg, i.e. if

1)bjedg fori=1,..n, and

2) Og = Opb1 @ --- @ O b,

The discriminant of an integral basis is called the (relatiisgriminant ofe /F
and denoted bg(E /F). The discriminant oE /F is independent of the choice of
the integral basis up to a unit factor. In the cases widgrés not a principal ideal
domain (PID), we cannot guarantee the existence of a relative integral basis (one
example of such an extension(g\/—14,/—7)/Q(v/—14)), and the discriminant
must be viewed as an ideal, rather than as a number. For the maodifications required
in this case or in the case when an integral basis is not known, see Definition 2.5.6.

2.2 Rings of integers and prime ideals

Let F be an algebraic number field and &t= Or be the (commutative) ring of
integers of. AnidealJ of & generated by, ..., asis denoted by = (ay, ..., ds).
We will write (0) = 0and(1) = 1, whenever the meaning is clear from the context.
Notice thatl = 0.

Anidealp C ¢ is aprime ideal if p #£ ¢ and

abe 0, abep = aeporbep.
An ideal9t is maximal if 9t # ¢ and

MCICO = T=0.
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An ideal J # ¢ is maximal if and only if the (finite) residue ring/J is a field.
Moreover, an idegl # ¢ is prime if and only if&'/p is an integral domain, i.e. has
no zero divisors. From this it follows that every maximal ideatirs also a prime
ideal in &. The inverse claim is also true: every (proper) prime igeg 0,1 of
0 is maximal. The ring” is a Dedekind domain, from which it follows that every
ideal0,1 = J C & has a representation as a product of prime ideals (see Equation
(2.2)). This presentation is unigue up to the ordering of the ideals.

Now letE/F be a number field extensiofE : F] = n, andp a prime ideal of
Or. We can write

9
pOe = Umﬁ, (2.2)

where‘By, ..., Bg are distinct prime ideals i@e. We say that the ideak; lie
abovep. Each of the idealgs; is adjoined with a numbef; = [0 /i : Ok /p],
called the inertial degree &8; overp. The exponeng is called the ramification
index ofB; overp. The inertial degrees and ramification indices satisfy

ia fi=n. (2.3)

The relative norm of a prime ideg} C &k lying abovep C OF is Ng () =
pf, where f is the inertial degree. This extends multiplicatively M&i1J,) =
N(J1)N(J2). Forac E, Ng/p () 0F = NE/F(aﬁE). That is, the ideal ok gen-
erated by the norm @ is equal to the norm of the ideal 6fz generated bw.

In the case whek /F is Galois, (2.2) gets a simpler form

pOe = (fl‘ﬁi)e,

where the prime ideal; are the distinct conjugate idealsf. That is,3; =
0j(P1) for someo; € Gal(E/F). Each prime idedl; has the same inertial degree
fi=f andN(i) = pf foralli=1,...g. Also the ramification indices = e
coincide for all3;. Equation (2.3) now takes the form

efg=n.

If e> 1, we say thap ramifiesin E/F. If p ramifies, therp|d(E/F). If g > 1,
we say thap splits If f > 1, p hasinertia.

Lemma2.2.1.LetR D F; D F be a tower of finite extensions @f Then
d(F2/F) = Nr, /e (d(F/Fy))d(Fa/F) R,

Proof. For the proof we refer the reader to [46, p.249]. O
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Definition 2.2.2. Let F /Q be a finite extension of degree Letr; be the number
of real embedding® : F — R andr, the number of conjugate pairs of non-real
embedding® : F — C. The 2-tuple(ry,r2) is calledthe signatureof the fieldF.

Proposition 2.2.3. Let[F : Q] = n. Then
ri+2ro=n.

As mentioned above, the ramification of the prime ideals débr a finite ex-
tensionE/F of algebraic number fields is dictated by the discriminaft /F ),
which is an ideal ok In 1977 Andrew Odlyzko [41] gave a lower bouég, ,)
for the discriminants of fields with signatufe,r,). For small values of; andr,
there exists tables f@, \,). Asymptotically, whem approaches infinity, we have

[d(F/Q)[Y" > (60.8395..)"/"(22.3816..)22/" —O(N"%3) = C, ). (2.4)

2.3 Central simple algebras

Let us next formally introduce the world of central simple algebras. We refer the
interested reader to [27, 45] for a more detailed exposition of the theory of central
simple algebras and their matrix representations.
An algebra« over a fieldF (or anF-algebra) is a (rightf--module and a ring
such that the modules and the ringeZ have the same additive groyp?, +,0)
and
(ab)f =a(bf) = (af)b

fora,be o andf € F. ThecenteC=C(«/) ={ac o/ |ad =daVva € &/} of
an algebra# is the set of elements o/ that commute with all elements &f,
and the image df under the ring homomorphism: F — <7, f+— 1f,is1F CC.

Definition 2.3.1. An F-algebrae is called central, ifc = 1F. An algebras is
calledsimpleif it has no nontrivial ideals. Atr-central simple algebrés a simple
F-algebra that is finite dimensional over its cerfter

Definition 2.3.2. We call the algebray a division algebraif every non-zero ele-
ment of.¢/ is invertible.

If <7 is a finite dimensional simple algebra owerthens’ = #,(2), where
2 is a finite dimensional division algebra over The centers ok and & are
isomorphic, i.e. the cente is a field. Hence, we can considef as a central
simple algebra ove€. Later on we shall see that this class of finite dimensional
central simple algebras has some beautiful properties that are especially welcome
in the context of space-time code constructions.

Definition 2.3.3. Let M be a lefter-module and € M. We define a representation
vm 1 A— EndM) of o7, wherea € &/ maps to a homomorphisr— ax.
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Later on in Section 2.5, by restricting this map to an or&r <7, we also get
a representation of an order. Moreovenfis actually an.«7, E)-bimodule, then
the image ofvy is in End:(M). If thenM is ann-dimensional (right) vector space
overE, we get a representation Afasn x n matrices oveE.

2.4 Cyclic division algebras

In this section, we concentrate on a special class of central simple algebras, namely
cyclic division algebras. For a more detailed exposition, see [27, 45].
The main ingredients of a cyclic division algebra are

(i) a finite dimensional algebraic number field extension and its (cyclic)
Galois group,
(i) a so-called non-norm element coming from the base field.

Let us explain the above more precisely. In Publications II-IV we consider
number field extensiong/F, whereF denotes the base field afd (resp. E*)
denotes the set of the non-zero element$-dfresp. E). For the purposes of
space-time coding, the most interesting cases are those Whisran imaginary
quadratic field, usually eithe®(i) or Q(v/—3). We assume tha /F is a cyclic
field extension of degreewith Galois groupGal(E /F) = (o) = {0,0?,...,0" =
Idr}. Let«” = (E/F,0,y) be the corresponding cyclic algebra of degne@ is
also called théndexof «7), that is

o =EQUE®UE®---®Uu1E,

as a (right) vector space ovEr Hereu € < is an auxiliary generating element
subject to the relationsu = ug(x) for all x € E andu” = y € F*. An element
a=xg+uxi+---+u"x,_1 € &7 has the following left regular representation
(see Definition 2.3.3) as

X0 YO(Xn-1) Y0%(Xa-2) -+ yo"l(xp)
x1  0(X)  Yoi(Xn-1) yo" (%)

A=| X o) a%(xo) yo"(xq) | . (2.5)
Xn.—l 0(Xn—2) 0%(Xn-3) - anfi(Xo)

We refer to this as the standard matrix representatiow’ pfind we identify the
elementa € o7 with its representation (2.5). Taking e.g. a transpdSenakes no
difference for coding purposes.

Definition 2.4.1. The determinant (resp. trace) of the matfxabove is called
the reduced normresp. reduced tracgof the element € <7 and is denoted by
nry e(a) (resp.try g (a)). In short, we denote the norm and tracertsya) and
tr(a), respectively, when the field is clear from the context.
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Remark 2.4.2. The connection with the usual norm map/) (a) (resp. trace map
T.//r(a)) and the reduced nornr(a) (resp. reduced trade(a)) of an elemena €

18 Ny g (@) = (nr(a))" (resp. T,k (@) = ntr(a)), wherenis the degree ot /F.

Recall that N, (a) (resp. T,r(@)) is defined similarly as the reduced norm
(resp. reduced trace), i.e. as the determinant (resp. trace) of the left multiplication
matrix of a but with respect to a basis of /F rather than of7 /E.

Theorem 2.4.3.LetF be a number field. Every central simpiealgebra is cyclic.
Proof. [45, Thm. 32.30, p. 280] O

The elementy is often called anon-norm elementlue to Theorem 2.4.5 by
Albert [3, Theorem 11.12, p. 184]. It provides us with a condition under which a
cyclic algebrais a division algebra. The original result was statetd=dr, 2, ...,n—

1, but is given in a simplified form after the next lemma.

Lemma 2.4.4.Lety € F* andE/F be as above. Consider the bf exponents
t € Z such thaty! is a norm of an element &. Then

S=kzZ
for somek|n.

Proof. The mappind :t — y! is a homomorphism of groups froff, +) to (F*, ).
Becauséd = Ng/r (E) is a subgroup oF *, andS= f~(H), we immediately see
thatSis a subgroup ofZ,+). From basic algebra it now follows th&tis cyclic,
i.e. S=KZ for somek € Z. On the other hand, gsc F* we get thay" = Ng £ (Y),
and hencen € S Thereforek|n. O

Proposition 2.4.5 (Norm condition). The cyclic algebraz = (E/F, 0,y) of de-
greenis a division algebra if and only if the smallest factoe Z of n such that
V' is the norm of some element®f is n.

Proof. We need to prove the equivalence of two conditions, the original stating that
¥ is not a norm for any in the ranget, 2, ...,n— 1, and the relaxed version stating
the same for thoskin the same range that are also divisore.oOne implication

is clear, and the other follows from the above lemma. Namely, if there are integers
t in the rangel, 2,...,n— 1 such that! happens to be a norm, then the lemma tells
us that the smallest sutimust be a divisor of. O

Remark 2.4.6. We can even relax the above conditions tforThe proof of the
previous lemma shows that it actually suffices to check yf&tis not a norm for
any prime divisorp of n. For example, when = 8, it suffices to check that* is
not a norm.

We conclude this section by defining the Jacobson radical which will be needed
for investigating the algorithmic properties of maximal orders [15].
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Definition 2.4.7. Let S denote an arbitrary ring with identity. A8-module is
simple if it is not the zero module and if it has no proper submodules.

Definition 2.4.8. Let againSdenote an arbitrary ring with identity. Thlacobson
radical of the ringSis the set

RadS) = {x € S| xM = O for all simple leftSmodulesv }.

Rad S) is a two-sided ideal i containing every nilpotent (i.e. for whichk =
0 for somek € Z. ) one-sided ideal? of S' Also, Rad'S) can be characterized as
the intersection of the maximal left ideals®If Sis a finite dimensional algebra
over a field or, more generally, left or right Artinian (i.e. satisfies the descending
chain condition on (left or right) ideals), th&ad S) is the maximal nilpotent ideal
inS

2.5 Orders and discriminants

In this section, our intention is to familiarize the reader with orders and their basic
and most crucial properties. The original publications also contain most of the
material of this section. The general theory of maximal orders can be found in
[45].

Throughout the section, let us suppose that we havé-aantral division al-
gebra of indexh < o, and thatR is a Dedekind ring ir-. For instance, we could
haveF = Q(i) andR = Z]i].

Definition 2.5.1. An R-orderin theF-algebrags is a subring\ of .7, having the
same identity element ag, and such thad is a finitely generated module over
and generateg’ as a linear space over.

Definition 2.5.2. An orderA is calledmaxima] if it is not properly contained in
any otheR-order.

Let us illustrate the above definition via some concrete examples.

Example 2.5.3.(a) Orders always exist: FM = &7, i.e. M is afull R-lattice in
</, then theleft orderof M defined a’| (M) = {x € & | XM C M} is anR-order
in 7. The right order is defined in an analogous way. Left orders are used in [15]
to demonstrate algorithmic properties of maximal orders.

(b) If Ris the ring of integer®r of the number fieldr, then the ring of integers
Ok of the extension fieldE is the unique maximal order iB. For example, in the
case of the cyclotomic field = Q({), where{ = exp(2ri/K) is a primitive root
of orderk the maximal order ig'g = Z[{]. In sharp contrast to the commutative
case, a maximal order in a non-commutative algebra is usually not unique.

One of the most crucial properties of orders is stated below (see Section 4.2).
For the proof, see [45, Theorem 10.1, p. 125].
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Proposition 2.5.4.LetA be an order in a cyclic division algebr& /F, g, y). Then
for any non-zero elemeatc A its reduced nornmr(a) and reduced tracer (a) are
non-zero elements of the ring of integérs of the centefF.

Example 2.5.5.Let y € F* be an algebraic integer, i.e0 £y € 0. If yis
not integral to start with, it is of the forn§, wherea,b € 6. Now we can
get an isomorphic algebra having an integyaby multiplying by a ‘norm ele-
ment’ Ne ¢ (b) = b". By [27, Theorem 8.14, p. 481], the cyclic division algebras
(E/F,0,y) and(E/F,a,yN(b)) = (E/F,0,ab" 1) are then isomorphic. So when
considering the division algebras up to isomorphism, then without loss of general-
ity we can assume that the non-norm element is actually an algebraic integer.

We immediately see that then ti# -module

ANAT = O BUOE & --- HU 10,

where 0k is the ring of integers, is a@r-order in the cyclic algebré&E /F, g, y).
We refer to thisor-order as thaatural order It will also serve as a starting point
when searching for maximal orders.

In any cyclic algebra, a maximdl-order is a maximatr-order as well.

We remark that the term ‘natural order’ is somewhat misleading. While it is
perhaps the first order that comes to mind, there is nothing canonical about it.
Indeed, distinct realizations of a given division algebra as a cyclic algebra often
lead to different natural orders. For instance, constructing the algebra of rational
Hamiltonian quaternions from the cyclic extensigf/—3)/Q as opposed to the
more commorQ(i)/Q leads to a different natural order.

Let us next define the discriminant of an order. keét= (E/F, g, y) be a cyclic
division algebra and\ C o an order.

Definition 2.5.6. Let F be the center ofy andm = dime.2/. Thediscriminantof
theR-orderA is the ideald(A/R) in R generated by the set

{det(tr ¢ (xixj)){f‘jzl | (X1,...,%m) € A}

In the interesting cases & = Q(i) (resp. F = Q(v/—3)) the ringR = Z]i]
(resp.R=Z[w], w = (—1++/—3)/2) is a Euclidean domain, so in these cases (as
well as in the casR = 7Z) it makes sense to speak of the discriminant as an element
of Rrather than as an ideal. We simply pick a generator of the discriminant ideal,
and call it the discriminant. Equivalently we can compute the discriminant as

d(A/R) = def(tr (xiXj)){Tj-1,

where{xi,...,Xm} is anyR-basis ofA. It can be readily seen that whenevef
are twoR-orders, theml (' /R) is a factor ofd(A/R). The index[I" : A] is related to
discriminants by the following lemma.
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Lemma 2.5.7.
R:d(A/RR =l : A]?[R:d(T/R)R]

Proof. [45, p. 66] O

We present the following basic formula for the discriminant of certain cyclo-
tomic fields (see [30, Theorem 1.61, p. 42]), as it will be required later.

Example 2.5.8.Let {;, = exp(2r1i /2') be a complex primitive root of unity of order
2', wherel > 2is an integer. Then = [Q({/) : Q(i)] =22 and

d(Z[ZA/Zli]) = (1+1)2.

Remark 2.5.9. It turns out (cf. [45, Theorem 25.3, p. 218]) that all the maximal
orders of a division algebra share the same discriminant, which we will refer to
as thediscriminant of the division algebrdn this sense a maximal order has the
smallest possible discriminant among all orders within a given division algebra, as
all the orders are contained in a maximal one.

For an easy reference we state the following result which follows from the
definitions.

Lemma 2.5.10.Let E/F be as above, assume thais an algebraic integer of
F, and letAnat be the natural order of Example 2.5.5. dfE/F) is the O-
discriminant of 0k (often referred to as the relative discriminant of the extension
E/F), then

d(Anat/OF) = d(E/F)"y ("),

Proof. [15, Lemma 5.4] or [55]. O

2.6 The Brauer group and Hasse invariants

In this section, we define two useful algebraic objects called, namely the Brauer
group and the Hasse invariants of an algebra.

Let .« and % be finite dimensional central simple algebras. We.gagnd %
aresimilar, if for some positive integers1 andn we haveZy (<) = .#n(%) as
F-algebras. From the properties of the tensor product it follows that this similarity
relation defines an equivalence relation. Any cyclic algebra (see Section 2.4) is a
central simpld--algebra (cf. Definition 2.3.1) and Wedderburn'’s structure theorem
[27, Theorem, p. 171] tells us that any central simple algebra is a matrix algebra
over a central simple division algebra. Thus, it easily follows that within any sim-
ilarity class there is a unique division algebra. The similarity clagsé$ form a
group under the multiplication rule

(U B} = {7 @r B}
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This group is called th8rauer group ofF and is denoted bBr(F). If F’ is an
extension field of, and.«/ is a central simplé--algebra, then the tensor product
o' = of @ F'is a central simpl&’-algebra. We refer to this algebra as the algebra
obtained froma7 by extending the scalars te'.

A primeof F is an equivalence class of non-trivial valuationsFarThus there
is exactly one prime for each prime idealdr, for each real embeddirng — R,
and for each conjugate pair of non-real embeddifgs> C. The corresponding
primes are callefinite, real, and complexespectively. An element &f is said to
be positiveat the real prime corresponding to an embedding: R if it maps to a
positive element aR. A real prime of F is said teplitin an extensioik /F if every
prime lying over it is real; otherwise it is said tamifyin E. A finite extension$
of Q only has finitely many infinite primes.

Let P be an infinite prime of. By Fp we refer to the field of real® or to the
field of complex number€, depending on whether the prirRéas real or complex,
respectively. IP is finite thenFp is just the familiaP-adic completion of the field
F. All the fieldsFp, whereP is any prime of, are referred to as completionsfof
The division algebras ové% are easy to describe. They are all obtained as cyclic
algebras of the form# (n,r) = (E/Fp, 0, ), whereE is the unique unramified
extension ofp of degreen, o is the Frobenius automorphism, ands the prime
element ofFp. The quantityr /n is called theHasse invarianof this algebra and
n is referred to as thiocal index It immediately follows from Proposition 2.4.5
that.e7(n,r) is a division algebra if and only ifr,n) = 1. For a description of the
theory of Hasse invariants we refer the reader to [45, p. 266] or [40].

For a detailed exposition on the general properties of Brauer groups and Hasse
invariants, we refer to [45, Chapters 3,7, and 8].

2.7 Local theory of orders

In [15] some facts from the local theory of orders are required in order to describe
an algorithm for producing maximal orders. For the basic properties of localization
the reader can turn to [27, Chapter 7] or [45, Chapters 1, 2]. In this section, we
only briefly summarize some of the results that were needed in [15]. For the proofs
of the results in this section, see [26] and [47] — these references have a nice
collection of results which were originally taken from [45], but have been modified
for our purposes. For the definition of the radical, see Definition 2.4.8.

We first recall the left order of an algebra.

Definition 2.7.1. Let us suppose that we have Brcentral division algebra of
index n and thatR is a Dedekind ring inF. If M is afull R-lattice in <7, i.e.
FM = &7, then theleft orderof M defined ag/|(M) = {x € & | XM C M} is an
R-order ine/. The right order is defined in an analogous way.

The next proposition (see [47, proof of Theorem 3.2]) is useful when comput-
ing left orders.
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Proposition 2.7.2. Let & be a simple algebra ovdf andM a finitely generated
Or-module such thaEM = 7. Then there exists an element O \ {0} such
thats-1 ¢ M. Moreover,0; (M) = {besIM |bM <M} <sIM.

If Ris a Dedekind domain with a quotient fiefd andP is a prime ideal irR,
then the ring of quotient® = (R/P)"*R C F is a discrete valuation ring. For the
R-latticesM in & the localization aP is defined adMp = ReM C &7. Mp is an
Rp-lattice. Moreover, itM is a full (cf. Example 2.5.3R-lattice in.«7, thenMp is
a full Re-lattice in.7. To be more specific, let us define the rifg.

Definition 2.7.3. For a rational primep let Z, denote the ring
r
Zp={3€QIrseZ, gedps) = 1}.

Zyp is a discrete valuation ring with the unique maximal idg@}. If A is aZ-order
we use the notatioNp = ZpA\.

We remark that one should not confuse the localizaRprwith the ring of
integersRp of the P-adic completion. We use the caret to indicate a complete
structure. This is somewhat non-standard in the caZg tfat is nearly universally
used to denote the complete ring@fdic integers. We us%p for the complete
ring.

In the following, we work inside af-central division algebra7, R being the
ring of algebraic integers ik. The next statement illustrates a simple but useful
connection between the ordeksandAp.

Proposition 2.7.4 (Proposition 2.8 [26]).Let A be aR-order in .«/. The map
f : X+ x4+ PAp, x € A induces an isomorphism of the ringgPA = Ap/PAp.

Proposition 2.7.5 (Proposition 3.1 [26]).Let P be a prime ideal of the rindR.
The residue class rinfp = Ap/PAp is an algebra with identity element over the
residue class fiel®Rr = Rp/PRe and dime o7 = dimgAp. If @ : Ap — Ap is the
canonical epimorphism, theBAp C Rad/Ap) = ¢ tRadAp) and ¢ induces a
ring isomorphism\p/ RadAp) = Ap/Rad/Ap). As a consequence, a left (or right)
ideal .# of Ap is contained irRad Ap) if and only if there exists a positive integer
t such that#' C PAp.

Combining the previous two results we get.

Corollary 2.7.6 (Corollary 9.4 [15]). Let P be a prime ideal of the rindR. We
then have

¢ *(RadA/PA)) = g (RadAp)),
wherey is the embedding — Ap andg@is the canonical epimorphism— A /PA.

The following facts establish some practical connections between the local and
global properties of orders.
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Proposition 2.7.7 (Theorem 2.3 [47]).Let .« be a simple algebra ovd¥. LetP
be a prime ideal oR, andl" be anR-order in</. Then

() F'p is anRp-order in <7

(ii) T is a maximaR-order in .« if and only ifp is a maximaRp-order in </
for every prime ideaP of R.

(ii) d(T'/R)p = d(T'p/Re).

Corollary 2.7.8 (Corollary 9.6 [15]). If P does not divided(A/R), thenAp is
maximalRp-order.

Extremal orders and especially Proposition 2.7.13 below play a key role in the
method for constructing maximal orders.

Definition 2.7.9. We say thaf p radically containg\p if and only if Ap C 'p and
RadAp) C Radlp). The orders maximal with respect to this partial ordering are
calledextremal Maximal orders are obviously extremal.

Proposition 2.7.10 (Proposition 4.1 [26]) An Rp-order Ap is extremal if and only
if Np = ﬁ] (Rad/\p)).

Lemma 2.7.11 (Lemma 2.7 [26]).Let P be a prime ideal of the rindR, A\ an
R-order and suppose that;(Rad/Ap)) O Ap. Letl denote the inverse image of
Rad Ap) with respect to the embeddidg— Ap. Then we haveD PAandi(1) D

.

The previous corollary together with Corollary 2.7.6 gives us the following.
Lemma 2.7.12.If 6,(¢~1(RadA/PA)) = A, the orderAp is extremal.

Proposition 2.7.13 (Theorem 4.5 [26])LetAp C I'p beRp-orders ing/. Suppose
that Ap is extremal and thaf p is minimal among thép-orders properly con-
taining Ap. Then there exists an idea# of Ap minimal among those containing
Rad/Ap) such thato(_7) D I'p.
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Chapter 3

Coding-theoretic preliminaries

3.1 The MIMO channel model

A distinguishing characteristic of wireless channels is the fact that there are many
different paths between the transmitter and the receiver. This means that, instead
of simply receiving the transmitted signal, the receiver will get several different
versions of the signal. All these multipath components are then added together
at the receiver, which results in signal fading since the phase factors of distinct
components have a tendency to cancel each other out. In addition to the faded
signal, some other factors are added to the mix: thermal noise, interference from
other users etc. These extra terms can adequately be modeled by Gaussian random
variables. There are many different models which describe the fading effect due
to multipath propagation, but in what follows we mostly restrict ourselves to the
Rayleigh fading model. Good handbooks for wireless communications and space-
time coding are [54] and [28], among others. First, let us give a formal definition
for a space-time (ST) code. We restrict ourselves to square matrices; the general-
ization to rectangular matrices is straightforward.

Definition 3.1.1. A space-time cod&’, sometimes also referred to asvdiMO
code, is a finite collection of complex matrices

X11 X12 -+ Xin
X21 X22 -+ Xon

X= . ] ] €C C Mn(C).
Xn1 Xn2 Xnn

The rows represent different transmit antennas space The differenttime slots
are represented by the columns. The first transmit antenna sgndshe jth time
slot, the second antenna sengls etc.

Rayleigh fading is a statistical model for the effect of a propagation environ-
ment on a radio signal, such as that used by wireless devices. The model assumes
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that the signal will fade according to a Rayleigh distribution, and experience has
shown that it describes the effects of the heavily built-up urban environment on the
transmitted signal reasonably well. We use a somewhat simplified channel model
which is sufficient for the purposes of this thesis.

Let us denote byy (resp. ny) the number of transmitting (Tx) (resp. receiv-
ing (Rx)) antennas. We assume the coherentn, MIMO channel with perfect
channel state information (CSI) available at the receiverXeé a codeword ma-
trix coming from a space-time codg€ C .#,(C). We assume that the quasi-static
interval, i.e. the coherence time during which the channel remains constant, and
the block lengtm are equal. We only consider square matrices and hence further
assume that, = n. Now the transmitted signal is received in the form

Y = /PHX +N € 4, «n(C), 3.1)

whereH € .#,, «n(C) is the channel response matrix aNdc .#, «n(C) is the
noise matrix. The entries of both andN are independent identically distributed
(i.i.d.) zero-mean complex circular Gaussian random variables with unit variance.
Let ||X||r denote the Frobenius norm ¥f(corresponds to the squared Euclidean
norm of the vectorized matrix, i.e. the sum of the squares of all the matrix ele-
ments). We assume the codesatisfies the overall power constraint

1
G > IX|[E =n. (3.2)
Xe?

We then easily see that the paramgieepresents the average signal to noise ratio
(SNR) at the receive antennas.

3.2 Code design criteria for space-time codes

Let us assume that the receiver has to decide (based on the Euclidean metric) know-
ing the channel, whethet or X’ was transmitted. LeX' denote the hermitian
transpose oK. The probabilityP, = P(X — X’) that the receiver makes an error
betweenX andX’ gives us a clue of the criteria we need for designing good codes.
At high SNR values the right hand side of the below inequality gives a good
approximation to the pairwise error probability.

1

" = @t (X X)X X

(3.3)

From the above pairwise error probability (PEP) point of view [51], the per-
formance of a space-time code is dependent on two parametersity gain
andcoding gain At high SNRs, a log-log plot of the corresponding error rates
is a straight line. Roughly speaking, the diversity gain is the slope of the asymp-
tote. Although two codes with the same diversity gain achieve the same asymptotic
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slope, they can still differ in the horizontal shift of their asymptotes. The coding

gain of a space-time code is an approximate measure of the offset of the asymptote.

Together with (3.3), this leads us to the natural code design criteria given below.
The diversity gain is the minimum of the rank of the difference maxrix X’

taken over all distinct code matrices X’ € ¢, and it is also called theank of

the code¥’. When% is a full-rank code, the coding gain is proportional to the

determinant of the matrixX — X')(X — X’)T. The minimum of this determinant

taken over all distinct code matrices is called theimum determinandr coding

gain of the coders’. If the coding gain is bounded away from zero, even in the

limit as the size of the code approaches infinity, then the ST code is said to have

thenon-vanishing determinaiiNVD) property [4]. For non-zero square matrices,

having full-rank coincides with being invertible.

The goal is to design sets of full-rank matrices with large

and preferably non-vanishing minimum determinants.

These design criteria, to some extent, depend on the premise that the receiver
will know the channel response matrix, but the transmitter will not. If the transmit-
ter also has this piece of information, then other methods are used. For example,
in modern cell phone networks, the user’'s equipment reports its measured channel
coefficients back to the base station, and the MIMO transmission aimed at that par-
ticular phone may then be adapted accordingly. Nevertheless, the situations where
the transmitter is denied this information occur. In broadcast applications there are
several recipients of the same signal, and such tuning is useless. Also, in the case
of a rapidly moving cellular phone, e.g. one on a fast train, the channel conditions
may vary so rapidly that the received information will become outdated so quickly
that it is practically useless. The situation changes quite a lot of if the receiver does
not know the channel. The code design for tihim-coherenthannel has a whole
theory of its own.

Remark 3.2.1. The term ‘diversity’ has multiple meanings in wireless communi-
cations. Henceforth, diversity will refer to (spatial) diversity, as defined below in
(3.10).

Remark 3.2.2. When we discuss the coding gain of a finite code we always sup-
pose that the code is scaled so that the overall energy constraint in (3.2) is met.
This normalization allows us to reasonably compare two finite codes of the same
size.

The next example introduces the reader to the first explicit space-time code
designed for th€ x 1 MIMO channel, namely the Alamouti code [2].

Example 3.2.3. The Hamiltonian quaternions form a neat set for illustrating the
above. Leti?= j2=k?= —1, andij = k. If a,b,c, andd range oveiR, we
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define the seH of Hamiltonian quaternions as the one containing the elements
g=a-+bi+cj+dk This set becomes aring by extending the above multiplication
rules linearly. It might be helpful for the reader to notice thlat- C » Cj. The
conjugate quaterniog = a— bi — cj— dk tells us thatg = a2+ b?+ 2 +d? ¢

R\ {0}, wheneven # 0. Thus, the quaternions form a division algebra.

The guaternions can be conveniently represented either by co@gléxma-
trices or by reald x 4 matrices with respect to a suitable basis. We now write
Zz1 = a+bi andz = c+di and letz* denote the complex conjugate anf The
complex matrix takes the form

q= ( 2 _;% ) (3.4)

with respect to the basidl, j }. We identify the elemerg with its matrix represen-
tationq and recycle the same notation.

The Alamouti code [2] is now obtained by selecting complex integer vectors
(z1,2), i.e. theLipschitz quaternionsand mapping them to codewords of the
antenna ST-code as in (3.4) above. The rank criterion is automatically met, and the
minimum determinant aoff is the squared minimum Euclidean distance.

Remark 3.2.4.In Remark 2.1.2 it was noted that the set of integral elements does
not form a ring in the non-commutative case. As an easy counter-example one can
use the ring of Lipschitz quaternions

Z ={gq=a+bi+cj+dkeH |ab,c,decZ}

from the above example. For instance, consider the polynofifigl = x? + 1
having integral coefficients. The element 3'L54‘ is one of the (infinitely many)
roots of the polynomiaf (x), and hence may be called integral. However, if we try
to adjoint to the ring.#, we end up with a set that will also contain the elenient
The reduced trace (it) € Q is not an integer, hence we cannot have an order that
would contain both the Lipschitz quaternions and

Remark 3.2.5. Proposition 2.5.4 provides us with a tool for producing codes sat-
isfying the NVD property. See Proposition 4.2.6 for a more thorough explana-
tion. In the above example, the Alamouti code corresponds to the natural order of
the cyclic division algebréaQ(i)/Q, o =*,y = —1) (cf. Section 2.4 and Example
2.5.5), hence, according to Proposition 2.514fq) € Z anddetq) > 1 for all
0#qeH.

Thedata rateR in bits per channel use (bpcu) is given by

R= Tlogy(|]). (3.5)
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where|%’| is the code size amlis the number of channel uses. The data rate should
not be confused with theate of a code desig(in short, thecode raté defined as

the ratio,

k

of the numbelk of transmitted (complex) information symbols, e.g. quadrature
amplitude modulation (QAM) symbols matching Gaussian integers, to the decod-
ing delayn. If this ratio is equal to the delay, then the code is said to haudl a
rate.

Remark 3.2.6. If one intends to use, receive antennas and perform sphere de-
coding or some other simple decoding method at the receiver tiigecode rate
should not exceext, i.e. we must hav§ <n,. In order to achieve as high a rate as
possible while enabling sphere decoding, one should choose thﬁ fatg. See
[18, 38] for a more detailed justification of this claim.

The contents of the following section are mainly taken from [28], [54], and
[38].

3.3 Spatial diversity and multiplexing

The Rayleigh fading channel model (3.1) describes sudden declines in power. As
discussed earlier, this fading is due to the destructive addition of multipath signals
in the propagation media. Also interference from other users may complicate the
situation. The received power can thus change significantly. On the other hand, the
power of the thermal noise at the receiver does not usually change very much. As
aresult, if the signal undergoes significant fading, the effective SNR at the receiver
may drop dramatically. In practice, for a fixed rate there is a minimum SNR for
which the receiver can still reliably detect and decode the transmitted signal. For a
SNR below this threshold, recovering the signal reliably is impossible. This event
is referred to as anutage The outage probability can be calculated based on the
statistical model describing the channel, or one can measure the actual real-life
channel.

The main idea behind diversity is to provide the receiver with different replicas
of the transmitted signal. If the multiple antennas used are far enough apart from
each other, then the paths between different pairs of antennas can be considered as
independent. In this way it is less probable that all the copies of the transmitted
signal would significantly fade simultaneously. As a result the outage probability
will be lower than for a system with a lower diversity.

More technically, diversity (or diversity gain) can be defined as the slope of the
error probability curve in terms of the received SNR in a log-log scale.

Multiple transmit antennas can also be utilized to achieve goals other than di-
versity. For instance, a higher capacity and, as a result, a higher transmission rate
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are possible by increasing the number of transmit antennas. Let us, for the sake
of simplicity, assume a symmetric MIMO channel equipped with equal numbers
of transmit and receive antennas. Then, in a rich scattering environment the ca-
pacity increases linearly with the number of transmit antennas without increasing
the transmission power. This results in the possibility of transmitting at a higher
rate by using spatial multiplexing. In general, one can transmit upitgn, n, }
symbols in one time slot (see the remark below). For exampig ifn,, one can
sendn, symbols and achieve a diversity gainmpf- n, + 1. On the other hand, the
maximum spatial diversity while transmitting only one symbol per time slatis
Therefore, we can benefit from a MIMO channel in two ways: (i) we can increase
the diversity of the system, and (ii) we can increase the number of transmitted
symbols.

Remark 3.3.1. The received signal belongs totalimensional complex vector
space, where= 2n.n. From this it is clear that the receiver cannot decode a lattice
(see Section 4.1) that has rank, because the infimum of the euclidean distance
of points in such a lattice is zero. This gives us a natural upper bound for the
multiplexing gain.

Remark 3.3.2. The capacity of a MIMO channel increases by raising the SNR.
Since the transmission rate relates to capacity, it is reasonable to hope that the rate
can be increased as the SNR increases. This motivates the formal definition of
(spatial) multiplexing gain (3.7).

Let us next give the formal definition of the diversity-multiplexing tradeoff.
When the channel matrid is known completely to the receiver but not to the
transmitter, Telatar [53] first showed that the ergodic channel capacity of such an

ne x Ny MIMO channel approximates tmin{n, n } log, SNR at high SNR regime,
regardless of the relation betwemrandn;. Furthermore, it was shown that such a
capacity can be achieved by using i.i.d. complex Gaussian random vebgrsg

a covariance matriky = %*Int. On the other hand, assuming that the transmitter
communicates at a rate of

R = rlog,SNR (bits/channel usg) 3.7)

wherer, 0 <r < min{n,n}, is termed thenultiplexing gain Zheng and Tse [58]
proved that givem, the smallest bit error probability that can be achieved by any
coding scheme is given by

Pemin(SNR) = SNR4'("), (3.8)
where by= we mean the exponential equality defined by

SNR o logSNR —arm). (3.9)
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The negative exponedt (r) is termeddiversity gain and is given by a piecewise-
linear function connecting the points

{(r,(nc=r)(nr=r)) 1 r=0,1,...,min{n;,n }}. (3.10)
Particularly, for the MISO case we get
Auiso(r) =me(1—r), 0<r<1 (3.11)

Here,d*(r) indicates an optimal tradeoff between the multiplexing gaamd the
diversity gain, and is thus also termed theersity-multiplexing tradeofDMT) of

a Rayleigh fading channel. It is also proved in [58] tH&gr) can be achieved by
using i.i.d. lengtha; complex Gaussian random vectors, provided that the asym-
metric MIMO Rayleigh fading channel is quasi-static and the channel midtrix
remains fixed foil channel uses witlh > n; +n, — 1.

Invigorated by this remarkable result, a considerable amount of research activ-
ity has been devoted to constructing coding schemes [5, 7, 29, 8, 52] to achieve
the optimal tradeofti*(r) in (3.10). In particular, Elizet al. [8] have provided
a sufficient condition for having deterministic DMT optimal codes. Furthermore,
they have proposed an algebraic construction of n; code matrices meeting this
sufficient condition for alhy > 2 andT > n;, using a cyclic division algebra with
degreen? over its centerQ(i), wherei = /—1. One step further was taken in
[16], where Hollantiet al. showed that, with the aid of maximal orders, the CDA-
based DMT-achieving constructions can be further improved in terms of density. A
denser code provides a better error performance even at low and moderate SNRs,
whereas DMT optimality is an asymptotic measure.

Remark 3.3.3. The relationship of the above spatial multiplexing gain to the trans-
mission rate is similar to that of the diversity gain to the probability of error in (3.9).
In other words, multiplexing gain measures how far the Ratefrom capacity.

Let us quickly go back to Example 3.2.3 before moving on to the next section.

Example 3.3.4. The Alamouti code is DMT-achieving for th2x 1 MISO case,
but fails to do so in th& x 2 MIMO case, as it is rate-one and hence not fully
multiplexing.

Let us now assume 2x 1 channel and take look at the received signal when
an Alamouti codewordj is transmitted. It takes the form

_ n -z
ouy = (b (272 )
and can be rewritten as
yi\_ [ h 4l Ny
(2)=(n m)(2) (%) (3.12)
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Let us denote by the matrix in (3.12) containing the channel coefficients. The
columns ofH are orthogonal to each other and have the same Euclidean norms.
Thus, when we multiply (3.12) from the left by", the received vector takes the
new form

i\ _ ( e+ Ihf? 0 , o
(V;>_< 1 0 |h1|2+|h212><zi>+<ni>, (3.13)

wheren},n, remain i.i.d.. The channel now actually corresponds to two parallel
SISO channels and hence (see [44, Section 3.4.1, p. 33]) the error probability is
asymptotically given by

Pe Alamouti~ SN R—2(1-1)

By settingn; = 2 in Equation (3.11), we can conclude that the Alamouti code is
optimal in terms of the DMT of & x 1 channel.
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Chapter 4

Space-time codes from cyclic
division algebras

In this chapter, we will introduce cyclic division algebras and their orders as a tool
for space-time coding. We begin by mentioning that it was a long and rocky path
to discovering that cyclic algebras could be used and that indeed we were dealing
with objects called orders.

When we began this work, our intention was just to produce ST codes for the
4 x 1 MISO system [14]. As specified by the code design criteria, we wanted these
codes to have full rank and a minimum determinant as large as possible. Already in
[14] we managed to build codes with the NVD property. The tools at hand at that
time were not very sophisticated, so this took a lot more effort than was necessary.
Thanks to Sethuramaet al. [48], cyclic division algebras were finally introduced
in 2003 and the first ST codes were built using them. The use of CDAs enabled
full multiplexing as they produced full lattices. For the first time, the code matrix
was fully packed with no wasted space. These codes, however, did not enjoy the
NVD property as transcendental elements were used instead of algebraic numbers.

Later in 2003, Belfiore and Rekaya [4] pointed out that one should use a spe-
cific subring instead of the whole algebra in order to guarantee a non-vanishing
determinant. Whilst working on [14] we realized that there exists something called
order, and the above mentioned subring as well as our example rings in [14] are
occurrences of such orders. We also managed to prove with some ad hoc meth-
ods that the densest code in [14] corresponds to a maximal order. This led us to
further investigate orders and their properties [16]. It was noticed that by using a
maximal order within a given CDA, we obtain the densest possible codes. If the
algebra is not fixed, then we first pick an algebra that has maximal orders with a
minimal discriminant, as these are the densest among all the maximal orders within
any CDA [15] (see the framed statements at the end of Sections 4.1 and 4.3). This
observation provided us with codes that are already very close to the outage bound
[32]. With practical numbers of antennas there is hardly any gap between the per-
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formance of a maximal order code and the outage bound, even at low SNRs.

Achieving promising results with the symmetric (#Tx antennas = #Rx anten-
nas) ST codes motivated us to try the same with the asymmetric (#Tx antennas >
#Rx antennas) space-time (AST) codes as well. In [19] we generalized the den-
sity results from [15] to the asymmetric scenario. The situation was now more
complicated as rather that only having two principal options for the center of the
algebra, as in the symmetric scenario (see Corollaries 4.3.2 and 4.3.4), the center
could be almost any field of a suitable degree. When we started this work, we
did not even know how to construct AST codes with a suitable rate and the NVD
property. One way to construct AST codes was proposed in [25], but we were not
aware of this work until we had independently discovered the same method and
noticed that the performance it provided was not satisfactory. Also the block struc-
ture we introduced in [22] was independently discovered in [57] in the context of
amplify-and-forward relay codes.

Finally in [22, 23, 19] different construction methods for asymmetric codes
were proposed, one of them based on maximal orders. Not surprisingly, the codes
from maximal orders outperformed all competing codes. Later on, both transmit
antenna selection (TAS) [21, 38] and the situation where one wants to effectively
use all the transmit antennas [18, 20] were considered, and optimal constructions
with excellent error performance were given.

4.1 Lattices: normalized minimum determinant and den-
sity

We define dattice to be a discrete finitely generated free abelian subgtoopa

real or complex finite dimensional vector space, called the ambient space. In the
space-time (ST) setting a natural ambient space is the spa¢€) of complex

nx n matrices. Th&ram matrixis defined as

G(L) = (D(Tr(6x))) (4.1)

] >1gi,jgk’
where Tr is the matrix trace, ang € .#,(C), i = 1,...,k, form aZ-basis ofL.

The rankk of the lattice is upper bounded By?. We remark that we need to take
the real part of the trace in the Gram matrix, as the matbtpésare not necessary
real fori # j. The Gram matrix has a positive determinant equal to the squared
measure of the fundamental parallelotog@ )?. A change of basis does not affect
the measuren(L).

Any lattice L with the NVD property can be scaled, i.e. multiplied by a real
constantt, either to satisfy defin(L) = minycp\ 0y {detM)} =1 or to satisfy
m(L) = 1. This is because dg (tL) = t"detnin (L) andm(tL) = t“m(L). As the
minimum determinant determines the asymptotic pairwise error probability, this
gives rise to natural numerical measures for the quality of a lattice.
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Definition 4.1.1. We shall denote by (L) thenormalized minimum determinawit

the latticel,, i.e. here we first scaleto have a unit size fundamental parallelotope.
Dually we denote by (L) = 1/m(L) thenormalized densitgf the latticel, having

first scaled the lattice to have unit minimum determinant, and only then computing
the quantityl/m(L). In other words, we define

d tin L
. k/n
ol - @bl

There are two different point of views one can adopt related to the density.
Firstly, assume that both of the lattices we consider have a unit minimum determi-
nant. Now a denser code means that we can pack more codewords within a same
space as compared to a lattice having a lower density. That is, the data rate (3.5)
is improved. Secondly, if instead of increasing the rate we normalize the lattices
to have a unit measure, then according to the above definition the (normalized)
minimum determinant of the denser lattice is bigger than that of the other lattice.

Definition 4.1.2. A MIMO codeor space-time codeefers to the infinite cod&,
which is a lattice in#,(C).

In this thesis, we consider only codes that are subsets in an infinite complex
lattice. Then, for an infinite code lattic&, in Section 3.2, we can just look at
non-zero matrices instead of the differences, as the difference of two lattice points
is again a point in the same lattice.

Remark 4.1.3. The minimum determinant defined here is actually the square root
of the minimum determinant defined in Section 3.2.

Remark 4.1.4. When comparing the minimum determinants of different codes,
one should always use the normalized minimum determinant. Otherwise the no-
tion of minimum determinant would be somewhat meaningless, as for example
detnin (2L) = 2"detyin (L). Therefore we need the above normalization. According
to Definition 4.1.1 and Section 3.2, we can refedth )? as the coding gain of the
corresponding MIMO code.

Remark 4.1.5. To avoid confusion let us mention that from now on, when we
talk about the minimum determinant we always mean the minimum determinant
detnin (L) of the infinite code lattick = %.. For our purposes it suffices to consider
infinite lattices, thus we can ignore the side effects caused by the finiteness of the
actual code.

According to Definition 4.1.1, the above can be formalized as follows:
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Proposition 4.1.6. The coding gain of a lattick equals
3(L)2 = p(L)>k,

Now we can conclude this section by stating:

Maximizing the coding gain is equivalent to maximizing

the density of the corresponding lattice.

We emphasize that this is one of the main contributions of this work, as we have
now produced a well-defined criterion for maximizing the coding gain. Later onin
Section 4.4, we will see that the previously known methods for code construction
are insufficient, if one hopes to achieve maximal coding gains. Indeed, in Section
4.4 it will be shown that there exists2ax 2 MIMO code havingd(L) = 0.562as
opposed to the Golden code that lddk) = 0.447.

4.2 Lattices from matrix representations of orders

Why do we want to use cyclic division algebras and their orders to construct ST
codes? Firstly, division algebras have no zero divisors, so the rank criterion (cf.
Section 3.2) is automatically met. The cyclic representation is moreover simple
to deal with. Secondly, orders help us to increase the coding gain by providing
us with the NVD property. When we choose the center carefully, a discrete set of
determinants is guaranteed.

Some authors have made the assumption that the so-called linear dispersion en-
coding is used. Therein a fixed subset of a complex alphabet lattice (such as QAM
or HEX, corresponding to Gaussian or hexagonal lattice, respectively) is chosen,
and sequences of symbols from that subset are then turned into lattice points by
the simple process of using them as coefficients of a fixed basis (as a module over
a ring generated by the alphabet) of the actual lattice. From our point of view this
approach places undue emphasis on the encoding process, so we largely ignore this
aspect. Therefore questions like whether our lattices are ‘information lossless’ (cf.
[49],[43]) are meaningless, because that concept is defined only under the assump-
tion of linear dispersion encoding.

This change means that we often need to resort to the use of a codebook, and
thus the complexity of encoding is higher. But, consequently, we are also free to
do optimal spherical shaping. In other words, we choose our finite codebook to
consist of shortest vectors (not necessarily all of them) of the lattice or of a coset
of the lattice, and thus minimize the transmission power.

Our lattices ofh x n matrices are of rankn?. This implies that if we impose a
constraint on the transmission power and require th@t Xf) < P for all the ma-
tricesX in a codebook, then the number of signdlmeeting this constraint grows
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like O(P”z) as a function of maximal transmission power Thus, they automat-
ically share this property with the full-rate linear dispersion codes. Therefore, we
are entitled to use Theorem 3 from [8] and conclude that, also for the maximal
order codes, the NVD property implies DMT-optimality.

Again letE /F be a cyclic Galois extension witBal(E /F) = (o) (cf. Section
2.4).

Definition 4.2.1. Leta=Xo+ux +---+u""x, 1 € AC & = (E/F,0,y), where
N\ is a maximal order. The basic form of a cyclic division algebra based space-time
code coming from a maximal order is

X0 YO(Xn-1) YOZi(Xn2) -+ yo"i(xq)
X1 0(X)  Yo%(X-1) yo"(x2)

CCln=_| X ox) %) o txe) | Y (4.2
Xn.fl O(Xn-2) 0%(Xn-3) -+ G”‘i(xO)

wherey € F is a suitable non-norm element. Here, the above infinite code lattice
%. can be identified with the standard matrix representation of the drddptice

that as opposed to the natural order, the elememt<€ in (4.2) are not necessarily
integral!

If we denote the basis & overF by {1,ey,...,en_1}, then the elements, i =
0,...,n—1, in the above matrix take the forry = zﬂ;cl, frex, wherefy € F for all
k=0,...,n—1. Hencek = n? information symbols, e.g. Gaussian or Eisensteinian
integers corresponding to QAM and HEX signaling respectively, are transmitted
inside the matrixtf per channel use). This is equal to saying that the design has a
full rate K = ™ — n (cf. (3.6)).

Remark 4.2.2. We recall that the natural order only exists, wheis an algebraic
integer. In this case an immediate consequence of Lemma 2.5.7 isikabas a
finite index in the maximal ordek. In particular, as latticeg\nar and/A share the
same rank.

A full rate is guaranteed when using full lattices, i.e. lattices that have rank
equal to2n?. For the asymmetric scenario, however, full lattices are out of the
qguestion, at least if we wish to preserve the ability to perform simple decoding,
e.g. sphere decoding, at the receiver (cf. Remark 3.2.6). In this case, we need to
modify the dimension of the algebra and the degrees of the extensions appropri-
ately, or we can choose a certain subset of the corresponding symmetric code [19].
In particular, a two-dimensional center is now out of our reach. Taking into ac-
count that for the use of the famous QAM and HEX modulation alphabets we need
Qi) € & or Q(w) C &7, it can be seen that the set of possible centers stretches
significantly when compared to the symmetric scenario.
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Remark 4.2.3. There exist practical methods for picking the right non-norm ele-
ment, so this is not a hard task. It may be impossible to find ayunit this case,

we can either suffer from an antenna energy imbalance, or we can try to force the
y to have a unit modulus by dividing it by some suitable element with the same
absolute value [9]. The latter option means a loss in the minimum determinant (as
we will not have an order anymore) but, due to the additive way in which we form
the codeword from the basis matrices, it will still be non-vanishing. This loss is
often compensated by an improved error performance [19].

Albeit there is no question of energy balance being important, one ought to be
careful and notice that sometimes a unit non-norm element may still lead to higher
average energy requirements. This is due to the fact that sometimes we cannot
simply replace a non-unig with a unit one without having to change the whole
algebra. It is well possible that despite a upithis change in the algebra will
result in a higher average energy.

The shaping of the code is also important [43]. The closer the code is to being
orthogonal, the easier the encoding, decoding and bit labeling will be. However,
restricting to orthogonal codes only would prevent us from achieving the best pos-
sible coding gains. Hence, we do not make this restriction, and instead of simple
encoding we will use a codebook or sphere encoding (see [32]) to guarantee opti-
mal spherical shaping.

We remark that the energy and shaping discussion is of very technical nature,
hence a reader with no sufficient background can safely ignore this remark.

A division algebra may be represented as a cyclic algebra in many ways as
demonstrated by the following example.

Example 4.2.4.The division algebr& <7 used in [5] to construct the Golden code
is the cyclic division algebra witlF = Q(i), E = Q(i,v/5), y =i, when theF-
automorphisno is determined by (1/5) = —/5. We also note that in addition
to this representatioff v can be given another construction as a cyclic algebra.
As U2 = i we immediately see thd&(u) is a subfield of¢.«7 that is isomorphic

to the eighth cyclotomic fiel&’ = Q({), where = (1+i)/v/2. The relation
uyv/5 = —v/5u read differently means that we can vievas the complex numbér
and+/5 as the auxiliary generatof = /5. We thus see that the cyclic algebra

E'oUuE = (E'/F,d,y)
is isomorphic to the Golden algebra. Heréis the F-automorphism oE’ deter-
mined by — — andy = u?=5.

Remark 4.2.5. We remark that two different, algebraically isomorphic construc-
tions may still yield codes with significant differences in performance. In addition
to the minimum determinant, the shape of the code lattice also plays a key role.

When research into CDA-based ST codes began, transcendental elements were
used as non-norm elements and thus the resulting codes did not have the NVD
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property [48]. Later on, it was noticed, [4], that by choosing the elements in the
codeword matrix (2.5) to be algebraic integers instead of transcendental elements,
i.e. by using a certain subring of an algebra with an integral non-norm element,
one could obtain codes with the NVD property. Soon after this, it was pointed
out in [13, 14] that these subrings are examplesrdirs and that some further
optimization can still be done by exploiting the algebraic properties of orders [16,
15].

The reason for concentrating on orders when constructing MIMO lattices is
summarized in the following proposition. This is simply Proposition 2.5.4 rephrased
to fit the language of MIMO-lattices. We often identify an order (and its subsets)
with its standard matrix representation.

Proposition 4.2.6.LetA be an order in a cyclic division algebrd& /F, 0, y). Then
for any non-zero elememte A its reduced normmr(a) is a non-zero element of
the ring of integersyr of the center~. In particular, if F is Q or an imaginary
quadratic number field, then the minimum determinant of the lafticeequal to
one.

Note that ify is not an algebraic integer, thénfails to be closed under mul-
tiplication. This may adversely affect the minimum determinant of the resulting
matrix lattice, as elements not belonging to an order may have non-integral (and
hence small) norms.

The power of orders in ST code construction is based on two things:

1) They yield codes that satisfy the NVD property, and

2) they provide us with a tool called a discriminant which reveals the
algebra and order that will result in the best coding gain.

4.3 Discriminant vs. density

The definition of the discriminant closely resembles that of the Gram matrix of
a lattice, so the following results are not very surprising. Nevertheless, they are
extremely important in our hunt for denser lattice codes.

For explicit code constructions, see Example 4.4.16.

Lemma 4.3.1. Assume thaF is an imaginary quadratic number field and tHat
and 6 form aZ-basis of its ring of integerR. Assume further that the ordéris a

free R-module (an assumption automatically satisfied wRega a principal ideal

domain). Then the measure of the fundamental parallelotope equals

m(A) = [06]™ [d(A/R)].
Proof. [15, Lemma 5.1] O
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Inthe case§ = Q(i) andF =Q(v/—3), we have =iandf = (—1++/-3)/2
respectively, so we immediately get the following two corollaries.

Corollary 4.3.2. LetF = Q(i),R = ZJi], and assume thak C (E/F,0,y) is an
R-order. Then the measure of the fundamental parallelotope equals

M(A) = |d(A/Zi])-

Example 4.3.3. When we scale the Golden code [5] to have a unit minimum de-
terminant, all8 elements of it§-basis will have length'/4 and the measure of the
fundamental parallelotope is th@8. This is also a consequence of the fact that the
Z[i]-discriminant of the natural order of the Golden algebra is equ2btd\s was
observed in [13], the natural order happens to be maximal in this case. Therefore
the Golden code cannot be improved upon by enlarging the order wfthin

Corollary 4.3.4. Letw = (—1++v—-3)/2, F = Q(w), R=Z[w|, and assume that
N C (E/F,0,y) is anR-order. Then the measure of the fundamental parallelotope
equals

m(A) = (V3/2)" [d(A/Z[w])].

The upshot of this is that in both cases we have the following:

Maximizing the density of the code is equivalent

to minimizing the discriminant.

Thus, in order to get the densest MIMO-codes we need to look for division
algebras that have a maximal order with as small a discriminant as possible. If we,
for one reason or another, want to stick with a specific algebra, then we should at
least use a maximal order.

Example 4.3.5. Let us use the notation from Example 2.5.8. In [29], Kiran and
Rajan have shown that the family of cyclic algebras= (Q({,)/Q(i),0({;) =
ZE,2+ i), with £ > 3, consists entirely of division algebras. L&kar, be the
natural order of the algebr&;. We can conclude from Lemma 2.5.10, Proposition
2.5.8, and Corollary 4.3.2 that

d(AnaTe/Z[i]) = (2+i)”(n—l)(1+i>2n2(z_z)’

and that

m( /\NAT,Z)Z _ 22n2(£—2) gn(n-1)

For instance, in the antenna casé= 3,n = 2, we havem(Anat,) = 80, and thus
the Golden code is denser than the corresponding lattioaf the same minimum
determinant. However, the natural orderaf is not maximal. We will return to
this example later on.
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To conclude the section, we include the following simple but interesting result
on orders which explains why using a principal one-sided (left or right) ideal in-
stead of the entire order will not change the density of the code. For the proof, see
[15, Lemma 10.1].

Lemma 4.3.6. Let A be an order in a cyclic division algebra of indexover an
imaginary quadratic number field. Lete A be any non-zero element. Then the
normalized minimum determinants of the two lattices coincide:

S(AX) = 3(N).

4.4 Discriminant bounds for symmetric and asymmetric
constructions

In this section, we present a fundamental lower bound for the discriminant. With
the aid of this bound we are able to give upper bounds for the code density in both
the symmetric and asymmetric case. In the symmetric case the bound was derived
by R. Vehkalahti, [15, 55], and generalized to the asymmetric case in [18]. Most of
the contents of this section can be found in [15, 18]. The main goal of this section
is to motivate the use of maximal orders and to give an insight into the main results
in [15, 18, 14].

Again letF be an algebraic number field that is finite dimensional et
its ring of integersP a prime ideal ofZr andFp the completion. In what follows
we discuss the size of ideals 6&. By this we mean that ideals are ordered by
the absolute values of their norms@ so e.g. in the casér = Z[i] we say that
the prime ideal generated Ry+i is smaller than the prime ideal generated3ss
they have norms 5 and 9, respectively.

The following relatively deep result from class field theory was the key to de-
riving the discriminant bound. Assume that the fi€lds totally complex. Then
we have thdundamental exact sequence of Brauer gro{gee e.g. [45] or [40])

A~

0— Br(F) — @Br(Fp) — Q/Z — Q. (4.3)

Here the first nontrivial map is obtained by mapping the similarity class of a
central divisionF-algebraZ to a vector consisting of the similarity classes of all
simple algebragp obtained fromZ by extending the scalars frofto Fp, where
P ranges over all prime ideals &f-. Observe tha@p is not necessarily a division
algebra, but by Wedderburn’s theorem [27, p. 203] it can be written in the form

-@P = %KP(%P),

whereap is a division algebra with a centBp, andkp is a natural number called
thelocal capacity The second nontrivial map of the fundamental exact sequence
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is then simply the sum of the Hasse invariants of the division algelsfaspre-
senting elements of the Brauer grolgigFe).

Albeit implicitly, this exact sequence tells us that, for all but finitely many
primesP, the resulting algebr&p is actually in the trivial similarity class dfp-
algebras. In other words7p is isomorphic to a matrix algebra ovép. More
importantly, the sequence tells us that the sum of the nontrivial Hasse invariants
of any central division algebras must be an integer. Furthermore, this is the only
constraint for the Hasse invariants, i.e. any combination of Hasse invaajangs
such that only finitely many of them are non-zero, and such that their sum is an
integer, is realized as a collection of the Hasse invariants of some central division
algebraZ overF.

Let us now suppose that for a given number fieldve would like to produce
a division algebraz of a given indexn, havingF as its center and having the
smallest possible discriminant. We proceed to show that while we cannot give an
explicit description of the algebre& in all cases, we can derive an explicit formula
for its discriminant.

Theorem 4.4.1. Assume that the field is totally complex and tha®,,..., P, are

some prime ideals aPr. Assume further that a sequence of rational numbers

a;/mp,,...,a,/mp, satisfies
AT

— = mod 1),
3 o (mod 1)

1<a <mp,and(a,mp)=1.

Then there exists a central divisiéralgebra.e/ that has local indicesnp and
the least common multiple (LCM) of the numbéms } as an index.

If Ais a maximaloe-order in o7, then the discriminant ok satisfies

[«7:F]
"R

m-1)

dinoe) = []R

Proof. [15, Theorem 6.11] O

At this point it is clear that the discriminadi{/A) of a division algebra only
depends on its local indicess .

We now have an optimization problem to solve: given the ceRtand an
integem, we should decide how to choose the local indices and the Hasse invariants
so that the LCM of the local indices ig the sum of the Hasse invariants is an
integer, and the resulting discriminant is as small as possible. We immediately
observe that at least two of the Hasse invariants must be non-integral.

Observe that the exponestP) of the prime ideaP in the discriminant formula

d(P) = (mp— 1) Wn; Fl (1—;3) .

is




As for the nontrivial Hasse invariants> mp > 2, we see than?/2 < d(P) <

n(n— 1). Therefore the nontrivial exponents are roughly of the same size. For
example, whem = 6, d(P) will be either 18, 24 or 30 according to whetheg

is 2, 3 or 6, respectively. Not surprisingly, it turns out that the optimal choice is
to have only two non-zero Hasse invariants and to associate these with the two
smallest prime ideals afr.

Theorem 4.4.2 (Main Theorem). Assume thaf is a totally complex number
field, and that?, andP, are the two smallest prime ideals é#:. Then the smallest
possible discriminant of all central division algebras o¥eof indexn is

(Plpz)n(n_l).
Proof. [15, Theorem 6.12] O

We remark that in the most interesting (for the symmetric MIMO) case2
andn = 3, the proof of Theorem 4.4.2 is more or less an immediate corollary
of Theorem 4.4.1. We also remark that the division algebra which achieves our
bound is by no means unique; any pair of Hasse invariafis(n — a) /n, where
0<a<n,and(a,n) =1, leads to a division algebra with the same discriminant.

4.4.1 Symmetric codes

The smallest primes of the ririg[i] arel+i and2+i. They have norms 2 and 5,
respectively. The smallest primes of the ridg] are/—3 and2 with respective
norms 3 and 4. Together with Corollaries 4.3.2 and 4.3.4 we have arrived at the
following bounds.

Corollary 4.4.3 (Discriminant bound). Let A be an order of a central division
algebra of indexn over the fieldQ(i). Then the measure of a fundamental paral-
lelotope of the corresponding lattice is

m(A) > 10""-1/2
Corollary 4.4.4 (Discriminant bound). Let A be an order of a central division

algebra of index over the fieldQ(w), w = (—1++/—3)/2. Then the measure of
a fundamental parallelotope of the corresponding lattice is

m(A) > (v/3/2)"120-1/2,
Corollary 4.4.5 (Density bounds).From the above corollaries we also obtain the
corresponding density bounds. L&te an order of a central division algebra of
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indexn over the field (1)Q(i) or (2) Q(w). Then the normalized densipfA) of
the corresponding lattice satisfies the inequality

(1) p(A)<10"1-"/2 or
(2 p(A) < (2/V3)T1200-1/2,

respectively.

Remark 4.4.6. The Golden algebra reviewed in Example 4.2.4 has its nontrivial
Hasse invariants corresponding to the prirlgsi and2 —i and hence cannot be
an algebra which achieves the bound of Theorem 4.4.2.

A clue for finding the optimal division algebra is hidden in the alternative de-
scription of the Golden algebra given in Example 4.2.4. It turns out that in the case
F =Q(i), E=Q(¢) instead of using/ = 5 as in the case of the Golden algebra
we can use its prime factgr= 2+ 1.

Proposition 4.4.7. The maximal orders of the cyclic division algebra

3= (Q({)/Q(i),0,2+1)
of Example 4.3.5 achieve the bound of Theorem 4.4.2.

Proof. [15, Proposition 7.3] O

Remark 4.4.8. By Corollary 4.3.2, we see that the fundamental parallelotope of
the maximal order in Proposition 4.4.7 has measure 10. Thus this code has 2.5
times the density of the Golden code.

Remark 4.4.9. The algebraszz has the drawback that the paramegeis quite

large. This leads to an antenna power imbalance in both space and time domains.
To some extent these problems can be alleviated by conjugating the matrix lattice
by a suitable diagonal matrix (a trick used in [56] and elsewhere). One of the motifs
underlying the Perfect codes [43] is the requirement that the variakleould

have a unit modulus. To meet this requirement we proceed to give a different
construction for this algebra. In [15, 32] it was shown that@®wdden+ codébased

on a maximal order of the algebfdce/+ below outperforms the Golden code.
Prior to our result, this was not thought to be possible [42].

Theorem 4.4.10.Let A be the square root of the complex numBeri belonging
to the first quadrant of the complex plane. The cyclic algebra

g%‘F = (Q()\)/Q(I),U,I),

where the automorphisma is determined by (A) = —A, is a division algebra.
The maximal orders ¥ .« + achieve the bound of Theorem 4.4.2. Furthermore,
the algebras? <7+ and.«73 of Theorem 4.4.7 are isomorphic.
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Proof. [15, Theorem 7.4] O

We refer to the algebr#& <7 + as theGolden+ algebra This is partly motivated
by the higher density and partly by the close relationship between the alggbra
and the Golden algebra. After all, the algebya is obtained when in the alter-
native description of the Golden algebra (cf. Example 4.2.4) the vaneblé is
replaced with its prime factd +i. In [15, Section IX-C] we have also provided
an alternative proof for Theorem 4.4.10 by explicitly producing a maximal order
within ¢ o7+ and verifying that it has the prescribed discriminant. It is immediate
from the discussion in the early parts of this section that in this case there is only
one cyclic division algebra (up to isomorphism) with that discriminant.

It turns out that all algebrag/ in the Kiran & Rajan family of Example 4.3.5
have maximal orders achieving the discriminant bound. The following observation
is the key to proving this.

Lemma 4.4.11.LetF be either one of the field3(i) or Q(w), and letP; andP; be
the two smallest ideals of its ring of integdRsLet & be a central division algebra
overF, and letA be anyR-order in 2. If the discriminantd(A/0k) is divisible
by no prime other thaf’, and P, then any maximal ordelr of & achieves the
discriminant bound of Theorem 4.4.2.

Proof. [15, Lemma 7.5] O

Corollary 4.4.12. Let{ > 2 be an integer. The maximal orders of the cyclic division
algebrae; = (Q({,)/Q(i),0,2+1) from Example 4.3.5 achieve the discriminant
bound.

Proof. Proposition 2.5.8 and Lemma 2.5.10 indicate that the only prime factors
of the discriminant of the natural order is; are1+i and2+i. The claim then
follows from Lemma 4.4.11. O

Example 4.4.13.Let F = Q(v/—3), so thatdr = Z[w]. In this case, the two
smallest prime ideals are generated®ndl1 — w and have norms 4 and 3 respec-
tively. By Theorem 4.4.2 the minimal discriminant4él — w)2 whenn = 2. As
the absolute value df — w is v/3, an application of the formula in Corollary 4.3.4
shows that the lattick of the code achieving this bound hasL) = 27/4. In [16]
we show that a maximal order of the cyclic algefE/F,o(i) = —i,y = v/—3),
whereE = Q(i, v/—3), achieves this bound.

As noted in [15], maximal orders can provide significant density gains without
compromising either the coding gain or the transmission power. We demonstrate
this using the following example.
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Example 4.4.14.Consider again the family of cyclic division algebras of index
n = 2-2 from Example 4.3.5. If\; is a maximal order of#, then according to
Corollary 4.4.12

d(Ay/Z[i]) = (1 +0)""Y(24i)n-D,

On the other hand, by Example 4.3.5 we know that
d(Anate/Zli]) = (1+0)27 =2 (24 )1,
Hence, by Lemma 2.5.7 we may conclude that the natural order is of index
A : Anar] = 2(-5n+2n/2
In the caseg = 3,4,5 this index thus equal®, 22° and2%4, respectively.

Remark 4.4.15. It has now become evident that the natural orders of the algebras
<7, of Example 4.3.5 are very far from being maximal. In other words, by using a
maximal order as opposed to the natural ordewgfone can sentil.5, 6.5, or 20.5

more bits per channel use without compromising either the transmission power or
the minimum determinant in the respective caseg, @f, and8 antennas. Hence

the problem of actually finding these maximal orders, rather than simply knowing
that they exist, becomes relevant.

In Section IV of [15], we describe briefly how maximal orders can be con-
structed in general. A more detailed version of the algorithm can be found in [26].

In practice, however, it is less time consuming to compute the maximal orders
with the aid of the MAGMA software [1] (see [24]). The implementation of the
algorithm in the software package is due to Willem van de Graaf and makes use of
an algorithm proposed in [26]. MAGMA is a commercial computer program, but
has a free 20-second online calculator that is convenient enough for the smallest
cases.

Next we give two explicit code constructions tying together the above concepts.

Example 4.4.16. The Golden division algebra [5] mentioned in Example 4.2.4
is the cyclic division algebr&.« = (E/F,0,y), whereE = Q(i,v/5), F = Q(i),
y=i,n=2, anda(v/5) = —v/5. The natural ordeA of ¢.o7 is already maximal
[13]. The ring of algebraic integers &g = Z[i][6], when we denote the golden

ratio by 8 = ”T\@ The authors of [5] further optimize the code by using an ideal
(a) = (1+i-1i0), and the Golden code is then explicitly defined as

)1 [ ax ig(a)o(x)
cC= {\/§< ax a(a)a(Xol) ) |XO7Xle ﬁE}'

The factor1/5 is added to gep(GC) = 1. Without this factor, we have
detnin (GC) = 1, and thereforéd(GC) = 1/+/5 (cf. Definition 4.1.1). Notice that
the idealor does not have an impact on the normalized measures (cf. Lemma 4.3.6).
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The Golden plus division algebra [15], for its part, is the cyclic division algebra
G+ =(Q(A)/Q(i),0,i) (cf. Theorem 4.4.10), wherk is the square root of the
complex numbeR +i belonging to the first quadrant of the complex plane. The
automorphisno is determined by (A) = —A.

In order to give a concrete description of the maximal order used for the Golden+
code (GC+), we describe it in terms of #$i|-basis. The maximal ordéx consists
of the matricesaM; + bM, + cMs + dMy, wherea, b, c,d are arbitrary Gaussian
integers andvi;,i = 1,2, 3,4, are the following matrices.

10 01
Ml:(o 1)’ M2:<i o)’

M 1 i+iA T—A M _ 1/ -1-iA I +iA
372\ —14ir i-ir )0 f72\ —142 —14ix )

One of the ingredients in the construction of the Perfect codes was the use of
ideals in improving the shape of the code lattices. A way of doing that is to choose
an elemenk of the maximal order in such way that the left (or right) idealis
contained in the natural order. By moving the code inside the natural order we
then, to some extent, recover the layered structure of the natural order. Hence, we
also recover some of the advantages of the inherent orthogonality between layers.

In the case of the Golden+ algebra we can use the elefiiend ) from the
ring of integersO of the larger fieldE = Q(v/2+1i) as a multiplier. Thus, by

denoting
_(@-2® o0
M_< 0 (1+2)% )°

we get the ideal? consisting of matrices of the form
aMM; +bMM; + cMMz + dMMg, (4.4)

where the coefficients, b,c,d are Gaussian integers and the matribgsj =
1,2,3,4 are as above. This ideal is a subset of the natural afdep ude.

For the Golden+ code consisting of codewords of the form (4.4), we have
O0(GC+) = 1/\‘VE(see Definition 4.1.1). Once more, according to Lemma 4.3.6,
the ideal does not change the normalized measures.

We conclude the treatment of symmetric codes by the following remark on Per-
fect codes and their performance as compared to the denser maximal order codes.

Remark 4.4.17. The Perfect codes are based on the natural orders (or their ideals
to be more specific) of the corresponding algebras. For the two- and three-antenna
codes, the natural order happens to be a maximal order as well. This is not the case
with the four- and six-antenna codes, where the natural order is properly contained
in a maximal one. Even in the two- and three-antenna cases, the maximal order in
use does not achieve the discriminant bound, as already noted in Remark 4.4.6 for
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Figure 4.1: Block error rates of the Golden and Golden+ codes at 4, 5, and 6 bpcu.

the Golden code. The consequences of this fact are demonstrated in Figures 4.1
and 4.2.

In both figures, thex-axis describes the SNR, and the block error rate (i.e. the
probability of decoder deciding in favor of a matd% = X, whenX was transmit-
ted) is depicted on thgaxis. Thus, with a fixed data rate, the lower the position of
the curve in the picture, the better the performance of the corresponding code.

The Golden+ code constructions (cf. Theorem 4.4.10) in Figure 4.1 are based
on spherical shaping. In other words, on selecting the prescribed number of lowest
energy matrices, i.e. shortest codewords, from a chosen additive coset of a certain
ideal of the Golden+ algebra (see [15] for details). In order to reach a target band-
width utilization of 4, 5 or 6 bpcu we thus selected 256, 1024 or 4096 matrices.
In this sense, we have done some coset optimization for the Golden+ codes, but
make no claims as to having found the best coset. For the rival Golden code from
[43], the coset corresponding to assigning the valuélefi)/2 to all Gaussian
integers stands out. With this assignment, the code will consist of 256 matrices all
having the minimal energy, thus the Golden code also naturally admits spherical
shaping at 4 bpcu. Therefore, pulse amplitude modulation (PAM) can be used to
good effect. We began by doing some simulations using a PAM-type rule for larger
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Figure 4.2: Block error rates of differeBtx 3 MIMO codes at 6 and 24 bpcu.

subsets of the Golden code. The desired bandwidth efficiency was achieved by ar-
bitrarily selecting a suitable number of coefficients of the basis matrices from the
set{—3/2,—1/2,1/2,3/2}. This is a natural choice, well suited for example to the
sphere decoding algorithm. While we ended up having a tie in terms of the block
error rate at 4.0 bpcu, the Golden code lost to the Golden+ code by about 0.9 dB
at the rates 5 and 6 bpcu (see Figure 4.1). In the interest of a fair comparison, we
then tried coset optimization for the Golden code as well. This narrowed down the
gap to about 0.3 dB. However, the resulting subsets of the Golden code no longer
had a structure that would be suited to PAM. In other words, both the rival codes
must resort to the use of a codebook. Alternatively, sphere encoding could be used
[32].

In Figure 4.2 we depict the performance of differdnt3 MIMO codes. Again,
we see that the codes optimized in terms of density (named Eisenstein codes, see
[15] for the algebra in use) win over the Perfect codes. The denser maximal order
codes even slightly outperform or have tie with the structured lattice code based on
the Leech latticé\1g [32].
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4.4.2 Asymmetric codes

Let us now move on to the asymmetric situation. The discriminant bound in The-
orem 4.4.2 can be applied directly in the asymmetric case, as it does not make any
assumptions on the degree of the center. As opposed to the very simple density
bounds obtained in Corollary 4.4.5 for the symmetric codes, deriving such explicit
bounds becomes much more challenging in the asymmetric case. The reason for
this is that, whereas the centers used for symmetric codes always have degree two,
the centers in use for asymmetric codes will have degree at least four. Moreover
taking into account the fact that there are typically only two cenfgfs,andQ(w)
(corresponding to the QAM or HEX signaling, respectively), used for symmetric
codes, it can readily be seen that the set of possible centers has now stretched con-
siderably. In the simple, and possibly also the most interesting, case of 4Tx and
2Rx antennas, the center has degree four @uerNow the requirement (again

for signaling reasons) is that the algebra will cont@ifi) or Q(w) as a subfield,
hence allowing the center to be almost anything. Any field of the f@(ma ) with

a € o/ of degree two ovef)(i) meets this requirement, giving an indication of the
variety of different possibilities. In what follows, we summarize the main results
from [18].

The above symmetric x n codes can also be used in the asymmetric scenario,
as they are DMT optimal for any number of receivers< n, but there is no simple
decoding method when, < n; e.g. a sphere decoder cannot be used. Hence,
one needs to think of other construction methods in order to also enable simple
decoding. There are different construction methods that one can choose from.
According to our experience and simulations, there is no universal method which
one should always use, but the best method depends on the algebra and the SNR
range. The different methods we have proposed in [18, 38] are

1) the trivial puncturing method (TPM),

2) the block diagonal method (BDM),

3) the subfield construction method (SCM),

4) the smart puncturing method (SPM), and

5) the transmit antenna selection method (TAS).

Method 1 was independently proposed in [25], and a structure similar to Method
2 was independently considered in [57] in the amplify-and-forward cooperative
setting. The structure in Method 2 is very similar to that of a multi-block code
[35, 36], and it did turn out that the density results obtained in [18] for Method 2
also hold for multi-block codes. Method 4 is a somewhat trivial generalization of
Method 3, allowing the use of any number of receivgrs: n;, while Method 2 and
3 always require;, = kn, for some integek. None of the Methods 1-4 are known
to yield DMT optimal codes, but it has been conjectured [34] that Method 2 would
be DMT optimal in the special case of minimal delay, i.e. square matrices. The
codes proposed in [38] are DMT optimal, but they have non-minimum delay. That
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means that the lattices in use have quite a high dimension, hence complicating the
decoding process. One ought to remember also that the DMT is an asymptotical
measure, and hence when dealing with a low or moderate (finite) SNR, the perfor-
mance order of different codes has to be confirmed by computer simulations. Of
course the determinant criterion also has asymptotic nature. However, only few
of the simulations we have carried out during the past few years have violated the
order determined by the normalized minimum determinants. The normalized min-
imum determinant thus seems to give us a good way to compare different codes
without simulations, even at low SNRs.

Let us next take a closer look to the block diagonal method. The proofs for
the propositions and corollaries in this section can be found in [18]. Consider an
extension toweF C L C E with the degreefE : L] = n,,[L : F] = mand with the
Galois groupsGallE/F) = (1), GallE/L) = (o = ™). Let

%= (E/L,0,y) =E®UE®---ou" 1E

be an index, division algebra, where the centeis fixed byo = ™. We denote
by #Tx=n . =nm.

If one has a symmetric, index = nm CDA-based STBC, the algebrd can
be constructed by just picking a suitable intermediate figldE of the appropriate
degree as the new center.

Anelemenbh=Xxy+--- +u”f—1xnr_1, x € E,1=0,...,n, — 1ofthe algebra®
has the standard representation asiar n, matrix B = (bij)1<i j<n, @s given in
Sections 2.4 and 4.2.

However, we can ‘afford’ am; x n; packing as we are using transmit an-
tennas. This can be achieved by using the isomorphisniet us denote by
™*(%) = (E/L,0,14y)), k=0,...,m— 1 the m isomorphic copies ofZ and the
respective matrix representations by

™(B) = (t%(byj))1<i j<n, K=0,....m—1. (4.5)

The next proposition shows that by using these copies as diagonal blocks we obtain
an infinite lattice with non-vanishing determinant.

Proposition 4.4.18 (BDM). Letb € A C # and F = Q(d), whered € {i, w}.
Assume thay € 0, . The block diagonal lattice

B 0 - 0
0 1(B) 0

“m=im=|.
6 .0 1™1(B)

built from (4.5) has a non-vanishing determinadet{M) = )™, det(1'(B)) €
Z[d]. Thus, the minimum determinant is equal to one fomall The code rate
equalsn?m/nym= n;.
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Proof. See [18, Proposition 5.1]. O

Now the natural question is how should one choose a suitable division alge-
bra. In [8] and [37] several systematic methods for constructing extengidns
are provided. All of these methods make use of cyclotomic fields. Next we will
show that, as in the symmetric case, maximizing the code density (i.e. minimizing
the volume of the fundamental parallelotope, see [15]) with a given minimum de-
terminant is equivalent to minimizing a certain discriminant. Later in this section
we shall show that this also holds for the multi-block codes from [35].

As a generalization to Lemma 4.3.1, we give the following proposition.

Proposition 4.4.19. Assume thaF is an imaginary quadratic number field and
that {1, v} forms aZ-basis of its ring of integergr. Letn, = [E: L], m=[L:F],

N =nm, ands= |Dv\m”2. If the order®’ (/) defined as in Proposition 4.4.18 is a
free 0=-module (which is always the caseig is a PID), then the measure of the
fundamental parallelotope equals

m(Z'(N) = sld(A/Or)| (4.6)
= §d(6L/0r)"NLrd(A/6L)] (4.7)
m-1
= Sd(@/or) [T TN/l (4.8)
Proof. See [18, Proposition 5.3]. O

Corollary 4.4.20. In the casé= = Q(i) the volume equals
m(¢'(A)) = [d(A/Z[i])]-
Corollary 4.4.21. In the casé~ = Q(w) we get

(M) = (L™ (4 Z(w).

Now we can conclude (cf. (4.7)) that the extensi&)d,L/F and the or-
der A\ C % should be chosen in such a way that the discrimind(#g /¢ ) and
d(A/Oy) are as small as possible. By choosing a maximal order within a given
division algebra we can minimize the normd{iA\/ & ) (cf. Remark 2.5.9). As, in
practice, an imaginary quadratic number fiElds contained irl., we know that.
is totally complex. In that case the fact that

d(A/OL) > (PLRy)™ (v —1) (4.9)

whereP; andP, are prime idealg & with the smallest norms (tQ) helps us in
picking a good algebra (for the proof, see [15, Theorem 3.2]). However, one must
realize that optimization with respectd0&| / 0 ) may resultin aloss id(A/ L)
and vice versa.

Keeping the above notation, we have now arrived at the following theorem.
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Theorem 4.4.22 (Density bound for lattices from the BDM).For the density of
the lattice?’(A),\ C < it holds that

1 _ _ _
p((g(/\)) = W <s l|d(ﬁl_/ﬁF)’ nr2|N|_/|:(P1P2)|nr(1 nr). (4.10)
Proof. See [18, Theorem 5.6]. O

Remark 4.4.23. We emphasize that, as opposed to Corollaries 4.4.3 and 4.4.4
(cf. [15]), here we do not automatically achieve nice, explicit lower bounds for
m(%’(N\)). This is a consequence of the fact that the celnteain now be any field
containingQ(i) or Q(w), and thus determining the smallest ideBisand P, or

even the minimatl(& /Og) is not at all straightforward. An exact lower bound

is hard to derive in the general case as the calculation of minimal number field
discriminants is known to be a tricky problem. The reader may ponder over the
fact that tables for minimal discriminants do exist in literature (though only for
certain degrees, see e.g. [6]) so why not use them. We want to emphasize that
these tables cannot be adapted here, as the fields in question do not necessarily
contain the desired subfiefd(i) or Q(w). Also it may be the case th& andP,

actually take smaller values in a field that is not included in the table. However,

in the smallest (and perhaps the most practical) cad@xf2Rx antennas, we are

able to give an explicit and even achievable upper bound for the density. We believe
that the best one can do in the other cases is to take advantage of the known bounds
of a more general nature, such as Odlyzko’s bound [41]. We could also continue
calculations by hand in order to get exact bounds, but whether this is worth the
effort is questionable.

Then Tx+n;Rx antenna AST code from Proposition 4.4.18 can be transformed
into an n, Tx+n,Rx antenna multi-block code [35] by rearranging the blocks as
shown below:

B 0 - 0

0 1(B) 0

: _ : — (B -+ 1™1(B)). (4.11)
0 .. 0 m™i®

As the Gram matrices of an AST lattice and a multi-block ST lattice coincide,
Lemma 4.4.19 also holds for multi-block ST codes with the same parameters. Let
the notation be as above.

Proposition 4.4.24.Letb € A C # andF = Q(d), whered € {i, w}. Assume that
y € O,. As the lattice

¢'(N)={M = (B,1(B),...,T" *(B)) }

built from (4.5) satisfies the generalized non-vanishing determinant property (cf.
[35],[29]), it is optimal with respect to the DMT for all numbers of fading blocks
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m. Again, as in Proposition 4.4.18[1™ ' det7'(B))| > 1. The code rate equals
nm/n-m=n;.

Proof. For the proof, see [35]. O

Proposition 4.4.25. The Gram determinants (c{4.1)) of the lattices#'(A) and
¢'(N\) coincide:
detG(%'(N)) = detG(%" (N)).

Proof. This is obvious. O

Corollary 4.4.26. The latticess’(A\) andé” (/) share the same density, i.e. Propo-
sition 4.4.19 also holds for the multi-block scheme.

Proposition 4.4.27 (Density Bound fom; = 4, F = Q(i)). Letm=n, =2, i.e.
n. = 4. For the density of the lattic& () it holds that

1

p(C(N) =1/m(E(N) < 2 =5

~ 0.00034 (4.12)

Proof. See [18, Proposition 5.10]. O

The following example introduces an explicit code construction achieving the
density bound. The density upper bound is achieved e.g. by the maximal order of
the algebra# o7, see the example and Table 4.1 below.

Example 4.4.28.We obtain a rat& AST code.# <7 by introducing the another
algebra.¥ .« = (E/L,0 = 12,y = /—3), whereF = Q(i), L = Q(i,v/3), E =
L(a=+v/1+1),andt:v/3— —/3,V/1+i— —/1+Ii. If we order theZ-basis of
the natural order o/ &7 as

{Q }l§i§16 = {17 u, i7 y,a, Uiv uy,ua, [ Y, ia’ ay, Uiyv Uia7 uay, iay) Uiay}7

then (according to the MAGMA software [1]) the maximal ordesax C .# </ has
aZ-basis

1 1
{E(e1+ez+es+ee), i(ez+es+eg+elz+e14+e16),

1 1
§(e3+ee+e7+eg+e14+e15), §(e4+e6+e7+eg+elz),

1
2

1

5 (eg+ €13+ €5+ ¢€1p),

(es+eg+eip+er3), 6, €y,

1
2

1

(€10+ €13+ €14+ €15), 2(e11+e14+e15+e16),

€y,
€12, €13, €14, €15, 616}-
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Now the codebooks’ C Ayax (cf. Definition 2.3.3 and (2.5) for the matrix
representation) of an arbitrary size can be produced as

% C{M € Avax | |IM|| < P},

where again| - || denotes the Frobenius norm, ais some desired energy limit.
For the natural order of o7, we haved(Anat) = 2-%/2.373/2~ 0.034Q The
maximal order of# o7 hasd(Awax) = T;\/é ~ 0.1361(cf. Definition 4.1.1).

For the explicit constructions of the other example algebras in Table 4.1, see
[18].

Table 4.1: Normalized minimum determinadit#’ (A)) and normalized density
p(€(N)) =1/m(%(N\)) of natural and maximal orders of different algebras.

x4 C A I of 4
ANAT ANAT ANAT AnAT
o) 0.0894 0.0361 0.0340 0.0298
0 56_ 9-16.32_ | 910, 36 _ | 3-4.56_
6.4-10° | 1.7.10°% | 14.10° | 7.9.107
I C oS jox4 Do
Amax Amax Amax Amax
o 0.1361 0.1214 0.0894 0.0894
p |22.36=] 29.32= 56— 56_

34.10% 22.104 6.4-10°° 6.4-10°°

We conclude the treatment of asymmetric codes by the following remark on the
DMT-optimal TAS codes and simulation results. The asymmetric codes based on
the algebras? o7 and 2.¢7 clearly outperform the best previously known asym-
metric codes. For a thorough description of our simulation results, see [18, Section
VII].

Remark 4.4.29. The above asymmetric codes are not necessarily DMT optimal.
We have derived lower bounds for their DMTs, but these do not coincide with the
optimal DMT. Nevertheless, they are only lower bounds and the upper bounds are
not known to us. We conjecture that they do not achieve the optimal DMT. On
the other hand, we believe that the block diagonal method produces DMT opti-
mal codes, if we require minimum delay. The TAS codes [38] based on transmit
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Block error rates at 4 bpcu, TAS vs BDM
10 T T T T T T
— TAS, ,, (PAM)

~- TAS,  (PAM) 1
- QAyarmax (OPT) |4

s 1A, (OPT)

Block error rate

10'4 I I I I
10 11 12 13 14 15 16 17

SNR (dB)

Figure 4.3: Block error rates at 4 bpcu of different BDM and TAS codes, when
using a codebook for BDM and 2-PAM for TAS.

antenna selection are DMT-optimal. However, as Figures 4.3 and 4.4 show, quite
large SNRs are required before the power of the DMT kicks in. At low or moderate
SNRs, one is probably better off using some other construction method, such as the
BDM.

Figure 4.3 shows that when we take advantage of the spherical shape of the

maximal orders, they clearly outperform the TAS codes at low and moderate SNRs.
For the TAS codes making a codebook is so complex due to the high dimension
of the lattice, that we simply used the PAM signaling in both Figure 4.3 and 4.4.
Figure 4.4 indicates that when we use the PAM signaling also for the maximal
order codes, the gap between the TAS codes@nd becomes somewhat smaller.
In particular, the algebra? .« loses all of its benefits now, as it is highly non-
orthogonal. The maximal order of the algel®a7 happens to also be the natural
order, so the loss is smaller ar#ler still wins over the TAS codes at SNRs up to
15.
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Block error rates at 4 bpcu, TAS vs BDM with 2-PAM

10

T
- TAS4X10

0= TAS,q

8 QANAT:MAX

== Ayax

Block error rate

107

10 10.5 11 115 12 125 13 135 14 145 15
SNR (dB)

Figure 4.4: Block error rates at 4 bpcu of different BDM and TAS codes with
2-PAM.

55



56



Chapter 5

Conclusions and future prospects

In this thesis, we have presented various methods for constructing space-time block
codes from division algebras and their orders. The key contribution, as compared
to the rest of the work in the field, was the introduction of maximal orders of cyclic
division algebras in the context of ST coding. Both symmetric and asymmetric
scenarios were considered, and explicit, DMT optimal constructions with a non-
vanishing determinant were provided.

As a main design criterion, we adopted the maximization of the coding gain.
In other words, our aim was to produce code lattices that are as dense as pos-
sible, hence maximizing the normalized (non-vanishing) minimum determinant.
Computer simulations were used to demonstrate the robustness of the proposed
methods. The simulations further indicated that, for practical numbers of antennas
and SNRs, the best of the newly proposed codes outperform all previously known
codes in terms of block error performance. We confess that the optimization to
encode may also be a drawback in scenarios where rate adaptation is needed.

Taking also into consideration the work in Vehkalahti’s dissertation [55], we
would like to encourage the ST audience to further exploit maximal orders and the
notion of density. Natural orders are already widely used — even when they are
not orthogonal. While orthogonality can be a very good reason for using a natural
order, in the skewed case there is no point in using a natural order instead of a
maximal one.

We have started to extend our theory to multi-user settings as well, see [39] for
the promising preliminary results. In the future, it would be interesting to know
whether, in general, denser lattices can be produced by means other than maximal
orders. It would be also worth a try to implement the algorithm for constructing
maximal orders more efficiently, taking use of the module bases rather than the
Z-bases as in the MAGMA software.

One may have noticed that in the asymmetric case, density analysis was pro-
vided only for the lattices constructed using the block-diagonal method. We aim
to consider the other methods in the immediate future. We anticipate that for the
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subfield construction method this should be fairly easy, whereas for the smart punc-
turing method giving a universal density analysis probably turns out to be impos-
sible. The TAS codes were designed with the DMT optimality in mind, so giving

a density analysis for them makes little sense.
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List of abbreviations

(A)ST = (asymmetric) space time
(A)STBC = (asymmetric) space time block code
BDM = block diagonal method

BLER = block error rate

bpcu = bits per channel use

CDA = cyclic division algebra

DMT = diversity-multiplexing gain tradeoff
HEX = hexagonal constellations

i.i.d. = independent, identically distributed
MIMO = multiple-input multiple-output
MISO = multiple-input single-output
MU-MIMO = multi-user MIMO

NVD = non-vanishing determinant

PAM = pulse amplitude modulation

PAPR = peak-to-average power ratio
PEP = pairwise error probability

PID = principal ideal domain

QAM = quadrature amplitude modulation
SCM = subfield construction method
SNR = signal to noise ratio

SPM = smart puncturing method

TAS = transmit antenna selection

TPM = trivial puncturing method
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Maximal Orders in the Design of Dense Space-Time « It is shown that by using a non-rectangular lattice one can
Lattice Codes gain major energy savings without significant increasement in
decoding complexity. The usage of ideals moreover guarantees
Camilla Hollanti, Jyrki LahtonenMember IEEE and Hsiao-feng a non-vanishing determinant 1 and an easy way to present
(Francis) Lu the exact proofs for the minimum determinants.

« In addition to the explicit MISO constructions, we present a
general method for finding dense sublattices within a given CDA

Abstract—We construct explicit rate-one, full-diversity, geometrically in a MIMO setting. This is tempting as it has been shown in

dense matrix lattices with large, non-vanishing determinants (NVD) for

four transmit antenna multiple-input single-output (MISO) space-time []_-5] that CDA'baS_ed square ST codes Wi_th NVD achieve the
(ST) applications. The constructions are based on the theory of rings of diversity-multiplexing gain tradeoff (DMT) introduced in [21].
algebraic integers and related subrings of the Hamiltonian quaternions When a CDA is chosen the next step is to choose a correspond-

and can be extended to a larger number of Tx antennas. The usage of
ideals guarantees a non-vanishing determinant larger than one and an
easy way to present the exact proofs for the minimum determinants.

ing lattice or, what amounts to the same thing, choose an order
within the algebra. Most authors, among which e.g. [11], [15],

The idea of finding denser sublattices within a given division algebra and [16], have gone with the so-called natural order (see Section
is then generalized to a multiple-input multiple-output (MIMO) case I1I-B, Example 3.2). In a CDA based construction, the density of
with an arbitrary number of Tx antennas by using the theory of cyclic a sublattice is lumped together with the concept of maximality

division algebras (CDA) and maximal orders. It is also shown that the . - .
explicit constructions in this paper all have a simple decoding method of an order. The idea is that one can, on some occasions, use

based on sphere decoding. Related to the decoding complexity, the several cosets of the natural order without sacrificing anything
notion of sensitivity is introduced, and experimental evidence indicating in terms of the minimum determinant. So the study of maximal
a connection between sensitivity, decoding complexity and performance orders is easily motivated by an analogy from the theory of

is provided. Simulations in a quasi-static Rayleigh fading channel show error correcting codes: why one would use a particular code of
that our dense quaternionic constructions outperform both the earlier

rectangular lattices and the rotated ABBA lattice as well as the DAST a given minimum distance and length, if a larger code with the

lattice. We also show that our quaternionic lattice is better than the same parameters is available.

DAST lattice in terms of the diversity-multiplexing gain tradeoff. « Furthermore, related to the decoding complexity, the notion of
Index Terms— Cyclic division algebras, dense lattices, maximal orders, sensitivity is introduced for the first time, and evidence of its

multiple-input multiple-output (MIMO) channels, multiple-input single- practical appearance is provided. Also the DMT behavior of our

output (MISO) channels, number fields, quaternions, space-time block codes will be given.

codes (STBCs), sphere decoding.
At first, we are interested in the coherent MISO case with perfect

CSl available at the receiver. The received signaé C" has the
I. INTRODUCTION AND BACKGROUND form

Multiple-antenna wireless communication promises very high data y=hX +n,

rates, in particular when we have perfect channel state information

mXn ; H
(CSl) available at the receiver. In [1] the design criteria for schhereX €cC is the transmitted codeword drawn from a ST

systems were developed and further on the evolution of ST codes t(%)igec’ h € C™is th? Rayleigh faﬂ'”g c_h_annel response an(_j the
mponents of the noise vectare C" are i.i.d. complex Gaussian

two directions: trellis codes and block codes. Our work concentrafea

on the latter branch. random_var_lables_. - .
The very first ST block code for two transmit antennas was A lattice is a discrete finitely generated free abelian subgroup of

the Alamouti code[2] representing multiplication in the ring of a real or complex finite dimensional vector spaéealso called the

quaternions. As the quaternions form a division algebra, such matric bient space. Thus, i is a k-dimensional lattice, there exn;ts a

must be invertible, i.e. the resulting STBC meets the rank criterio_r.]Ite se_t of vectorsB = {bl’.bZ’“"b’“} C V such thaiB is

Matrix representations of other division algebras have been propo |5|8arly independent over the integers and that

as STBCs at least in [3]-[15], and (though without explicitly saying k

so) [16]. The most recent work [6]-[16] has concentrated on adding L = {Z zibi |z € Z,bie Viorali=1,2,...,k}.

multiplexing gain, i.e. multiple input-multiple output (MIMO) appli- i=1

cations, and/or combining it with a good minimum determinant. Ifh the space-time setting a natural ambient space is the <pateé

this work, we do not specifically seek any multiplexing gains, busf complexn x n matrices. When a code is a subset of a latficie

want to improve upon e.g. the diagonal algebraic space time (DASfhs ambient space, thenk criterion [22] states that any non-zero

lattices introduced in [5] by using non-commutative division algebragatrix in  must be invertible. This follows from the fact that the

Other efforts to improve the DAST lattices and ideas alike can Rffference of any two matrices fror is again inL.

found in [17]-[19]. The receiver and the decoder, however, (recall that we work in the
The main contributions of this work are: MISO setting) observe vector lattices instead of matrix lattices. When

« We give energy efficient MISO lattice codes with simple det_he channel state iR, the receiver expects to see the lattleg. If

coding that win over e.g. the rotated ABBA [20] and theh 7&_0 and L meets the rank criterion, thehZ 'S indeed, a f_ree

DAST lattice codes in terms of the block error rate (BLER belian group of thg samg rank &s However, it 'S, well possible

performance. hathL is not a lattice, as its generators may be linearly dependent
over the reals — the lattice is said¢ollapse whenever this happens.

C. Hollanti is with the Laboratory of Discrete Mathematics for Information From the pairwise error probability (PEP) point of view [22], the
Technology, Turku Centre for Computer Science, Joukahaisenkatu 3-5 B, Fiderformance of a space-time code is dependent on two parameters:
ZOEZ%THrkLt’; glgla[‘dht i the Denartment of Mathematics. prGIVErSity gainandcoding gain Diversity gain is the minimum of the

. Hollanti & J. Lahtonen are wi e Department of Mathematics, - : : / g
20014 University of Turku, Finland. (e-mails: {cajoho, lahtonen}@utu.fi) N’ank.of the dllﬁerence matrixt’ — X" taken over all distinct code

H.f. Lu is with Department of Communications Engineering, NationamatricesX, X’ € C, also called theank of the codeC. WhenC

Chiao Tung University, Hsinchu 300, Taiwan. (e-mail: francislu@ieee.org)is full-rank, the coding gain is proportional to the determinant of
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the matrix(X — X')(X — X")¥, where X denotes the transposeA. Base lattice constructions
conjugate of the matrixX. The minimum of this determinant taken | o now(¢ = e™/8 (resp.& = e™/* = (1+414)/+/2) be a primitive
over all distinct code matrices is called thenimum determinansf gt (resp.8*") root of unity. Our main examples of suitable division
the codeC and denoted byc. If dc is bounded away from zero evengigepras are the number field
in the limit as SNR— oo, the ST code is said to have tm®n-
vanishing determinanproperty [8]. As mentioned above, for non- L =Q(¢),
zero square matrices being full-rank coincides with being invertiblgmd the following subskewfield
The data rate R in symbols per channel use is given by

H=Q(¢) ®jQ¢) cH

of the Hamiltonian quaternions. Note that ag = jz* for all

where |S| and [C| are the sizes of the symbol set and code r&omplex numberg, and as the fieldQ(&) is stable under the usual
spectively. This is not to be confused with thate of a code COMPlex conjugatior™), the setH is, indeed, a subskewfield of the
design (shortly, code rat¢ defined as the ratio of the number ofduaternions.
transmitted information symbols to the decoding delay (equivalently, AS @lways, multiplication (from the left) by a non-zero element of
block length) of these symbols at the receiver for any given numb@division algebrad is an invertibleQ(z)-linear mapping (withQ(:)
of transmit antennas using any complex signal constellations. If tt§ting from the right). Therefore its matrix with respect to a chosen
ratio is equal to the delay, the code is said to hulerate. Q(i)-basisB of A is also invertible. Our example division algebras
The paper is organized as follows: basic definitions of algebrale @1d H have the set$, = {1’_94274?} and By = {1,,j,5¢}
number theory and explicit MISO lattice constructions are provided f§ NaturalQ(i)-bases. Thus we immediately arrive at the following
Section II. As a (MIMO) generalization for the idea of finding densegMalrix representations of our division algebras.
lattices within a given division algebra, the theory of cyclic algebras Proposition 2.1: Let the variables:;, c2, c3, c4 range over all the
and maximal orders is briefly introduced in Section lll. In Sectioelements ofQ(i). The division algebrad, and H can be identified
IV, we consider the decoding of the nested sequence of quaternioviie an isomorphismy with the following rings of matrices
lattices from Section Il. A variety of results on decoding complexity
is established in Section IV, where also the notion of sensitivity is
taken into account. Simulation results are discussed in Section \. = ¢ My = My(c1,c2,c3,c4) =
along with energy considerations. Finally in Section VI, the DMT
analysis of the proposed codes will be given.
This work has been partly published in a conference, see [3] aAdd

1
R= ElOQ\S\(‘C‘)v

C1 iC4 iC3 ’iCQ
C2 C1 iC4 ’ng
c3 Cc2 c1 icy
C4 Cc3 C2 C1

[4]. For more background we refer to [22]-[29]. 1 ica  —cf —cb
H = M = M(C1, c2,C3, 04) = €2 .01 Zcﬁ _ci
II. RINGS OF ALGEBRAIC NUMBERS QUATERNIONS AND C3 104 .Ci Cz
LATTICE CONSTRUCTIONS S S €1
We shall denote the sets of integers, rationals, reals, and compld} iSomorphismy from L into the matrix ring is determined by
numbers byZ, Q, R, andC respectively. Q(i)-linearity and the fact that corresponds to the choice =

1,¢1 = ¢3 = ca = 0. The isomorphismp from H into the matrix
ring is determined byQ(:)-linearity and the facts that corresponds

Let us recall the set

H = {a1 + a2i + azj + ask | ar € R Vt}, to the choiceca = 1, ¢1 = ¢3 = ¢4 = 0, andj corresponds to the
9 5 ) N ) o choicecs =1, c1 = c2 = ¢4 = 0. In particular, the determinants of
wherei” = j° = k% = —1, ij = k, as the ring ofHamiltonian  {hese matrices are non-zero whenever at least one of the coefficients

quaternions Note thatH ~ C ¢ Cj, when the imaginary unit is

: =1 > - L= ) c1,C2,C3,Cq IS NON-ZETO. [ |
identified withi. A special interest lies on the subsets

In order to get ST lattices and useful bounds for the minimum
He = {a1 + a2t + asj + ask | a; € Z Vt} C H and determinant, we need to identify suitable subringf these two
algebras. Actually, we would like these rings to be free right
Hy = {a1p+tazitasj+task | ar € ZVt, p= %(1+i+j—|—lc)} CH modules of rank 4. This is due to the fact that then the determinants
of the matrices of Proposition 2.1 that belong to the subgii§)
called theLipschitz’ and Hurwitz' integral quaterniongespectively. must be elements of the ring. We repeat the well-known reason

We shall use extension rings of the Gaussian integers for this for the sake of completeness: the determinant of the matrix

representing the multiplication by a fixed element S does not

depend on the choice of the ba#isind thus we may assume that it is
0q:\g-module basis. However, in that cas8 C S, so the matrix will
have entries irg as all the elements of are G-linear combinations
of B. The claim follows.

In the case of the field. we are only interested in its ring of
integersOr, = Z[¢] that is a freeG-module with the basi®3.. In
wherew?® = 1, as a basic alphabet. However, the Gaussian integdfés case the ringy(Or) consists of those matrices &f that have
nicely fit with the popular 16-QAM and QPSK alphabets. Naturadll the coefficients:, c2, c3, ca € G. Similarly, theG-module
examples of such rings are the rings of algebraic integers inside an o . )
extension field of the quotient fields gf as well as their counterparts L=008016 880
inside the quaternions. To that end we need division algedréisat spanned by our earlier basBsy is a ring of the required type. We
are also 4-dimensional vectors spaces over the (. call this the ring ofLipschitz’ integers of. Again ¢(£) consists of

G={a+bi|abeZ}

inside a given division algebra. It would be easy to adapt the c
struction to use the slightly denser hexagonal ring of the Eisenstein
integers

E={a+bw|abeZ}
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those matrices oH that have all the coefficients;, c2,c3,c4 € G.  B. Dense sublattices inside the base lattice

While O is known to be maximal among the rings satisfying our ag oy earlier simulations [3],[4] have shown thiag outperforms
requirements, the same is not true abdufThe ringH also has an L1, we concentrate on finding good sublatticesaf The units of

extension of the prescribed type insiHE called the ring oHurwitz’
integers ofH. This ring, denoted by

H = pG ® plG ® jG P 5€G,

is the rightG-module generated by the ba#s;.. = {p, p¢, j,5¢},
where agairp = (1+ ¢+ j + k) /2. The fact thatH is a subring can
easily be verified by straightforward computations, é@= p&—j¢&.
For future use we express the riftg in terms of the basi#3y of
Proposition 2.1. It is not difficult to see that the element

qg=ci1+ &2+ jcs+jéca e H

is an element ofH, if and only if the coefficientsc; satisfy the
requirementg1+i)c; € Gforallt =1,2,3,4 andci +c3,co+ca €
G. As the ideal generated by+ ¢ has index two inG, we see that

the ring Lo are exactly the non-zero matrices whose determinants
have the minimal absolute value of one. Thus a natural way to find
a sublattice with a better minimum determinant is to take the lattice
¢(Z), whereZ C S is a proper ideal. This idea has appeared at least
in [3], [4], and [8]. Even earlier, ideals of rings of algebraic integers
were used in [27] to produce dense lattices. Let us first record the
following simple fact.

Lemma 2.3:Let A and B be diagonalizable complex square
matrices of the same size. Assume that they commute and that their
eigenvalues are all real and non-negative. Then

det (A+ B) > det A+ det B

with a strict inequality if bothA and B are invertible.

Proof: As A and B commute, they can be simultaneously

L'is an additive, index four subgroup iK. We summarize these diagonalized. Hence, we can reduce the claim to the case of diagonal
findings in Proposition 2.2. The bound on the minimum determinamatrices with non-negative real entries. In that case the claim is

is a consequence of the fact that all the element§ bfave a norm
at least one.

obvious. ]

In Proposition 2.4 we give a construction isometric to the checker-

Proposition 2.2: The following rings of matrices form ST lattices poard latticeDs

with minimum determinant equal to one.
Ly ={Mg(c1,c2,¢3,¢4) | c1,¢2,¢3,¢a € G},
Ly = {M(c1,¢2,¢3,¢4) | €1,¢2,¢3,c4 € G},

141
2

Ls = {M(c1,cz,c3,c4) | c1,C2,C3,¢4 €

g,

c1+c3€G,co+cq€Gl

|
Remark 2.1:The latticeL; is quite similar to the DAST lattice in

the sense that all of its matrices can be simultaneously diagonalized.

See more details in Section IV-B. The lattide, for its part, is
a more developed case from the so-caltpasi-orthogonalSTBC
suggested e.g. in [30]. The matrid (c1, cz, c3, ca) Of Proposition
2.1 can also be found as an example in the landmark paper [6],

Proposition 2.4:Let Z be the prime ideal of the ring generated
by 1 + 4. Define

Ie={(ca+&c2)+jles+éca) € L)1+ co+c3+cu €T}
ThenZ, is an ideal of index two inC. The corresponding lattice
Ly ={M(c1,c2,c3,c4) € La | c1 +c2+ca+ca €L}

is an index2 sublattice inL,. Furthermore, the absolute value of
det(MM™), M € Ly \ {0}, is then at least.

Proof: It is straightforward to check thaf, is stable under
(left or right) multiplication with the quaternion$ and j, soZ. is
an ideal inL.

HLet us consider a matrid/ € L, and write it in the block form

A —-BH
M*(B AH>'

tha see that

no optimization has been done there by using, for example, ideals as

we shall do here. MME - ( AA" + BBY 0 )
. . . . - 0 AA" + BB )
A drawback shared by the latticds and L is that in the ambient
space of the transmitter they are isometric to the rectangular lattied
Z°. The rectangular shape does carry the advantage that the sets AA® 4 BBH = ( a k7 )
of information carrying coefficients of the basis matrices are simple koa )”

and all identical which is useful in e.g. sphere decoding. But,

the other hand, this shape is very wasteful in terms of transmission .
power. Geometrically denser sublattices75f, e.g. the checkerboard

lattice

Dg = {(;cl, ey Tg) € z8

and the diamond lattice

8
Es = {(azl,..l,xg) cZ8 |z = z; (mod2), le =0 (mod4)},

i=1

n . Lo .
herea = 2?21 le;]? is a non-negative integer ard= —icich +

C2C] —icscy + cacy IS @ Gaussian integer with the propetty = ik.
We are to prove thatiet MM = (a® — [k|?)® > 4. Assume first
thatcs = ¢4 = 0, i.e. the blockB = 0. Thendet(A) is the relative
norm

det(A) = Ng5) (1 + €ea),

which is a Gaussian integer. As+&c2 is a non-zero element of the
ideal Z, we conclude thatlet(A) is a non-zero non-unit. Therefore
det(A) det(A™) > 2, and the claim follows.

Let us then assume that bathand B are non-zero. Thedet(A)
anddet(B) are non-zero Gaussian integers and have a norm at least

are well-known (cf. e.g. [31]). However, we must be careful in pickingne. The matricest, A”, B, B” all commute, so by Lemma 2.3 we
the copies of the sublattices, as it is the minimum determinant et

want to keep an eye on (see Remark 2.3).

det(MM™) > det(AA™)? + det(BB™)* > 2.
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. . . . TABLE |
As det(MM") = (o® — |k\2)2 is a square of a rational integer, it
LATTICES FROM A CODING THEORETICAL POINT OF VIEW
must be at least 4. | . -
] ) ) o Lo < The 8-dimensional rectangular gric
Remark 2.2:It is easy to see that in the previous propositiom ~ no coding
bi € Z, if and only if a + b is an even integer. Thus geometrically )
the matrix latticeL, is, indeed, isometric tds. Ly « The checkerboard lattic®s

< overall parity check code of length
We proceed to describe two more interesting sublatticdsafith

even better minimum determinants. To that end we use the%ing Ls < The latticeDy L Dy
(or the latticeLs). The first sublattice is isometric to the direct sum > two blocks of the overaT parity check code of length
D4 1 D, [31] of two 4-dimensional checkerboard lattices. Lg < The diamond latticeFs

Proposition 2.5: Let againZ be the ideal(1 + 7)G. The lattice + extended Hamming-code of length

Ls = {M(c1,c2,c3,¢4) € Lo | c1 +c3,c2+ca €1}
modulo 2, see Table | above. As it happens, within this sequence of
lattices the minimum Hamming distance of the binary linear code
and the minimum determinant of the lattice are somewhat related.
Proof: The coefficientsc; and cs can be chosen arbitrarily  Thereupon it is natural to ask that what if we simply concatenate
within g. The the idealZ has index2 in g, and the coefficientss the use ofL, with a good binary code (extended over sevdia}
andcs now must belong to the cosets+7 andcs +Z respectively. pjocks, if needed), and be done with it. While the binary linear codes
Whence, the index ofs in L, is 4. The matrices! in the latticeLs  appearing above are the first ones that come to one’s mind, we want to
are of the formA = (1 + i) M, where M is a matrix in the lattice caution the unwary end-user. Namely, it is possible that there are high
L3 of Proposition 2.2. Thuslet(AA™) = 16 det(M M) and the \eight units in the ring in question. If such binary words are included,

has a minimum determinant equal to 16. The index efin Ls is
4.

claim follows from Proposition 2.2. B  then the minimum determinant of the corresponding lattice is equal to
The diamond latticeZs can be described in terms of the Gaussiah i-€- no coding gain will take place. E.g. the ufit-¢°)/(1—¢) =
integers as (cf. [32]) 14+ €462 = (1+14) + £ of the ring £ corresponds to the matrix
1 M(1+14,1,0,0) of determinant 1, and thus we must not allow such
Eg = m{(cl, c2,C3,C4) € ¢* |ler+Z=c+17I, words of weight 3. If the latticd.; were used, the situation would

be even worse, as then we have units ljke- ¢7)/(1 — ¢) in the

4 ring O, that would be mapped to a word of Hamming weight 7.
t=23,4, th €20} A construction based on ideals provides a mechanism to avoid this

=1 problem caused by high weight units.
By our identification of quadruplesc:,cs,c3,cs) € G* and the
elements ofH it is straightforward to verify thafl + ¢)Es has I1l. CYCLIC ALGEBRAS AND ORDERS
{2,(1+3)+ (1 +4)& (L+9)E+ (1+4)j, 1 +E+5+56) C Lasa
G-basis, whence the s¢l +4,1+&,£+ 7, p+ p&} C H is aG-basis
for Es. By another simple computation we see tiiat= H (1 + &),
i.e. Es is the left ideal of the ringt generated byl + &.

In Section Il we produced a nested sequence (1) of quaternionic
lattices with the property that as the lattice gets denser after rescaling
the increased minimum determinant back to one, the BLER perfo-
mance gets better. As the sequence (1) lies within a specific division
Proposition 2.6: The lattice algebra, an obvious question evokes how to generalize this idea. The

_ _ theory of cyclic division algebras and their maximal orders offer us
Lo ={M(er, ez c0,04) € L] r + T = +1, an answer. When designing square ST matrix lattices for MIMO use,
4 cyclic division algebras are of utmost interest as it has been shown
t=2,3,4, Z ¢ € 26} in [15] that a non-vanishing determinant is a sufficient condition for
=1 full-rate CDA based STBC-designs to achieve the upper bound on
is an index 16 sublattice dzg. Furthermore, the minimum determi'the Opt|ma| DMT, hence proving that the upper bound itself is the

nant of L is 64. optimal DMT for any number of transmitters and receivers. Given the
Proof: Let M; = M(1,1,0,0) be the matrixp(1 + ¢) under number of transmitters, we pick a suitable cyclic division algebra
the isomorphism of Proposition 2.1. We see that(M; M) = of indexn (more on this in a forthcoming paper, see Section VIl and

4. By the preceding discussion any matrix of the lattice L [33]. See also [15] ). The matrix representation of the algebra, with
has the formA = MM;(1 + i), where M is a matrix in L. Some constraints on the elements, will then correspond to the base
As in the proof of Proposition 2.5, we see thdtt AA” = lattice, similarly as did the latticé> in Section Il. Now in order to
16 det(M; M) det(MM™). The claim on the minimum determi- Make the lattice denser, we choose the elements in the matrices from
nant now follows from Proposition 2.2. We see that the coefficignt an order. The natural first choice for an order is the one corresponding
can be chosen arbitrarily withi. The coefficients; and cs then 10 the ring of algebraic integers of the maximal subfield inside the
must belong to the coset + Z, andcs must be chosen such thatalgebra. The densest possible sublattice is the one where the elements
c1+4 2+ cs+ey € 2G = T2, As T has index two ing, we see that come from a maximal order.
the index ofLg in L» is 16 as claimed. ] All algebras considered here are finite dimensional associative
Remark 2.3:We have now produced mested sequence of Iatticesak“]ebr'r;lS over a field.
8 8
227 =2L> € L¢ © Ls C La © Ly = Z°(C Ls). 1 A Cyclic algebras

We concentrate on the lattices that are sandwiched bet@&&mnd The basic theory of cyclic algebras and their representations as
Z8. It is worthwhile to note that these lattices are in a bijectivenatrices are thoroughly considered in [[34], Chapter 8.5] and [6].
correspondence with a binary linear code of length 8 by projectidfle are only going to recapitulate the essential facts here.
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In the following, we consider number field extensidagE’, where
F denotes the base field®™ (resp. E*) denotes the set of non-
zero elements of” (resp.E). Let E/F be a cyclic field extension
of degreen with the Galois groupGal(E/F) (o), where o
is the generator of the cyclic group. Let = (E/F,o0,v) be the
corresponding cyclic algebra a@idexn, that is,

A=E®uE®UWED - - u"'E,

with u € A such thatru = uo(z) for all z € E andu™ = vy € F™.
An elementa = zo +ux1 + - - +u™ *z,—1 € A has the following
representation as a matrix =

xo Yo (Tn-1) YO (Tn_2) yo" (z1)
1 o(xo) vo2 (Tn_1) 0" (22)
o o(z1) 0% (xo) yo" " (ws) )
vat o(eaz)  o(ras) 0" (z0)

Let us compute the third column as an example:

2 2 2 2 —1 2
u” — au zou” +uriu’ + -+ u" Tpo1u

= wo(zo)u+vio(z)u+ - +yo(Ln_1)u

u’o?(zo) + o (x1) + - - - 4+ uyo” (Tn—1),

and hence as the third column we get the vector
(702(1."—2)7 ’70—2 (x”—l)v 02 (:EO)v ey 02 (mn—3))T'

Let us denote the ring of algebraic integersioby Or. A basic,
ratesn. MIMO STBC C is usually defined a€ =

zo Yo (Tn-1) vo" (@)
1 o(zo) 70”71(172)
L2 J(xl) 70n71($3) z; € O } . (3)
Tno1  0(Tn-2) " (zo)

Further optimization might be carried out by using e.g. ideals. If
denote the basis df overOr by {1, e1, ..., en—1}, then the elements
zi, i = 0,..,n — 1 in (3) take the formz; = 37—, frer, where
fr € Op forall k = 0,....,n — 1. Hencen complex symbols are
transmitted per channel use, i.e. the design hasrmatae literature
this is often referred to as havingfall rate.

Definition 3.1: An algebraA is calledsimpleif it has no nontrivial
ideals. AnF-algebraA is centralif its centerZ(A) = {a € Alaa’
aaVa € A} =F.

Definition 3.2: An ideal Z is callednilpotentif Z" = 0 for some
k € Z+. An algebraA is semisimpléf it has no nontrivial nilpotent

Wi

B. Orders

We are now ready to present some of the basic definitions and
results from the theory of maximal orders. The general theory of
maximal orders can be found in [36].

Let S denote a Noetherian integral domain with a quotient field
F, and letA be a finite dimensional’-algebra.

Definition 3.4: An S-order in the F-algebraA is a subringA of
A, having the same identity element a5 and such that\ is a
finitely generated module ove¥ and generatesl as a linear space
over F.

As usual, arS-order inA is said to bemaximal if it is not properly
contained in any othe§-order in A. If the integral closures of S in
A happens to be afi-order inA, thenS is automatically the unique
maximal S-order in A.

Let us illustrate the above definition by the following example.

Example 3.1:(a) Orders always exist: I/ is a full S-lattice in
A, i.e. FM = A, then theleft order of M defined asO;(M)
{r e A|zM C M} is an S-order in.A. The right order is defined
in an analogous way.

(b) If A = M, (F), the algebra of allh x n matrices overF,
then A = M,,(S) is an S-order in A.

(c) Let a € A be integral overS, that is,a is a zero of a monic
polynomial overS. Then the ringS[a] is anS-order in theF'-algebra
Fla].

(d) Let S be a Dedekind domain, and I&t be a finite separable
extension ofF’. Denote byS the integral closure of in E. ThenS
is an S-order in E. In particular, takingS = Z, we see that the ring
of algebraic integers of’ is aZ-order in E.

Hereafter,F' will be an algebraic number field anl a Dedekind
ring with F' as a field of fractions.

Proposition 3.2: Let A be a finite dimensional semisimple algebra
over ' and A be aZ-order in A. Let O stand for the ring of
glgebraic integers of. ThenT' = OrA is an Or-order containing
A. As a consequence, a maxinZabrder inA is a maximalO p-order
as well. [ |

The following proposition provides us with a useful tool for finding
a maximal order within a given algebra.

Proposition 3.3:Let A be anS-order in.A. For eacha € A we
havenr(a) € S andtr(a) € S. [

Proposition 3.4:Let I" be a subring of4 containing.S, such that
FT = A, and suppose that eaehe T is integral overS. ThenTI is
an S-order in A. Conversely, eveng-order in.A has these properties.

ideals. Any finite dimensional semisimple algebra over a field ism

finite and unique direct sum of simple algebras.

Definition 3.3: The determinant (resp. trace) of the matrixis
called thereduced norm(resp.reduced track of an elements € A
and is denoted byr(a) (resp.tr(a)).

Remark 3.1:The connection with the usual norm map, ,r(a)
(resp. trace mafl4,r(a)) and the reduced normur(a) (resp.
reduced tracér(a)) of an elemeniu € A is Ny p(a) = (nr(a))”
(resp.T'4 r(a) = ntr(a)), wheren is the degree o5/ F.

In Section Il we have attested that the algeltfais a division

algebra. The next old result due to A. A. Albert [[35], Chapter V.9]

Corollary 3.5: Every S-order in A is contained in a maxima$-
order in A. There exists at least one maxinmfgorder in A. [ ]

Remark 3.2:As the previous corollary indicates, a maximal order
of an algebra is not necessarily unique.

Remark 3.3:The algebrd can also be viewed as a cyclic division
algebra. As it is a subring of the Hamiltonian quaternions, its center
consists of the intersectiddNR = Q(1/2). Also Q(¢) is an example
of a splitting field of H. In the notation above we have an obvious
isomorphism

H ~ (Q(f)/@(\/i)v g, 71)7

provides us with a condition for when an algebra is indeed a division

algebra.

Proposition 3.1: The algebrad = (E/F,0,v) of indexn is a
division algebra, if and only if the smallest factbe Z. of n such
that~* is the norm of some element iB*, is n. [ |

whereo is the usual complex conjugation.

Remark 3.4:In principle, the lattices from Section Il could also
be used as MIMO codes, but when we pddkin the form of (2),
dc becomes vanishing and the DMT cannot be achieved.
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study of tr(qj7) andtr(qj¢) shows that the same conclusions also

One extremely well-performing CDA based code taking advantaf!d for the coefficientsnz,, £ = 0,1,2,3. BecauseZ[¢] C H,
of a maximal order is the celebrat@blden codd8] (also indepen- replacingg with any quaternion of the formg — v, wherev € Z[¢]
dently found in [9]) treated in the following example. will not change the resulting orddf. Thus we may assume that
the coefficientsmi,¢, ¢ = 0,1,2,3 all belong to the se{0, 1/2}.
Similarly, if needed, replacing with ¢ — v’j for somev’ € Z[¢]
allows us to assume that the coefficienis,, £ =0, 1,2, 3 also all
A=0pduOr® - ®u" '0g, belong to the sef0,1/2}. Further replacements af by ¢ — p or
q — p€ then permit us to restrict ourselves to the casg, = 0, for
) : . 3 o all £ =0,1,2,3. If we are to get a proper extension&f, we are left
is the unique maximal order ify. In the so-calledSolden Division .t the caseg = (1+i)/2, ¢ = £(1+4)/2 andq = (1+€)(1+7)/2.

Algebra(GDA) [3]' i.e. the cyclic‘ algebrz(iE/F, o, ) obtained from We immediately see that none of these have reduced noriis,ia],
the data”” = Q(i, v5), F = Q(i), v =i, n = 2, 0(V5) = =V5, 55 \ye have arrived at a contradiction. n

the natural order\ is already maximal [37]. The ring of algebraic ' pamark 3.6:Another related well known maximal order is the

i1n+t(i3/ggersOE = Z[i][¢], when we denote the golden ratio By= " icosian ring. It is a maximal order in another subalgebra of the
=522, The authors of [8] further optimize Fhe code b)_/ using an ideglsmiitonian quaternions, namely
(a) = (1 + ¢ —10), and the Golden code is then defind as Y Y

(Q(Z’ 5)/Q( 5)707_1)7

gC = {\}5 ( Zi? Zg((s));((;:)) ) Zo, T1 € OE} - wheres is again the usual complex conjugation. This order made
a recent appearance as a building block of a MIMO-code in a
The Golden code achieves the DMT as the elemert i is not in  construction by Liu & Calderbank. We refer the interested reader
the image of the norm map. For the proof, see [8]. to their work [38] or [31] for a detailed description of this order.
The icosian ring and our order share one feature that is worth
Remark 3.5:We feel that in [8], the usage of a maximal order isnentioning. As2 x 2 matrices they do not have the non-vanishing
just a coincidence, as in this case it coincides with the natural ordgsterminant property. Algebraically this is a consequence of the fact
which is generally used in ST code designs (cf. (3)). At least thhe respective center§(v/5) or Q(+/2) both have arbitrarily small
authors do not mention maximal orders. As far as we know, but oalgebraic integers, e.g. the sequence consisting of powers of the units
constructions (see also [33]) there does not exist any designs usiR® — 1)/2 (resp.v/2 — 1) converges to zero. We shall return to this

Example 3.2:In any cyclic algebra where the elementhappens
to be an algebraic integer, we have the followimatural order

where O is the ring of integers of the field&. We note thatOg

a maximal order other than the natural one. point in the next section, where a remedy is described.

Next we prove that the latticd is optimal within the cyclic
division algebraH in the sense that the diamond lattiEe = H(1+ IV. DECODING OF THE NESTED SEQUENCE OF LATTICES
&) corresponds to a proper ideal of a maximal ordeHin In this section, let us consider the coherent MIMO case where the

Proposition 3.6: The ring receiver perfectly knows the channel coefficients. The received signal

is
H={g=c+&c+jes+jéca €H | c1,...,ca € Q(3), y = Bx+n,
(1+d)ee € GVt e1 4 c3,c2 +ca € G} wherex € R™, y, n € R™ denote the channel input, output and noise

signals, and3 € R"*™ is the Rayleigh fading channel response. The

. ) components of the noise vectarare i.i.d. complex Gaussian random
Proof: Clearly theQ-span of ¢ is the whole algebrad, and = yarjaples. In the special case of a MISO chanmel( 1), the channel

we have seen that is a ring, so it is an order dfi. Furthermore, if iy takes a form of a vectaB = h € R™ (cf. Section I).

A is any order ofH, then so isA[v/2] = A - Z[v/2], as the element  The information vectors to be encoded into our code matrices are

V2 isin the _center of—l (cf. Proposition 3.2). Therefore it suf_fices Otaken from the pulse amplitude modulation (PAM) signal &ebf
show thatH is a maX|maIZ[\/§]-order. In what follows, we will call the sizeQ, i.e.

rational numbers in the cosél/2) + Z half-integers. Assume for
contradiction that we could extend the orderinto a larger order X={u=2¢-Q+1 | g€Zq}
r :.ﬂ[q] by adjoining the quaterniog = a; + a2j, where the with Zo = {0,1,...,Q — 1}.

coefficients

is a maximalz-order of the division algebrél.

Under this assumption, the optimal detecjory — % € X™ that
ar =m0 +me1€ 4+ meof +mesf®, my. e Qforall ¢, ¢ minimizes the average error probability

are elements of the fiel@(¢). As ¢ — €% = /2, and¢* = —¢3, we Pe) 2 P(& # x)

see that is the maximum-likelihood (ML) detector given by

tr(@) = o1 +ai = 2ma0 + V2Amas —maa). % = arg mineezy |y — Bx |? (5)
Q b
By Proposition 3.3 this must be an elementZff/2], so we may . .
conclude thatm: o must be an integer or a half-integer, and that\{(\;hg:zthe components of the noiséhave a common variance equal
m1,1 —m1,3 Must be an integer. Similarly :

tr(g€) = —2ma 3 + V2(m10 — ma2) A. Code controlled sphere decoding

must be an element d[v/2]. We may thus conclude that all the The search in (5) for thelosest lattice pointo a given pointy
coefficientsmi,, ¢ = 0,1,2,3 are integers or half-integers, andis known to be NP-hard in the general case where the lattice does
that the pairsmi,0,m1,2 (resp.mi,1,m1,3) must be of the same not exhibit any particular structure. In [39], however, Pohst proposed
type, i.e. either both are integers or both are half-integers. A similan efficient strategy of enumerating all the lattice points within a
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TABLE I

sphereS(y, +/Co) centered ay with a certain radius/Cy that works CCSD: ADDITIONAL CASE CONSIDERATIONS

for lattices of a moderate dimension. For background, see [40]-[43].
For finite PAM signals sphere decoders can also be visualized as a
bounded searcin a tree. CASE L, Z?ﬂ z; =0 (mod2)
The complexity of sphere decoders critically depends on th
preprocessing stage, the ordering in which the components aneCASE L5 | 1 + 22 = x5 + 2,
considered, and the initial choice of the sphere radius. We shall use 3+ x4 = x7 + x5 (MOd 2)
the standard preprocessing and ordering that consists dGthm-

CASELg | x1 + 20 =23+ T4 =25 + T6 = T7 + T8,

. o R
Schmidt orthonormalizatio = (Q, Q’ of the columns of the
(@@ (o S @i = Sgp i = 0 (mod 2)

channel matrixB (equivalently, QR decompositioron B) and the
natural back-substitution component ordering givenay, ..., z1.
The matrix R is anm x m upper triangular matrix with positive
diagonal elements (resp.Q’) is ann x m (resp.n X (n — m))

unitary matrix, and) is an (n —m) x m zero matrix. the ZF-DFE point and the received signal is very large this choice
The conditionBx € S(y,v/Co) can be written as may cause some inefficiency, especially for high dimensional lattices.
|y — Bx |*’< () (6) The decoding of the other three lattices in (1) also relies on this

) ] N algorithm, but we need to run some additional parity checks. This
which after applying th&) R decomposition onB takes the form  gimply means that in addition to the checks concerning the facts that
’ 2 ' we have to be both inside the sphere radius and inside the signal
set boundaries, we also have to lie inside a given sublattice. This

wherey’ = QTy and C) = Cy — |(Q")Ty|*. Due to the upper will be taken care of by a method we cabde controlled sphere

triangular form of R, (7) implies the set of conditions decoding(CCSD), that combines the algorithm above with certain
m m ) case considerations. To this end, let us write the constraints on the el-
Z Y — er,we‘ <O i=1,..,m. (8) ementsc; asmodulo2 operations Denote byx = (z1, 22, ...,xs) =
= = (Rey, e, ..., Rea, Sea) € R the real vector corresponding to the

channel input. Note that when exploiting these relations in the CCSD
algorithm, we have to use different orderings for the basis matrices
of the lattice in different cases in order to make the parity checks as
(9) simple as possible. Let us first order the basis matrice&3as=
M(1,0,0,0), B = M(,0,0,0),...,B; = M(0,0,0,1),Bs =
M(0,0,0,4). Then when decoding e.g. thes lattice, we reorder

the basis matrices a8:, B2, Bs, Bs, Bs, B4, B7, Bs in order to get

the sume; + ¢3 as the sum of the first components and the sum

c2 + c4 as the sum of the last components (cf. Proposition 2.5).
Algorithm II, Smart Implementation (Input C, y’, R. Output The conditions for the Gaussian elements of Propositions 2.4-2.6 can

The sphere decoding algorithm outputs the pdinfor which the

distance
m
!/
Yi — Z 75,62
=3

m

d*(y, Bx) = Z

Jj=1

‘ 2

is minimum. See details in [43].
The decoding of the base lattide; can be performed by using
the algorithm below proposed in [43].

X)) clearly be translated into the following modutointeger conditions,
STEP 1: (Initialization) Seti := m, T := 0, &n := 0, and See for instance Remark 2.2. The additional parity check steps will
d. := C} (current sphere squared radius). hence be as shown in Table Il above.
STEP 2: (DFE onz;) Setx; := |(y; —&)/rii] and A; = As the Alamouti scheme [2] has a very efficient decoding algorithm

available, and our quaternionic lattices have an Alamouti-like block

. . ’ e 2 structure, it is natural to ask whether any of the benefits of Alamouti

STSETPEZ 3 (Main step) lid.cd<tz;l+ | az — & —riiwi |7, then go to decoding will survive for our lattices. We shall see that the block
(ie., we are outside the sphere). structure allows us to decode the two blocks independently from each

El§e if z; ¢ Zq go to STEP .6 (ie., we are inside the sphere bufy,o The following simple observation is the underlying geometric
outside the signal set boundaries). eason for our ability to do this

[
Else (i.e., we are inside the sphere and signal set boundaries) if

sign(y{. - & — 7"“%)

i>1,then {let&—1 =37 ric1jzj, Tioi:=Tit | yi —& — Lemma 4.1:Let A and B be twon x n matrices with the property
riqxi |2, i:=1i—1, and go to STEP 2}. that the matricest, B, A” , B¥ commute. Let € C2" be any (row)
Else (i=1) go to STEP 5. vector and write
STEP 4:If i = m, terminate, else sét:= i+ 1 and go to STEP
® M, =( 4, B
STEP 5: (A valid point is found) Letd. := T\ + | yi — & — (AB)=\ _pgn 41 )

ri121 |?, savek := x. Then, leti := i + 1 and go to STEP 6.

STEP 6: (Schnorr-Euchner enumeration of levglLet z; := x; +
A, A; = —A; — sign(A;), and go to STEP 3. Then the vecto_rslM_(A,Q()) gnd IZM(O,B) are orthogc_mal to each
other when we identiffC*" with R*" and use the usual inner product
Note that given the values; 1, ..., zm, taking the ZF-DFE (zero- of 3 vector space over the real numbers.
forcing decision-feedback equalization) @p avoids retesting other
nodes at levef in case we fall outside the sphere. Settihig= oo Proof: With the identificationC>™ = R*" the real inner product
would ensure that the first point found by the algorithm is the ZFs the real part of the hermitian inner product ) of C2". Write
DFE point (or the Babai point) [43]. However, if the distance betweethe vectorh in the block formh = (A, h(?)), where the blocks
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Fig. 1. Average complexity of tx-antenna matrix lattices at rates (approximatély/= 4 and R = 8 bpcu.

R j =1,2, are (row) vectors irC™. Then we can compute In Fig. 1 we have plotted the average number of points visited
by the algorithm in different cases at the rates approximateind

(nM(4,0), hM(0, B)) 8 bpcu. The SNR regions cover the block error rates between
= (hM(A,0)M(0,B)" h) 10% —0.01%. As can be seen, in the low SNR end, the difference in
= (hM(A,0)M(0,—B),h) complexity between the different lattices is clear but evens out when
= (hM(0,—AB),h) the SNR increases. For the sublattides Ls, and L¢ the algorithm

(2) A H oH (1) o) @) visits 1.1 — 2.1 times as many points as for the base lattice
= (WWATBY R = (R AB, AT, In the larger SNR end, the performance is fairly similar for all the
As (uM,v) = (vM* u)* for all vectorsu, v and matrices\/, we lattices. E.g. at and8 bpcu, when all the lattices reach the bound

see that the above hermitian inner product is pure imaginarym ©f maximum 20 points visited, the block error rateslof, Ls, and

. L are still as big a$%, 2%, and1% respectively.
Corollary 4.2: Let A and B range over sets ofi x n-matrices.

Let h andr be vectors inC>". Then the Euclidean distance between Definition 4.1:1n a MISO setting we say that a matrix latti¢eof

r andhM (A, B) is minimized for theA = A, and B = B,, when ankm collapses at a channel realizatidn, if the receiver's version

Ao minimizes the Euclidean distance betwaeandh(A,0) and ©f the latticehL spans a real vector space of dimensionn. We

Bo minimizes the Euclidean distance betwaeand hM (0, B). call the set of such channel realizations the critical set. We say that

. ) for th | he sensitivitys(L) (towards collapsing) of the lattic& is r, if the
Proof: Write Vi (resp.Vg) for the real vector space spanned. ..~ set is a union of finitely many subspaces of real dimension
by the vectorshM (A, 0) (resp. hM (0, B)). These subspaces are_ ,

orthogonal to each other in the sense of Lemma 4.1. Whence we can
uniquely writer = r4 +7 +r., wherers € Va,rs € Vg andr,. So we e.g. immediately see that a lattice residing in an orthogonal
is in the (real) orthogonal complement of the direct sume V. design will have zero sensitivity. While we have no precise results
A similar decomposition for the vectdiM (A, B) is hM (A, B) = the thinking underlying the concept can be motivated as follows.
ha+hp, whereha = hM(A,0) € Va andhp = hM (0, B) € V. When the infinite lattice collapses into a lower dimensional space,
By the Pythagorean theorem its linear structure is severely mutilated. For example the minimum
Euclidean distance drops to zero — for aay> 0 there will be
lr—hM (A, B)]* = [ra—hM(A,0)]*+|rz—hM(0, B)|*+|ri|*. infinitely many other lattice points within a distaneee. Even when
we restrict ourselves to a finite subset of the lattice, the coordinates
of the nearby points may differ drastically. Thus even an ML-decoder
[ra —hM(A,0)> = |r — hM (A, 0)|° — |ra|* — |rL|?, will have problems, and an algorithm relying on the orderly linear
structure of the lattice (like the sphere decoder) cannot work very

o 2 2
so the quantiiesjrs — hM(A,0)]" and [r — hM(A,0)[" are  efficiently. Similar problems are still there, when the actual channel
minimized for the same choice of the matek A similar argument o4jizationh is close to a critical vector.

applies to theB-components, so the claim follows. [ |

Furthermore, here

The sensitivity then enters the scene as a crude measure for the
probability of this happening. It is easy to see that in a Rayleigh
B. Complexity issues and collapsing lattices fading channel the probability of the channel vecdoto be within

H H 2n—s
The number of nodes in the search tree is used as a measeuroef a critical vector behaves Ike(c ). Thus the lower the

of complexity so that the implementation details or the physicslenSitiVity’ the lower the probability of the lattice becoming distorted

environment do not affect it. We have analyzed many different kin%é’vt/hel chgnr;felt.) d inina th itivity of the DAST-latti
of situations concerning the change of complexity of the sphere e lead off by determining the sensitivity of the -lattices.

decoder when moving in (1) from right to left. Example 4.1:There exist 8-dimensional lattices [5] of x 4
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matrices of the form icscy + cacy. We make this more precise before we determine the
- 2o 5 24 sensitivity of the qua_ternionic lattices. .
1 s w5 —4 Therg is a connection bgtwegn our MISO-cod_e and the multi-block
Mpast = - vy —1s  —4 codes mtrpduceo_l by Belflort_e in [45] and Lu in [4_4] that can be
T —zy  —ms 4 best explained with the notation of the present section. Consider the

unitary matrix with the above basis vectors as columns
These matrices are simultaneously diagonalizable as they have com-

mon orthogonal eigenvectots; = (1,1,1,1), ho = (1,-1,1, 1), L1 00
h; = (1,1,-1,-1) andhy = (1,-1,—1,1)4. Write the channel v L& ¢ 00
vector in terms of this basih = ijlajhj. If any of the vz o0l
coefficients vanishes, say. = 0, then the DAST-lattice collapses, 0 0 & —¢

because the receiver’s version of the lattice will belong to the compléve conjugate the matrices of the algellfaby U we get matrices
span of the other three eigenvectdrs, j # k. On the other hand, of the form
if all the coefficientsa; # 0,5 = 1,2, 3, 4, this channel vector will X

not be critical. One way of seeing this is that applying the linear m 7{2 0 0
. . oo . T2 X 0 0
mapping determined by; — (1/a;)h; to the receiver’s lattice ,
- . 0 0  7(x1) —7(z2)
then recovers the original full rank lattice of vectdts,, z2, z3, z4). 0 0 rws)  T(a1)"
Such a mapping obviously cannot affect the dimension of the space 2 !
spanned by the vectors, so the lattice won't collapse. where the elements:, 22 belong to the fieldQ(¢) = Q(4,v2),
We have shown that the sensitivity of the DAST-lattice is siX. andr : Q(¢) — Q(¢) is the automorphism determined byi) =
We proceed to determine the sensitivities of the lattigasof & T(V2) = —V2. Thus we see that our MISO-code is unitarily
Proposition 2.2 and the ones within the nested sequence (1). Letgdlivalent to a multi-block code with a structure similar to [44] —
first considerL;. Let only our center is smaller.
h; The upshot here, as well as in [45], [44], and in the icosian

construction from [38] is that while the individual diagonal blocks
: may have arbitrarily small determinants, when we use them together
hy with their algebraic conjugates, the diagonal blocks together conspire
be the 4 x 4 matrix with rows hi, hy, hs, hs of the form to give a non-vanishing determinant. This i; bgcause the algebraic
(1,¢9,¢2 ¢%) for j = 1,5,9,13. Recall that earlier we have conjugates of small numbe_rs are necessarily just Ia_rge enough to

used {1,¢,¢2,¢?} as an integral basis, so the rows ©f are the compensate as Fhe glgebralc norms a}re known to pe integers.

images of this ordered basis under the action of the Galois grollifﬁnother benefit en10yed_ by our matrix repre_sent_atlon of the a'gebfa
G of the extensionQ(¢)/Q(7). Now it happens that the matrix over t_he _above multi-block representa_tlon is that the S|gr_1al
constellation is better behaved. Surely the simple QAM-constellation

U is unitary (up to a constant factor) dsU™* = 4I,. Let z = ; s ) b ferred he li binati ¢
e1 4 e2C + e3¢ + caC® be an arbitrary algebraic integer 6(¢), of our matrices is to be preferred over the linear combinations of two

and M (z) = My (c1, c2, c3,¢q) € Ly be the corresponding matrix of rotatgd QAM-symbols of the multi-block_representation. _
Proposition 2.2. According to the theory of algebraic numbers (and ThiS feature clearly begs to be generalized to a MIMO-setting. One

also trivially verified by hand) the rows df are (left) eigenvectors such construction is the previously mentioned icosian construction of
of M(z), and Liu & Calderbank [38], where they managed to add a multiplexing

gain of 2 to a similar multi-block representation of the icosians. It

z 0 0 0 turned out that the question of how to best do this in the spirit of

UM()U = 0 o2(2) 0 0 the present article is somewhat delicate. The resulting codes will
0 0 o3(z) 0 necessarily be asymmetric MIMO-codes, and we refer the reader to
0 0 0 o4(z) [46].

We return to the sensitivity of the quaternionic lattices. The
lowing result is now easy to verify

Proposition 4.4:Let V. (resp. V_) be the complex subspace
of C* generated by the vectorgl, £,0,0) and (0,0,1,€) (resp.
by (1,-¢&,0,0) and (0,0,1,—¢)). The subspace¥, and V_ are
orthogonal complements of each otherGf,, so any channel vector
Proposition 4.3: The latticeL; has sensitivity six. can be uniquely written as

is a diagonal matrix with entries gotten by applying the elements Pc;I
the Galois grougs = {01 = id, 02, 03,04} to the number.

So all the matricesMy (c1,c2,cs3,ca) are diagonalized byU.
Therefore we might call the lattick; ‘DAST-like’, as it shares this
property with the lattices from [5].

Proof: The situation is completely analogous to that of Example h=hy+h_
4.1. The latticeL; will collapse, iff the channel realization belongs ’
to any of the 4 complex vector spaces spanned by any three of thieereh. € V. respectively. Ifh belongs to one of the subspaces

common eigenvectors. m V., V_, the latticeh L, collapses. Otherwise the lattide, does not
In order to study the quaternionic lattices we first observe that t;ﬁ8”§‘5rse- In particular the sensitivity of the lattices, Ls, La, Ls, Lﬁ

2 x 2-matricesA and B appearing as blocks of a matrid € Lo
all have(1, £¢) as their common (left) eigenvectors. The same holds Our simulations, indeed, show that the complexity of a sphere
for the adjointsA™, B* as they also appear as blocksMd that also decoder increases sharply, when we approach the critical set. A
happens to belong to the lattide,. From the proof of Proposition comparison between the latticés and L, does not show a dramatic
2.4 we see that the matridd M™*, M = M(c1,c2,c3,c4), has difference between the average complexities of a sphere decoder,
eigenvaluesy + |k| with respective (left) eigenvectord, ££,0,0) but the difference becomes very apparent, when studying the high-
and (0,0, 1,+¢&). Herea = 22:1 lcj|? andk = —icics + caci —  complexity tails of the complexity distribution.
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Ll: Complexity vs sensitivity, R = 2 bpcu, SNR = 10 Lz: Complexity vs sensitivity, R = 2 bpcu, SNR = 10
500 T T T T 1507 T T T T T T

400 - o

350 4
100 : ‘ : : |

# of points visited
N N w
(=3 a o
o o o
T T T
L L Il
# of points visited

.
o
<}
T
I

=
o
S

50 B

SR NS .-

I I I I 0 I I I I I I I I
3 4 5 6 7 0 2 4 6 8 10 12 14 16 18

" 2 " 2 2
min( |h|%) min( [h,|% Ih_|7)

Ll: Complexity vs sensitivity, R = 4 bpcu, SNR = 19 Lz: Complexity vs sensitivity, R = 4 bpcu, SNR = 19
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Fig. 2. The impact of sensitivity on complexitlyi (= Lpast) VS La.

In Fig. 2 we have plotted the complexity distribution of 5000 (2) The lattice L, isometric to Ds is an index two sublattice of
transmissions for different data rates. On the horizontal axis tlie and has a minimum determinant equaldto
quantity mir( |h;|* ) (resp. mi{ |hy|*,|h_|* )) describes how  (3) The latticeLs isometric toD4L Dy is an index four sublattice
close the latticeL: (resp. Lz) is to the situation where it would of L, and has a minimum determinant equallth
collapse. That is, how close to zero the minimum of the components(4) The latticeLs isometric toEs is an index 16 sublattice of»

h, € Vi, i = 1,2,3,4, (resp.hx € Vi) gets (cf. Remark 4.3 angd has a minimum determinant equal6ta [
and Proposition 4.4). For both; and L. the figure shows that the

smaller the quantity, the higher the complexity. We can also conclude!l ©rder to compare these lattices we scale them to the same
that the latticeL; nearly collapses a lot more often than the lattic!inimum determinant. When a real scaling facjeris used the

Lo. In addition, the number of points visited by the sphere decodifginimum determinant is multiplied by”. As all the lattices have
algorithm is much higher foL., than for L,. These are phenomena'@k 8, the fundamental volume is then multiplied pj. Let us
caused by the higher sensitivity df. In Fig. 3 the scaled impact choose the units so that the fundamental volumé:ofs m(Lz) = 1.

of sensitivity is depicted. Then after scalingn(La) = 1/2, m(Ls) = 1/4, andm(L¢) = 1/4.

Note that asp 457 has the same sensitivity s, we can equally As the density of a lattice is inversely proportional to the fundamental

well analyze the behavior of the DAST lattice on the basis of Fig. ¥olume, we thus expect the codes constructed within e.g. the lattices

and Fig. 3. L4 and L¢ to outperform the codes of the same size within
The exact average transmission power data in Fig. 4 is computed
V. ENERGY CONSIDERATIONS AND SIMULATIONS as follows. Given the siz& of the code we choose a random set of

As a summary of Propositions 2.2-2.6 we get the following. K shortest vectors from each lattice. The average energy of the code

Proposition 5.1: (1) The latticeL- is isometric to the rectangular Yoce (]2
lattice Z® and has a minimum determinant equallto Eu = =5
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le Complexity vs sensitivity (scaled), R = 2 bpcu, SNR = 10 LZ: Complexity vs sensitivity (scaled), R = 2 bpcu, SNR = 10
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Fig. 3. The scaled impact of sensitivity on complexiby, (= Lpast) VS La.

is then computed with the aid of theta functions [31]. All the lattices The simulations were set up, here, so that the 95 per cent reliability
were normalized to have minimum determinant equal to 1. Wheange amounts to a relative error of about 3 per cent at the low SNR
using the matriced/ (c1, c2, 3, ca) Of Proposition 2.1, in some casesend and to about 10 per cent at the high SNR end (or to about 4000
we are better off selecting the input vectdrs, c2, cs, c4) from the and 400 error events respectively). One receiver was used for all the
cosets(1+4,1+414,1+1,1+14)+G* instead of letting them range lattices.

overg‘*_. Obviously such tra_mslation_ does not Ch_ange t_h_e minimumWhen moving left in (1) the minimum determinant increaces while
detgrmlnant of the code, but it so.metlmes.re_sults in S|gn|f|_cant ener; BLER decreases at the same time. However, the other side of
savings. .E..g. to get a code of size 256 it is clearly desirable to lt%te coin is that improvements in the BLER performance cause a
the coefficientszs, cz, ¢s, ¢4 range over the QPSK-alphabet. slightly more complex decoding process by increasing the number

Fig. 5 shows the block error rates of the various competing latti@ points visited in the search tree. Still after this increasement, even
codes at the rates approximately 2, 4, 6, and 8 bpcu, i.e. all tife lattice Ls admits a fairly low average complexity as compared
codes contain roughlg®, 216,224 or 232 matrices respectively. For to the latticesL; and Lpasr due to its lower sensitivity. In part of
the latticesL1, L2, Lpast, andLagp [20] this simply amounted the pictures in Fig. 5, the order of the curves seems not to respect
to letting the coefficients; , c2, c3, c4 take all the values in a QPSK- the above mentioned order, but this only happens because the rates
alphabet. Therefore, it would have been easy to obtain bit error rag¥€ not exactly the same for all the lattices. E.g. at the ratd
as well. For the latticed.s, Ls, L¢ the rate is not exact, see (10)bpcu, the exact rates fafz, L4, Ls, and Le are 4,3.75,4.14, and
below and the preceding explanation. Of course also the exact raté7 bpcu respectively. Consequently, the latticeseems to perform
equal to a power of two could be achieved by just choosing a mdpetter than what it actually does. Let us shortly explain how these
or less random set of shortest lattice vectors. As there is no natuigfes follow: when picking the elements, ..., zs from the setZq
way to assign bit patterns to vectors B, D41 D, or Eg, we chose (cf. Section IV (5) and the discussion after Algorithm Il)é the size
to show the block error rates instead of the bit error rates. of the code within the latticd.;, i = 2,4,5,6, will be [Lfiu =
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8
995 where[Ls : Li] is the index of the sublattic&; inside ~ Remark 5.1:The Icosian latticeL;cosran presented in [38]

L (cf. Proposition 5.1). Hence, the data rate in bits per channel Jg&es use of the Icosian ring (cf. Remark 3.6) and has a similar
can be computed as looking structure to the Golden code [11], where the matrix elements

| Q8 are replaced with Icosian Alamouti blocks
R — Og [LZILi] (10)
o 4 ’ a1 + ast  —as + aqt
A= A(ai,a2,a3,a4) = . -
Now, for instance, to get as close to the r&te= 4 bpcu as possible, az +aa a1 —azn

we have to choos = 4,Q = 4,Q =5, andQ = 6 for the lattices and B = B(by, by, bs, bs) respectively:
Lo, L4, Ls, and Lg respectively. By substitutin@ and the sublattice _
index in question to (10) we obtain the above rates. Licosian = {(A fiB) ‘ as, b € Z[(1 + V5)/2] Vi}
Simulations at the raté bpcu with one receiver show that the B A ' '
lattice Ls wins by approximatelyl dB over the latticeL, and by
at least2.5 dB over Lpast. At the rate2 bpcu, the rotated ABBA
lattice Lagpa is already beaten by the, lattice by a fraction of a
dB. The difference betweeh; and Lp ast iS even clearerL, gains K- (z 0 )
1—2 dB over Lpast, depending on the SNR. At all data rates the —\0 —i)°
lattice L¢ outperforms all the other lattices.

Prompted by the question of one of the reviewers, we make t(i\eCOde within this lattice is callettosian codeNote that Jafarkhani’s

following remark in case that the reader is familiar with the Icosiaggzzl_lgggz%onal code [30] in the simulations of [38] is exactly our
2.

code [38] and ponders over whether and how it relates to the co els—'irst of all, note that the Icosian code has code rate two, as the

resented in this paper. L . . .
P pap lattice is 16-dimensional over the reals. Hence, in order to enable

where A denotes the algebraic conjugate 4fwith respect to the
mappingy/5 — —+/5 and
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o r , _ Average energy of some 4 Txlatioss ‘ for systems with one receiving antenna, whereas the Icosian code

—bL naturally fits into systems with two receiving antennas.

250+ < Loast H

VI. DIVERSITY-MULTIPLEXING TRADEOFF ANALYSIS

This section contains the DMT analysis of the MISO codes
2008 71 constructed in this paper. We denote iy (resp.n,.) the number of
transmitting (resp. receiving) antennas. For the rest of the notation,
see [21].

Let us first consider the number field construction. Denote (cf.
B Proposition 2.2)

Average energy
1
(5]
o
T
Il

100 : : PR . . .
y C1 1C4 1C3 1C2
e co €1 icg ics
=7 L, = . ,C € A 5
50 . . C3 C2 C1 1C4

C4 C3 C2 C1

where A C Z[i] is some constellation set. This code is for the MISO

1
1 15 2 25 3 35 4 4.5 5 55 6

Rate (bpcy) system withn; = 4 transmit andn,- = 1 receive antennas. Given the
, Block error rates at 2 bpcu transmit code matrixX € L, the received signal vector is
10 T T T T
= Lpast T T T
& Licosian g - 6@ X +Q ’
- LABBA
—b whereh ~ CN (0, I4).

Let r be the desired multiplexing gain; then we need
|Li| = SNRY = |A]*

and the above in turn gives

BLER

|A] = SNR'". 11)

Hence we see for every € A

les]|> < SNR” 12)
and
62 = SNR'™". (13)
107 L L L L L L L
Y 8 o S PR 13 1 ®  Let A := ||h|? = SNR™* and lets; > --- > &, be the ordered

eigenvalues of¢ XT: then the random Euclidean distante is lower
Fig. 4. Average energy (top) and block error ratestdfx-antenna lattices bounded by

at 2 bpcu with one receiver (bottom). )

Al > 0°N0s = —3 > SNR”z1 (14)
i=1 91

efficient linear decoding, at least two antennas are required at thRere

receiving end. Taking this into consideration, there is no good way Ep, =1-r—a—-3r=1-—4r —a. (15)

to make fair comparison between the Icosian lattice and the 8-

dimensional lattices proposed in this paper. If the application Alow the DMT of this code is given by

hand allows us to use one receiving antenna only, we either have

to punctureL;cosran (€.9. by settingB = 0) which will cause it de,(r) 2 inf da = 4(1—dr), for0<r< i (16)
to lose its benefits, or, we need to perform complex decoding process 1
(e.g. a sphere decoder cannot be used). while the optimal tradeoff in this channel is actually
However, if we still want to compare these codes with two .
receivers, our codes will of course lose due to the lower code rate d'(r) = 4(1—r) for0<r<1. 17)

as they are designed for MISO use only. Similar comparison could-l-he quaternionic construction is
be done e.g. with thd x 4 Perfect code [11] and the Icosian code

resulting to the loss of the Icosian code due to its lower rate (two ¢ icg —c3  —c

vs. four). When using one receiver for the Icosian code by punctring Ly — c2 ¢ icy  —c3 e e A
the block B, it will lose to L2 by 0.5-1 dB at 2 bpcu depending c3 ica ] c5 o

on the SNR as depicted in Figure 4. But, as noted above, in this ca c3 —ics o

way Licosran will of course lose its benefits (as we are not really, o ¢ o aq pointed out in the proof of Proposition 2.4, the matrix
using the whole Icosian ring) so this is not a comparison on Whl% € L is of the following form:
2 .

we should put too much value.
To conclude, the codes in this paper and the Icosian code are M o= A -—-BH
targeted into different types of applications: the first ones are aimed - B A"
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and of sensitivity was introduced for the first time in this paper. The
" AA® 4 BEB 0 experimental results have given evidence about the relevance of this
MM™ = < 0 AH A 1 BBH ) new notion.
AAH 1+ gBH 0 Comparisons with the four antenna DAST block code have shown
= < 'g AA" 4+ BBH ) that our codes provide lower energy and block error rates due to their

good minimum determinant, i.e. high density and lower sensitivity.
since AB = BA. Thus the ordered eigenvalues bf M* satisfy At the moment, we are searching for well-performing MIMO codes
81 = 82 > &5 = &, and in particular,d; > ds are the ordered arising from the theory of crossed product algebras and maximal
eigenvalues ot A" + BB . Secondly, note that/ M satisfies the orders of cyclic division algebras. We have noticed that also the
non-vanishing determinant property, and so does the matax + discriminant of a maximal order plays an important role in code

BBH. Now the bound for the random Euclidean distance is design. It is desirable to choose cyclic division algebras for which
02\ . the discriminant of a maximal order is as small as possible [33].
dy > 0226, = = >SNRPZ2 (18) By now, we are able to construct an explicit cyclic division algebra
3 of an arbitrary index overQ(:) (or Q(w)) that has a maximal
where order with minimal discriminant. Despite the fact that we have not
B, =1l-r-—a-r=1-2r—a. (19) yet fully analyzed the practical performance of codes arising from
Now the DMT of this code is given by these constructions, the preliminary results have been very promising.
1 Further details on this and on the algorithmic properties of maximal
dpy(r) > Einf<04a = 4(1-2r), for0<r< 5 (20) orders (see also [47]-[49]) will be given in a forthcoming paper [33].
2
The same of course also holds for codes within the sublattices VIIl. A CKNOWLEDGMENTS
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Remark 6.2:0ne might ponder why not use e.g. the full-rate CDA ) ) )
J.-C. Guey, M. P. Fitz, M. R. Bell, and W. Y. Kuo, “Signal design

based codes (_Cf' _[6]’ [11]) as_ they are DMT optimal p'tov_lde_d thgt th&'] for transmitter diversity wireless communication systems over Rayleigh
have non-vanishing determinant. The answer to this is in principle tading channels”, ifProc. IEEE Vehicular Technology ConfL996, pp.
the same as the one provided in Remark 5.1. We could naturally do 136-140. Also inlEEE Trans. Communwyol. 47, pp. 527-537, April
this, but considering that we only want to use one receiving antenna it 1999. L o _ _
should be clear that a full-rate code cannot be efficiently used. Inde&d, S: M- Alamouti, "A simple transmit diversity technique for wireless

. . communication”]EEE J. on Select. Areas in Commuwol. 16, pp. 1451—
using a full-rate code would destroy the lattice structure and cause 1458 October 1998.
exponential complexity at the receiver. To enable efficient decodifg] J. Hiltunen, C. Hollanti, and J. Lahtonen, “Four antenna space-time lattice
with one receiver we have to limit ourselves to rate-one codes, which constellations from division algebras”, Froc. IEEE ISIT 2004p. 338.,
exactly we have done in this paper. We want the reader to note that €hicago, June 27 - July 2, 2004. . .

. . 4] J. Hiltunen, C. Hollanti, and J. Lahtonen, “Dense full-diversity matrix

full-rate codes (e.g. the perfect codes [11]) are optimally suited f

; ) " lattices for four antenna MISO channel”, Proc. IEEE ISIT 2005pp.
systems withn; = n, > 1, hence inapplicable to the purposes of 1290-1294, Adelaide, September 4 - 9, 2005.
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On the Densest MIMO Lattices from Cyclic
Division Algebras

Camilla Hollanti, Jyrki LahtonenMember, IEEE Kalle Ranto, and Roope Vehkalahti

Abstract— It is shown why the discriminant of a maximal order  natural ambient space is the spadlg (C) of complexn x n
within a cyclic division algebra must be minimized in order matrices. Due to the symmetric situation, we only consider
to get the densest possible matrix lattices with a prescribed full-rank lattices that have a basis, 22, . . . , T9,2 consisting

nonvanishing minimum determinant. Using results from class . . . .

field theory, a lower bound to the minimum discriminant of a of matrices that are linearly independent over the field of real
maximal order with a given center and index (= the number numpers- We can form an? X 2n.2 matrix M having rows .
of Tx/Rx antennas) is derived. Also numerous examples of consisting of the real and imaginary parts of all the basis
division algebras achieving the bound are given. For example, elements. It is well known that the measure, or hypervolume,

a matrix lattice with QAM coefficients that has 2.5 times as i
many codewords as the celebrated Golden code of the samem(A) of the fundamental parallelotope of the lattice then

minimum determinant is constructed. Also a general algorithm equals the absolu_te value dét(M). Alternatively we may
due to Ivanyos and Roényai for finding maximal orders within ~Us€ theGram maitrix
a cyclic division algebra is described and enhancements to this
algorithm are discussed. Also some general methods for finding G(A) = MM" = (ﬁtr(iﬁﬂ;
cyclic division algebras of a prescribed index achieving the lower
bound are proposed. where zf indicates the complex conjugate transpose of the
Index Terms—Cyclic division algebras (CDAs), dense lat- matrix z. The Gram matrix has a positive determinant equal
tices, discriminants, Hasse invariants, maximal orders, multiple- to m(A)Q,
input multiple-output (MIMO) channels, multiplexing, space- From the pairwise error probability (PEP) point of view [2],
time block codes (STBCs). the performance of a space-time code is dependent on two
parametersdiversity gainand coding gain Diversity gain is
I. OVERVIEW the minimum of the rank of the difference matrix — X’
Multiple-antenna wireless communication promises vef@ken over all distinct code matrices, X’ € C, also called
high data rates, in particular in the coherent case, where € rank of the codeC. WhenC has a full rank, the coding
have perfect channel state information (CSI) available at tB&in is proportional to the determinant Ot — X”)(X — X”)T.
receiver. In [1] the design criteria for such Systems Wef@ﬁe minimum of this determinant taken over all distinct code
devek)ped' and further on the evolution of Space-time (Sm)atrices is called theninimum determinanof the codeC.
codes took two directions: trellis codes and block codes. Olfirit remains bounded away from zero even in the limit as
work concentrates on the latter branch. In this paper, we wille size of the constellatior> oo, the ST code is said to
be interested in the coherent and symmetric multiple inpdtave thenonvanishing determinar(NVD) property [3]. For
mu|t|p|e output (M|MO) case, where we have an equa| numbBPnzero square matrices, having a full rank coincides with
of transmit and receive antennas. being invertible.
To motivate our work, we discuss certain properties of Definition 1.1: The data rate 12 in bits per channel use is
lattices Below, we only give a short description, for a mord@iven by
detailed introduction to abstract lattices, see Section II. R= llogQ|C|,
A lattice is a discrete finitely generated free abelian sub- n
group A of a real or complex finite dimensional vector spacahere|C| is the size of the code.
V, called the ambient space. In the space-time setting, &This is not to be confused with thrate of a code desig(or

, _ , , _code rate, in short), defined as the ration, wherek is the
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as STBCs at least in [5], [6], [7], [8], [9], [10], [11], [12], squared determinant in the numerator instead of the minimum
[13], [14], and (though without explicitly saying so) in [15].squared Euclidean distance. There are several alternative ways
The work in [7]-[15] has concentrated on adding multiplexingf normalizing the scale of a ST lattice code. One alternative is
gain, i.e. increasing the code rate (see Definition 1.1), andtorscale the lattice to have a unit fundamental volume. This is
combining it with a good minimum determinant. It has beethe scaling used in e.g. [10]. It has the benefit that when unitary
shown in [14] that CDA-based square ST codes with tHmear dispersion is used, then signal transmission power is
NVD property achieve the diversity-multiplexing gain tradeofthe sum of the symbol powers. With this normalization one
(DMT) introduced in [16]. The codes proposed in this papéhen naturally seeks to maximize the minimum determinant
all fall into this category and are in that sense optimailo minimize the PEP. Alternatively, we can normalize the
Furthermore, algebras with an imaginary quadratic field adaitices to have a unit minimum determinant instead. The
center yield lattices with a good minimum determinant, awotivation for this normalization comes from the fact that
the corresponding rings of integers have no short nonzalgebraic constructions produce lattices with determinants that
elements. are algebraic integers of a quadratic imaginary number field,
Some authors have made the assumption that the so-calledce> 1. With this normalization, one then seeks to mini-
linear dispersion encoding is used. Therein a fixed subsetmoize the fundamental volume in order to be able to pack the
a complex alphabet lattice (such as QAM or HEX) is chosemaximum number of constellation points into a given power
and sequences of symbols from that subset are then tureedstrained region of the signal space, i.e. we maximize the
into lattice points by the simple process of using them akta rate within a fixed ‘power sphere’.
coefficients of a fixed basis (as a module over a ring generated? third natural way of carrying out the minimum determi-
by the alphabet) of the actual lattice. From our point of viewant vs. fundamental volume comparison of lattices would be
this approach places undue emphasis on the encoding proctssiudy the ratio

so we largely ignore this aspect. Therefore questions like min | det(AX A X[/

whether our lattices are ‘information lossless’ (cf. [13],[10]) vsT = .
. . . m(A)Z/Qn
are meaningless, because that concept is defined only under
the assumption of linear dispersion encoding. that is again invariant under scaling. Whichever normalization

This change means that we often need to resort to the iseadopted, the relative order of lattices will not change, so
of a codebook, and thus the complexity of encoding is highemy one will do.
But, consequently, we are also free to do optimal sphericalAfter a cyclic division algebra has been chosen, the next
shaping. In other words, we choose our finite codebook $tep is to choose a corresponding lattice, or what amounts
consist of shortest vectors (not necessarily all of them) tf the same thing, to choose an order within the algebra.
the lattice or of a coset of the lattice, and thus minimize tHdost authors [15], [14] have gone with the so-called natural
transmission power. order (see Section IV for a definition). One of the points
Our lattices ofn x n matrices are of rankkn?. This we want to emphasize in this article is to use the maximal
implies that if we impose a constraint on the transmissia@rders instead. The idea is that one can sometimes use several
power and require thatr(XX') < P for all the matrices cosets of the natural order without sacrificing anything in
X in a codebook, then the number of signals meeting terms of the minimum determinant. So the study of maximal
this constraint grows IikeD(P"2) as a function of maximal orders is clearly motivated by an analogy from the theory
transmission power”. Thus, they automatically share thisof error correcting codes: why one would use a particular
property with the full-rate linear dispersion codes. Thereforepde of a given minimum distance and length, if a larger
we are entitled to use Theorem 3 from [14] and conclude thagde with the same parameters is available. The standard
also for the maximal order codes, the NVD property impliesatrix representation of the natural order results in codes
DMT-optimality. that have a so-called threaded layered structure [18]. When a
In this paper, yet another design criterion is brought intmaximal order is used, the code will then also extend ‘between
the playground, namely an explicit criterion for maximizindayers’. However, our simulations suggest that restoring the
the density of the code. The field of ST coding seems to ka&yered structure by replacing the maximal order with its
lacking a general, precise notion for the density in the caseshartly chosen ideal yields codes with better performance.
noncommutative structures. Normally, when studying densiBor more details on this, see Section XlI below. Earlier, we
of the lattices, e.g. in [17], one is concerned with the relation bfive successfully used maximal orders in a construction of
the squared minimum Euclidean distangA) of the lattice some 4Tx antenna MISO lattices [5]. Maximal orders have
and its relation to the fundamental volumgA). For rank N turned out to be useful also in the design of certain asymmetric
lattices, these scale by factor$ andr?, respectively, when and multi-user space-time codes, more details to follow in the
A is scaled by a factor. Therefore, one often uses the ratidorthcoming papers [19] and [20].
(also known as Hermite’s parameter) In some cases the index of the natural order as a sublattice
o of a maximal order is quite large. For example in the cases
d*(A) . . .
= ——o/% of a fgmlly (_)f cyclic algebras suggested in [11] one can
m(A) theoretically increase the data rate by 1.5, 6.5 and 20.5 bits
that has the virtue of being invariant under scaling. In Sper channel use for 2, 4 and 8 antenna codes respectively.
applications an appropriate density measure has the minimtiime lattice of a fully multiplexing 8Tx+8Rx antenna MIMO
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code has dimension 128. The nearest vector problem @m the other hand, many researchers working in this area
such high-dimensional lattices is used in some cryptograplace quite familiar with algebraic number fields. However, it
applications, so it is safe to say that ML-based decoding, evgould be pointless to attempt to give an overview of class field
sphere decoding, of such lattices will have prohibitively higtheory to even those readers. So we have adopted the policy
complexity. Thus, we emphasize that such increments of datainjecting hopefully clarifying examples into the sections,
rates are mostly theoretical in nature. These numbers, howeverere the necessary tools and results from class field theory
motivated us to look for methods for locating maximal ordersire presented. They form a poor substitute to a serious study
A general purpose algorithm for this task has been developefdclass field theory, but seek to serve the function of tying
by Ivanyos and Rényai [21]. A commercially available versiothe concepts together with something the reader might already
of their algorithm is implemented by W. van de Graaf as paloe familiar with.
of the computer algebra system MAGMA [22]. It turned out The paper is organized as follows. The early sections II-V
that this general purpose algorithm was not able to handj&e an overview of the basic algebraic concepts and their
the aforementioned algebras of index eight. To deal witkelation to the density of MIMO-lattices. Section VI then
these special cases we developed some enhancements to ithedduces some deeper machinery and proves the general
algorithm. Discriminant Bound that is one of our main results. The
Given that maximal orders provide the best codes in termsspecific instances of the discriminant bound that occur most
minimum determinant vs. average power, we are left with theften in practice are then collected into section VII. Section
question: Which division algebra should we use? To contind#ll, then gives the first examples of algebras achieving the
the analogy from the theory of error-correcting codes we wadiscriminant bound. Then in section IX, we tackle the problem
to find the codes with the highest possible density. That is, witlfi finding maximal orders or, equivalently, of constructing
the smallest fundamental parallelotope. To that end we netae actual MIMO-lattices within the cyclic division algebras.
a suitable tool for parameterizing the cyclic division algebraSection X is dedicated to the study of the perfect codes in the
with a given center and index. Luckily, relatively deep resultsontext of our theory. The problem of locating the best CDAs
from class field theory provide us with the necessary tool &f dissected in the longish section XI. We then wrap up with
Hasse invariants. The measure of a fundamental parallelotgoene simulation results and concluding remarks. The appendix
of a maximal order (that later on will be referred to as theontains certain results from algebraic number theory that are
discriminant of the division algebra) can be expressed in termell known, but are not usually covered in an introductory
of Hasse invariants [23]. With these results at hand we theourse to the topic. They are needed in section Xl are included
derive a lower bound to the discriminant. The proof of theostly for easy reference. The appendix also contains a proof
lower bound is not constructive per se, but it does show that the fact that in order to achieve the discriminant bound
our lower bound is achievable. In the latter parts of this articleis necessary to leave the domain of layered codes (that we
we describe some techniques for constructing division algebrager to as natural orders).
with a minimal discriminant. A reader who does not want to spend much time on number
It is worth mentioning that in [24] the authors have made theoretic details can follow a coding theoretical main track
similar approach in the reduced case of commutative numbeithin the article. It begins with the introductory Sections I,
fields. IV and V. Main track reader can largely ignore the derivation
While our interest in these problems is mostly theoreticadf discriminant bound, but we recommend cherry-picking the
some of the densest lattices we have found also perform welbst common instances of it from Section VII. After that a
in computer simulations. Our construction of the den8es2  main track reader might just peruse the Tables Il and IV from
matrix lattice improves upon the deservedly celebrated Gold#e end of Section X for numerical data pitting the perfect
code in block error rates by about 0.9 dB at data rates frasodes against the discriminant bound, and then finish off with
5 to 6 bpcu. The performance of both the rival codes ca&ection XII.
be further improved by coset optimization and this also cuts
down the gap to about 0.3 dB. Observe that at the data rate
of 4 bpcu we have a tie. This is easily explained by the fact
that for codes of that size there is a particularly attractive In this section we define in more detail theding gain
choice for the coset of the Golden code — at that data r&8d normalized densityof an infinite MIMO-lattice. These
the Golden code has spherical shaping! Our work could Beeasures are essential if we like to compare two MIMO-
viewed as a study of the further gains available, when tfi@itices.
assumption of linear dispersion is dropped. Also as explainedOur take on MIMO codes is rather abstract and we define:
in [25], spherical encoding is a viable alternative to the use of Definition 2.1: A MIMO code C is a full lattice inM,, (C).
a codebook when using our lattice. By full we mean that the lattice has a basiszs, . .., xo,2
This article places somewhat high demands on the readexsisting of matrices ifif,,(C) that are linearly independent
exposure to algebraic number theory and its machinery. Someer the field of real numbers. As discussed in the previous
readers may only be interested in the constructions, and wétiction, we only consider MIMO lattices, where A is full
those readers in mind we have a coding theoretical main traok/, (C).
outlined in the last paragraph of this section, so that suchThe PEP oriented design criteria give us a natural measure
a reader can skip the heavy duty algebra to a large extentiated to the coding gain:

Il. ABSTRACT LATTICE CODES
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Definition 2.2: The minimum determinant dgt, (A) of algebras we have to widen our view and consider a larger
the latticeA is defined to be the infimum of the absolute valueslass of algebras. As we will see the classcehtral simple
of the determinants of all non-zero matrices in the lattice. algebras(Definition 3.3) is a proper context for this theory.
Yet this definition is not very satisfactory. If we use the mini- In this section we give a short introduction to the theory of
mum determinant of a code lattice as a measure of the quatigntral simple algebras. The proofs for the following results
of the lattice, we will get nonsensical results. For example, tlean be found from a nice book by Irving Reiner [23].
lattice 2A has a lot better minimum determinant thAnlt is In this section the reader can suppose that all the fields are
now evident that we need some kind of normalization. algebraic number fields (see the appendix). The results are true
We can flatten the matriced of M, (C) to 2n? vectors also in the case where we considemdic fields, but these we
d(A) € R2"* py first forming a vector of lengtm? out of will need only in Sections VI, VIII, IX and X. In order to
the entries (e.g. row by row) and then replacing a complesderstand our main results fo-adic theory is needed.
number z with the pair of its real and imaginary parg: Definition 3.1: Let F' be any field and assume th&Y F' is
and $z. This mappinge is clearly R-linear and maps full a cyclic Galois extension of degreewith the Galois group
M,,(C) lattices to fullR2"” lattices. We also have the equalityGal(E/F) = (o). We can define an associatiVealgebra
Allr = ||¢(A)||g, where FF and E denote the Frobenius _ _ 2 n—1
gné‘ Euclige;n)!orms, respectively. Therefogejs also an A=(E/Fon)=BeuESuwES. - Su"E,
isometry. whereu € A is an auxiliary generating element subject to the
We denote the measure (or hypervolume) of the fundament@lationszu = uo(z) for all z € E andu” = v € F*. We
parallelotope of the lattice)(A) by m(A) and we call it the call this type of algebrayclic algebra

volume of the fundamental parallelotope of the lattite If Definition 3.2: An algebraA is calledsimpleif it has no
T1,..., 29,2 iS @ basis ofA, we can form a matrix)/ by non-trivial ideals. AnF-algebra A is central if its center
using the vectorsp(z;) as column blocks. Then th&éram Z(A)={a€ A|ad =daVa € A} =F.
matrix of the latticeA is Definition 3.3: A central simple F-algebra is a simple
B T t algebra which is finite dimensional over its center
G(A)=MM" = (%tr(wixj>)1<i,j<2m | Proposition 3.1: Every cyclic algebra is central simple.

Also the reverse is true if we are considerifgcentral
Pimple algebras, wherE' is an algebraic number field.
Theorem 3.2:Let F' be an algebraic number field. Every

The Gram matrix has a positive determinant equakio\)?.
Any full lattice A can be scaled ( i.e. multiplied by a rea
constantr) to satisfym(A) = 1. As the minimum determinant : : g
determines the asymptotic pairwise error probability (PE 'Ce”.”?.' simple algebra is .CyC“C' . L
S . . . 7 Definition 3.4: A central simpleF'-algebraA is a division
this gives rise to natural numerical measures for the quality of

. We shallcenote (1) e rarmalzed mimu *%ep % LY e Semente etbe,
determinantof the latticeA, i.e. here we first scald to have 9 9 9

L . . the cyclic algebras. The next proposition due to Albert [26,
a unit size fundamental parallelotope. A simple Compl"tat'olrheorem 11.12, p. 184] serves as a starting point
shows that PR )

det,in (A) Proposition 3.3 (Norm condition)The cyclic algebrad =
6(A) = m(A)/2n @) (E/F,o,~) of degreen is a division algebra if and only if
none of the elements®,0 < t < n, are norms of some
element of E*.
This result is most often stated in the above way. We
hproceed to describe equivalent conditions that relax the con-
(‘fitions, as now the number of powerspfto be tested drops
quite a bit. The relaxed conditions simply combine Albert’s
det,in (A)*" result and the following trivial observation.
pA) = m(A) Lemma 3.4:Assume thatE/F is a cyclic extension of

It is directly seen thati(A) — (1/p(A))Y/2". Therefore number fields, s@Gal(E/F) = (o) is cyclic of ordern. Let

both these measures are essentially the same thin andeeeF* be an arbitrary element of the smaller field. Consider
will use them interchangeably. In r):umerical examr?les V\}Qe setS of such exponents of v that " belongs to the norm

C .- . ar N E*). Then S is an itiv r n
usually choose to use the normalized minimum determinapit .~ r/r(E"). Thens'is an additive subgroup dZ and

) we have
for obvious reasons. S — 17
The rest of the paper can be seen either as a quest for
constructing the best possible space time codes or adomsomek that is a factor ofn.
mathematical study of normalized minimum determinant of Proof: Consider the homomorphistfi: Z — F* from

Definition 2.3: Let A be a full lattice inM,,(C) having the
NVD property. We then refer t6(A)? as thecoding gainof
the latticeA.

As explained in the introduction we can as well use t
normalized densitpf the code

matrix lattices. the additive group of integers to the multiplicative grofp
given by the formulaf(t) = v*. We can then deduce that the
I1l. CENTRAL SIMPLE ALGEBRAS, ORDERS AND setS = f_l(NE/F(E*)) is a subgroup ofZ, +). Elementary
DISCRIMINANTS group theory then tells us tha& = kZ for a unique non-

The cyclic division algebras (Definition 3.4) are the mainegative integek. BecauseVy,r(y) = 7" we see that € S.
object of interest for us, but in order to fully understand thesenerefore the generatdr of S must dividen. ]
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Proposition 3.5 (Norm condition)The cyclic algebrad = Remark 3.1:We use the notatiom\ interchangeably for
(E/F,o,~) of degreen is a division algebra if and only if both orders and lattices, as the orders we shall use are also
the smallest factot € Z, of n such thaty! is the norm of lattices.

some element o™ is n. o Proposition 3.7:Any F-central division algebrad has a
Proof: If there are integers,0 <t < n, such thaty’ is  maximal ©-order and any order insidd is contained in at
a norm, then Lemma 3.4 tells us that the smallest sutlust |east one maximal order.

be a factor ofn. Therefore it is enough to test the factors of The following example illustrates the fact that non-trivial

n as opposed to all the integers uprto- 1. maximal orders are not just some rare and abstract objects,
To take full advantage of Lemma 3.4 we record the followﬁut come up in the most common situations
ing ultimate version of the norm condition. i

Proposition 3.6 (Norm condition)The cyclic algebrad = Example 3.3:In the algebra of rational Hamiltonian quater-
(E/F,o,~) of degreen is a division algebra if and only if NONSH(Q) = (Q(i)/Q, 0, ~1), wheres is the usual com-

~n/? is not the norm of some element & for any prime plex conjugation, standard notation is to denote the auxiliary
generator byj instead ofu, and to writek = ij. S0i? = j% =

divisor p of n. 5 . '
Proof: Again, if 4* is a norm for some proper diviser *~ = __1' andji = —ij. _
of n, then some integer multiple afis of the formn/p for ~ In this case the natural ordér= Z[i, j, k] is known as the

some prime factop of n, saykt = n/p,k € Z,k > 0, so it Lipschitz order. A maximal order known as Hurwitz order is
suffices to test the exponents of this prescribed form. For&a = Zp © Zi © Zj © Zk, wherep = (1 +i+j + k) /2.

~* were a norm, so would bg"/? = Akt = (y1)k, u See [5] for MISO codes constructed from the above quater-
Due to the above proposition, the elemens often referred nion orders.
to as thenon-norm element In order to study the relation between the ridl and

Example 3.1:The division algebraj.A used in [3] t0 CON- the () -order A, it can be beneficial to consider the division
struct the Golden code is a cyclic algebra with= Q(7), algebraA as a subalgebra in a matrix algebra.

fete:rm%(ela\/bg),(\%):— Ziyghev@etg?si_ﬁg:m;mfrgg dilt?on Theorem 3.8:Let A be a division algebra with center.
Y . ) ' Every maximal subfieldZ of A containsF. Further, if [A :

to this representatiorj. A can be given another construction 9
; 5 . ; . F] =n?, then
as a cyclic algebra. As now* = ¢ we immediately see that
F(u) is a subfield ofGA that is isomorphic to the eighth E:Fl=n
cyclotomic field ' = Q(¢), where¢ = (1 + i)/+/2. The ) ' o )
relation uv/5 = —+/5u read differently means that we can Remark 3.2:_It is clear. that any division algebra contains at
view u as the complex numbet and v/5 as the auxiliary '€ast one maximal subfield.
generator, call it/ = /5. We thus see that the cyclic algebra Let.A be anF-central division algebra whergl : F] = n?
, L , ., and suppose thak' is a maximal subfield ofd. Then we
EouE =(E'/F.d,7) can considerd as ann-dimensional right vector space and
is isomorphic to the Golden algebra. Hepé is the F- the left muIFipIication with an element of A is anE—Iinear.
automorphism of?’ determined by + —¢ andy’ = w2 = 5.  transformation ofA. Therefore,c can be seen as a matrix
C € M, (E). So described representation gives us an injective
F-algebra homomorphisnp from A to M, (E). To shorten
the notation we often identify the algebré and its matrix
The main algebraic object in the design of code lattices frofapresentation. We refer to magsby calling themmaximal
algebraic number fields is the ring of algebraic integers. In thepresentationsWe refer the reader to [7, Chapter 6, Section
division algebras the analogy of this concept is the maxima] for details of this map.

order. We begin with two examples. . _ Definition 3.6: The determinant (resp. trace) of the matrix
Example 3.2:Suppose that?/F" is a cyclic extension of  ghove is called theeduced nornfresp.reduced tracgof the

algebraic number fields. Letl = (E/F,0,7) be a cyclic glementc ¢ A and is denoted by 4/ r(c) (resp.tr.a/r(c)).

division algebra and ley € F* be an algebraic integer. We Remark 3.3:The connection with the usual norm map

immediately see that the »-module Na/r(a) (resp. trace maf’y,r(a)) and the reduced norm
A=0p®u0p @ - ©u" 'Og, nr(a) (resp. reduced tracer(a)) of an elementa € A is

N a) = (nr(a))” (resp.T a) = ntr(a)), wheren is

where O is the ring of integers, is a subring in the Cyc“‘%hg/ge(gzee éE/(F)) (resp. Ty (a) (@)

algebra(E/F, o,v). We refer to this ring as theatural order. . i I

Note also that ify is not an algebraic integer, thenfails to Proplosnlort\ 33' I:rer;cA be anF-cder;traI leI;IOh algebra and

be closed under multiplication. a an element ofd. Thennr(a) and tr(a) € F.
We use the previous notation. Example 3.4:Suppose thatZ/F is a cyclic extension of
Definition 3.5: An Op-order A in A is a subring of A, algebraic number fields. Lett = (E/F,0,7) be a cyclic

having the same identity element @s and such that\ is a division algebra.

finitely generated module ové?» and generated as a linear ~ We can conside# as a right vector space ovérand every

space overr'. elements = zo+uz,+---+u" " 'x,_1 € A has the following

A. Orders and discriminants of a division algebra
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representation as a matrix(a) = A A=EQuE®U’E® - - du"1E,
o y0(Tpo1) YO (Tp—2) - Yo" H(21) as a (right) vector space ové?. Further, letu” = v be an
1 o(xo) vo? (1) yo L (xg) algebraic integery € Op.
| o(ry) o?(xo) o H(as) | Let us now consider the map described in Example 3.4
: and identify the algebrad and its matrix representation.
ot (tns) 02(wn_g) - o™ (zo) In order to produce a MIMO lattice satisfying the NVD

Proposition 3.10: The norm and trace maps do not depenfOPerty, the authors of [3] restricted the coefficienfss £
on the maximal representation. of w7 and the non-norm element to be algebraic integers, i.e.
Proposition 3.11:Let A be an®-order in anF-central 7 € OF; =i € Op. As a result, we get a natural order
division algebraA. Then for any element € A its reduced A, =0 ®uOp 205 @ - ®u"'0g.
normnr4,r(a) and reduced tracer 4, (a) are elements of -
the ring of integerg)r of the field F. If a is non-zero, then Proposition 3.11 and Lemma 13.2 then assure that

SO isnr 4, p(a). |det(¢(a))| > 1, for every non-zera € A,. It is also easily
Now we are ready to define one of the main algebrafroved (Lemma 5.1) that the lattieg(A,,) is full in M,,(C).
objects of this paper. These properties show that, is a promising space-time code

Definition 3.7: Let A be anF-central division algebra and in terms of this paper.
m = dimp.A. The Op-discriminantof the O p-order A is the However, these remarkable properties are not true only for

ideal d(A/Or) in O generated by the set natural orders. We could have chosen @hy-order (and any
m m maximal representatiogh) and still maintain all the benefits

{det(tra/r(ziz;))ij=1 | (1, 2m) € A"} of the natural order. In the following, we discuss the coding

To shorten the notation, we denatéA/Or) = d(A), when- theoretic properties 0©p-orders supposing always that we
ever there is no danger of confusion. use some maximal representatign As we are considering

In the interesting cases d@f = Q(i) (resp.F = Q(v/—3)) F-central division algebras, the reader can always suppose
the ring R = Z[i] (resp.R = Z[w], w = (-1 + /=3)/2) that we are using some cyclic generation and representation
is a Euclidean domain, so in these cases (as well as in theattached to it. At this point, the volumes of fundamental
caseR = Z) it makes sense to speak of the discriminararallelotopes of the orders could depend on the chosen map
as an element oR rather than as an ideal. We simply pick a/. Let A be anF-central division algebra of index and
generator of the discriminant ideal, and call it the discriminar8ome maximal representation.

Equivalently we can compute the discriminant as Proposition 4.1:Let A be anOg-order in A. Then
d(A/R) = det(tr(xixj))zljzlv detnin W(A)) =1
. . : . Proof: This result is a direct corollary of Proposition
where {x1,...,z,,} is any R-basis ofA. It is readily seen 311 and Lemma 13.2. n

that wheneverA C T" are two R-orders, therd(T") is a factor
of d(A). The index[I" : A] is related to discriminants by the
following lemma.

Lemma 3.12: SCo(AT) 1 b
[R:d(A)R] = [T : A?[R: d(T)R) w(A) _( )

Proposition 3.13:All the maximal orders of anf-central gnd
division algebra share the same discriminant. p(H(A)) = 1

Now we can define the following. _ _ ~ m(p(N)) . -
Definition 3.8: Let A be an F-central division algebra This reveals that in order to measure the normalized minimum

and let A be some maximal order ipl. Then we refer to determinant and density of an order, it is enough to determine
d(A/Op) = d_4 as thediscriminant of the algebrad. the volume of the fundamental parallelotope.

We include as an easy reference (see [27, Theorem 1.61C0rollary 4.3: Let A; C A, be two Op-orders inside an
p. 42]) the following formula for the discriminant of certainf -céntral division algebrad. Then

Corollary 4.2: Suppose we have afp-order A in an F-
central division algebrad of indexn. Then

cyclotomic fields. S(H(AD)) < S((A
Proposition 3.14:Let ¢, = exp(27i/2) be a complex (1) < o(9(A2)),
primitive root of unity of order2¢, where¢ > 2 is an integer. p(1(A1)) < p(v(Az))

— . Nl — 9f—2
Thenn = [Q(¢) - Q(#)] =27 and and we have an equality if and only &, = A.
d(Z[¢o)/2Z[i) = (1 +14)*™/2), Proposition 4.4:Suppose we have two maximal orders
Al,AQ - A. Then
IV. ORDER CODES
Let F' be a complex quadratic field. Again, we assume that
E/F is a cyclic field extension of degree with the Galois and
group Gal(E/F) = (o). Let A = (E/F,0,7) be a cyclic p((A1)) = p(1h(Az))
division algebra of index.. That is, Proof: The proof is postponed to Section V. [ ]

5((A1)) = 6((A2))
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It is now evident that in order to maximize the minimuntogether with (2) it follows that for any twe x n matricesA
determinant we have to use maximal orders as any other ordad B we have
is always contained in a maximal one having a better minimumn R(tr(ABH))  R(tr(A(OB)H) >

determinant. 5 (DL(4)) (DL(B)" = (éR(tr(GABH)) R(tr(0A(OB)T))

Therefore, if we denote b the 2n? x 2n? matrix having

n? copies of D along the diagonal and zeros elsewhere, we
Previously, we have seen that the normalized minimuget the following formula for the Gram matrix

determinant and the density of an order code depend only on

V. THE CODING GAIN AND DENSITY OF AN ORDER CODE

. : 1 H
the volume of the fundamental parallelotope. In this section, G(W) =5 (D[”]L(B)) (D[”]L(B))
we are going to show how this volume actually depends on
the algebraic properties of the order. Thus,

The definition of the discriminant closely resembles that of 1 n?
the Gram matrix of a lattice, so the following results are not m(i(A)) = det G(¢(A))'/? = |det L(B)| '2 det D
very surprising.
Lemma 5.1:Assume tha# is an imaginary quadratic num-Our claim now follows from all these computations and the
ber field and thatl and ¢ form a Z-basis of its ring of fact that(det D)/2 = (6" —6)/2 = —S6. u
integers k. Assume further that the ordek is a free R- ~ We have now seen that the density of an order code
module (an assumption automatically satisfied, whis a does not depend on the representation. Thus, as we are only
principal ideal domain). Let us further assume ttiais some interested in the questions concerning the density, we will
maximal representation. Then the measure of the fundameri@iget about the representatignand simply identify the order

parallelotope of the lattice’(A) equals and its matrix representation. Now we also have a proof for
, Proposition 4.4, as all the maximal orders share the same
m(yp(A)) = S0 |d(A/R)|. discriminant.

Proof: Let A = (a;;) be ann x n complex matrix. We  In the cases of” = Q(i) andF = Q(v/—3), we haved =i
flatten it out into a2 x 2n? matrix L(A) by first forming a and6® = (-1 + \/—3)/2, respectively. Thus, we immediately
vector of lengthn? out of the entries (e.g. row by row) andget the following two corollaries.
then replacing a complex numbeiby a diagonal two by two  Corollary 5.2: Let FF = Q(i), R = Z[i], and assume that
matrix with entriesz and z* (= the usual complex conjugateA C (E/F,o0,v) is an R-order. Then the measure of the
of 2). If A and B are two square matrices with rows we fundamental parallelotope equals
can easily verify the identities m(A) = [d(A/Z[i)].

tr(ABH) 0 Example 5.1:When we scale the Golden code [3] to have
0 tr(AH B) > a unit minimum determinant, all the 8 elements ofZtdbasis
will have length5'/4 and the measure of the fundamental
tr(AB) 0 parallelotope is thus 25. In view of all of t_he gbpve this is
0 tr(AB)* ) : (3) also a consequence of the fact that @]-discriminant of
the natural order of the Golden algebra is equal to 25. As was
Next let B = {z1,z2,...,2,2} be anR-basis fory(A). observed in [28] the natural order happens to be maximal in
We form the2n? x 2n? matrix L(B) by stacking the matrices this case, so the Golden code cannot be improved upon by
L(z;) on top of each other. Similarly we g&3) by using the enlarging the order withirg.A.
matricesL(x7)T as ‘column blocks’. Then by (3) the matrix Corollary 5.3: Let w = (-1 + /=3)/2, F = Q(w), R =
M = L(B)R(B) consists of two by two blocks of the form Z[w], and assume that C (E/F,o,~) is an R-order. Then
the measure of the fundamental parallelotope equals
L(z)L(zT)T = ( tr(ziz;) 0 )

) 0 tr(zm)* m(A) = (V3/2)" d(A/Z[w])]-
The upshot is that in both casesaximizing the density
of the code, i.e. minimizing the fundamental parallelotope,
is equivalent to minimizing the discriminant. Thus, in
[d(A/R)| = | det L(B)|. order to get the densest MIMO-codes we need to look for

Next we turn our attention to the Gram matrix. By Oupmsmn algebras that have a maximal order with as small a

assumptions the s U 0B is a Z-basis forA. Let us denote discriminant as possible. . .
For an easy reference we also include the following result.

1 1 Lemma 5.4:Let E/F be as above, assume thatis an
D= ( 0 0 > algebraic integer off’, and let A be the natural order of
Example 3.2. Ifd(E/F) is the Op-discriminant ofOg (often
referred to as the relative discriminant of the extendifrt’),

z 0 T z* then
D( 0 > - ( 0x  0%a* > d(A/Op) = d(E/F)"y""=1.

L(A)L(B)? = ( (2)

and
L(A) LB = (

Clearly det R(B) = +-det L(B), anddet M = |d(A/R)|?, so
we get

From the identitiesR(zy*) = (xy* + 2*y)/2 and
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Proof: In the expansion A. Localization and Hasse invariants of an algebra

We are mostly interested in such cyclic division algeh#as
where the centeF’ is an algebraic number field. However, in

we see that!O g andu/ O are orthogonal to each other withorder to understand these algebras, we also have to consider
respect to the bilinear form given by the reduced trace excdpeir localizations. These localizations force us out of the
in the cases wheré+ j = 0 (mod n). Assume that + j is world of simple division algebras.
divisible byn for somei, j in the range) < i,j < n, and that  If F’ is an extension field of" and A is a central simple
z1,...,x, are elements o® . Then the multiplication rules F-algebra, then the tensor produdt = A®r I’ is a central
of the cyclic algebra together with Lemma 13.6 imply that Simple F”-algebra. We refer to this algebra as the algebra
o o obtained fromA by extending the scalars t".
det(tr(u'zpuw’xe))y o=y = £ det(u T ir(zpae))y =y Definition 6.1: Let ' be an algebraic number field that is
= +y° det(tr(zrae))f =1 finite dimensional oveQ and let P be some prime of'. If

A is an F-central simple algebra, then we call the algebra

where the exponentis equal to zero on according to whether 4, = F» @5 A the localizationof A at P.

i+ j equals zero on. The former case occurs only once and Proposition 6.1: With the notation of the previous defini-
the latter case occurs exactly- 1 times. The claimed formula tjgn,

then follows. u [A:F]=[Ap: Fpl.
Example 5.2:We use the notation from Proposition 3.14. A theorem of Wedderburn reduces the classification of
In [11] Kiran and Rajan have shown that the family of cycli¢entral simple algebras to the case of division algebras.

algebrasA, = (Q(C)/Q(i), 0(Ce) = ¢7,2+14), with £ > 3, Theorem 6.2 (Wedderburn)f A is an F-central simple
consists entirely of division algebras. L&}, , be the natural algebra, then

order of the algebrad,. We may now conclude from Lemma
5.4, Proposition 3.14, and Corollary 5.2 that

A=0p®u0p®- - &u" 10g

A~ M, (D),

whereD is someF-central division algebra. The integerand
) = \n(n—1) )e(n/2)n ; . . :
d(Aenar/21i]) = (2 +1) (1+19) ’ the algebraD are uniquely determined (up to isomorphism).
Definition 6.2: Let A be the algebra of the previous theo-
and that X .
(A 0)? = 2003/ 50(1=1) rem. We caIImdex[A]. = \/[D : F] the erxof the algebra
nat, ' A. We note that the index is always an integer.
For instance. in the 2 antenna cae- 3.n — 2. we have Definition 6.3: Let A be anF'-central simple algebra. We

m(Apat,e) = 40, and thus the Golden code is denser than el
corresponding latticeds; of the same minimum determinant. [A: F]
However, the natural order od3 is not maximal and we will

return to this example later on. the degreeof the algebra.

Remark 6.1:0ne should notice that af-central simple
algebra.A is a division algebra if and only ifndex[A] =
VI. THE DISCRIMINANT BOUND [A:F].
Theorem 6.2 gives us thdt © A ~ M,(Dp), whereDp
someF p-central division algebra. This leads us to consider
ose division algebras, whefé- is some completion of".
Let F' be an algebraic number field that is finite dimensional

In the previous section, we studied the relation between
the normalized minimum determinant of an order and it
discriminant. In the case of a maximal order it thus depen
on the discriminant of the algebra. It is now evident that there " ;
are some optimal algebras that have minimal discriminants. 47 Q@ and 1etP be a finite prime off".
order to describe and hopefully also identify these optimal PToPOSition 6.3:The cyclic algebra
a!gepra_s we need to gain a deeper understanding of the Aln,r) = (E/FP’U,WT)’ (rn) =1,
discriminant of an algebra.

In this section, we leave coding theory behind and onlyhereE is the unique unramified extension Bf of degreen,
consider the discriminants of division algebras (and also allis the Frobenius automorphism, amds a prime element of
central simple algebras). The emphasis is on the problem6f, is a division algebra. The algebran, ) and A(n, r2)
finding the minimal possible discriminant. In Section VII weare isomorphic if and only if; = rs.
return to our main track and apply our general results to getTheorem 6.4:Let A be a Fp-central division algebra of
bounds for normalized minimum determinants and densitieglex n. Then
of codes from orders of division algebras. A~ A(n,r)

Due to space limitations, we cannot perform a comparison
to the commutative case or give a deep insight here. We refef somer. )
the interested reader to [29] for a more thorough discussionDefinition 6.4: Let A be theF'p-central division algebra of
on the discriminant bounds and the underlying principles. the previous theorem. We call the rational numief.A] = -

For more details and for the proofs of this Section, we reféiie Hasse invariant ofl.
the reader to [23], especially to its Chapters 3, 7, and 8.  Now we are ready to define the following.

0<r<n,
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Definition 6.5: Suppose that’ is an algebraic number field containing 7', and letEL be the compositum off and L in
and P some prime off'. Let A be anF'-central simple algebra some larger field containing both and L. We may write
and Fo ®p A= M. (Dp), H = (0*) = Gal(L/L N E) ~ Gal(EL/E),
where Dp is a EFp-central division algebra. We refer to
inv[Dp] = hp = rp/mp as the Hasse invariant ofl at
P and tomp as thelocal index The integer<p is referred to
as thelocal capacity(at P). ) o

Remark 6.2:The fact that the local capacity and Hass&- Proving the Discriminant Bound
invariants are well defined follows from the uniqueness part The following relatively deep result from class field theory
of Theorem 6.2. is the key for deriving the discriminant bound. Assume that

Note thatmp = 1 if and only if the field F is totally complex. Then we have tliendamental

. exact sequence of Brauer groufzee e.g. [23, Equation 32.13,
Ap = My, (Fp). p. 277] or [30])

wherek is the least positive integer such thst fixes L N E.
Then
E®p (L/F,0,a) ~ (EL/E,c"* a).

We say that a primeP is ramified in the algebrad if the )
corresponding local index is nat 0 — Br(F) — & Br(Fp) — Q/Z — 0. 4)
Theorem 6.5:Let A be anF-central simple algebra. There ..o the first nontrivial map is obtained by mapping the

exist only a finite se{ ..., P} of primes inF" that have ginijarity class of aF-central simple algebrad to a vector
non-zero Hasse invariants and consisting of the similarity classes of all the simple algebras

index[A] = LCM{mp,}. Ap obtained fromA by extending the scalars frotf to £p,
Corollary 6.6: Suppose that! is an F-central simple alge- Where P ranges over all the primes aPr. Note that the
bra of degreer. If A has such a local index p that injectivity of this map is stated in Theorem 6.8. That such a
mapping is well defined is due to Lemma 6.9 and Theorem
mp="n, 6.5.
then A is a division algebra. The second nontrivial map of the fundamental exact se-

guence is then simply the sum of the Hasse invariants of
the division algebrasip representing elements of the Brauer
groupsBr(Fp).

In order to get a better grip of the central simple algebrasThe sequence tells us that the sum of the nontrivial Hasse
it is beneficial to consider them as elements in a group. Thisariants of any central simple algebra must be an integer.
deceivingly simple step, taken by Richard Brauer, gives usrarthermore, this is the only constraint for the Hasse invari-

B. The Brauer group

great insight on central simple algebras. ants, i.e. any combination of Hasse invariaftgmp) such
Proposition 6.7: Let A and3 be F-central simple algebras. that only finitely many of them are non-zero, and that they
Then A®p B is an F-central simple algebra. sum up to an integer, is realized as a collection of the Hasse

Let us now consider the family of alF-central simple invariants of some central simple algebdaover F.
algebras. Two central simplE-algebrasA = M,,(D4) and Example 6.1:For example, whenF = Q(i), the funda-
B = My(Dg) are said to beimilar, if D4 ~ Dy. We denote mental exact sequence tells us that there is a 16-dimensional
the similarity class of a central simple algebdaby [A]. division algebraD; over F' with non-trivial Hasse invariants
Similarity classes of’-central simple algebras form a groupl /4 at the primeP; = 1+ i and 3/4 at the primeP; = 3.
(under tensor product ovéf), called theBrauer groupBr(/')  There is also another 16-dimensional division algeBsawith
of the field 7. The identity element oBr(F") is the similarity non-trivial Hasse invariantd/4 at P, 1/4 at P, and 1/2
class of " and the inverse of the elemepd] € Br(F) is the at prime P; = 2 + i. ThenD; ®p D, has Hasse invariants
similarity class of theopposite algebra4°r?. 1/4+1/4 = 1/2 at P, 3/44+1/4 =1 =0 at P, and
Theorem 6.8:Let F' be an algebraic number field andy + 1/2 = 1/2 at P;. Wedderburn’s theorem tells us that
suppose thatd and B are F-central simple algebras. Then D, @ D, ~ M,,(Ds) for a division algebraDs;. The non-
A~Bes Ap~Bp VP cF trivial local indices ofD3 are both equal to 2, so we know that

This theorem now allows us to introduce the following mapD3 is a 4-dimensional™-algebra. A calculation of dimensions

Lemma 6.9:Let A be anF-central simple algebra whereteIIS us thatm = 8.

F'is an algebraic number field arfd a prime inF'. Then the Let us Now suppose tha.t,.with a given ”“”.‘ber fiéldwe
map defined by would like to produce a division algebr4 of a given indexn,

having F' as its center and the smallest possible discriminant.

Ar—Frard, We proceed to show that, while we cannot give an explicit

is a group homomorphism froMr(F) to Br(Fp). description of the algebra in all the cases, we can derive an
The following theorem gives us a concrete view on thexplicit formula for its discriminant.

previous map. Theorem 6.11:Assume that the field” is totally complex
Theorem 6.10:Suppose thatl/F' is a cyclic Galois ex- and thatP,, ..., P, are some prime ideals 6. Assume fur-

tension,Gal(L/F) = (o) anda € F*. Let E be any field ther that a sequence of rational numbergmp,, ..., a,/mp,
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satisfies to n, so we cannot do better than this with only two non-trivial
zn: % _ (mod 1) Hasse invariants. . . _ .
—~ mp, ’ The next observation we make is that in order to min-
imize the discriminant one cannot have more than three
1 <a; <mp, and(a;, mp,) = 1. nontrivial Hasse invariants. This is because for prime ideals

Then there exists a central divisidi-algebraA that has p,, p,, P;, P, (listed from the smallest to the largest) we
local indicesmp, and the least common multiple (LCM) of always have

the numbergmp,} as an index.
If A is a maximalOQg-order in A, then the discriminant of
Ais

Pl(i(Pl)Pz(l(P2)Pd(P3)Pd(P4) > (P1P2)n(nfl)’

N 1) AT as the exponentg(P;) > n?/2 irrespective of the values of
d(A/OF) = sz LooTme the Hasse invariants. A possibility is that some combination
of three non-trivial Hasse invariant§:;/mp,),i = 1,2,3
Proof: By exactness of the sequence (4) we know thaight yield a smaller discriminant. Let us study this in detail,
there exists a central division algebfeover F’ which has local gnd assume that a division algelfPahas these 3 non-trivial
indicesm p,. We also know that/[A : F] = LOM{mp,}. By Hasse invariants at the primed, P», P; (not necessarily in
[23, Theorem 32.1] the discriminant then equals increasing order).

If one of the local indices, say:.p,, has only a single prime

[A:F]
mp, —1)k factor p, thenmp, = pt,t > 0. We write mp, = php®
d(A/R) = (HP( " > ’ ) and mp, = pgpb,lwhere the integer factorg, ;nd Dh 2are
coprime top. Without loss of generality (swap» and Ps,
whererp, is the local capacity. if necessary) we may assume that b. Let first ¢ be any
A simple calculation of dimensions shows that prime divisor of p}, or p4. Thena,/pt is a g-adic integer.
Because the sum of the three Hasse invariants is a rational
[A: F] : o . .
kp=Y—""1 integer, theg-adic triangle inequality shows that any power of
mp q dividing eitherp), or p;, must also divide the other. Therefore
Substituting this into (5) we get the claim. m p, = p5. Let us next consider thg-adic values. By the-
At this point it is clear that the discriminani(A) of a adic triangle inequality we have eithér= b, ora = b > t.
division algebra only depends on its local indices, . In both cases we have.p, = LCM (mp,, mp,). Therefore

Now we have an optimization problem to solve. Given thevp, = LCM (mp,,mp,, mp,) = n.
centerF’ and an integern we should decide how to choose the We shall show that in this case the discriminant becomes
local indices and the Hasse invariants so that the LCM of tisealler, if we assign the sum of the two Hasse invariants
local indices isn, the sum of the Hasse invariants is an integer,
and that the resulting discriminant is as small as possible. We

immediately observe that at least two of the Hasse invariangsthe smaller primeP’ of the two prime ideals?; and Ps.

ai/mp, +as/mp, =a’'/m’p, (mod 1)

must be non-integral. Let D’ be the division algebra with only non-trivial Hasse
Observe that the exponetitP) of the prime idealP in the invariantsa’ /m’p, at P’ andas/mp, at Ps. Because'/m/s, +
discriminant formula is asz/mp, is an integer, we immediately see that,, = mp,.
4P) = (mp —1) [A:F] - (1 - 1) ;Il'(h;refore the index’ (3f D/’ isn' = mp, =M. As d(Py) +
mp mp ») > n(n —1) > d'(P'), whered'(P’) is the exponent

corresponding to the local index p/, D’ will have a smaller
As for the nontrivial Hasse invariants > mp > 2, We discriminant tharD.
see thatn®/2 < d(P) < n(n — 1). Therefore the nontrivial  The remaining case is that all the three local indices have
exponents are roughly of the same size. For example, whgneast two distinct prime factors. In this case the three local
n =6, d(P) will be either 18, 24 or 30 according to whetheingices are alb> 6. As thend(Py)+d(Ps)+d(Ps) > 2n(n—1),
mp is 2, 3 or 6. Not surprisingly, it turns out that the optimajye see that the discriminant of the division algebra with these
choice is to have only two non-zero Hasse invariants and {ysse invariants also exceeds the stated lower bound.m

associate these with the two smallest prime ideal®)pf We remark that in the most interesting (for MIMO) cases
Theorem 6.12 (Main Theorempssume that” is a totally ,, — 2 3,4, Theorem 6.12 is more or less an immediate

complex number field, and thay and P, are the two smallest corollary of Theorem 6.11. We also remark that the division

prime ideals inOp. Then the smallest possible discriminangigebra achieving our bound is by no means unique. For

of all central division algebras over of indexn is example, any pair of Hasse invariantgn, (n — a)/n, where
(PP D), 0 <a <n,and(a,n) =1, leads to a division algebra with

Proof: By Theorem 6.11 the division algebra with Hassfehe same discriminant.

invariantsl/n and(n —1)/n at the primesP; and P, has the
prescribed discriminant, so we only need to show that this
is the smallest possible value. When there are only two non-In this section, we return to our original route and derive
trivial Hasse invariants, the two local indices are clearly equabunds and existence results for the coding gains and normal-

VIlI. DENSITY BOUNDS FOR ORDER CODES
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ized densities of order codes. After we have given the boun@san element of43. Straightforward calculations show that
we proceed with examples of algebras achieving these bourstgtisfies the equations

The smallest primes of the ring[i] arel + ¢ and 2 £ 3. ) o 3
They have norms 2 and 5 respectively. The smallest primes of w®=—itiw and w(=—1+¢ — (.

the ring Z[w] are /—3 and2 with respective norms 3 and 4 From these relations it is obvious that the frB&]-module

Together with Corollaries 5.2 and 5.3 we have arrived at t%th basis elements andw is an orderA. Another straight-
following bounds.

. forward computation shows that(A/Z[i]) = —8 + 6i =
Corollary 7.1 (Discriminant bound)Let A be an order of (1+1)2(2 + i) As this is the bound of Theorem 6.12 we
a central division algebra of index over the field Q(i). may conclude that\ is a maximal order -

Then the measure of a fundamental parallelotope of the

corresponding lattice satisfies By Corollary 5.2 we see that the fundamental parallelotope
of the maximal order in Proposition 7.3 has measure 10. We
m(A) > 10m(n=1/2 compare this lattice to the Golden code, and scale both to have

nit minimum determinant. In a power constraint subset of the
) ignal space this lattice will then have approximately 2.5 times
ity
(n_1)/4 as many codewords as the Golden code.
d(A) < 1/10 : The algebrads; has the drawback that the parameters

Furthermore, for every, there exist cyclic division algebrasqu“e large. This leads to an antenna power imbalance in both

with centerQ(i), whose maximal orders achieve equality iifPac€ and time domains. To some extent these problems can
both of these bounds. be alleviated by conjugating the matrix lattice by a suitable

Corollary 7.2 (Discriminant bound)Let A be an order of diagonal matrix (a trick used in at least [15]). One of the
a central division algebra of index over the field Q(w), motifs underlying the perfect codes [10] is the requirement

w = (=1 4+ v/=3)/2. Then the measure of the fundamentdhat Fhe variabley should have.a unit modulus. To megt this
parallelotope of the corresponding lattice satisfies requirement we proceed to give a different construction for
, this algebra.
m(A) > (V3/2)" 12n(n=1/2 Theorem 7.4:Let \ be the square root of the complex
) o i , ) number2 + ¢ belonging to the first quadrant of the complex
and the normalized minimum determinant satisfy the '”eq”fﬂrane. The cyclic algebrg A+ = (Q()\)/Q(i), o, i), where
ity w2 1)/ the automorphisra is determined by (\) = — ), is a division
S(A) < (2/V3)"/?/12 . algebra. The maximal orders ¢fA+ achieve the bound of

Furthermore, for every: there exist cyclic division algebrasTheorem 6.12. F_urthermor.e, the algebgd+ and A; of
Theorem 7.3 are isomorphic.

with center , whose maximal orders achieve equality in .
Q) quaity Proof: The algebrag A+ is a central algebrd™{v’, A\}

both of these bounds. , _ . e ,
We remark that in [29], it was shown that using the centé)eger th? f'?ldF - Q(f) defined _by the relatlon%x =2 t
=, v'A = —)Xu/. Comparing these relations with the

V/=7) instead of the more common ones above, we gét . . .
Sv(en de)nser maximal orders provided that> 4. See alsogrelatmns in the proof of Theorem 7.3 we get an isomorphism

[31] related to this center. of I-algebrasf : GA+ — A; by declaringf(u') = ¢, f() =

The Golden algebra reviewed in Example 3.1 has its nontri?-lfmd . exter:qulr:gl tTS mﬂghe_ natural hyvay. TZeTﬁther cle;lrgs
ial Hasse invariants (both equal 1¢2) at the prime+i and oflow immediately from this 1somorphism an eorem /.o.

. - [ ]
2 — ¢ and hence cannot be an algebra achieving the bound o
Theorem 6.12. A clue for finding the optimal division algebr {l\/e refer to the algebrajA+ as the Golden+ algebra

is hidden in the alternative description of the Golden algebtrz];1is ils partl31 TOtiVst?d by t?ﬁ higljher densi(tjy tindé)al:jtly by
given in Example 3.1. It turns out that in the caBe= Q(i), e close relation between the algebig an € olden
E — Q(¢), instead of usingy’ — 5 as in the case of the algebra. After all, the algebrad; comes out when in the
Golden alg’ebra we can use its prime facto 2 + i alternative description of the Golden algebra (cf. Example

Proposition 7.3: The maximal orders of the cyclic divisions'l) the variabley = 5 is replaced with its prime factor

. . . 2 + 4. In Section IX we will provide an alternative proof for
algebraAds; = (Q(¢)/Q(i), 0,2 + i) of Example 5.2 achieve - X ) -
the bound of Theorem 6.12. Theorem 7.4 by explicitly producing a maximal order within

) . . G A+ and verifying that it has the prescribed discriminant. It is
Proof: The algebrads is generated as @(i)-algebra by : . . o . .
the elements andu subject to the relations® = i, u? = 2+, immediate from the discussion in the early parts of this section

andu¢ = —Cu. The natural ordeZ[¢]®uZ[¢] is not maximal. that in this case there is only one cyclic division algebra (up

Let us use the matrix representation.4f as2 x 2 matrices to isomorphism) with that discriminant.

. L ) It turns out that all the algebrad, in the Kiran & Rajan
with entries in , SO elements are mapped to scalar, . X L
Q(¢) Q1) bp ]‘am|ly of Example 5.2 have maximal orders achieving the

matrices and, is mapped to a diagonal matrix with diagonal;, "7 ° . L

elements. and—¢. We observe that the matrix ng/rilr:zllr:ﬁir;t bound. The following observation is the key to

1 2i — (1 —i)V2 (2414)(2i — (1 +4)V2) Lemma 7.5:Let F' be either one of the fieldQ (i) or Q(w),
(1+d)(1+V2+1) 2i 4+ (1 —14)v/2 and letP; and P, be two smallest ideals of its ring of integers

and the normalized minimum determinant satisfy the inequ%\

4
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R. Let D be a central division algebra ovét, and letA be element may negatively affect the performance of the code.
any R-order inD. If the discriminantd(A) is divisible by no Therefore, it is beneficial to aim at small non-norm elements.
prime other thanP; and P, then any maximal order of D However, as noted in [10], we can choose a unit (by a unit
achieves the discriminant bound of Theorem 6.12. we mean a unit of the ring’, separate this from an element
Proof: We know that there exists a maximal order, saljaving a unit modulus, see [33]) non-norm element only when
T’y containingA. The discriminant ofl'y is then a factor of n < 7. In what follows, we actually manage to build an
d(A), so P, and P, are the only prime divisors ofi(I'y). optimal division algebra with a unit non-norm element in all
From Theorem 6.11 we infer that the only nontrivial Hassthhe possible cases.
invariants of D occur atP; and P,. As the sum of the two  In Section Xl, we relax the restriction on the size of
Hasse invariants is an integer, they have the same denominatod give a general construction f@(i) andQ(/—3)-central
This must then be equal to the index ®f The discriminant division algebras with a minimal discriminant.
formula of Theorem 6.11 then shows th#fy) equals the  One should notice that none of the natural orders of the
discriminant bound. Any other maximal orderIn shares its algebras we shall construct will have a minimal discriminant.
discriminant withT’y. m This, unfortunately, is not just a coincidence. Later on in

Corollary 7.6: Let > 2 be an integer. The maximal orders>€ction XIII-B of Appendix, we prove that there are no natural
of the cyclic division algebrad, = (Q(C)/Q(i), 0,2 + i) orders reaching the bound of Theorem 6.12.
from Example 5.2 achieve the discriminant bound.

Proof: Proposition 3.14 and Lemma 5.4 indicate that the. The centeiQ (i)

only prime factors of the discriminant of the natural order in
Ay arel + i and2 + i. The claim then follows from Lemma TABLE |
7.5. u Q(i)—CENTRAL DIVISION ALGEBRAS WITH A UNIT 7y

At this point we remark that the natural orders of the
algebrasA, of Example 5.2 are very far from being maximal.

We will study this in greater detail in Section IX. nly | fn
Example 7.1:Let F = Q(v/—3), s0 Op = Z[w]. In this 2 i |2+ (249
case the two smallest prime ideals are generate@ land 4 i | at+(2+419)

1 —w and they have norms 4 and 3 respectively. By Theorem
6.12 the minimal discriminant i$(1—w)? whenn = 2. As the

absolute value of —w is /3 an application of the formula in
Corollary 5.3 shows that the lattideof the code achieving this
bound hasn(L) = 27/4. In [32] we showed that a maximal

In Table | we give a cyclic generation for algebras of degree
2 and 4 with minimal discriminants. Proposition 3.6 implies
that 4 is the largest degree that we can hope to have a cyclic
. N . — division algebra with a unity. There does not exist such an
order of the cyclic algebrds/F,a(i) = —i,y = v=3), algebra of degre8. The reason for this is that in every cyclic

where E = Q(4, v/—3), achieves this bound. : ) . . ;
We remark that one of the codes suggested in [15] tla§<ten3|onE/Q(z) of degree 3, all the units dR(;) are third

the natural order of the algebra of Example 7.1. Howevé)r?lvr\]letrhseizﬁo&;refx;euasrs tlr:]eth(zr:?r?gio(i;ttirg(?)w—mﬁg p
the authors there never mentioned the possibility of using 9 9 _

. . ) . ) Ea: F(a,,), wherea,, is a zero of the polynomiaf,,, and
maximal order. Nor did they mention that their lattice actuallgrove tﬁat)the algebras in Table | are givi)éion algebras with

's an order. minimal discriminants. We refer to these algebras with
wherei represents the index of the algebra.
VIII. EXAMPLE ALGEBRAS ACHIEVING THE AlgebraD,: The algebraD, was previously shown to be a

DISCRIMINANT BOUND division algebra with a minimal discriminant.

In the previous section, we proved the existence of ex-AlgebraD4: When consideringD, we first have to check
tremely attractive MIMO codes with the best known codingvhether it really is a division algebra. We note tHat+ )
gain and gave examples of algebras achieving the discriminanta totally ramified prime inE/F. Consequently the lo-
bounds. cal extensionE(y ., /F(o1 is totally and tamely ramified

In this section, we begin a systematic study of methods ¢yclic extension of degree. We note that#(Or,,,, /(2 +
construct the actual codes by giving an explicit constructionOr,,,, ) = #(Or/(2 +1i)) = 5.
of division algebras with minimal discriminants and unit non- Proposition 3.6 states thdp, is a division algebra ifi
norm elements. After the correct algebra is found we can usatisfies the norm condition, i.e-1 is not a norm. While
the existing algorithms to find the maximal order. We wilproving this we see at the same time that none of the elements
return to this question in Section IX. {i,—1,—i} is a norm. This demonstrates that the difference

In the following, we concentrate on the cases where tietween Proposition 3.6 and its more stringent cousins is
center of the algebra iQ(i) or Q(v/—3). When natural orders marginal.
are used for the code construction, large non-norm element$édasse Norm Theorem [23, Theorem 32.8] states that it is
may result in a power imbalance between transmit antennasough to show that the elemerts —1, —i} are not norms
While this is not so clear, when we are using maximal ordelig, the extensionE(QH)/F(QH). Elementary local theory [34,
the test data we have collected suggests that a big non-ndProposition 7.19] states that if we have any complete residue
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system{0, 1, a, b, c} of the group@F(M)/(Z + Z')Oﬁ’(w) and AlgebraGs: The proof of this case is similar to that ¢f

an arbitrary unite € F(2+i) then ex_cept that the tamely ra_mifie_d prime is 2, and that the
suitable set of representatives{is, w, w?}.

) x (e(2+1)). (6)  Algebrags: The algebrajs we get as a tensor product from

the algebragi, andGs.

Fory ={la,b,c} x (1+(2 —i—i)OF@M
The prime (2 + i) is tamely ramified inE(s,;)/F(o.s and
therefore the local conductor i + i) (see Lemma 13.7).
The definition of the conductor now implies thét + (2 +
i)Op,,,) C NE(2+i)/F(2+i) (E@H))_ Because the prime +1) In the pre_vious_ s_ection3 we gave examples of cyc_lic divis_ion
is totally ramified, we have, (2-+i) C NE(2+ )/F(2+.)(E(2+i)) algebras with minimal dlscrllmmants. One of the interesting
_ . ) i N features of these algebras is that none of the natural orders
for some unite; € Fiz.;). The previous results now imply thatig nayima, However, we already saw that in the case of
(1+ (2 +9)0pq.,) x{e1(2+9) S Ng i, (Be+d): the Golden algebra the natural order is maximal. So clearly
On the other hand one of the main theorems ofatyral orders can be maximal. So what is the problem with
local class field theory [30, Theorem 1.1] states thayr algebras? Why we did not construct such algebras that the
Fooroy/(Nigg sy 1504y (Bo40)) = Gal(E(a4i)/Fla1i)- BY  natural orders would be maximal? The answer is simple: it is
considering (6) we see that the elemeftsb,c} are not impossible. Natural orders can never reach our discriminant
norms. Because the elemetts i, —1, —i, 1} form a complete bounds. This underlines the fact that, with the previously
residue system of the grouf;, ,  /(2+i)O, ~we find known methods, the density of our maximal order codes is not
that none of the elementg, —1, —:} is a norm. achievable. The proof of this result can be found in Section
The discriminant of the extensiali/F' has only two prime XIII-B in the Appendix.
divisors(2+i) and(1+:) and therefore also the discriminant of While these considerations reveal that we have, indeed,
the natural order oD, has only two prime divisors. According constructed something fundamentally new, they also reveal
to Lemma 7.5 this implies that the discriminant of the algebthat we have a difficult problem to solve. How to construct

IX. FINDING MAXIMAL ORDERS

is minimal. maximal orders when the algebra is given? Luckily there exists
an algorithm by Ilvanyos and Rényai that solves this problem.
B. The centeQ(v/-3) In the following we first introduce some algebraic results that
will be needed in order to understand the algorithm. Then we
TABLE Il present the algorithm and finally, in Section 1X-D, we will
Q(+/—3)-CENTRAL DIVISION ALGEBRAS WITH A UNIT give some enhancements to this algorithm in a certain special
case.
n 2 fn
2 —w 22+ /=3
3| w | #3—2 A. The radical and extremal orders
6 | —w? | 20 —3y/—3z* + 423 — 922 + 12y/=3z + 3v/—3 + 4 Definition 9.1: Let S denote an arbitrary ring with identity.

The Jacobson radicabf the ring S is the setRad(S) =

In Table Il we give cyclic generations for algebras of degrees {x € S | xM = 0 for all simple left.S-modules)M }.
2,3, and 6. The theorem of Albert 3.6 shows thétis the Rad(S) is a two-sided ideal ir' containing every nilpotent
biggest degree we could hope to have a division algebra wiite. for whichZ* = 0 for somek € Z,) one-sided ideall
a unit~. We cannot have a division algebras of degréesid of S. Also, Rad(S) can be characterized as the intersection
5 as tensoring these with a division algelgia(below) would of the maximal left ideals inS. If S is a finite dimensional
give us division algebras of degreé8 and 15 respectively algebra over a field or, more generally, left or right Artinian

with a unit . thenRad(S) is the maximal nilpotent ideal ii$.

We use the same generic notation as in the cas®(@}- Definition 9.2: Let us suppose that we have @&hcentral
central algebras expect that we refer to the algebras @ith division algebra of index: and thatR is a dedekind ring in
where: represents the index of the algebra. F.If M is afull R-lattice in A, i.e. FM = A, then theleft

Algebra G,: We use here the same methods that wetgder of M defined asO;(M) = {x € A | 2M C M} is an
used with the algebraD,. We remark that? = (v/—3) is R-order in.A. The right order is defined in an analogous way.
tamely ramified in the extensio’/F. If we pass to the  The next proposition (see [35, proof of Theorem 3.2]) is
completionEp/F'» we get that the local conductor 8 and  useful when computing left orders.
that {—w, 1,0} is a complete set of representatives of the Proposition 9.1: Let A be a simple algebra ovér and M
group O /P. As a result it is seen thatw is not a norm a finitely generated?-module such tha#M = A. Then
in the extensionp/Fp and therefore it is not a norm in thethere exists an elementc Or \ {0} such thats - 1 € M.
extensionE /I either. From this it follows tha@, is a division Moreover,O;(M) = {be€ s™*M | bM < M} < s~1M.
algebra. Here we need some facts from the local theory of orders.

By now it is obvious that the discriminant of the naturaFor the basic properties of localization the reader can turn to
order of the algebrg, has only two divisorgy/—3) and(2), [36, Chapter 7] or [23, Chapters 1, 2]. For the proofs for the
and hence the maximal order admits a minimal discriminanest of this section, see [21] and [35].
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If R is a Dedekind domain with a quotient fielfl, and Definition 9.4: We say thatl'p radically containsAp if
P is a prime ideal inR, then the ring of quotient® = and only if Ap C I'p and Rad(Ap) C Rad(I'p). The
(R/P)~'R C Fis adiscrete valuation ring. For the-lattices orders maximal with respect to this partial ordering are called
M in A the localization af? is defined as\ip = RpM C A. extremal Maximal orders are obviously extremal.
Mp is an Rp-lattice. Moreover, ifM is a full (cf. Example Proposition 9.7 (Proposition 4.1 [21])An Rp-order Ap
9.2) R-lattice in A, thenMp is a full Rp-lattice in A. To be is extremal if and only ifAp = O;(Rad(Ap)).
more specific, let us define the rirsy,. Lemma 9.8 (Lemma 2.7 [21])et P be a prime ideal of
Definition 9.3: For a rational prime let Z,, denote the ring the ring R, A an R-order and suppose thé!;(Rad(Ap)) D

r Ap. Let I denote the inverse image &fad(Ap) with respect
Z, = {; €QlrseZ gedlps) =1} to the embedding\ — Ap. Then we havel O PA and
Z, is a discrete valuation ring with the unique maximal idedP:(/) 2 A. _ .
pZ,. If A is aZ-order we use the notatioh, = Z,A. The previous corollary together with Corollary 9.4 gives us

We remark that one should not confuse the localizafign the following.
with the ring of integers?» of the P-adic completion. We use ~ Lemma 9.9:If O;(¢™*(Rad(A/PA)) = A, the orderAp
the caret to indicate a complete structure. This is somewtia€xtremal.
non-standard in the case @i, that is nearly universally used Proposition 9.10 (Theorem 4.5 [21]}ret Ap C T'p be
to denote the complete ring pfadic integers. We usé,, for fp-orders inA. Suppose thad  is extremal and thal p is
the complete ring. minimal among theR p-orders properly containing ». Then

In the following, we work inside anF-central division there exists an ideal of Ap minimal among those containing
algebra A, R being the ring of algebraic integers ifr. Rad(Ap) such thatO,(J) 2 I'p.

The next statement illustrates a simple but useful connection
between the orderd andAp. B. The algorithm

Proposition 9.2 (Proposition 2.8 [21])Let A be aR-order
in A. The mapf : « — = + PAp, x € A induces an
isomorphism of the ringd./PA =2 Ap/PAp.

Proposition 9.3 (Proposition 3.1 [21])Let P be a prime
ideal of the ringR. The residue class rindp = Ap/PAp d(Ag/Z]i])) = (1 +3)"" D (2 4 i)n(n=D),
is an algebra with identity element over the residue cla
field Rp = Rp/PRp and dimp A = dimﬁﬂ. If ¢ :
Ap — Ap is the canonical epimorphism, theRAp C
Rad(Ap) = ¢~ ! Rad(Ap) and¢ induces a ring isomorphism d(Aenat/Z1i]) = (1 + i) /D2 4 j)n(n=D),
Ap/Rad(Ap) = Ap/Rad(Ap). As a consequence, a left (or
right) idealZ of Ap is contained inRad(Ap) if and only if
there exists a positive integeérsuch thatZ! C PAp. [A¢: Appar] = 9((2¢=5)n+1)n/2

Combining the last two results we get.

Corollary 9.4: Let P be a prime ideal of the ring?. We In the caseg = 3,4, 5 this index thus equal®’, 2°°, and2'®*,

Consider again the family of cyclic division algebrdsg of
indexn = 2/=2 from Example 5.2. IfA, is a maximal order
of A,, then according to Corollary 7.6

E)Sn the other hand, by Lemma 5.4 we see that the discriminant
of the natural ordet\y 4+ Of A, is

Hence, we may conclude that the natural order is of index

then have respectively. In other words, using a maximal order as opposed
. . to the natural order one can sehd, 6.5, or 20.5 more bits per
¢~ (Rad(A/PA)) = ¢~ (Rad(Ap)), channel use without compromising neither the transmission
where is the embedding\ — Ap and ¢ is the canonical Power nor the minimum determinant in the respective cases
epimorphismA — A/PA. of 2, 4, or 8 antennas! Hence the problem of actually finding
The following facts establish some practical connectiorigese maximal orders rather than simply knowing that they
between the local and global properties of orders. exist becomes quite relevant. In the following we shortly depict

Proposition 9.5 (Theorem 2.3 [35])Let A be a simple al- how maximal orders can be constructed in general. A more
gebra overF. Let P be a prime ideal ofR, andT' be an detailed version of the algorithm can be found in [21].

R-order in A. Then Let againF’ be an algebraic number field| a finite dimen-

() T'p is an Rp-order in A. sional central simple algebra ovét, and A be aOp-order

(i) T is a maximalR-order in A if and only if 'p is a in \A. To avoid overcomplicated notation we use shorthand
maximal Rp-order in. A for every prime idealP of R. Or = R. Assume thatA is given by relations (e.g:? = ),

(i) d(T/R)p =d(I'p/Rp). and thatA is given by aR-basis. For instance, we can always

Corollary 9.6: If P does not divided(A/R), then Ap is start with the natural ordef (cf. Example 3.2). We form a
maximal Rp-order. setS = {Py,..., P} consisting of the prime ideals dividing

Proof: According to previous proposition we always have(A). According to Corollary 9.6\ is a maximalR p-order
d(T/R)Rp = d(T'p/Rp). On the other hand we supposed thaf P ¢ S.

P 1 d(A/R) resulting thatd(T'p/Rp) = d(A/R)Rp = Rp. The basic idea of the algorithm is to test foe= 1,...,r

Lemma 3.12 then imply that p is maximal. m whether A is maximal atP;. If the answer is yesA is a

Extremal orders and especially Proposition 9.10 below playaximal R-order. If not, then at the first indek for which

a key role in the method for constructing maximal orders. Ap, is not maximal we can construct/a-orderI" in A such
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thatAp, C I'p,, and hence\ C I (cf. Propositions 9.2-9.10). ¢~} (Rad(A’/PA’)) = ¢~ (1 + v/,1 + N\ 1 + p)z,) =
This can basically be done in two steps. llete S and let¢ (1 +d,1+u',1+ X, 1+ p)z;;) C A'. By taking the element
be the canonical reduction map+— A/PA.

/
STEP 1 REPEAT UNTIL "YES" ComputeZ = S— +,A c 0T
¢~1(Rad(A/PA)) < A. Does the equality);(Z) = A hold? 141
"NO": O)(T) D A we can again enlarge the ordér to A” = (1,u',7,p)z[
A — Oy(T) (Iteration step) and compute7” = ¢~ (Rad(A"”/PA")) = ¢~ (1 + o/, 1 +

STEP 2 REPEAT UNTIL "NO": Compute the minimal »:7)z,) = (1 +4,1+u/,1 + p,7)z;;) C A”. We need one
ideals 71, 72, ..., Jn (h < dimgq.A) of A/PA which contain more iteration of STEP 1. Now the element
Rad(A/PA). FORi = 1,...,h computeZ; = ¢~ 1(7;). Does (1+u)(u' + N) Y
there exist an index for which O;(Z;) > A? e O(T")
YES A OZ(L). (Iterat|o_n step) and the orderA” is enlarged toA” = (1,7, p,v)z};). From
NO™ OUTPUT A is a maximalOp-order. this iteration we finally get the answer to be "YES".
Let P € S. First we test whetheAp is an extremal (cf.

st ' In STEP 2 there is nothing to do, as the only minimal ideal
Definition 9.4) i p-order by using Lemma 9.9. If not, then Wepgnerly containing the radical is the radical itself. Hence we

shall construct arkR-orderT” > A. If Ap passes this test, the”have constructed a maximélji]-order of GA+ with a Z{i]-
we can use the test of Proposition 9.10. If there exists an id%%'sis{l .}
J minimal among the ideals properly containifiaid (A p) In order to give a concrete description of this order we

such that0;(J) > Ap, then we construct aft-orderl’ > A. - yegcripe it in terms of it&]i]-basis. Let us again denote by
Otherwise we correctly conclude thatis maximal atP and  \ the first quadrant square root Bf+ i. The maximal order

continue with the nex” in the listS. In the end, the algorithm » qnsists of the matricesM, + bMy + ¢Ms + dM,, where
yields an R-order A which is now maximal. The algorithm , ; . 7 are arbitrary Gaussian integers ahfl,i = 1,2, 3,4
can be used similarly for constructirg-orders, and in the 4.0 the following matrices. ’ Y

MAGMA software the implementations are fé@r-orders only.

For more details concerning the computation of the prime M, = ( Lo ) My — ( 01 )
ideals in a ring, see [35]. A thorough explanation and an 0 1)’ i 0)7
algorithm for computing the radical can be found in [37]. 1 PN i

Remark 9.1:According to Lemma 9.4 we could have as M; = 5 ( 1N i — N ) ;

well defined the ideall by Z = ¢y~!(Rad(Ap). This inter-
pretation will be used in Section IX-D. M, — 1/ =1-iA i+
Let us next exemplify the above algorithm. 1T —1+X —1+4+4X )°

D. Enhancements to the Ivanyos—Rényai algorithm in certain
special cases

In the Golden division algebra (cf. Example 3.1 or [3]), Th . ts of the ab lqorith
i.e. the cyclic algebr&g A = (E/F,o,v) obtained from the € memory requirements of the above aigorithm grow

E — . F— . _ — 9 _ Quite rapidly as a funct.ion of the dimension of the algebra. For
data Q(i. V5), QG), v =i n  0(V5) example the MAGMA-implementation runs out of memory on
a typical modern PC, when given the index 8 cyclic algebra

C. A2 x 2 construction overZ(i]

—/5, the natural orden\ is already maximal. The norm of

the discriminant ofA (with respect toQ) is 625, whereas the .

norm of the minimal discriminant is 100 [32]. We will nowA5| ofﬂl?xampge 5'5 as an w;put. i lqorithm that find

present a code constructed from a maximal order of the cyclicn_ IS subsection, we describe an aigorithm that 1inds

division algebrag.A+ of Example 7.4. The maximal order OfmaX|maI orfjers_ for thg algebras;. !t. is an adaptation of the_

GA+ also admits the minimal discriminant and is in that Sengganyos—Ronyal algorithm that utilizes several facts special

optimal. The algorithm now proceeds as follows to this family of algebras, and thus its applicability is rather
The r;atural order of the algebad - is A — Z[i]éu’Z[i]eB limited. We list these simple facts in the following lemmas.

a o vl geb N . We will denoteZ[(,] by O for short.
AZ[i] @ u'\Z[i]. Hereafter, we will use a shorter notatidn= ) o :
(1,4, \,u/\) g for this. Let us consideA at the placeP = Lemma 9.11:The only prime ideal of) that lies above the

1+ as it is the only factor of the discriminant for which Wepfl[ne 21s éhlezpl_mlc;\gallj |deefJPg'tglenerated tb%l f_egé dul
can enlarge\. The inverse image of the radical (9.3) 6= emma =.1z.1e € a Tinitely generated Ire=-moduie

_ _ of rank k&, and let andm,..., m; be a basis. LetV be a
¢ YRad(A/PA)) = o7 ({1 4+, 1+ X 1+u'N)z,) = (1+ : Lyeeo T .
i 1J£u/ 1(+){ 1+)2L/>\>Z[,] (C<A Astraightforward>co)mpu<tation subrr(mdule Oﬂ\l/‘[ suhch thgt the ;nde;EM :hN] 'S alpowe][ of
¢ ’ ; % ' two (in particular this index is finite). TheiV is also a free
shows us (cf. Proposition 9.1) that the element O-module of rankk, and we can find a basis of of the form
1+u +X+u'\ 14+u)(1+ A
= 1+i :( 11_(7; )Eol(j)a nizzaijm]‘ ,aijeo.

j<i
which means that the answer to the question in STEP 1 Proof: This is a straightforward modification of the
is "NO", and hence we sed’ = (1,u',\, p)z; and iter- standard proof of the corresponding result for modules over a
ate. This time the inverse image of the radical & = PID. We first define the submoduléé for all t =0,1,...k
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as consisting of those elements &f whose (k — ¢) last non-commutative discrete valuation ring, and that the- ¢)-
coordinates vanish, adic valuation of the reduced norm serves as a valuation.
. E.g. it yields a metric subject to the non-archimedean triangle
N, = NN Z Om;. |nequal_|ty. So in _the matnx representatlon the valuatlpn (_)f the
determinant distinguishes the units from the non-units in the
ring A,. We immediately see that the same then holds in the
Clearly N, = N and Ny = 0. The idea is to sequentially ring I'y — the units are precisely the elements whose reduced

Jj=1

produce elements,, nx_1,...,n; in such a way that at eachnorm is a(1 + i)-adic unit. By the non-archimedean triangle
step the following two conditions are satisfied inequality the non-units of'; then form its unique maximal
1) for all j > 0, we haven; € N;, ideal, which is then also the radicRhd(I'2). _
) N=N&y ., On;. We distill the following two lemmas from the previous

L . discussion.

We proceed by descending induction, so assume that w . -

have eﬁready prgduced,c ?ztﬂ and we next work on emma 9.14:Suppose th‘?““ IS an F-cgntral d'V'S'OnAaI'
finding an element; (sot is a fixed index in the range < ?segr?ji\?rs;ggeﬁ :;r(; trtlr?zta[;tx 'S ﬁ:sogdﬁ:“mlﬁ' rlmzaéir%:gl ﬁeal
t < k). Consider the modul&/;" = N, @Zj>t Om;. Clearly Rad Ap. 9 ' P q

+ + - . - . -
N C N C M, soNis also of a finite index inl/, and Proof: The only open question that was left open in the

N i :
[M ']\/{[Vt ) 'g?rl]s? a pow;er: of fwo. CtonS|_der :h(ihhomomd(_)rstrBrevious discussion, is whether all the elementa jnwhose
fo: M — al maps the eemeﬁ:j a;jm; 10 the coordinale oy ,ced norm is a-adic unit are really units iMp. This

o TN :
a. Write I = fy(Ny) = J:(N,"). Becausf; is onto, we get a js yrye in the maximal orden, that includesA », because
surjective homomorphism from//N," onto O/I,. Therefore A, = AN A%, wherel, is the maximal order in the division

the index of the id_eal[t ir_‘ O is _also a power of two, gnd algebraAd @ ¢ Fp. The claim now follows from [23, Exercise
by Lemma 9.11/; is a principal ideal generated by a smgleZ1r Section 25] -

elementy, € O. Setay, = y;. We may thus choose an element 1, fo)10ing Lemma is the key to our modifications to
ny € Ny such thatf, () =y, SO1y = aum + 32, ajm; Step 1 in the main algorithm.
for some elements;; € O. If x =3, b;m; is any element | ooy ma 9 151 et T be any intermediate order. The ideal

of N, thenb, = by, for someb € O. Thereforex —bn, € 7 _ p Rad(I'y) consists of exactly those matrices which
Ni—1, and becaus@ is an integral domain this implies thatj.tarminants are divisible by +i.

Ny = Ni—1 © On,. Together with the induction hypothesis e fo)10wing lemma is a simple reformulation of the fact

N =N 3., On; this implies the induction claim' = 5 p, is of index 2 in©. It will allow us to reduce the range
Ne-1 ® Zj>tfl On;. of certain searches from® to the set{0, 1}.

In the end we get (becaus¥y = 0) N = Zle Onj, Lemma 9.16:Assume thap(z) = 3.7 p;a® € Z[z]. Then
so the elements;,j = 1,...,k, generate the moduléy.
Because the matrixa,;) is lower triangular, and the set p(Ce) =po+pi+---+pr (mod F).
{m1,ma,...,my} was assumed to be linearly independent, |et us denote by, the complex number
the set{ny,ns,...,ni} is also linearly independent over the 1 143
integral domain®. Thus N is a freeO-module. [ ] Se= 7 c ==

Corollary 9.13: The maximal order\, of A, is a freeO- ¢
module of rankn = 2¢=2. The fractional ideal generated By is thenP[l.

Proof: We already know that\, containsA;,..; as a Proposition 9.17:Let I" be an intermediate order. Assume

submodule of a finite index. Thus, there exists an intéger  that it is a freeO-module, and thag,, gz, . . ., g, is its basis.
0 with the property thaf\/ A, is a submodule of a finite index Let I = ¢~ (Rad(I'z)) (cf. STEP 1). Then/ is also a free
in Ag,q¢. The formula for the discriminants tells us that wé?-module of rankn that satisfies” C s,7. We can find a

(T4+C+ G+ 4+,

can further select the multipliet/ to be a power of two. basis forI that is of the formry,rs, ... 7., where for alli
Clearly, it suffices to prove that/A, is a free module of the either

right rank. As the natural order, obviously, is a fil@emodule Ti = gi + Z €95

of rank n, this is a consequence of Lemma 9.12. [ ] J<i

Let thenT' be anyintermediate orderi.e. any order with sych that all the coefficients; € {0,1}, or
the propertyA; o € T' C Ay We will denote byI's the
ring obtained by localizingl' at the primel + 4. This is ri = (1= C0)gi-
naturally a subring of the corresponding localized version of Proof: Any element ofl" has determinant (= its reduced
the maximal order and consequently also of the completion érm) in Z[i]. The reduced norm of — ¢, is an associate of
the maximal order\,. This latter ring is aZ,[i]-order in the 1+ 4. Therefore(1 —¢,)I' € I CT. Thus the index of in T
completion of the central simpl€),(i)-algebra.4, obtained is a power of two. Hence Lemma 9.12 implies thas a free
from A, by extending its scalars to the complete fi€)d(i). O-module of rankn. With the notation of Lemma 9.12 we
Because the algebrd, has a full local index2~2 at the prime also see that the coefficient, is always either or 1 — (. In
141, A, is actually a division algebra. By [23, Theorem 12.8fhe former case Lemma 9.16 and the fact that P, allow us
and the surrounding discussion therein we know thais a to choose the coefficients; as required. In the latter case we
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have no reason not to choosg= (1 — {;)g; as this element elementsuy, ..., u4:
is in I by Lemma 9.15. [ ]
Proposition 9.18:Let I, I, and the basesg,...,g, and up =1,
r,...,r, be as in the previous proposition. Then the left uy = (s> + s%) + us®,
orgerr/ = (9@([2 is ifreef)-mr:dul_ehcontained i3, Ithas . — (s* 4+ 255 + 255 + 8 + 510) 4 u(s5 + %) + u2s!0,
isgy, ... where for ither
a basisgy, ..., g,, where for all: eithe ug = (s+8*+5° + 88+ %+ 510 4+ 511 4 512 4 5193)
g =s0(gi + > €ii95), +u(s? + M + 813 + (s + s13) + st
j<i

. We observe that the highest powers sohppearing in these
such that all the coefficients; < {0,1}, or basis elements ai@ 3, 10, and13, respectively. This fits well
o together with our earlier calculation showing that the index of
9i = Yi- - . 6 1
Proof: The inclusion(1 — ¢,)T C I immediately shows the natural order in a maX|_maI one 286, The numbers
thatD' C O,(I) C s,I'. Therefore the index ofl — ¢,)I" in generates the prime ideal lying above 2, @rd3 +10+13 =
I is a power of two. Again Lemma 9.12 shows thdtis a
free O-module. We also have the inclusigh — (,)I" C T

It is a basic fact from the theory of the cyclotomic rings

An argument similar to the one in the proof of the previou@f integers that the conjugate of the elemeris of the form

proposition then shows that the algorithm in the proof ¢f(s) = uos, Whereu, is a unit of the ringZ[c]. Using this
Lemma 9.12 yields a basis of the prescribed type. m Observation and the relatiors = o(s)u we see that, instead of

When we use the natural ordar,,; of the algebrad, as a the generator,, above, we could use the produgtus. After

starting point, the known discriminants @ and the maximal 2l the O-module spanned by these elements is an order, so

order A,na, tell us that the indeXA, s : Anai iS @ power we can utilize the fact that it is closed under multiplication.

of two. Thereforep = 1 + i is the only interesting prime in _ EXa@mple 9.2:In the 8 antenna case= 5 we get a free

Step 1 of the main algorithm. This step can now be completéimodule of rank 8 as a maximal order. The basis elements

simply by lettingT" to be the natural order, and, ..., g, to 1, Us aré similar linear combinations df u,u?, ..., u”

be its O-module basis. We next find a basis fbby testing, With coefficients of the formp(s), wherep(z) < Z[z] and

whether any element of the type = g, + >, _, ci;g; has a § = 8¢, In this case, the pqunomlal coefficients of the various

determinant divisible by +i (and if no such element is foundPasis elements have maximal degrees 0, 3, 10, 13, 28, 31, 38

then includingr; = (1 — (;)g; into the basis instead). We then@nd 41. As expected, these_degrees sum up to _164. Taking

proceed to compute afd-module basis for the left orddr’ advan_tage of the fact that this m_odule is also a ring we can

of this I. Again we simply check, whether any elements df€scribe the elements of the basis by

the formg; = se(g9; +3_,, €ij9;) belong toI”. Observe that

it suffices to test a candidate of this form against the basis 5 3 3

elementsr; only. If such an element is found, we record that %2 = (5" +5%) + us”,

I will be strictly larger tharl'. If no such element is found,  u3 = (s + 52 + s 4+ 25° 4+ 25% 4 % + 510)

we useg; = g; instead. After we have done this for aJlwe +u(s® + s8) + u?s',

will know, whetherI” = T'. If this is the case, we are done.

Otherwise we replac€ with T” and repeat the process. s 3 4 s 6 ; g
Now we have taken care of the STEP 1 and we know that U5 = 5 +25% + s + 257 + 55" + 85" + 85’ + 35

T(144 is an extremal order. Luckily for us STEP 2 is not + 557 + 6510 + 551t 4+ 7512 4 6513 + 751

needed ad’(; ;) is actually maximal. We describe the proof 4 4510 4 5516 4 0618 4 9520 | (24 | (28

shortly. We will use the term hereditary without defining it.

First, [23, Theorem 39.25 and the following remark] states that

up =1,

Ug = UUZ,

+ u(s5 4255 + 45" + 8 4 7 + 510 4 251 4+ 2512

(11 is hereditary. Lemma 9.14 gives us tiad ;) is +3s% 4 351 4+ 519 4 351°)

the unigue maximal two-sided ideall; ;;). Theorem 18.4in +u?(s' 25 + 2510 4 510 4 518 4 50)
[Zi] then states that under these conditibps, ;) is a maximal 1B (315 4 516) +uts?,

order.

We implemented this on the computer algebra system Math- 6 = 245

ematica, and on a typical modern PC it found a maximal u7 = uzus,
order in the case/ = 5 in less than half an hour. We g = ususus.
believe that the memory savings due to the use&ddbases
as opposed t@-bases in the general purpose implementation
in MAGMA account for this enhancement in the performance
of the algorithm. This algorithm could naturally be ported into In the following we will analyze the perfect codes of [10].
any CAS to handle these very specific cases. Specifically, we are going to discuss the structure of the
Example 9.1:Assume that we have the 4 antenna case underlying algebras. In order to do so, we have to prove some
4. Let us denotes = s, in short. In this case, the aboveresults that allow us to use our previous machinery also in this
algorithm yields an order with (leffp-basis consisting of the situation.

X. ANALYSIS OF THE PERFECT ALGEBRAS
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The following simple fact (also known to E. Viterbo, privates that lies overP. We denote the completiof)z by Ep or
communication) explains why using a principal one-sided (leff - F». This notation is valid in Galois extensions, because
or right) ideal instead of the entire order will not change thihe fieldsEp are isomorphic for all prime® that lie overP.

density or normalized minimum determinant of the code. In the following we give an algebraic analysis of perfect
Lemma 10.1:Let A be an order in a cyclic division algebracodes. The resulting numerical data is collected into Table lIl.
of indexn over an imaginary quadratic number field. et 1) The2 x 2 Perfect code:The first perfect algebra is the
A be any non-zero element. Then same as the Golden algebfgd = (E/F,o,7), where the
extensionE /F = Q(i,/5)/Q(i) has discriminan{2+i)(2 —
0(Az) = 6(A). i). The discriminant of the natural order is therefd@®+

Proof: By the multiplicativity of the norm the minimum 2" (2—%)”. Because the discriminant of the algetitd divides

. 2 . 2 . . . . .
determinant of\z is equal to the absolute value of 4,/ (). (2+1) (2di i)° it can have at maxm;;m tv;/o prime divisors
Let us now determine how the fundamental parallelotope &%) a”b(Q_l)' As ‘? consequenget e only Hasse invariants
Az is related to the fundamental parallelotope/of that can be nontrivial aré x4y andh(z-—;. »

We have thatA : Az] = [Ny, p(z)| (see [23, Exercise 7 The algebraG.A must have at least two nontrivial Hasse

p. 131]). On the other hand [23, Theorem 9.14, p. 119] telllevari"’?r"_[S and therefqrb(gﬂ») andh(z—; are both nontrivial.
Combining the equations

us that
Naa@l = INpa(Nar) LOMImery, me-y] =2
Remark 3.3 . n and hayyy + ha—yy = 1 we get thaths ;) = hp_; = 1/2.
arl N (2+4) + hz-9) (2+4) (2—4)
(F:Ql=2 Nrja((nrae(@)”)] Theorem 6.11 states that the discriminangof is (2+14)%(2—
= |nrayr(@)" i)2. Comparing this to the discriminant of the natural order we
_ ‘WA/F(J;”M. see that the natural ordéy, is maximal. The actual code is
then
Hence,[A : Az] = |nr 4 p(2)*". This implies By = lAza
C

m(A)[nr 4/ p(2) " = m(zA), wherea C O andc € R is normalizing factor. The element
and therefore a is chosen S0 that the vectorized coplé3;) (see Section Il)
[ ae (@) I has shap@™” |
d(Azx) = Tam = o = o(A). 2) The3 x 3 Perfect code:The underlying algebra of the
(m(Az)) (m(A)) 3 x 3 perfect code isP; = (E/F,o,w), where againv =
B (—1++/-3)/2, F =Qw), E=Q(&r+¢ ' w) ando :
We remark that the same fact obviously also holds fgy 4 (' —— ¢2 + ¢; 2. The algebraP; has a representation
principal left ideals of a maximal order. as
Proposition 10.2:Let D; = (E,/F,01,v1) and Dy = Leouw-Leu? L
(E2/F,02,72) be division algebras that have coprime indices

3
my andms. ThenD, @D; is a division algebra with an index Whereu” = w.. _ _
mimg. Fu2rthermoré i 9 The discriminant of the extensiali/F is (2 +v/—3)?(2 —

V=3)? = P2PZ and the discriminant of the natural order
D1 @ Dy ~ (E1Es/F,0102,7 75" ), has therefore only two prime factors. By Lemma 7.5 the only
. nontrivial Hasse invariants dP; are hp, and hp,. Because
whereo; o, is an element ofzal(E1 Ey/F) ~ Gal(Ey /F) x LCM [mp,, mp,] = 3. We get thatmp, = mp, — 3.
Gal(Ey/F). ) .
Let P, and P, be some pair of minimal prime ideals of To calculate the Hasse invariahp, we pass to the com-
1 2 H r H
. L L | =F . F Th 1 |
the field F'. If D; andD, have minimal discriminants that arep etion Pp, p, @ Ps. From Theorem 6.10 we get a cyclic

only divisible by P; and P, thenD; @ D, has a minimal 25" eration P = (Bo/Brr. 0m.0)
discriminant that is only divisible by?, and Ps. P Pu/ 8P TP %0

Proof: For the proof of the first two claims we referwhereEp1 /Fp1 is a totally ramified extension andp, is the
the reader to [26, Theorem 20, p. 99]. The only nontrivialatural extension of the automorphism Because the local
Hasse invariants of the division algebrds and D, are indexmp, = 3, we know thatPp, is a division algebra.
those associated with the primés and P,. The mappings  Next we try to find another cyclic generation for this algebra
in the fundamental exact sequence (4) are homomorphisststhat we can use the definition of Hasse invariant to calculate
of groups. Together with the fact that extending scalars totlze value ofhp,.
P-adic completion commutes with the formation of a tensor It is readily verified that the fieldp, (u) = Tp, C Pp,
product shows that the Hasse invariantgf® D, are sums is a cyclic and totally inert extension d?pl. The Frobenius
of those of D; and D,. Hence, the discriminant ab; ® D, automorphism of the extensiohp, /Ep, is defined by the
is only divisible by the prime ideal®, and P,. By the proof (Tp, /Fp,, P1)(u) = u”. The Noether-Skolem Theorem ([23,
of Theorem 6.12 it is then minimal. B Theorem 7.21]) states that there is an elemert Pp, such

Suppose we have a finite cyclic extensiBpF of algebraic that

number fields. LetP be a prime ofF" and B some prime of (Tp,/Fp,, P1)(a) =z ax Va € Tp,. (7)
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For an element: to fulfill (7) it is enough to satisfy the Let us first consider the algebraB; =
equation (Q(WV7,w)/Q(w), 02, —w). We use similar strategy as
Te [Fp  P)(u) = 0 = zuz~". in the case of the algebrB,.
(e /Fys Pr)(w) The prime(2 + /=3) = P, is tamely ramified in the ex-
By considering the equationz = zu” = zw?u we see that tensionE/F. By passing to the’ -adic completiontp, / F'p,
T = §7+<7—1 +w?(¢2 +§7—2) +w(§¢+47—4) c L is a suitable we find that the local conductor i8;. The image of the norm

element. NEP1 /FPl inClUdeS<(1 + P1>> X <6(2 + v/ —3)>, wheree is a
We now prove thatz® is an element ofFp,, and that unit of Fp,.
vp, (2®) = 1. The first statement follows fromo(z3) = The set{0, 1, w, —w, w?, —w?} is a complete residue system

23u = z*uww’r = uz®. The second statement is obtainedf the groupO, /PO ~and whence
from the equatiorvp, (v3) = vp, (nrg,r(z)) = vp, (T(2 + ' '

(V=3)w) = 2. Fp = (—w) x (14 P1) x (e(2+ vV=3)).
_Proposition  11.1 r;ow_ states_ _ _that By = On the other hand#((ﬁpl)*/NEP . (EE)) — 92 and
(Tp,/Fp,; (Tp,/Fp,, P1),x%) is a division algebra of yorefore—w cannot be a norm. From this it follows that the

index 3. By (7) we can considdf, as a subset of the algebrggeq algebra(3, ) p, is a division algebra of index two.
Ps. But By is a Fp,-central division algebra and hence a There is no other choice for the Hasse invariapt than
9 dimensional overfp,. From this we can conclude thatl/Q_
(Tp,/Fp,, (Tp, /Fp,, P1),2%) = Pp,. Replacing the prime?; with P, = (2 —/=3) in the above
Proposition 11.4 now implies thdip, = 2/3. Because the cgonsiderations we see thap, = 1/2.
sum of the Hasse invariants has to be an integer, the invarianfpe extensionE/F has only three ramified prime& —
hp, equalsl/3. V=3),(2 + v=3), and (2). Thus, the discriminant of the
By considering the local indices we see that the discriminagigebra3, can have three prime divisors at maximum. The
of the maximal order |§D16P26, thatis, equal to the diSCfiminantpotentia| nontrivial Hasse invariants &% are nowhpl’ hPQ’
of the natural orderAs. Thus, the natural order has to beyngd h(2). The sum ofhp, and hp, is 1, and thereforeh o)
maximal. must be trivial.
The actual codeBs is produced similarly to th@ x 2 case  The algebraB; is a division algebra with Hasse invariants
Wltg exception Fhat the vectorized c.ode lattice has now sha@g_m) = hgyy=3) = 1/2. .
A%, where A, is the hexagonal lattice. The algebraPs = (E/F,03,w) was previously shown to
3) The4 x 4 Perfect code:The underlying division algebra be a division algebra with Hasse invariats, _ —3) = 2/3
under thet x4 perfect code i, = (E/F,0,i), whereQ(i) = and hy, =5 = 1/3. We now consider the algebii; =
F,Q(i,(15 + (5') = E ando : G5 + (' — B + (5 (E/F,03,w?). By [23, Theorem 30.4] we hav@s ® Bs ~
The extensiont/Q(i) has discriminantl(E/Q(i)) = (2+ (E/F,03,1) ~ Ms(F). This shows thatP; @ Bs has trivial
i)3(2 — 1)3(3)%, and the only Hasse invariants that can beasse invariants and therefore the Hasse invariants; aire
nontrivial arehs), h24) andh_;). We use similar methods h,_ /=3, = 1/3 andhy, =3, = 2/3.
to those in the case oP; to get thath(,,,) = 3/4 and If we now consider the algebrg, ® B3 ~
hia_y = 1/4. The sumho_; +hoo ;) = 1 and thereforéi s - —1 3 2\2
m(ust)be tévial. Further,( thé Ioc(al+ir)1dices reveal that tr(1e) dis- (QVT,0) - QUG + 67, w)/Q(w), 0203, (~w)° - (1))
criminant of the algebra i€2+14)'%(2—14)'2. The discriminant it is seen that the corresponding Hasse invariants are
of the natural order on the other hand#st+-i)'%(2—4)'2(3)%. hp_y =5 =1/3+1/2=5/6 andh, 5 =1/2+2/3 =
The codeB, is again constructed by using a principal ideal /6 (mod 1).
of the natural order. By considering the equations(¢z + (7 ') = ¢ + (72 =
4) The 6 x 6 Perfect code:In the 6 x 6 perfect code ¢7 + ¢~ we notice thatro; = 0. Combining this and the
construction the center & = Q(w) and the maximal subfield equation(—w)® - w* = —w we get thatB; @ B, ~ Ps.
E = K(0), where = (a5 + (o The algebraPs has only two nontrivial Hasse invariants
In [10] where the perfect codes were introduced, the authdf@t areho =3 = 5/6 and h,_ =5 = 1/6. Whence,
gave the mapping; by the equationr; : Cos + (o5 — (2 + the discriminant of the maximal order {g — v/=3)*(2 +
G522 Unfortunately, this mapping is not drautomorphism of V—3)*" = (7)*. On the other hand the discriminant of the
the field . We replaces; with the automorphisno defined Natural order ig(2)*°(7)%.
by the equations : (as + (o — (35 + (oe. The relative ~ The actual codeBs now has form
discriminant of the extensiods/F is (2)5(2 + v/=3)%(2 — Ly
V3)® = (2)%(7)°. We denote the resulting algebra Y. c "
Thus the Hasse invariants &% that can be nontrivial are where I is a non-principal ideal of0z andc € R is a
hioty=3) ho—y=5), andhs). normalizing element. Agaii is chosen so that the shape of the
Now we are going to presefils as a product of two smaller lattice is Agz. Here our methods fail to determine the exact
division algebras. We first calculate the Hasse invariants wdlue of the normalized minimum determinant. In [10] the
these smaller algebras and then from these derive the Haasthors represent an upper and lower bounds for the minimum
invariants ofPg. determinant.
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We have collected information about the normalized mini- Lemma 11.1:Let E be a Galois extension of a number field
mum determinants of the perfect codes and of the underlyifigand letP be a prime ideal o©F that lies under the prime
natural orders into Table Ill. We have also added the inform#- of the ring Og. If the inertial degree o in the extension
tion, whether the natural orders are maximal. E/Fis f and~ is such an element df that (vp(y), f) = 1,

As an example we show how the values for the first rothen~? ¢ Ng/p(E) foranyi=1,2,...,f - 1.
of the table Il has been calculated. The discriminant of the We first consider two easy prime powers and then move
natural orderA, of the golden algebrg A is (2+)?(2—14)2. forward to more complicated ones.

This implies that the volume of the fundamental parallelotope To ease the notation, we will denote By, the residue class

is 25. Corollary 4.2 then gives that th&tAs) = 0.45. ring modulom, i.e. Z,, = Z/mZ. Thus e.g.Z%, is logically
The actual codeB; is then aA; where a is a suitable the group of units of that ring.
element of the natural order. Lemma 10.1 statesdh@ta) = Lemma 11.2:Suppose that” is a cyclic extension off’,
d(Ag) = 0.45. and thataOr = P, and P, are a pair of smallest primes in
F. Assume thaf, is totally inert andP; is the only ramified
TABLE Il prime in the extensio®?/F. Then
n | maximal? | 6(An) | 0(Bn) A= (E/F,o,a),
2 | yes 0.45 0.45 . o
3 | yes 014 | 0.14 where (¢) = Gal(E/F), is a division algebra that has a
4 1 no 0.03 | 0.03 minimal discriminant.
6 | no 0.0001 | ?

Proof: Lemma 11.1 combined with Proposition 3.6 gives
that A is a division algebra. The minimality of the discriminant
_ _ . follows from Lemma 7.5. ]

In Table IV we are comparing the normalized minimum Example 11.1:Let/ > 2 be an integer. The maximal orders

determinants of the perfect codes and the maximal order Co%?sthe cvelic divisi - . )
; " . ) yclic division algebrad, = (Q(¢,)/Q(i),0,2 + i
(ALandAY) whose existence is guaranteed by the results om Example 5.2 achieve the discriminan/t boand. )

Section V. Example 11.2:The field Q(Cz+1) has a unique subfield

TABLE IV where[Z : Q] = 3. The extensiorQ(v/—3)Z/Q(v/—3) has

degree3® and the primg2) is totally inert in this extension.

n [ 8(ALY | 6(A2) [ 8(By) The extension also has a very limited ramification, the prime

2 | 0.562 | 0.620 | 0.447 (v/—3) is the only ramified one.

310316 | 0358 | 0.14 Primes(y/—3) and (2) are a pair of minimal primes in the

4 | 0177 | 0.207 | 0.030 , .

5 | 0100 | 0119 field Q(v/—3). Lemma 11.2 states now that the cyclic algebra

6 | 0.056 | 0.069 | ? A=(Q(vV-3)Z/Q(v/-3),0,2) is a division algebra with a

minimal discriminant.
In Example 11.2 we found a suitable extensiopQ(v/—3)
that only had one ramified prime/(3). However, we can
XI. GENERAL CONSTRUCTION OF DIVISION ALGEBRAS  prove that for an arbitrary degree there usually does not exist
ACHIEVING THE DISCRIMINANT BOUND a cyclic extension that has ramification ovey<3) or (2)
In their recent paper [14], Eli@t al. gave an explicit only. This assures that in general we cannot use such simple

construction for division algebras of an arbitrary degree witf€thods. Next we will provide a construction method that
centersQ(i) and Q(v/—3). In their general constructionstakes care of most of the prime power degrees. First we need

they used non-unit, but relatively small, non-norm elemeni°Me Preliminary results. _ _
As they were not interested in maximal orders nor the Recall the concept of the global Frobenius automorphism.

discriminants of the corresponding division algebras, theUPPOSe we have a finite Galois extensiBfif” and thatB
algebras (with few exceptions) did not happen to have mininigi Such a prime ideal o0, that BN O = P is unramified
discriminants. in the extensionE'/F. There exists a unique elemeat of

We are now going to give a general construction for divisiof?® 9roupGal(E/F) that is associated to the primé and

algebras of arbitrary degree and with minimal discriminant§atisfies

According to Proposition 10.2, it suffices to study the case, o(B) = B ®)

where the index is a prime power. As a drawback our con- _ .p

structions will be dependent on the existence of certain prime ofa) = (a)[OF ] (mod B). ©)

numbers. We discuss this existence problem in Section Xl\ie call this element the Frobenius automorphismBoand

which is purely number theoretic. We note that the fields Wg:note it with(B, E/F).

use in our construction are just simple modifications of the |f the extensionE/F is abelian, all the primes; that lie

fields in [38]. over P share the same Frobenius automorphism and we can
We give one simple lemma for later use, slightly generagenote(B, E/F) by (P, E/F).

izing [11, Theorem 1]. The proof is rather similar to the one For the properties of the Frobenius automorphism we refer
given in [11], and therefore we omit it. the reader to [39, p. 379].
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Example 11.3:Let p; # p. Then the Frobenius automor-group ¥(Z;)" by Z. It is now clear thatZ is unique and

phism (p1, Q(¢,)/Q) can be defined by [Z : Q] = n. If we first map the elements & with ¢ to
) Gal(Q(¢p)/Q) and then restrict the resulting automorphisms

W y (p1, Q(Cp)/f%_)(lfdp) =G ¢ i to the field Z, we obtain an isomorphism from Z;/(Z;)"

e consider a tower of fieldh C F5 C L of finite 4, Gal(Z/Q). Proposition 11.3 states thathas the claimed
extensions. properties.

PropOSItlon_ll.S:If P < FQ_g B, E/Fy and I3/ Fy are The last claim follows from the properties @f combined
norma! _and_B is such a prime ideal oF that BN Iy, = P is with the last statement of Proposition 11.3. ]
unramified in£/ £y, then Proposition 11.8:Suppose thaf’ = Q(,/¢) is a quadratic

(B,E/F))|rm, = (BN Fy, Fy/Fy). field, ¢ # 2 is a given prime and a given integer. We suppose

that P, and P, are the smallest primes ideals ihandp; and
The primeP is totally inert in the extensiod’/ Fy if and only ;) are the prime numbers that lie undgr and P».

if (B, E/F1) generates the grou@al(E/F}). Let p be such a prime that*|(p — 1), (p,c) = 1, and that
Proof: See [39, Theorem 7.10]. B, andp, are totally inert in the extensio/Q, whereZ is
The next lemma is a rather direct consequence of the unique subfield 0Q(¢,) of degreeq”. We also suppose
definition of Hasse invariant. thatp is inert in the extensiod’/Q.
Lemma 11.4:Let The extensiorn’Z/ F is a cyclic Galois extension of degree
A= (E/F,0,7) q" where the prime ideal$’, and P» are totally inert and

P = pOpr is the only ramified prime ideal in the extension
be a division algebra wherer) = Gal(E/F), vy € F*, [E: FZ/F.
F] = n and suppose thaP is a prime ideal ofF’ that is Proof: Let B be a prime ideal off'Z, P, = Oz N B,
totally inert in the extensioi/ F. If k is the smallest possible Pr = Or N B andb = Q N B. We denote the corresponding
positive integer so thai”* is the Frobenius automorphism oframification indices bye(B/Pz), e(Pz/Pr) and e(Pr/b).

P then the Hasse invariant @? According to Lemma 11.5
hp = 2P, e(B/b) = e(B/P7)e(Py/[b) = e(B/ Pr)e(Pr/b).
n
Proof: [23, p. 281]. B Lemma 11.6 for its part states thatB/Py),e(Pr/b) | 2

Let us next consider a tower of field§ C F> C E of finite  ande(Py/b),e(B/Pr) | ¢". This together with the previous
extensions. The proofs of the next two well known lemmasquation shows that the primeéz C O is ramified in the

will be omitted. extensionF'Z/F if and only if the primeb is ramified in the
Lemma 11.5:Let B be a prime ideal of), P, = O, N B extensionZ/Q.
and Py = Op, N B. The primep is the only ramified prime irZ/Q and because

1. Letf(B/P1), f(B/P,), and f(P,/P;) be the respective p is inert in the extensior/Q we see thatP is the only
inertia degrees of3 over P, B over P, and P> over P;. ramified ideal in the extensiodF/F.

Then If we chooseB so thatPr = P, or Pr = P, then

f(B/B1) = H(B/B) [P/ Pr). F(BIb) = F(B/P)F(Pa/b) = F(B/PR)F(Pr/b) = 4" - g,

2. Lete(B/Py), e(B/P,), ande(P2/P;) be the respective . . .
ramification indices ofB over P;, B over P, and P, over whereg = 1 or g = 2. This combined with Lemma 11.6
implies thatf(B/Pr) = q". [ |

F1. Then In the following propositions we use the notation from
e.(B/Pl) = e(B/P)e(Py/Pr). : Proposition 11.8. We set that, = f(Pi|p1) and f, =
Lemma 11.6:Let E/F be a Galois extension3 a prime F(Palps)
1 _ 2|1P2)-
\deal of £ and = £ B. Then Lemma 11.9:There exists a group isomorphissrbetween
e(B/P) | [E : F| Gal(FZ/F) and Gal(Z/Q) such that
and p((P;, FZ[F)) = (pi, Z/Q)".
f(B/P)|[E: F). Proof: It is a well-known fact that there exists a

Lemma 11.7:Let p be a prime anch such an integer that Well defined surjective homomorphism frotal(FZ/Q) to
n|(p — 1). The fieldQ(¢,) has a unique subfield with [z : Gal(Z/Q) for which o —— 07. The kernel of this map
Q] =n. consists of those elements 6fal(F'Z/Q) that act trivially

There exists a group isomorphism from Z*/(Z:)" to On the fieldZ. On the other hand, if we restrict the domain

Gal(Z/Q) that takes any primg; # p to the corresponding of the map to those elements that act trivially @n this

Frobenius automorphisttp:, Z/Q) in Gal(Z/Q). map is an injection because the only elemenGet(F'Z/Q)
The primep, # pis totally inert in the extensio#r/Q ifand that acts trivially on both fieldst” and Z is the identity
only if p! is not annth power(modp) fort =1,...,n—1. map. As we know thaiGal(F'Z/F)| = |Gal(Z/Q)| the

Proof: It is well known that there exists a uniquedescribed map must be an isomorphism. Now the statement

isomorphismy from Z? to Gal(Q((,)/Q) which takes prime about Frobenius maps follows from the basic properties of the
p1 # pto (p1,Q(¢)/Q). We denote the fixed field of the Frobenius automorphism. u
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Proposition 11.10:Let A. The existence of suitable primes

plpl? =1 (10)  Propositions 11.8 and 11.10 have turned our construction
: . e gh project into a hunt of suitable prime numbers. The problem
q — =
In the groupZ;,/(Z;)", P = mOr, and P, = a;0p. Then o we do not know if there are “enough” suitable prime
A= (FZ/F,0,a1a2) numbers. The answer is that in most cases there are. This
with (o) = Gal(FZ/F) is a division algebra that has aWill Pe proved in Theorem 11.14, but first we need some

minimal discriminant. preliminary results. _
Proof: The prime P, is totally inert in the extension For the deflnlthn of the Kummer extension we refer the
FZ/F. Thus, Lemma 11.1 states thtis a division algebra. f€ader to appendix and for a proper introduction to [40, p.
From the cyclic representation of the algebtave instantly
see that4 has only three Hasse invariants that can be non-Proposition 11.11:Let E//F" be a Kummer extension with
trivial: hp,, hp,, andhp. In what follows we show that the £ = F'(a), o" = a € OF, and letP be a prime ideal of’

invarianthp must be trivial. that is not a divisor otz - n. Furthermore, let be the largest
We first chooser to be the Frobenius automorphismBf.  divisor of n such that the congruence
Lemma 11.4 now shows that the Hasse invarianPpfis t_
) z'=a (mod P)
q" = hp,. has a solution ifDr. Then P decomposes iy into a product

of ¢ prime ideals of degree/t over P.
Lemma 11.12:Suppose thaj andp are prime numbers and
that ¢*|(p — 1) for some integet. If c is an integer and the

Because the groug;/(Z;)?" is cyclic we get from (10)
that pJ> = (p{")@"~V in Z:/(Z;)?". This implies that

(p2, Z/Q)> = ((p1, Z/Q)7)a" 1), According to Lemma

11.9 then(Py, FZ/F) — (P, FZ/F)""~1. Lemma 11.4 SqUation e o "
now states that " q c=a? (modp) (11)
4 0 = hp,. is not solvable, then neither is any of the equations
The sum of the Hasse invariants @f must be zero (mod F=z" (modp), (12)
1), whence .
hp1+hp2+hpez. wherek =1,...,¢" — 1.

Proof: Leta be a generator of the cyclic grodg,. Then
we can write that = a™ (mod p) for some integen.
Let us assume that (11) has no solution. This implies that
o i g is not a factor ofn. Assume then that for some there is
!n the beglnm_ng of our prqof we make the assump_tlon thatsolutiond for (12). If we writed = a*, then (12) gives that
o he Froberlus of he pine, Hoever Ihe choloe f b — ' —1(p ). wherey is some itegr Ag'(p 1
R . this would mean that?|kn. That gives us a contradictiorm
does not change the discriminant of the corresponding algebrai.n the following we use the phrase “the prinfichas inertia

_ , in the extensionE/F”. By that we mean that at least one
.Example .11.4.Suppo'se that th? centar = Q(.Z)' '!'he prime ideal B of E that lies over theP has inertial degree
primes(1+4) and (2 + i) are a pair of smallest prime |deals>](c(P|B) >

in this field. We want to produce a division algebra of inde ) :
. S . e Lemma 11.13:S ose thaf;, and F, are Galois exten-
10 that has a minimal discriminant. It is not difficult to checkSions of a fieldF als\zgﬂ AF, = 1F The 2primeP of I(’)p );as

t t —
thag %h 1?35 _aretnottﬁth p(t)wer_s d(?moﬂﬂz for ¢ *111’5'3' E4t inertia in the extensiot} F5 if and only if it has inertia in the
and thatl1 is inert in the extensiod’/Q. Lemma 11.8 states extensionFy or F,. The primeP is ramified in the extension

that Q(C11) has a subfield?, [Z : Q] =5, and thatz and5 . & 'i¢ ang only if it is ramified inF or in F.

are totally inert in the extensiof/Q. ) :
Proposition 11.8 states that the prim@s+ i) and (2 + ) Proof: For the proof the reader is referred to [41, p.363].

?;%;OﬁilIt>;1Elzng:l)lnratrrLeifiz)c(Jt?cri]:;cl)ﬁ;nZt/hi :Qtdergks‘?dfﬁ)zn/r??e_ ideal The proof of the following theorem is a slightly modified
We easily see that -5 — 1 in Z},/(Z1,)°. Therefore, version of the proof pf [38, Theorem 1]. We do not suppose
here that the center is totally complex nor that the ing is
(FZ/F,01,(1+14)(2+1)) a PID. However, we suppose that # p». For the simplicity
is a division algebra with a minimal discriminant. we also suppose thafh 7 2. _ _
We previously saw thatd = (Q((z1)/F, 02,2 + i) is a Theorem 11.14:Assume thatF = Q(+/c¢) is a quadratic
division algebra of index2 and has a minimal discriminant.field, 71 and P, are the smallest primes iff, ¢ { 2p; is a

But, we already saw thdip, + hp, € Z, which implies that
hp € Z. The discriminant of the algebtd has now only two
divisors P, and Ps.

Finally, from Proposition 10.2 given prime, anch a given integer.
) ) If g1 ¢, then there exists infinitely many prime numbers
2 7
(Q¢e1) 2/ F, 0102, (1 +1)7(2 +14)") so thatp is inert in F', Q(¢,) has a unique subfield, [Z :

is seen to be a division algebra of degigewith a minimal Q] = ¢", wherep; and p, are totally inert, anqb{lpg2 =1
discriminant. in Z3/(Z3)7".
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Proof: Let us denote” = s, K = Q((,)((pf'p?)Y/#), the construction of example 11.1 covers these cases. As a
K, = K((p1)"/?) and suppose thai # p;. By noticing consequence, we can construct a division algebra with a
that p; is unramified inQ(¢{,) the ideal factorization op;p2  minimal discriminant for an arbitrary index. In Table V we
in Q(¢s) reveals that(pflpgz)d cannot be arsth power (in give explicit representations for division algebras with a prime
Q(¢s)) foranyd =1,...,s — 1. Therefore[K : Q({;)] = s. power index less than 20 and a minimal discriminant.

As we have supposed that ¢ there has to be at least one For each index™ we have searched the prirpef the The-
prime p; that has a ramification indexin the extensiorf’/Q, orem 11.14 along the lines of example 11.4. After the prime
but which is not ramified in the extensidQ(({s)/Q. Earlier, p is found the actual minimal polynomial of the extension
we saw that[K : Q(¢;)] = s. Becauseps is not ramified FZ/F can be easily found by considering the subfields of
in Q(¢s)/Q and2 does not dividd K : Q((,)], none of the the extensiorQ(¢,)/Q. Both tasks were done by the help of
prime idealsP; in Oy that lie overps has?2 as a divisor of computer algebra system PARI [42].
the ramification index(Ps|ps). This implies thatF Z K . If the center isQ(v/—3), the problematic prime powers are

By [38, Lemma 2] we know thatK; : K] = ¢. Because 2" and3". Algebras of degre8™ we get from Example 11.2,

g #2andF ¢ K, the extensior; F// K is cyclic and[K, F :  but degree2™ are more difficult. For inde® we can use the
K] =2q. division algebra of Section VIII-B. As a conclusion we can

Chebotarev’s density theorem [39, Lemma 7.14] states thnstruct a division algebra with a minimal discriminant if the
K has infinitely many prime ideals that have absolute degrewlex is not divisible by.
one and are totally inert in the extensiéh F'/ K. We choose  In Table VI we give explicit representations for our algebras.
one, P, that not only has an absolute degree one but that isExample 11.5:From Table V we get that
also unramified in the extensiaii/Q.

We denote the prime df) that lies undetP by p. The field As = (Q(1)(a3)/Q(0), 03, (1 +1)(2 +1))
Q(¢y~) is a subfield of K and thereforep splits completely and
in the extensionQ({,~)/Q. The theory of cyclotomic fields Ay = (Q(i)(a2)/Q(2), 02, (2 + 1))

[40, p. 195] now gives that are division algebras with minimal discriminants.

p=1 (modg™). According to Proposition 10.2 algebrad, ® A; =
(Q(i)(as)/Q(i), 0203, (2 + 9)°(1 + i)?), where ag is a
zero of the polynomiak® — 225 + (—3i — 51)z* + (4i —
$0)23 + (=20 + 755) 22 + (—298i + 2134)z + —593i + 1628, is
a division algebra of degre®and has a minimal discriminant.

Next we are going to show that! is not ansth power
(modp) fort=1,...,s— 1. Lemma 11.12 suggests that w
should consider the equatign = z? (mod p). Suppose that
p1 = a? (mod p) for some integefa. Now p; = a? (mod
P). This last equation however cannot be true becaRse One of the unfortunate properties of our construction is
totally inert in the Kummer extensioi; /K. Lemma 11.12 that when we produce division algebras of a composite index,
now states that equatign, = z¢" (mod p) does not have a the resulting algebras tgnd to have relatively Iarge non-norm
solution for anyt = 1,...,q" — 1. elementsy. In the following example we solve this problem

Lemma 11.7 states th&((,) has a unique subfield with N one specific case and show that we can always-use
[Z : Q] = ¢, and thatp, is totally inert in the extension (2+%)(1+%). The method has a straightforward generalization

Z/Q. to more general situations.

The primeP has inertial degree one in the extensiiQ Example 11.6:In what follows we produce the algebss
and therefore(p/' pf?)1/7" = ¢ (mod P), whereg is some as a tensor product of two smaller algebras.
integer. This implies that Let a; be a zero of the polynomial® +i. The algebra3s =

(F(ag)/F,oq,(1+1)(2+1)) is a slightly modified version of
the algebrad, of Table V. Using Proposition 11.1 to the prime
If we use the notation of Lemma 11.7, the mapakesp; (2 + ) we see that it is a division algebra. Considering the
to the generatoy of the groupGal(Z/Q) and p!* - pi> to prime divisors of the natural order we see that it has a minimal
identity. Because 1 | Gal(Z/Q)| we have thaty(p; )/ is also discriminant.
a generator ofxal(Z/Q). The mapg is a homomorphism and  The algebraBB; = (F(a3)/F,03,(2 +4) (1 +i)71) is a
thereforeg(p, )72 and¢(p,) are again generators of the groupnodified version of the algebtds. Using Proposition 11.1 to
Gal(Z/Q). Lemma 11.7 now shows that is totally inert in  prime (2 + ¢) gives us thatB; is still a division algebra. By
the extensionZ/Q. considering the equatiois ® A3 ~ M, (F) we see thai3s
To complete the proof we have to show that the prigrie  has the same discriminant as the algeldra
inert in the extensiorF’/Q. The primeP must be inertin the  BecauseB, and B3 are division algebras with minimal
extensionF' K /K and therefore the primg has at least some discriminants, it follows from Proposition 10.2 that the tensor
inertia in the extensioir X/ Q. Because is totally splitin the product
extensionk’/Q it does not have any inertia in this extension . .
and therefo{e Lemma 11.13 states thahust be inert in the As = Bs @ By = (F(a2, a3)/ F, 0203, (2 +1)(1 + 7))
extensionF'/Q. m is a division algebra with a minimal discriminant. The polyno-
Theorem 11.14 states that for the cen@(:i) the only mial fs is just simply the minimal polynomial of the generator
problematic prime power indices are of the fof Luckily, a¢ of the field F(a2, a3).

pi'pl? = g7 (modp).
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TABLE V
CONDUCTORp OF THE CYCLOTOMIC FIELDQ(Cp), THE NON-NORM ELEMENT 7, AND THE MINIMAL POLYNOMIAL fn OF THE EXTENSION
Q(i)(an)/Q(7)

n p Y| fa

2 244 | 22+

3 79| (1+9)(2414) | 2®+ 2% — 26z +41

4 244 | ot i

5 11| (1+d)2+d) | 2®4+2* —42® =322 + 3z +1

7 211 | (144)(2414) | 27 + 2% — 9025 + 69x* + 130623 + 1242® — 52492 — 4663

8 (1+i)2+1i) | 2®+i

9 271 | (14+4)(2+14) | 2% + 2% — 12027 — 5432° + 8582° 4 6780z* + 72172 — 28182 — 4068z — 261

11| 859 | (1+4)(2+14) | 2 + 2'° — 3902° — 6532° + 5204627 + 1464382° — 27239302° — 11558015z* + 36326009x> +
2509605652 + 385923388 + 145865807

13 | 6163 | (1414)(2+14) | o™ + z'? — 28442"™ — 601720 + 29084902° 4 10238862x° — 1340405033z" — 67856646242° +
2819251300862° 4 1909036915713z — 21097272693753z> —  19205463505210022 —
235667966495418z + 213548387827457

16 2+i | 2% +4

17 | 239 | (14+4)(2+14) | o'+ —1122" — 472" + 397623 + 431422 — 64388z — 13624720 4-4220132° 4- 163107325 +
4118402" — 584019625 — 118943692 — 10635750z* — 47398042 — 93848522 — 54850z — 619

19 | 8779 | (144)(2+14) | o™ +2'® —41582"7 4 84632 4+ 62815392'° — 34466097x* — 429151369923 + 394545519482 +

1357034568541z — 17014625218525x° — 1846142674321852° + 30355237560718782% +
10088401800577582x" —  253111326110358151° - 143208448461319868x° +
10612439791376560471z* —  37745592327983578922°3 22004164792391296318222  +
860839321205015981392 + 1794221202297461499641

TABLE VI
THE CONDUCTORp OF THE CYCLOTOMIC FIELDQ(Cp), THE NON-NORM ELEMENT 7y, AND THE MINIMAL POLYNOMIAL fn OF THE EXTENSION
Q(v=3)(an)/Q(v~-3)

n D Y| fn

2

3 2 | 23 -3z +1

4

5 131 | V/=3-2 | 25 + 2% — 5223 — 8922 + 109z + 193

7 449 | \/=3-2 | 7 4+ 26 —1922° 4 2752* + 395223 + 413622 — 812 — 863

8

9 2 | 29 — 927 42725 — 3023 4+ 9z + 1

11 23| vV=3-2 | 2 + 210 — 1029 — 928 + 3627 + 2826 — 5625 — 352% + 3523 + 1522 — 62 — 1

13 | 1613 | v=3-2 | ='3 + 212 — 7442t — 2071210 + 172627x° + 43295928 — 1730940627 — 3360154325 4 7510736562 +
1289004819z* — 1017146697423 — 28375196178z2 — 23821205823z — 6355270027

16

17 239 | V=32 | 2'7 4+ 216 — 112215 — 472 + 3976213 + 4314212 — 64388z — 136247210 4 4220132° + 1631073z% +
411840z7 — 584019625 — 11894369x° — 10635750z* — 4739804z — 9384852 — 54850z — 619

19 | 14897 | v=3-2 | ' 4+ 218 — 7056z'7 — 40523z'6 4+ 17080680x'° 4+ 72065222z — 20162799933z'3 —
1616748530322 4+  12640227359901z'' —  36746089501267x0 4111622563682675z°  +

26076550916951212x% +590517012904831394x7 — 5563085347769988171x% — 1858701946459493040425 +
249077297117976638868x* +
2514075921454926809076x + 1237664412718620444787

89570134984571927459x> — 242644330013856319906822 —
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XIl. AN EXAMPLE CODE AND SIMULATION RESULTS

One of the ingredients in the construction of the perfect 1t
codes was the use of ideals in improving the shape of the
code lattices. In [5] we did the same but for the purpose of
saving energy and making the lattice easier to encode.

A way of doing that is to choose an elementof the
maximal order in such way that the left (or right) ideak g 107
is contained in the natural order. By moving the code insides . e
the natural order we then to some extent recover the layered e
structure of the natural orders, and then, hopefully, also some X _A
of the advantages of the inherent orthogonality between layers. BN — A )

For example in the case of the Golden+ algebra we can use 10° [ Golden coset6 --a--

Golden+ 6 —e—

the element1—\)3 from the ring of integer®x of the larger Golden PA 5 -
field £ = Q(v/2 +4) as a multiplier. Thus by denoting Goldg%@%i .
; ° gglgen+4 ——
1—))3 0 10 12 14 16 18 20 22
M = < ( 0 ) (1+/\)3 > SNR(dB)

Fig. 1. Block error rates at 4, 5, and 6 bpcu.
we get the ideal consisting of matrices of the fora\ M, +
bM My + ¢cM Mz + dM My, where the coefficients, b, ¢, d
are Gaussian integers and the matridés j = 1,2,3,4 are XIIl. CONCLUDING REMARKS AND SUGGESTIONS FOR
from Section IX-C. This ideal is a subset of the natural order FURTHER WORK

O ® uOE. We have derived a bound for the density of fully mul-
Our code constructions are based on selecting the prescrikiptexing MIMO matrix lattices resulting in codes with a
number of lowest energy matrices from a chosen additive cosiit minimum determinant. The bound only applies to codes
of the idealZ. In order to reach a target bandwidth utilizatiorobtained from the cyclic division algebras and their ideals.
of 4, 5 or 6 bpcu we thus selected 256, 1024 or 4096 matric&ghile the bound is not constructive per se, we also showed
In this sense we have done some coset optimization for ttiat it can be achieved for any number of transmit antennas,
Golden+ codes, but make no claims as to having found thad discussed techniques leading to the construction of CDAs
best coset. For the rival Golden code from [10] the cosefith maximal orders attaining the bound. For more details on
corresponding to assigning all the Gaussian integers the vatbe number theoretic techniques we refer the interested reader
(1+44)/2 stands out. This is because then there are 256 matritesthe doctoral dissertation of Roope Vehkalahti [29]. We
all having the minimal energy, and more importantly becausdso discussed the lvanyos—Rdényai algorithm that is needed to
in that case pulse amplitude modulation (PAM) can be usedtually find these densest possible lattices inside these CDAs,
to good effect. We first did some simulations using a PAMand gave as an example a construction of a fully multiplexing
type rule for larger subsets of the Golden code as well Ryx 2 code that outperforms the Golden code at least for some
arbitrarily selecting a suitable number of coefficients of theata rates.
basis matrices from the sét+-3/2,—1/2,1/2,3/2} sothatthe = We concede the point that assigning bit labels to the
desired bandwidth efficiency was achieved. This is a natugints on our lattice is more difficult than in the case of
choice well suited for e.g. the sphere decoding algorithrinear dispersion codes. A very promising general method of
While we ended up having a dead even race BLER-wise at 4pherical encoding has been studied in [25], where supporting
bpcu, the Golden code lost to the Golden+ code by about Ginulation results are also provided. See [43] for the MAGMA
dB at the higher rates (see Figure 1). In the interest of a faiommands for explicitly producing maximal orders and for
comparison we then tried coset optimization for the Goldem discussion onpower-controlled sphere decoding of the
code as well. This narrowed down the gap to about 0.3 dBwaximal order codes.
However, the resulting subsets of the Golden code no longefThere are also possibilities for applying these class field
have such a structure well suited to PAM. In other word$eoretical technigues to slightly modified density problems of
both the rival codes must resort to the use of a codebook. \W&-codes. For example, the bound of Theorem 6.12 has been
have not even attempted to solve the problem of optimizinged in [19] to produce dense asymmetric and multi-block ST
the codebook for the purposes of minimizing BER. This alstodes. Asymmetric situations naturally arise in applications,
explains, why our performance plots only show the block err@rhere the receiver may have a lower number of antennas than
rates (i.e. the probability of decoder deciding in favor @2 the transmitter, e.g. in a broadcast application or in a cellular
matrix other than the transmitted one) rather than bit errphone downlink.
rates. Thus our simulations may also be viewed as measurind\n immediate open problem is to utilize maximal orders
the amount of power lost, when one insists on not needingofthe cyclic division algebra of index 2 with cent€)(w).
codebook. When looking for the example code in the previous section a
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natural step was to use LLL-algorithm for finding a relativeljunction. Thediscriminantd(L/K) of the extension./K is
orthogonal basis for the lattice. That definitely aided the searah ideal inOx generated by the set

for a good coset. In the hexagonal case this step is somewhat n o

trickier and using a multiplier to put the maximal order inside {det(troyw(ziz)))ij=1 | (21, ., 20) € OL}.

the natural order only lead to a code with a disappointingwe want to emphasize that we consider the relation between
performance. The best way of using this densest known lattigg, and ©;, we can also writel(O,/Ok).

of 2 x 2-matrices is not known to us. As another open problem ¢, is a freex-module, then

we ask, whether the discriminant bound can be broken by

a MIMO lattice that does not come from a cyclic division d(Or/Ok) = det(tr(xziz;))ij=1,

algebra. We believe this to be a very difficult question. where{z1,...,a,} is any O-basis ofOy .

The following theorem connects the ramification of finite
APPENDIX primes and the discriminant.
In this Appendix we first give some results on algebraic Theorem 13.4:Let P be a prime ideal of the rin@x and

number theory. The presentation is not intended to be a nige= char(Ox/P). Suppose that
introduction, but rather a collection of results and concepts PO, — B ... B
needed in this paper. In Section XIII-B, we give a proof of the ! g
claimed result in the beginning of the Section IX that naturéd the prime decomposition @? in the ringO;,. Let f; stand
orders can never reach our discriminant bounds. for the inertial degregf(B;|P). Then

vp(d(L/K)) = (e1 = 1)fi+ -+ (eg = 1) fy,
pte,i=1,2,... g, and

A. Some results from algebraic humber theory

In this paper, an algebraic number field is a finite algebra'ifc
extension ofQ. Let K be an algebraic number field adel vp(d(L/K)) > (e1 — 1) f1 + -+ (eg — 1) fy,
the ring of algebraic integers iA. . . )

Definition 13.1: Let K/Q be a finite extension of degreell P | ¢; for some index. o _
n. Suppose that; and 2r» are the numbers of real and Ve say thata primé is wildly ramified if and only ifp | e
complex embeddings ok to C. We call the 2-tuple(ry, ) for somei, otherwise we say that it is tamely ramified. From

the signatureof the field . the previous proposition we see that the ramification of a tame
Proposition 13.1:Let [K : Q] = n. Then prime P defines totally the? power index of the discriminant.
For wildly ramified ideals we only get a lower bound.
ry+2ra =n. We will need later the following two technical lemmas.

Remark 13.1:A typical method to determine the number of Lemma 13.5:Let K, 2 K; 2 F be a tower of finite
real and complex embeddings of an algebraic number fielddgtensions ofQ. Then
to pick a primitive element of the extensionk/Q and then Ko K]
count the number of real and complex zeros of the minimal d(Ky/F) = nrie, yp(d(Ko/Ky))d(Ky /F) 20,

polynomial ofa. o _where nrg, /- is the usual relative norm from algebraic
If the signature of a field< is (r,,0), we say that the field ,mper theory.
is totally real, and if the signature i$0,r>), we say that the Proof: For the proof we refer the reader to [41, p.249].
field is totally complex u
Lemma 13.2:Let us consider the fieldC = Q(v—m), | emma 13.6:Suppose that we have an abelian extension
wherem is a positive square free integer. Each of the eIemerE?K of degreen, with a Galois group{oi,...,o,}, and
cin K can be uniquely presented in the form= a + b/—m, suppose tha{zy, zs, . ..,z,} is someOxk-basis of the ring
wherea andb are rational numbers. We then have O;. Then
2 2 2
nri/q(c) = (a+bv—m)(a —by/—m) = a” + b*m = |c|. det(trp i (wiw))P g = Hdet(trp i (op(@:)z;)_y
If the elementc is in O, the algebraic norm takesto z.  Proof: We defineX; = (0i(z1),...,0i(xn)) and con-
The previous equation then gives us that rs]lder ttr:]et matrixX which has vectorsX; as rows. We then
ave tha

le] > 1 -
det(trp k (ziz;)); =1 = det(X " X).
for everyc in Oj,. ) ) ]
Suppose thak is an algebraic number field containing adl We replace the rows; in the matrix X" with the rows
n*" root of unity. o (X:) —
k i) — O'k;O'iCE ,--.70']@0_1‘37” b
Proposition 13.3:Let us consider the fieldd = K]a], ( _ ) = (or(oilar)) (il@n)))
wherea” € K, and no smaller power of is in K. Then We get a matrixr;(X). Then
L/K is a cyclic Galois extension of degree d n T
. . t (T i)xi))e._1 = det X)) X).
We call such an extensionkummer extensian et(treyx(0r(@);))i =1 et(on(X)" X)
Definition 13.2: Suppose thatL/K is an n-dimensional Clearly
extension of algebraic number fields and that, x is the trace det(ok (X)) = £det(X),
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and the claim follows. (13), we can conclude that

[
We shall now recall some facts df-adic fields. Suppose vp(d(E/F)) = vp(Ng/r(Dp/r)) = s9f 2 egf = n.
that P is a finite prime of an algebraic number figkd, K p the n

P-adic completion, angh = char(Or/P). We may consider  Remark 13.3:The proof of the following proposition is
Kp as afinite algebraic extension €, and then refer to the merely a sketch directed to a reader having sufficient knowl-
algebraic closure of the rinA@p in Kp asOp_, and simply edge in algebraic number theory.
call it the ring of integers ifp. In the following, we identify  Proposition 13.9: Suppose we have a division algelipa=
the prime P and the unique prime ideaPOy  of the ring (E/Q(i),0,7), where E/Q(i) = n and~ is an algebraic
Ok,.» and denote both by. integer. If A is the natural order of the division algebf2

We extend the concept of wild and tame ramification to locghen
fields. LetL be a finite algebraic extension &fp, and B the

unique prime ideal of);. We say thatP is wildly ramified, |A(A/Oqpy)| > (2 +4)" "D (144", _
if p divides the ramification index(B|P); otherwise we say Proof: The natural orden is a subset of some maximal
that P is tamely ramified. order A,q. and therefore

Definition 13.3: Let L be a finite and totally inert Galois d(A/Oqiy)] > |(2+i)n(n71)(1 +Z~)n(n71)|.

extension ofK », and B the unique prime ideal of the ring of
the P-adic algebraic integer®y, in L. Suppose tha@OlA{P :  Let us then assume that

P] = ¢. ThenGal(L/Kp) has an elementP, L./Kp) called B - n(n_1) - n(n_1)
the (local) Frobenius automorphismit is the unique element |4(A/Oq))l = 1(2+1) (1+1) -

of Gal(L/Kp) satisfying According to Lemma 5.4, the only primes that could be
(P,L/Kp)(@) =2 (mod B) forallz € Oy. ramified in the extensior/Q(i) are (1 + i), (2 + z) and
Suppose thaf, is an abelian extension df p and thatl’ (2 — 7). Lemma 13.8 assures that none of these primes could

: o be wildly ramified.
is the group of units IO . . .
Definition 13.4: The smallesff such thainri/kp (L*) con- One of the main results of the global class field theory [30,

) . N p. 124] states that there exists a ray class 6&ld_;)2+i)(2—)
I . . .
tains1 + P Is falled theconductorof L/Kp, except that, 44 contains all the cyclic extensions (i), where(1 + i),
Whennrilékp (L*) ChU’ the F:ondléct(.)r-lls said to be 0. 4 thd 2T 1) or (2—i) is tamely ramified.
Remark 13.2:In the previous definition we expected thé \ve can now calculate the degree of the extension
existence of somg. This is a nontrivial result. C

D(14i)(2—i ;). By [30, Theorem 1.5], we have
In some special cases the determination of the conductor[é'gH ).(H ?(2 ?/Q(l) : y_[ 9 which imoli ] hatE —
(244)(141)(2—i) - Q(Z)] = 2, which implies that =
easy. For the proof we refer the reader to [30, p.12]. Clron dn = 2
. S e (2+4)(1+4)(2—0) anan = 2.
Lemma 13.7:The extensionL/Kp is unramified if and

o : e The ray class field€' (> )14+ and Ca_;)(144) that admit
only if its conductor is 0, and tamely ramified if and onlyy o ramification at2+i) and(1+i) or at(2+i) and(1—1),
if its conductor is< 1.

respectively, are both trivial extensions @f(i). Hence, both
(2+14) and(2—1) are ramified inZ and divide the discriminant

B. Natural orders do not have minimal discriminants of the extensiorE/Q(7). The discriminant of the natural order
P N2 N2 .
In the next lemma we use some basic results from the thed\r. ow has to be Q|v!3|ble by at leagt +i)*(2 —4)". This
es us a contradiction. [ ]

of discriminants and differents. For these results and the noti8

. Proposition 13.10:Suppose we have a division algebra
of different we refer the reader to [40, Chapter 3.12]. For the .
definitions of tame and wild ramification we refer the readd? = (£/Q(V=3),0,7), where E/Q(v—3) = n and~ is
to the previous subsection of this appendix. an algebraic integer. I\ is the natural order of the division

Lemma 13.8:Suppose we have a Galois extensionr’ of algebraD, then

degregn, and that there arglprime _idqusBi of E' I.ying over |A(A/Oq(=3))] > |(v/=3)(n=D) (2)n(n=1)

the prime P of F. If the prime P is wildly ramified in the Proof: The proof is similar to that of the previous

extensionE/F, then proposition. ]
vp(d(E/F)) > n. These considerations reveal that in order to reach the

Proof: Suppose thaDy - is the different of the exten- optimal density of a code lattice maximal orders are forced

sionE/F. Then itis an easy exercise in Galois theory to sho{Po" Us-
thatvp, (Dg/r) = v, (Dg/r) for everyi and ;. BecauseP

was supposed to be wildly ramified, ACKNOWLEDGMENTS
s =vp,(Dp/r) > e, (13) We are grat_eful to professpr Lajos Roqya| for gxplammg to
us many details of his algorithm for finding maximal orders.
wheree is the ramification index oB3;/P. We are greatly indebted to Laura Luzzi and the reviewers

The theory of normal extensions states théy = n, where for their efforts and suggestions that hopefully enhanced the
f is the inertial degree aB;/P. Taking into account this and readability of this article.



PREPRINTED, WITH PERMISSION, FROM IEEE TRANSACTIONS ON INFORMATION THEORY©Q008 IEEE).

(1]

(2]

K]

(4]

(5]

(6]

(7]

8]

El

(20]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

REFERENCES [26]
J.-C. Guey, M. P. Fitz, M. R. Bell, and W.-Y. Kuo, “Signal design[27]
for transmitter diversity wireless communication systems over rayleig@8]
fading channels,” irProc. IEEE VTC'96 1996, pp. 136-140.

V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for
high data rate wireless communication: Performance criterion and cd@8]
construction,"lEEE Trans. Inf. Theoryol. 44, pp. 744-765, Mar. 1998.
J.-C. Belfiore, G. Rekaya, and E.Viterbo, “The Golden code>2 full-
rate space-time code with non-vanishing determinantsPrivc. 2004
IEEE Int. Symp. Inform. TheonChicago, IL, June 27-July 2 2004, p.
308.

S. M. Alamouti, “A simple transmitter diversity scheme for wirelesd31]
communications,|IEEE J. Select. Areas Commupp. 1451-1458, Oct.
1998.

C. Hollanti, J. Lahtonen, and H.-F. Lu, “Maximal orders in the design
of dense space-time lattice codetZEE Trans. Inf. Theoryvol. 54, [32]
no. 10, pp. 4493-4510, 2008.

M. O. Damen, K. Abed-Meraim, and J.-C. Belfiore, “Diagonal algebraic
space-time block codes|EEE Trans. Inf. Theoryvol. 48, no. 3, pp.
628-636, Mar. 2002.

B. A. Sethuraman, B. S. Rajan, and V. Shashidhar, “Full-diversity, high-
rate space-time block codes from division algebréSEE Trans. Inf. (34]
Theory vol. 49, no. 10, pp. 2596— 2616, Oct. 2003.

J.-C. Belfiore and G. Rekaya, “Quaternionic lattices for space-tin}e
coding,” in Proc. IEEE Information Theory Workshpparis, 31 March 39]
- 4 April 2003.

G. Rekaya, J.-C. Belfiore, and E.Viterbo, “Algebraic< 3, 4 x 4 and
6 x 6 space-time codes with non-vanishing determinantsPrioc. 2004
Int. Symp. Inform. Th and its Applp$arma, Italy, Oct. 10-13 2004. (371
F. Oggier, G. Rekaya, J.-C. Belfiore, and E. Viterbo, “Perfect space-tirrf:szs]
block codes,"IEEE Trans. Inf. Theoryvol. 52, no. 9, pp. 3885— 3902,
Sept. 2006.

T. Kiran and B. S. Rajan, “STBC-schemes with non-vanishing determ[iég]
nant for certain number of transmit antennd&EE Trans. Inf. Theory

vol. 51, no. 8, pp. 2984-2992, Aug. 2005. 40]
V. Shashidhar, B. S. Rajan, and B. A. Sethuraman, “STBCs usirLg
capacity achieving designs from crossed-product division algebras,” fj}l]
Proc. IEEE ICC 2004 Paris, France, June 2004, pp. 827-831.

——, ‘“Information-lossless STBCs from crossed-product algebras[,zfz]
IEEE Trans. Inf. Theoryvol. 52, pp. 3913-3935, 2006.

P. Elia, K. R. Kumar, S. A. Pawar, P. V. Kumar, and H.-F. Lu,43]
“Explicit construction of space-time block codes achieving the diversitJ—
multiplexing gain tradeoff 1IEEE Trans. Inf. Theoryvol. 52, no. 9, pp.
3869-3884, Sep. 2006.

G. Wang and X.-G. Xia, “On optimal multi-layer cyclotomic space-time
code designs,JEEE Trans. Inf. Theoryvol. 51, no. 3, pp. 1102-1135,
Mar. 2005.

L. Zheng and D. Tse, “Diversity and multiplexing: A fundamental
tradeoff in multiple antenna channel$2EE Trans. Inf. Theoryol. 49,

no. 5, pp. 1073-1096, May 2003.

J. H. Conway and N. J. A. Sloangphere Packings, Lattices and Groups
ser. Grundlehren der mathematischen Wissenshaften. Springer, 1988,
vol. 290.

H. E. Gamal and J. A. R. Hammons, “A new approach to layered space-
time coding and signal processingiZEE Trans. Inf. Theoryvol. 47, p.
2321-2334, 2001.

C. Hollanti and H.-F. Lu, “Construction methods for asymmetric and
multi-block space-time codeslEEE Trans. Inf. Theoryin press, 2008.

H.-F. Lu, R. Vehkalahti, C. Hollanti, J. Lahtonen, Y. Hong, and

E. Viterbo, “New space-time code construcions for two-user multiple
access channels,” submitted IBEE J. on Special Topics in Signal
Processing: Managing Complexity in Multi-user MIMO Syste®ep.

2008.

G. lvanyos and L. Rényai, “On the complexity of finding maximal orders

in semisimple algebras over QComputational Complexifyol. 3, pp.
245-261, 1993.

MAGMA Computational Algebra System, University of Sydney, Syd-
ney, Australia,
http://magma.maths.usyd.edu.au/magma/htmlhelp/text835.htm#8121.

I. Reiner,Maximal Orders New York: Academic Press, 1975.

E. Bayer-Fluckiger, F. Oggier, and E. Viterbo, “Algebraic lattice con-
stellations: Bounds on performancéZEE Transactions on Information
Theory vol. 52, pp. 319-327, 2006.

K. R. Kumar and G. Caire, “Space-time codes from structured lattices,”
IEEE Trans. Inf. Theoryin press), 2008http://arxiv.org/abs/0804.1811

(30]

(36]

28

A. A. Albert, Structure of Algebras New York: American Mathematical
Society, 1939.

H. Koch, Algebraic Number Theory Berlin: Springer, 1997.

C. Hollanti and J. Lahtonen, “A new tool: Constructing STBCs from
maximal orders in central simple algebras,Hroc. 2006 IEEE Inform.
Theory WorkshapPunta del Este, Uruguay, Mar. 13-17 2006.

R. Vehkalahti, “Class field theoretic methods in the design of lattice
signal constellations,” Ph.D. dissertation, 2008JCS Dissertations
Series no. 100,https://oa.doria.fi’lhandle/10024/36604
J. S. Mine, “Class field theory,” lecture
course given at the University of Michigan,
http://www.jmilne.org/math/coursenotes/

C. Hollanti, J. Lahtonen, K. Ranto, R. Vehkalahti, and E. Viterbo, “On
the algebraic structure of the Silver code: A 2x2 Perfect space-time
code with non-vanishing determinant,” Rroc. 2008 IEEE Inf. Theory
Workshop Porto, Portugal, May 2008, pp. 91-94.

C. Hollanti, J. Lahtonen, K. Ranto, and R. Vehkalahti, “Optimal matrix
lattices for MIMO codes from division algebras,” IProc. 2006 |IEEE

Int. Symp. Inform. TheonySeattle, WA, Jul. 2006, pp. 783 — 787.

for a
Arbor,

notes
Ann

] P. Elia, B. A. Sethuraman, and P. V. Kumar, “Perfect space-time codes

for any number of antennadEEE Trans. Inf. Theoryvol. 53, no. 11,

pp. 3853-3868, 2007.
J. S. Milne, ‘Algebraic number theory,” lecture notes for
a course given at the University of Michigan, Ann Arbor,

http://www.jmilne.org/math/coursenotes/

L. Rényai, “Algorithmic properties of maximal orders in simple algebras
over Q,” Computational Complexitwol. 2, pp. 225-243, 1992.

N. JacobsonBasic Algebra Il San Francisco: W. H. Freeman and
Company, 1980.

L. Rényai, “Computing the structure of finite algebrasgurnal of
Symbolic Computatigrvol. 9, no. 3, pp. 355-373, Mar. 1990.

S. Perlis, “Maximal orders in rational cyclic algebras of composite
degree,"Transactions of the American Mathematical Societyl. 46,
pp. 82-96, 1939.

W. Narkiewicz,Elementary and Analytic Theory of Algebraic Numbers
Berlin: Springer, 1980.

H. Koch, Number Theory, Algebraic Numbers and FunctiondNew
York: American Mathematical Society, 2000.

P. Ribenboim,Classical Theory of Algebraic Numbers New York:
Springer, 2001.

PARI/GP computer algebra system, versb@.12 , Bordeaux, 2005,
http://pari.math.u-bordeaux.fr

C. Hollanti and K. Ranto, “Maximal orders in space-time coding:
Construction and decoding,” iRroc. 2008 Int. Symp. Inf. Theory and
its Appl, New Zealand, Dec. 2008, pp. 1459-1463.



PREPRINTED, WITH PERMISSION, FROM IEEE TRANSACTIONS ON INFORMATION THEORY©Q008 IEEE).

Camilla Hollanti received the M.Sc. and Ph.D. degrees from the University
of Turku, Finland, in 2003 and 2009, respectively, both in pure mathematics.

Since June 2004, she has been with the Department of Mathematics,
University of Turku, Finland. In 2005, she visited the Department of Algebra
at Charles’ University, Prague, Czech Republic, for six months. In 2009-
2011 she will be leading the project “Applications of Class Field Theory
in Present and Future Multi-Antenna Communications” at the University of
Turku, Finland.

Her research is in the area of applications of algebraic number theory in
lattice space-time coding.

Hollanti is a recipient of several grants from various foundations, including
the Finnish Cultural Foundation research grant in 2007 and the Finnish
Academy of Science research grant in 2008. She has also won the prize
for the best presentation in the EWM 2007 conference of European Women
in Mathematics that took place in Cambridge, UK in September 2007.

Jyrki Lahtonen (M'96) received the M.Sc. degree from University of Turku,
Turku, Finland, in 1986, and the Ph.D. degree from University of Notre Dame,
Notre Dame, Indiana, U.S.A. in 1990 respectively, both in pure mathematics.

He was a postdoctoral research fellow at Mathematical Sciences Research
Insitute, Berkeley, California in 1990. In January 1991, he joined the faculty
of the Department of Mathematics at University of Turku. Since September
2006, he has held a part-time position as a visiting fellow at Nokia Research
Center, Helsinki, Finland.

His research interests include sequences, finite fields and their applications
into coding theory, and space-time codes.

Kalle Ranto received the M.Sc. and Ph.D. degrees in mathematics from the
University of Turku, Finland, in 1997 and 2002, respectively.

Since August 2008, he has been with Nokia Devices, Salo, Finland. His
research interests include coding theory, finite fields and signal processing.

Roope Vehkalahtireceived the M.Sc. and Ph.D. degrees from the University
of Turku, Finland, in 2003 and 2008, respectively, both in pure mathematics.

Since September 2003, he has been with the Department of Mathematics,
University of Turku, Finland. His research interests include global fields and
their applications in coding theory.






Publication Ill

Hollanti, C. and Ranto, K. (2008). Maximal orders in space-time coding: Con-
struction and decodind?roceedings of 2008 International Symposium of Informa-
tion Theory and Its Applications (ISITAuckland, New Zealand, pp. 1459-1463.

Copyright year 2008, IEEE. Reproduced with permission.






International Symposium on Information Theory and its Applications, ISTTA2008

Auckland, New Zealand, 7-10, December, 2008

Maximal Orders in Space-Time Coding: Construction and Decoding

Camilla Hollanti’ and Kalle Ranto?

T Laboratory of Discrete Mathematics
for Information Technology
Turku Centre for Computer Science

Joukahaisenkatu 3—5 B, 20520 Turku, Finland

E-mail: cajoho@utu.fi

Abstract

Previously, it was shown why the discriminant of a
maximal order within a cyclic division algebra must
be minimized in order to get the densest possible ma-
trix lattices with a prescribed non-vanishing minimum
determinant. In this paper, the actual procedure of
constructing maximal orders is described in more de-
tail, aiming to provide a handy tool also for researchers
with only a modest mathematical background. For in-
stance, it is explicitly shown, step by step, how to con-
struct a matrix lattice with QAM coefficients that has
2.5 times as many codewords as the famous Golden
code of the same minimum determinant.

In order to decode maximal order based space-time
codes, the usual sphere decoder has to be modified.
A pseudo algorithm describing the additional steps is
given. For the algorithm to function it is essential that
we also speed up the search for the shortest lattice vec-
tors ensuring in this way that the usage of a codebook
becomes feasible. Both the search and the decoding
can be performed by adding an upper bound on the
energy of the single vector in use.

1. INTRODUCTION

! Recently, maximal orders have been proposed in
[1]-[3] as a new design tool for cyclic division algebra
(CDA) based space-time block codes (STBCs) (see e.g.
[4],[5]). It was shown in [3] that in order to maximize
the number of codewords in the available signal space,
i.e. to maximize the code density, one should look for
CDAs having maximal orders with minimal discrimi-
nants. Luckily, the minimum determinant of the code
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does not change when increasing the density in this
way. However, the construction of maximal orders is
somewhat difficult and involves some serious number
theory. Therefore, our aim in this paper is to provide
computational tools at everyone’s disposal while trying
to hide the theory behind.

2. A BRIEF OVERVIEW ON CYCLIC DIVI-
SION ALGEBRAS AND ORDERS

We refer the interested reader to [6] and [4] for a de-
tailed exposition of the theory of simple algebras, cyclic
algebras, their matrix representations and their use in
ST-coding. We only recall the basic definitions and
notations here. In the following, we consider number
field extensions E/F, where F denotes the base field
and F* (resp. E*) denotes the set of the non-zero el-
ements of F' (resp. E). The ring of algebraic integers
are denoted by Op and Op, respectively. In the in-
teresting cases the center F' is an imaginary quadratic
field, either Q(i) or Q(v/—3). We assume that E/F
is a cyclic field extension of degree n with the Galois
group Gal(E/F) = (o). Let A = (E/F,0,v) be the
corresponding cyclic algebra of degree n, that is

A=E0uEou’E® --ou"'E,

as a (right) vector space over E. Here u € A is an
auxiliary generating element subject to the relations
zu = uo(z) for all z € E and v = v € F*. An
element a = zg + uxy + - + v 'x,_1 € A has the
following standard representation as a matrix A =

o ’Ya(l'n—l) 70'2(.13,“_2) . ,yo.n—l(xl)
1 0'(130) ’)/0'2(3;"_1) R ’}/O'nfl(gjg)
Tn—1 U($n—2) 0'2(11”_3) A 0'”_1(.%‘0)

In the rest of this paper, we identify an element a €
A with its matrix representation. E.g. when we say
determinant of a € A, we mean det(A).



The next proposition due to A. A. Albert [6, The-
orem 11.12, p. 184] tells us when a cyclic algebra is a
division algebra.

Proposition 1 (Norm condition) The cyclic alge-
bra A = (E/F,0,7) of degree n is a division algebra
if and only if the smallest factor t € Z of n such that
~t is the norm of some element of E* is n.

Due to the above proposition, the element + is often
referred to as the non-norm element.

We do not give a detailed description of orders here.
Instead, we try to express the notion of order as simply
as possible, yet clearly enough so that one can under-
stand the advantage it can offer us.

One of the simplest examples of an order A is the
maximal order of an algebraic number field, which is
always unique and equal to the ring of algebraic inte-
gers. E.g. for the field F = Q(¢), the maximal order is
the ring of Gaussian integers A = Op = Z[i]. For non-
commutative algebras, an order can be thought of as a
generalization to the ring of algebraic integers. How-
ever, for non-commutative algebras, a maximal order
is not necessarily unique, and the coefficients x; € E
in the representation @ = x; + --- + v 'z,_1 of an
element a taken from an order A may be non-integral.
If one considers integer coefficients only, the ring pro-
duced is what we call a natural or layered order:

Definition 2 Lety € Op. We see that the Og-module
Anat = OE ) UOE D---D u"_l(’)E

is an Op-order in the cyclic algebra (E/F,o0,7). We
refer to Anay as the natural order. It will also serve as
a starting point when searching for mazximal orders.

For the purposes of constructing MIMO lattices the
reason for concentrating on orders is summarized in the
following proposition (e.g. [7, Theorem 10.1, p. 125]).
We simply rephrase it here in the language of MIMO
lattices.

Proposition 3 Let A be an order in a cyclic division
algebra (E/F,0,v). Then for any non-zero element
a € A its reduced norm nr(a) = det(a) is a non-
zero element of the ring of integers O of the center
F. In particular, if F is an imaginary quadratic num-
ber field (e.g. F = Q(i)), then the minimum deter-
minant of the lattice A is equal to one. Hence, when
using an order, the non-vanishing determinant (NVD)
property is automatically met and the corresponding
space-time code is optimal with respect to the diversity-
multiplexing tradeoff (DMT) [8].

Definition 4 Let k = dimg A and let O be a Eu-
clidean domain (this is the case e.g. when F = Q(7)
or F = Q(v/=3), that is, when we use QAM or HEX
modulation). The discriminant of the Op-order A is
the element

d(A/Op) = det tr(z;z;)k

1,7=1

where {x1,...,x} is any Op-basis of A.

Proposition 5 For the Z-discriminant we have

d(A/Z) = Np/q(d(A/Or))dyiea
where Np/q (resp. dp)q) denotes the usual field norm
(resp. discriminant). When F = Q(i), we have

m(A) = |d(A/Z[i])|

(see [3] for details). Here m(A) denotes the measure
of the fundamental parallelotope of A, i.e., the square
root of the Gram determinant of the lattice.

We know (see e.g. [3] or [7]) that all the maxi-
mal orders in the same CDA share the same discrim-
inant, and every order is contained in some maximal
order. Thus, maximal orders have the minimal dis-

criminant in a given CDA; as from I' C A it follows
that d(A/OF)|d(T'/OF).

Example 6 Let us use the Golden code (GC) [5] and
the Golden+ code (GC+) [3] to illustrate the above
definitions. The GC' is defined as the natural order of
the cyclic division algebra

GA = (Q(Z>9)/Q(Z)’U 10— 1- 97’07

where 0 = (1 ++/5)/2. Moreover, the ideal () = (1 +
i—0) is used in order to get a hypercubical shape. That

18,
GQC = axg
ax

Actually, the natural order of the Golden algebra GA is
also a mazimal order as was shown already in [2], so
it is not possible to get o denser lattice by using some
other order inside GA. For the order A corresponding
to the GC we get

o(axp)

w(am)> z0.a € z[w]}-

m(A) = d(A/Zi]) = 25

by Definition 4 and Proposition 5.
In [8], the Golden+ code was constructed as a max-
imal order of the algebra

GA+ = (Q(s)/Q0), 0 : s = —s,1),



where s = \/2 +1i. Further, the ideal (3) = ((1 — 5)?)
was used to force the mazimal order inside the natural
order. The resulting code lattice is as much as 2.5 times
denser than the Golden code lattice, as we now have

m(A) = d(A/Z[i]) = 10

by Definition 4 and Proposition 5 (see [3] for more de-
tails).

3. CONSTRUCTING MAXIMAL ORDERS

Maximal orders are somewhat tricky to construct
by hand. Luckily, the construction algorithm from [9]
is implemented in the MAGMA software [10]. In what
follows, we explain the required steps for producing a
maximal order of the algebra GA+ (denoted by A in
Table 1). First of all, one needs to define the algebra
with relations. In G A+ the following relations hold:

i?=—1, s>=2+1, u> =i, su= —us.

Now we can start with MAGMA (an explicit sign * is
required for the multiplication).

Table 1: Constructing maximal orders with MAGMA

% magma

> Q:=Rationals();

> A<i, s, uw> := FPAlgebra< Q, i, s, u
i72+1, 872-2-i, u"2-i, s*utuxs >;

> Dimension(A);

8

> S,s:=Algebra(A); Inv:=Inverse(s);

> for i:=1 to 8 do print Inv(Basis(S)[i]);
end for;

1, u, s, i, uwks, uwki, s*i, uks*i

/* natural order basis */

> M:=MaximalOrder(S);

> Factorization(Discriminant(M));

[ <2, 10>, <5, 2> 1]

/* Z-discriminant equals 210 - 52 */

> Basis(M);

[ (1/2 1/2 1/2 1/2 1/2 1/2 1/2 7/2),

(0 1/2 1/2 0 0 1/2 1/2 2),
(0010000 1),
(0001/21/2 1/2 1/2 2),
(0000100 1),
(0000010 1),
(00000011),

(0000000 1)1
/* maximal order basis */

In Table 1 above, FPAlgebra stands for “Finitely
Presented Algebra”, and S,s:=Algebra(A)
translates G A+ into an algebra S presented by a mul-
tiplication table, and a mapping s : GA+ — S is at-
tached to the algebra GA+. This step is needed for
the MaximalOrder command. For the GA the natural
order is also a maximal order. For the G A+ this is not
the case. Instead, we get a maximal order basis (see
the last output in Table 1)

8
{fih<i<s = {1/2(261)7
k=1
1/2(62+63+€6+67),63,
1/2(eq + €5 + e + €7), €5, €6, €7, €8},
where

{6j}1§j§8 = {1, u, S, 1, US, ut, St, USZ}

denotes the natural order basis. Note that we have
simplified the basis by subtracting multiples of fg from
the other (original) basis elements f1, ..., f7.

MAGMA is a commercial software but the com-
mands in Table 1 can be executed in a free online
MAGMA calculator [10]. This computation takes a
half a second time (there is a limit of 20 seconds) and
7.36MB total memory.

4. POWER CONTROLLED DECODING

We base our sphere decoder on the algorithm in [11]
(see also [12]). However, the basic sphere decoder has
to be modified, as we need to use a codebook in order
to get the full advantage of the density provided by
maximal orders.

Example 7 For the orthogonal GC it is clear that the
28 PAM vectors giving the shortest codewords are those
with £1 in every coordinate. For the non-orthogonal
GC+ (see [13] for the basis matrices) the situation is
completely different: Even after the standard LLL pro-
cedure, e.g., the vector

(1,1,1,1,3,1,1,—1)

results in a substantially shorter codeword than the vec-
tor
(17 17 17 17 717 717 717 1)

(and over 200 other vectors with £1s).
The sphere decoding algorithm is quite flexible al-
lowing different kind of modifications. In the so-called

code controlled sphere decoding (CCSD) [14] the algo-
rithm was modified by adding certain parity checks to



distinguish the valid codewords. Here we do not as-
sume any simple structure for the codewords but iden-
tify the valid codewords by limiting the maximal Eu-
clidean norm.

Our main idea for the codebook construction and
sphere decoding was introduced already in [11, Section
V.A]: we take the codewords with integer coordinates in
some fixed interval I C Z that are in an m-dimensional
sphere with a given squared radius P?. As the Eu-
clidean norm of the vectorized codeword corresponds
to the transmitted signal energy, we are actually tak-
ing the lattice points which are below some fixed power
limit P2.

In contrast to [11] where the additional power limit
was checked only in the end, i.e., when the decoder
had found an otherwise valid point, we suggest this
check to be done cumulatively in the same manner as
the usual sphere decoding check (see STEP 3 in the
algorithm). In other words, in our modified algorithm
the boundary condition check is conducted in various
intermediate steps while in [11] it was done only at leafs
of the equivalent tree search. This idea is useful also
in the search for the codebook: it is quite evident that
for larger lattice dimensions the running time for the
search decreases dramatically when using the proposed
cumulative approach.

Both the power controlled codebook construction
and the power controlled sphere decoding (PCSD) have
the same first steps of preprocessing: The complex
basis matrices M; € C™*™ of the code lattice are
vectorized and written as columns in a real matrix
B’ € R?™**m_ Then applying QR decomposition on
B’ we get B’ = Q'R’ with an upper triangular matrix
R = (r] ;)7%—1- Now, the integer vectors x that admit
to the allowed power limit satisfy

‘B/X‘Q _ |Q/RIX‘2 _ |R/X|2 S P2.

In the search for the shortest vectors, we first assign
the last coordinate with some value in I similarly as in
the sphere decoding. Here it does not matter whether
we use Pohst or Schnorr—Euchner enumeration as we
want to check the whole interval. With the given power
limit P? we check all those coordinates in the search
tree which are in I and whose cumulative norms so far
do not violate the power limit P2. The details of this
power limit check are integrated in the PCSD algorithm
given below.

In PCSD, the basis matrix B’ needs to be pre-
processed only once, whereas the usual QR decom-
position is carried out for every channel matrix H:
the channel matrix multiplied by the basis matrices,
HM,;, are vectorized and written as columns in a real
matrix B = @QR. Now the upper triangular matrix

R = (r;4){"— is used to check whether the node in the
search tree is still inside the sphere of a given squared
radius Cy in the receiving end. On the other hand, the
upper triangular matrix R’ is used to check whether the
same node is still inside the sphere of a given squared
radius P? in the transmitting end.

Finally, we present here the new PCSD algorithm as
a pseudo-code. All modifications as compared to [11]
have been . The algorithm can be used di-
rectly with the lattice points themselves, i.e., the inter-
val I can equal e.g. {—3,-2,...,2,3}. We can equally
well use PAM coefficients, e.g. {—3,—1,1,3}, by scal-
ing them to an interval {0, 1,2,3} but then the energy
counting in STEP 3 must be modified. Another pos-
sibility with PAM coeflicients is to modify the update
rules for x; and A; in STEP 2 and 6.

Algorithm II, Smart Implementation (Input C{,
vy, R, . Output X.)

STEP 1: (Initialization) Set ¢ := m, Ty, := 0, &, := 0,
’Pm =0, Ny =:0
radius).

, and d. := C} (current sphere

STEP 2: (DFE on z;) Set z; :=
Ai = sign(y; - fi - 7“,‘71'.%‘1‘).

| (y; — &)/rii] and

STEP 3: (Main step) If d. < T} + |y} — & —74.474|%, then
go to STEP 4 (i.e., we are outside the sphere).
Else if x; ¢ I
STEP 6

(i.e., we are inside the sphere but outside the sig-
nal set boundaries).

or P2 < P, + |r} sz +ni|* |, go to

Else (i.e., we are inside the sphere and signal set
boundaries) if 4 > 1, then

{let &1 = 3200 mic1 75,
Ticq =T + |y, — & — riixil?,

Nie1 3= D5 Tho j5, Pict i= P+ |r) x +mif?
i:=1—1, and go to STEP 2}.
Else (i=1) go to STEP 5.

STEP 4: (Backtracking) If ¢ = m, terminate, else set
1: =1+ 1 and go to STEP 6.

STEP 5: (A valid point is found) Let
dc = T1 + |y/1 — 51 — T1,11‘1|2, save X = X, let
i: =14+ 1, and go to STEP 6.

STEP 6: (Schnorr-Euchner enumeration of level i) Let
xi = x + A, A= —A; —sign(4;), and go to
STEP 3.



5. Conclusions

In this paper, we wanted to clarify the construction
and decoding of maximal order based space-time codes.
By introducing the required MAGMA commands and
by explicitly pointing out the additional steps needed
for (spherical) sphere decoding, we hope that we man-
aged to bring the topic more down-to-earth to non-
experts.

Maximal orders are used in space-time coding for
the reason that they provide denser lattices and hence
larger coding gains as compared to the conventional
CDA codes based on natural orders. Recently, Kumar
and Caire [15] have showed that the problem of main-
taining a codebook can be overcome by using sphere
encoding. By computer simulations they have shown
that the maximal order based codes [3] outperform all
the best previously known codes, e.g. the Perfect codes
[5], when using two or three antennas. Promising re-
sults have been achieved also in the asymmetric sce-
nario [16] and in the MIMO multiple access channels
[17]. Hence, our hope is that maximal orders would be
more widely adopted to the field of space-time coding.
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On the Algebraic Structure of the Silver Code:
a 2 x 2 Perfect Space-Time Block Code

C. Hollanti, J. Lahtonen, K. Ranto, R. Vehkalahti, E. Viterbo

I. INTRODUCTION The Gram matrixof A is defined by
A family of full-rate, full-diversity STBCs for2 x 2 MIMO i
was recently proposed in [1], [2], [3], [4] using a combina- G = (%[Tr(Xin)DlSi’jgk

tion of Clifford-algebraand Alamouti structures [5], namely

twisted space—time transmit diversitpde. This family was where &t denotes the real part, Tr denotes the trace of the
recently rediscovered in [6], where it was also pointed ogitatrix andf denotes Hermitian transposition. Teterminant
that such STBCs enable reduced-complexity ML decodij A is defined asdet(A) = det(G). The measure, or
(see also [7] for details). Independently, the same STBCs wéygpervolume,m(A) of the fundamental parallelotopef the
found in [8], and namednulti-strata space—time codes. lattice is related to the lattice determinant by(@et= m(A)2.

In this paper we show how this code can be constructedGiven that anyn x n codeword X from a space-time
algebraically from a particular cyclic division algebra. ThisodebookC C A corresponds to a lattice point &f we define
formulation enables to prove that the code has the ndifte minimum determinanvf the code as
vanishing determinant property [9] and hence achieves the
diversity-multiplexing tradeoff (DMT) optimality [10]. The X;n)i(rllecdet(X - X').
fact that the normalized minimum determinant [11]1i6//7
places this code in the second position with respect to ther the infinite code? = A this can be rewritten as
Golden code [9], which exhibits a minimum determinant of
1/4/5, and motivates the namslver code .

The silver code was originally designed to have the cubic xee\ {0} det(X),
shaping property of perfect space-time codes [12], but not the
non-vanishing determinant property, which was only conjegince the difference of any two lattice points is again a lattice
tured, after it was verified up to 64—QAM. point.

As the minimum determinant determines the asymptotic
pairwise error probability (PEP), this gives rise to natural

numerical measures for the quality of a code.
We are interested in the coherent n MIMO-case where |t 51| the codebooks of any size contained in have a

the receiver perfectly knows the channel coefficients.Th@  minimum determinant bounded from below by a non-zero
received signal matrix is constant, we say that has thenon-vanishing determinant
Y = HX + N, property and we define

I[l. SYSTEM MODEL AND NOTATION

where H is the Rayleigh fading channel response matrix, the A(A) = Xgl\i\rio} det(X)

elements of the noise matri¥ are i.i.d. complex Gaussian

random variables and’ is then x n transmitted codeword | we consider a scaled latticeA for some real constant
taken from the MIMO-latticeA C M,,(C), the setofn xn . 5 ¢ we havem(rA) = rfm(A) and A(rA) = r"A(A).

matrices over the complex fiel@. We can choose to normalize eithe?A(A) =1 or m(A) = 1.

A lattice, i.e., a discrete free abelian group, is determingf order to define a signal-to-noise ratio we can also cheose
by its basisXy, X5, ..., X} consisting ofn x n matrices that g that the entries of the codeword matrices have unit average
are linearly independent over the field of real numbers. Tfé‘ﬁergy, e E(xi;) = 1.
rank k is thus bounded from above Ry.2. A lattice is said to Following [11], we first scaleA to have a unit size fun-

havefull rank, if & = 2n2. We are interested in the full rank yamental parallelotope, and denote &) the normalized

lattices since they yield the full rate space-time codes, Withinimum determinanof the lattice A. We omit A from the

the maximum multiplexing gain. paranthesis, whenever the lattice is clear from the context. To
C. Holant. J. Lahtonen, K. Ranto, R. Vehkalahti are with i_make fair comparisons between the minimum determinants of

n . . .
versity of Turku and Turku Centre for Computer Science, Finland. EVarious codes, one should always use the normalized minimum
mails{cajoho, lahtonen, kara, roiive}@utu.fi. J. Lahtonen is also a Visiting determinant
Fellow at NRC, Helsinki, Finland. E. Viterbo is with DEIS - Universita della Calabria, '

Via P. Bucci, 42/C, 87036 Rende (CS), Italy and Visiting Fellow at NRC, Helsinki, FOr example, the Golden code has = 1/ V5, when
Finland. E-mail: {viterbo}@deis.unical.it. This work was supported by the H ; H __ i

STREP project No. IST-026905 (MASCOT) within the Sixth Framework Programme &OnSIdermg un!t hypervolume anid= 4/\/5' when assuming
the European Commission. +1,43,... as integer components for the QAM symbols.
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I1l. SILVER CODE AS A CYCLIC DIVISION ALGEBRA
The silver codeS is defined in [1], [2], [3], [4] as

S:{X:XA+TXB | X1,T2,T3,T4 GZM},

)
*

—23 )
* )
21

where
Z1

T2

_:'E*

Xa = XA(Ihl’z) = < xi
1

Z1

Xp =Xp(#1,22) = ( o

the twisting matrix

and

with a unitary matrix

1474

U= 1+2i

i -1+ 2

V7 1—i )°

We can also think of the cod§ as a (full) rank 8 lattice
C M3(C).

Let us first introduce the basic definitions that are used 1
throughout the paper. In the following, we consider number/—7

field extensionsZ/F, where F' denotes the base field adtr
(resp.E*) denotes the set of the non-zero elements’ gfesp.
E). Usually, F' is an imaginary quadratic field, eith€}(:) or

Q(+v/=3) in order to match the QAM and HEX modulation 1
schemes [12]. We assume tHa{ F' is a cyclic field extension —— (

of degreen with Galois groupGal(E/F) = (o). Let A =

Proposition 3.1 (Norm condition)The cyclic algebrad =
(E/F,o,~) of degreen is a division algebra if and only if
the smallest factot € Z, of n such thaty! is the norm of
some element of* is n.

Lemma 3.2:The silver codeS is contained as a subset in
the cyclic division algebrad defined as

A= (E/F,0,7),
where the center i = Q(/—7), E = F(i), v

-1, and

] 1+ —1
o \ﬁ . —\ﬁ.
Proof. As o(i) = —i =1*, the matrix
x1 yo(z2)
Xa= € A
A ( xo o) >

Let us calculate the basis matrices coming from the Pz
of the code matrix, i.e. we comput&Xpg(z1,22), where
(x3,24) ranges over the sef(1,0),(0,1),(¢,0),(0,i)}. We
end up with the following four basis matrices:

1 -1+ —2—1 1 —2—1 1—1
g7\ 2—i —1-i ) g\ —1—i —24i )’
—1—-47 —-1424 1 1-2¢ —1-—14
1+2 —-1+1¢ ) /=7 1—d 142 )°
Here we have writtenz = —— = —= and multiplied:

. ) —i/=7 . .
into the matrices. We see thlat all these basis matrices are of

the form
a va(b))

=\ b o)

(E/F’ o, '7) be the Corresponding Cyc“c a|gebra of degree WherEa,b S Z[Z} Thus, both summands X are elements

(n is also called thendexof A), that is
A=EQuE®u’E®---®u" 'E,

as a (right) vector space ovét. Hereu € A is an auxiliary
generating element subject to the relations= uo () for all
z € E andu™ =y € F*. An element

a=xzo+ury+- - +u" 'z, €A

has the following representation as a matrix

xo  Y0(Tn-1) Y0 (Tp—2) yo" ! (z1)

1 o(zo) Y02 (Tn-1) v (22)

A= To o(z1) o%(z0) yo T (z3)
Tn—1 U(xn—Q) 02 (xn—S) e O—nil.(xO)

We refer to this as thetandard matrix representatioof A

of Aand X € A.

Now it remains to prove tha#l is a division algebra, i.e.
(according to A. A. Albert) there does not exist an element
x € E for which Ng/p(z) = —1.

We shall work in the extension fields of the 2-adic field
Q- By Hensel's lifting any integefn congruent to 1 modulo
8 has a square root i,. In particular/—7 € Q. Thus
we can view the fieldF' as a subfield of),. For the sake of
being definite we may choos¢g—7 = 1 (mod 4). Similarly,
the field E' can be viewed as a subfield & (:). Furthermore,
the norm mapVg,» : £ — F is then a restriction of the norm
map N : Qz(i) — Q2, which, obviously, can be defined via

. the formulaN (a + bi) = a® + b* for all a,b € Qo.

Thus, in order to prove our claim, it is sufficient to show that
—1is not in the image of the maly. Assume, on the contrary,
that there are 2-adic numbessand b such thata? + b?
—1. We shall first show that then both and b must be 2-

and identify an element of a CDA with its standard matrijdic integers. So we assume that at least one of them has a

representation.
Definition 3.1: The determinant of the matrid above is

negative exponential 2-adic valuation. The non-archimedean
triangle inequality then implies that(a) = v2(b). In other

called thereduced normof the element; € A and is denoted words, there must exist an integex 0 such thata = 2'a/,

by nr(a).

The next proposition due to A. A. Albert [13, Theore
11.12, p. 184] tells us when a cyclic algebra is a division

algebra.

t

b = 2tV with o/, 2-adic units. But therw’? = b'2
mod 4), sovy(a?+b%) = 2t +1 is an odd integer, and hence
a? + b% cannot be a 2-adic unit unless bathand b are 2-

adic integers. In this case our claim now easily follows from
a modulo 8 consideration: the square of an integer is always
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congruent to either 0, 1 or 4 modulo 8. Thus the sum of two V. CONCLUSIONS

§uch squares cannot be congruent to 7 modulo 8. In particulanye have presented the interesting algebraic structure of
it cannot be equal te-1. m the silver code, a2 x 2 perfect space-time code with a
non-vanishing (normalized) minimum determinantl /7. By
computer checks we have verified that the actual normalized
minimum determinant is equal tb/+/7.

This code is very attractive for applications since its error
rate performance is only slightly (0.3dB) worse than the
one of the Golden code but offers the advantage of reduced

In what follows, we denote the natural order.dfby
A= OE SY) uoEa

where the ring of integers of is

e
Op =1Z[i|® TZ[@].

For the purposes of constructing MIMO lattices the reason
for concentrating on orders is summarized in the following]
proposition (e.g. [14, Theorem 10.1, p. 125]). We simply
rephrase it here in the language of MIMO-lattices. 2]

Proposition 3.3:Let A be an order in a cyclic division
algebra(E/F,0,v). Then for any non-zero elemente A
its reduced normr(a) is a non-zero element of the ring of
integersOr of the center". In particular, if /' is an imaginary .,
guadratic number field, then the minimum determinant of the
lattice A is equal to one. (5]

(3]

Theorem 3.4:The silver codeS has a nonvanishing deter-
minant andmin det(S) > 1/7.

Proof. When looking at the codeword matricés = X 4 +
TXg e A® %A, it is obvious thaty/—75 C A and thus

1
S C ﬁA. Now

(6]

(71

(8]

1
= —mindet(A) =

min det(S) > |min det( -

A) -

1
V=T
m 9]
The actual minimum determinant is better thafv, it is
equal t0o2/y/7 (based on numerical calculations up to 64-
QAM) which corresponds to a normalized minimum determ
nant1//7.
Remark 3.1:In the draft [15] the non-vanishing determi-
nant property is proved numerically in the special cases
PAM and QAM constellations by exploiting just the lattice

iy

complexity decoding.
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Construction Methods for Asymmetric and
Multi-Block Space-Time Codes

Camilla Hollanti and Hsiao-feng (Francis) Liember, IEEE

Abstract—In this paper, the need for the construction of and multi-block space-time codes. We are interested in the
asymmetric and multi-block space-time codes is discussed. Abovecoherent multiple input-multiple output (MIMO) case where

the trivial puncturing method, i.e. switching off the extra layers e receiver perfectly knows the channel coefficients. The
in the symmetric multiple input-multiple output (MIMO) setting, . . .
received signal is

two more sophisticated asymmetric construction methods are
proposed. The first method, called the Block Diagonal Method Y=HX+N,

(BDM), can be converted to produce multi-block space-time codes . .
that achieve the diversity-multiplexing tradeoff (DMT). Itis also Where X is the transmitted codeword taken from the Space-

shown that maximizing the density of the newly proposed block Time Block Code (STBCY, H is the Rayleigh fading channel
diagonal asymmetric space-time (AST) codes is equivalent to response matrix and the elements of the noise malix
minimizing the discriminant of a certain order, a result that also  gre i d. complex Gaussian random variables. Throughout the

holds as such for the multi-block codes. An implicit lower bound r r denotes the number of transmitting (r
for the density is provided and made explicit for an important paper,n, (resp.n;) denotes the number of trans g (resp.

special case that contains e.g. the systems equipped with 4Tx+2RX'€C€iving) antennas #Tx (resp. #Rx).
antennas. Further, an explicit scheme achieving the bound is From the pairwise error probability (PEP) point of view
given. Another method pro.posed here [s the Smart .Puncturing [2], the performance of a space-time code is dependent on
Method (S_PM) t_hat generalizes the sgbfleld construction me@hod two parametersdiversity gain and coding gain Diversity
proposed in earlier work by C. Hollanti and K. Ranto and applies . . . .
to any number of transmitting and lesser receiving antennas. gain 'S/ the minimum O,f Fhe rank of th_e dlffe/rence matrix
The use of the general methods is demonstrated by building X — X’ taken over all distinct code matricés, X’ € C, also
explicit, sphere decodable codes using different cyclic division called therank of the codeC. For non-zero square matrices,
algebras (CDAs). Computer simulations verify that the newly being full-rank coincides with being invertible. Wheh is
mg&%sdedanrg?;hgg;ecf;se?g‘epﬁs oVL\JItiEher;lc:r‘sm ti:iViT?:e Fé‘érr‘]‘atggrri‘gg full-rank, the coding gain is proportional to the determinant
, . . f , o
construction exploiting maximal orders improves upon the punc- of the mamx, (X — XX - X )T’ Wher_eT 'nd'cat_e,s the
tured perfect code and the DJABBA code as well as the Icosian COMplex conjugate transpose of a matrix. The minimum of
code. Also extensive DMT analysis is provided. this determinant taken over all distinct code matrices is called
Index Terms—Asymmetric space-time block codes (AST- the minimum determln_anbf th_e _CodeC. If it is boundgd
BCs), cyclic division algebras (CDAs), dense lattices, discrim- away from zero even in the limit as the spectral efficiency
inants, diversity-multiplexing tradeoff, maximal orders, multi- approaches infinity, the ST code is said to have toa-
block codes, multiple-input multiple-output (MIMO) channels,  vanishing determinan{NVD) property [3]. Note that the
normalized minimum determinant. minimum determinant defined here is actually the square of
the minimum determinant of a lattice defined below.

I. INTRODUCTION Definition 1.1: The data rate R in bits per channel use

Multiple-antenna wireless communication promises vefPcu) is given by
high data rates, in particular when we have perfect channel
state information (CSI) available at the receiver. In [1] the

design criteri_a for such systems were developed, and fgrtwere‘c‘ is the size of the code, arifl is the block length.

on the evolution of space-time (ST) codes took two directions: Here, thecode rateis defined as the ratio of the number of
trellis codes and block codes. Our work concentrates Qn -cmitted information symbols (complex, e.g. QAM sym-
the latter branch and especially on the so-called asymmei;&gls) to the decoding delay (equivalently, block length) of

The material in this paper was presented in part at the IEEE Informatizjlr:]ese SymbOIS at the receiver for any given number of transmit

Theory Workshop, Bergen, Norway, July 2007, and at the IEEE Internatior@Ntennas using any complex signal constellations. If this ratio
Symposium on Information Theory, Toronto, Canada, July 2008. The resea‘rghequa| to the delay, the code is said to h&vérate.

of C. Hollanti is supported in part by the Finnish Cultural Foundation, the

Finnish Academy of Science, and the Foundation of the Rolf Nevanlinna The very first STBC for two transmit antennas was the

Institute, Finland. . , Alamouti code[4] representing multiplication in the ring of
C. Hollanti is currently with Department of Mathematics, FI-20014 Uni- . As th . f divisi laeb h
versity of Turku, Finland (e-mail: cajoho@utu.fi). During this work she waguatermons' S the quaternions form a division algebra, suc

with Laboratory of Discrete Mathematics for Information Technology, Turkimatrices must be invertible, i.e. the resulting STBC meets

Centre for Computer Science, Finland. o __the rank criterion. Matrix representations of other division
H.-f. Lu is with Department of Communications Engineering, National

Chiao Tung University, 1001 University Rd., Hsinchu 300, Taiwan ((e-maifti9€bras have been PrOposed as STBCS in various papers,
francis@cc.nctu.edu.tw). e.g. [5]-[18] to name just a few. Major amount of the work

1
R = logy [C))
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in recent years has concentrated on adding multiplexing gaiector space, called the ambient space. In the space-time
and/or combining it with a good minimum determinant, so thd6T) setting a natural ambient space is the sp&tg(C) of

the resulting constructions can achieve the so-called diversigpmplexn x n matrices. TheGram matrixis defined as
multiplexing tradeoff (DMT) in [19]. It has been shown in [15] i
that cyclic division algebra (CDA) based square ST codes with G(L) = (mr(xixj)) 1<ij<k’ 1)

the NVD property ach|eye the DMT. This result also eXten%heretr is the matrix trace (=sum of the diagonal elements),
over multi-block space-time codes [20]. The codes propos de, € M,(C), i = 1,..., k, form aZ-basis ofL. The rank

in [17] all fall into this category (as do many other codes to of the lattice is upper bounded B:2. Note that we really

and are in that sense optimal. One of the goals of this papela 4 take the real part of the trace in the Gram matrix,

IS t; ge?ggallth some of the results of [17] to the asymmetré% the matrices:ix;f are not necessary real as themselves for
and multi- ock case. 1 # 7. The Gram matrix has a positive determinant equal to

After a cyclic division algebra has been chosen, the n e squared measure of the fundamental parallelotof)>.
step is to choose a corresponding lattice, or what amou%%hange of basis does not affect the measuré.)

to the se:]me thinglg,dt.o choose Zn orderr] within the :_alrg];et;ra.Any lattice L with the NVD property [8] can be scaled, i.e.
Most IIaléIt ors, |r|1c udlng [10] :n [15], have fgonedw? MRultiplied by a real constartt either to satisfy deti, (L) =
so-called natural order (see the next section for a definition nprer o) det(M) = 1 or to satisfym(L) = 1. This is be-

One of the points the authors wanted to emphasize in [lg use defi, (tL) = t"detnn (L) andm(tL) = t*m(L). As

was to use maximal orders instead. The idea is that one GaR yinimum determinant determines the asymptotic pairwise

sometu_nes use several CO_SGtS of the_ _n_atural oro_ler gnd heé\%r probability, this gives rise to natural numerical measures
transmit at a higher rate without sacrificing anything in terms; e quality of a lattice

of the minimum determinant or the coding gain. So the study )

of maximal orders is clearly motivated by an analogy from Definition 1.2: Following [26], we shall denote b§(L) the
the theory of error correcting codes: why one would use ¢rmalized minimum determinaof the lattice L, i.e. here
particular code of a given minimum distance and length, if %€ first scaleL to have a unit size fundamentall parallelot.ope.
larger code with the same parameters is available. The standaHg!ly we denote by(L) = 1/m(L) the normalized density
matrix representation of the natural order results in cod@k the lattice L, when we first scale the lattice to have unit
that have a so-called threaded layered structure [21]. Whefiimum determinant, and only then compute the quantity
maximal order is used, the code will then also extend "betweéfi”(L). In other words, we define

layers". Earlier, maximal orders have been successfully used in det,in (L)
the construction of MISO and symmetric MIMO lattices, see o(L) = “m(L)n/k
[5], [22], [17]. For more information on matrix representations d k/m
of division algebras and their use as MIMO STBCs the reader p(L) = (detnin (L)) _
can refer to [23], [7]. m(L)

Recently, different methods for constructing asymmetric When comparing the minimum determinants of different
[24],[25] and multi-block [20] space-time codes have beegpdes, one should always use the normalized minimum de-
proposed Asymmetriccodes are targeted at the code desig@rminant. To avoid confusion let us mention that from now
for downlink transmission where the number of Rx antennasa8, when we talk about minimum determinant we always mean
strictly less than the number of Tx antennas. Typical examplé&t.i» (L) and not its square as in the traditional definition
of such situations are 3+G mobile phones and DVB-H (Digit&lf minimum determinant (see above). The squared normalized
Video Broadcasting-Handheld) user equipment, where onlyminimum determinani(L)? can be righteously identified with
very small number of antennas fits at the end user site. Muliiie coding gain. According to the above definition, maximizing
block codes, for their part, are called for when one wishdge coding gain, i.e. the normalized minimum determinant, is
to obtain vanishing error probability in addition to the DMTequivalent to maximizing the (normalized) density of the code.
optimality. Formally, we get

Remark 1.1:We want to note that in this paper the em- proposition 1.1: The coding gain of a latticé, equals
phasis is purely on the construction of sphere decodable ) on/k
asymmetric schemes having a minimum delay, and hence we o(L)” = p(L) :
do not intend to compete with the symmetric schemes thatHence, increasing the density is equivalent to increasing the
will naturally have a higher rate. The problem of constructoding gain.
ing minimum-delay symmetric schemes has been efficientlyGiven that maximal orders provide the best codes in terms of
solved already, see e.g. [10], [17]. However, unless at leastminimum determinant vs. average power we are left with the
receiving antennas is used, such codes cannot be decodedumstion: Which division algebra should we use? To continue
using simple decoding methods such as a sphere decoder, thiedanalogy from the theory of error-correcting codes we want
this is the very reason why we now consider the constructiemfind the codes with the highest possible density. That is, with
of sphere decodable codes for receiving antennas,,. being the smallest fundamental parallelotope. In [17] we developed
strictly less than the number of transmitters the required tools for parameterizing cyclic division algebras
We define alattice to be a discrete finitely generated freavith a given center and index. Also an achievable lower bound
abelian subgroug. of a real or complex finite dimensionalfor the measure of the fundamental parallelotope was derived.
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One aim in this paper is to generalize the notions and [I. MOTIVATION AND PROBLEM STATEMENT
results from [17] to thesymmetric schem&here the number
of receiving antennas is strictly less than the number
transmitting antennas. As the main contributions we

In some applications the number of Rx antennas is required
& be strictly less than the number of Tx antennas. Typical
examples are 3+G mobile phones and DVB-H (Digital Video
Broadcasting-Handheld) user equipment, where only a very
« propose new methods for constructing asymmetric 5pa§éﬂ3” number of antennas fits at the end user site. One

time codes, one of which is applicable for any numbdpay also think of downlink transmissions in wireless net-

of transmitting and receiving antennas (#RKTx), works, where one can usually fit more antennas in the access

« prove that similarly to the symmetric scheme, maximizingoint than in a laptop. For such application, the symmetric,
the density (i.e. finding the most efficient packing in th&inimum-delay MIMO constructions arising from the theory
available signal space) of codes arising from the so-call@ficyclic division algebras (see e.g. [10]) have to be modified.
block diagonal method is equivalent to minimizing théor simplicity, the concrete examples given here concentrate
discriminant of an order. With the aid of this observaon the 4Tx-2Rx antenna case: if we could afford four Rx an-
tion we generalize the density bound from [17] to th&nnas, the task would be easy —just to useithé minimum-

asymmetric scheme, delay, rate-optimal CDA-based construction transmitting 16
. derive an explicit density upper bound for th&x+2Rx (complex, usually QAM / HEX) information symbols in four

case, time slots, i.e. four in each time slot. Now, however, the
« provide an explicit 4Tx+2Rx construction achieving oureduced number of Rx antennas limits the transmission down

density bound, to two symbols per each time slot (cf. Definition 1.1) if we

. give a table comparing the normalized minimum detewish to enable efficient decoding such as sphere decoding.
minants and densities of different block diagonal AST We have come up with two different types of solutions
codes, to this problem. Both solutions take advantage of cyclic

« show that the block diagonal method can be converteddivision algebras and yield rate. codes with a non-vanishing
produce multi-block ST codes [20] that achieve the DMTeterminant. Let us denote by, = n,m the number of
and that the density bound is also applicable as suchtignsmitters in the usual symmetric CDA-based MIMO system
these multi-block codes, and suppose we want to construct a code T x+n,.Rx

« provide extensive DMT alalysis of the proposed codesantennas. In thélock Diagonal Method (BDM}he idea is

« demonstrate by simulations that by using the newly pré@ first pick an indexn, division algebra with a center that
posed methods we can outperform the punctured Perfié&@m-dimensional oveQQ, form isomorphic copies of it and
code and the DjABBA code [25] as well as the Icosiathen use them as,. x n,. diagonal blocks in am; x n; code
code [27] in BLER performance. matrix. Another possibility is to take the symmetrig x n,

MIMO code, but choose the elements in the matrix from an
. . . .intermediate field of degre®n,. overQ instead of the maximal
The paper is organlzed as follows. In _SeCUO” I we Wil pfield. This method can be generalizedatyy number of
shortly motivate this research_and descn_be our solutl_ons tQnsmitters and receivers (#R¥Tx) by performing so called
the stated problems._ In Section I, ‘various a'gebf,a"? NSmart Puncturing Method (SPMhstead of restricting the
tions related to cyclic algebra}s, ord_grs, a_nd discriminantg, ments to belong to some fixed subfield. In practice, this
are introduced. If the reader is familiar with the standarghqans that we puncture at an arbitrary level, i.e. set a required
symmetric cyclic division algebra based space-time codes, figyper of QAM/HEX coeffiecients of basis elements to zero.

introductory section can safely be skipped. Furthermore, it4§,oqe methods shall be explained in greater detail in Sections
shown that maximizing the density of the code, i.e. minimizing 5,4 v accompanied with illuminating examples

the fundamental parallelotope is equivalent to minimizing the In this paper we will thoroughly analyze (in class field theo-

discriminant. This leads us to Section IV, where we recar”atic terms) the block diagonal method. The smart puncturing

_the achievable _Iower bound frqm [17] for the _d'scr'm'na'\fﬂethod will be treated in more detail in a forthcoming paper.
in the symmetric case. In Section V we describe the bloc

diagonal construction method for asymmetric ST lattices. We
generalize the density bound from [17] to the block diagonal”"
AST codes in Section V-A, and show in Section V-B that it We refer the interested reader to [23] and [7] for a detailed
also holds as such to the multi-block codes [20]. Also explic#txposition of the theory of simple algebras, cyclic algebras,
example codes are given in Section V-C accompanied witteir matrix representations and their use in ST-coding. We
a table comparing their densities and normalized minimuanly recall the basic definitions and notations here. In the
determinants. Further, in Section V-D we derive an explicitpllowing, we consider number field extensiofy F', where
achievable density bound for tha&x+2Rx case and show that F' denotes the base field add (resp.E*) denotes the set of

it is achieved by one of the proposed constructions. The smtr¢ non-zero elements df (resp.E). In the interesting cases
puncturing method is described in Section VI, and finallf is an imaginary quadratic field, eith€)(i) or Q(v/—3)
some simulation results and DMT analysis are provided @orresponding to the QAM and HEX alphabets, respectively.
Sections VIl and VI, respectively. Section IX contains théVe assume thaE/F is a cyclic field extension of degree
conclusions. with the Galois groufizal(E/F) = (o). Let A= (E/F,0,7)

CYCLIC ALGEBRAS, ORDERS AND DISCRIMINANTS
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be the corresponding cyclic algebra of degredn is also
called theindexof A, and in practice:; = n), that is

A=F0uFE®uE® - - du" 1E,

as a (right) vector space ovét. Hereu € A is an auxiliary
generating element subject to the relations= uo(z) for all
x € F andu™ =~ € F*. An elementa = z¢ + uxy +--- +

u" 'z,_1 € A has the following representation as a matrix Lemma 3.1:Let v € F*

is isomorphic to the Golden algebra. Heeé is the F-
automorphism o2’ determined by, — —¢ andy’ = u/? = 5.

The elementy is often called anon-norm elementiue to
Theorem 3.2 by A. A. Albert [28, Theorem 11.12, p. 184].
It provides us with a condition of when a cyclic algebra is
a division algebra. The original result was stated foe
1,2,...,n — 1, but can be simplified after the next lemma.
and E/F be as above. Consider

A= the setS of exponentst € Z such thaty’ is a norm of an
xo  yo(xp_1) Yo (Tp_2) yo 1 (zy) element ofE. Then
z a(zg) o (xn-1) Yo" (@)
T2 o(x1) o (xo v (x3) S =kZ
1 for somek|n.
tat 0(tns)  0%(wns) " (o) In

We refer to this as the standard matrix representatiotd of

Proof: The mappingf : ¢t — ~* is a homomorphism
of groups from(Z, +) to (F*,-). Because = Ng,p(E*)

Observe that some variations are possible here. E.g. one iy subgroup off’*, andS = f~1(H), we immediately see
move the coefficients from the upper triangle to the lowerthat S is a subgroup of(Z, +). From basic algebra it now
triangle by conjugating this matrix with a suitable diagondbllows thatS is cyclic, i.e.S = kZ for somek € Z. On the

matrix. Similarly one may arrange to have the first row tother hand, as € F* we get thaty” = Ng,r(7), and hence

contain the "pure" coefficientsy, .

..,Zn_1. Such changes do n € S. Thereforek|n.

not affect the minimum determinant nor the density of the Proposition 3.2 (Norm condition)The cyclic algebrad =

resulting lattices.
In practice, some restrictions to the elementsE E and~y

(E/F,0,v) of degreen is a division algebra if and only if
the smallest factot € Z, of n such thaty? is the norm of

have to be made, see Definition 3.4 and the comment bel®&gme element of* is n.

If we denote the integral basis @& /F by {eg,e1,...,en—1},

then the elements;, i = 0,...,n — 1 in the above matrix
are restricted to take the form, = 27— frex, where f;, €

Op for all kK = 0,...,n — 1. Hencen information symbols
are transmitted per channel use, i.e. the design haswrdte
literature this is often referred to as havindudl rate.

Definition 3.1: The determinant of the matriXd above is
called thereduced nornof the elementi € A and is denoted
by nr(a).

Remark 3.1:The connection between the usual norm m
N4/r(a) and the reduced normr(a) of an element € A
is Na/r(a) = (nr(a))”, wheren is the degree ofs/F'.

Definition 3.2: An algebraA is calledsimpleif it has no
nontrivial ideals. An F-algebra .4 is central if its center
Z(A)y={ae€ A|ad =daVd € A} =F.

All algebras considered in this paper are central simple.

Proof: We are to prove the equivalence of two conditions,
the original stating that? is not a norm for any in the range
1,2,...,n—1, and the relaxed version stating the same for those
t in the same range that are also divisorsoOne implication
is clear, and the other follows from the above lemma. Namely,
if there are integers in the rangel, 2, ...,n — 1 such thaty!
happens to be a norm, then the lemma tells us that the smallest
sucht must be a divisor of. [ ]

Remark 3.2:We can even relax the above conditions for
The proof of the previous lemma shows that actually it suffices

B check thaty”/? is not a norm for any prime divisgs of n.

For example, whem = 8, it suffices to check that* is not
a norm.

We are now ready to present some of the basic definitions
and results from the theory of maximal orders. The general
theory of maximal orders can be found in [29].

Let R denote a Noetherian integral domain with a quotient

A division algebra may be represented as a cyclic algelfield I (e.9. R = Z[i] and F' = Q(i)), and let.A be a finite

in many ways as demonstrated by the following example.

Example 3.1:The division algebra&.A used in [3] to con-
struct the Golden code is a cyclic algebra with= Q(7),
E = Q(i,V5), v i, when the F-automorphismo is
determined byr(v/5) = —v/5. We also note that in addition

dimensionalF-algebra.

Definition 3.3: An R-orderin the F-algebraA is a subring
A of A, having the same identity element.ds and such that
A is a finitely generated module ovét and generategl as
a linear space oveF'. An order A is calledmaximal if it is

to this representatiod.A can be given another constructiomot properly contained in any othéi-order.

as a cyclic algebra. As now? = i we immediately see that

In the rest of the paper\ will always denote an order and

F(u) is a subfield ofGA that is isomorphic to the eighth .o pe treated as an algebraic lattice. Let us illustrate the above

cyclotomic field B/ = Q(¢), where¢ = (1 +14)/v/2. The

relation uv/5 = —/5u read differently means that we can

view u as the complex numbef and /5 as the auxiliary

generator, call it’ = /5. We thus see that the cyclic algebre{

E/®U/E/: (E//F7O—/,’y/)

definition by concrete examples.

Example 3.2:(a) Orders always exist: I/ is a full R-
attice in A, i.e. FM = A, then theleft order of M defined
asO;(M) ={x € A| «M C M} is an R-order in A. The
right order is defined in an analogous way.
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(b) If R is the ring of integersDr of the number field is a Euclidean domain, so in these cases (as well as in the
F, then the ring of integer®y of the extension field2 is caseR = Z) it makes sense to speak of the discriminant
the unique maximalR-order in E. For example, in the caseas an element oR? rather than as an ideal. We simply pick a
of the cyclotomic fieldE = Q(¢), where{ = exp(2mi/k) generator of the discriminant ideal, and call it the discriminant.
is a primitive root of unity of orderk the maximal order is Equivalently we can compute the discriminant as
O = Z[(].

(©) Th[e]set of integral elements does not form a ring in the d(A/R) = det(tr(z;x;))i =1,
non-commutative case. As an easy counter-example one can ) :
use the ring of Lipschitz quaternions where{zy,...,zm} is any R-basis ofA.

Remark 3.4:lt is readily seen that whenevarC T are two
R-orders, thend(T'/R) is a factor ofd(A/R). It also turns
i’ =42 =k*=—1,ij = k}, out (cf. [29, Theorem 25.3]) that all the maximal orders of a
division algebra share the same discriminant that we will refer

a Sutb””t‘%' of ]Erlﬁ ':'A‘:’llm'ltont'.an (?ua't:ern!omf used for _(tjhe tto as the discriminant of the division algebra. In this sense a
construction of the 2amou | code. mor Instance, consider 'flr?aximal order has the smallest possible discriminant among
polynomial f(x) = z? + 1 having integral coefficients. The

/PR 2 all orders within a given division algebra, as all the orders are
elementt = 24 s one of the (infinitely many) roots of the g g

: . contained in some maximal order.
polynomial f(x), and hence may be called integral. However,

if we try to adjoint to the ringﬁy we end up with a set that The definition of the discriminant Closely resembles that of
will also contain the elemerit. The reduced trace-(it) € Q the Gram matrix of a lattice, so the following result proved
is not an integer, hence we cannot have an order that woilld[17] is unsurprising and immediately generalizes to the
contain both the Lipschitz quaternions ahd asymmetric scheme as well as was shown in [24].

For the purposes of constructing MIMO lattices the reasonLemma 3.4:Assume that' is an imaginary quadratic num-
for concentrating on orders is summarized in the followinger field and that andv form aZ-basis of its ring of integers
proposition (e.g. [29, Theorem 10.1, p. 125]). We simpljz. Assume further that the ordet is a free R-module (an
rephrase it here in the language of MIMO-lattices. We identif§ssumption automatically satisfied, whens a principal ideal
an order (or its subsets) with its standard matrix representati@ﬁ.mallin)- Then the measure of the fundamental parallelotope

equals

71,2
Proposition 3.3:Let A be an order in a cyclic division m(A) = [Sv[" |d(A/R)].
algebra(E/F,o,v). Then for any non-zero elemente A In the respective caseB = Q(i) and F = Q(v/—3) we
its reduced normur(a) is a non-zero element of the ring ofhave v = i and v = (—1 4+ /—3)/2 respectively, so we

integersO of the centerr. In particular, if /" is an imaginary immediately get the following two corollaries.
guadratic number field, then the minimum determinant of the Corollary 3.5: Let F' = Q(i), R = Z[i], and assume that

lattice A is equal to one. A C (E/F,0,7v) is an R-order. Then the measure of the
Definition 3.4: In any cyclic algebra we can always choos@undamental parallelotope equals

the elementy € F'* to be an algebraic integer. We immediately
see that the) p-module m(A) = |d(A/Z[i])].

Anar =0 BuO0p @ - du" 10g, Example 3.3:When we scale the Golden code [3](cf. Ex-
. ) . . . _ample 3.1) to have a unit minimum determinant, all the 8
whereOg; is the ring of integers, is a@x-order in the cyclic gjements of it<Z-basis will have lengti5'/4 and the measure

algebra(E/F, 0,7). We refer to thisOp-order as th@atural  of the fundamental parallelotope is thus 25. In view of all
order. An alternative appellation would blayered order as qf the above this is also a consequence of the fact that the
the corresponding MIMO-lattice of this order has the layeregl;_giscriminant of the natural order of the Golden algebra
structure described in [21]. GA is equal to 25. As was observed in [30] the natural order

Remark 3.3:We want the reader to note that in any centrdlappens to be maximal in this case, so the Golden code cannot
simple algebra a maximal-order is a maximalOg-order be improved upon by enlarging the order witt{id.

as V\_/ell. Note also that ify is n(_)t an _algebra_ic integer, then Corollary 3.6: Let w = (—1 + v/—3)/2, F = Q(w), R =
A fails to bg glosed under .multlphcatlon. Th!s may alldverselz[w], and assume that  (E/F,c,~) is an R-order. Then
affect the minimum determmant of the resulting matrix Igtucqhe measure of the fundamental parallelotope equals
as elements not belonging to an order may have non-integral
(and hence small) norms. m(A) = (\/g/g)nﬂd(,\/z[wm,
Definition 3.5: Let m = dimp.A. Thediscriminantof the ~ The upshot in [17] was that in both cases maximizing
R-order A is the ideald(A/R) in R generated by the set the density of the code, i.e. minimizing the fundamental
" m parallelotope, is equivalent to minimizing the discriminant.
{det(tr(ziz;) =1 | (@1, 2m) € A™}. Thus, in order to get the densest MIMO-codes one needs to
In the interesting cases d@f = Q(i) (resp.F = Q(v/—3)) look for division algebras that have a maximal order with as

the ring R = Z[i] (resp.R = Z[w], w = (-1 4 v/—3)/2) small a discriminant as possible.

£:{q:a+bz+cj+dk€H|a,b,C,d€Z7
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For an easy reference we also include the following resultExample 4.2:Let FF = Q(v/—3), s0 O = Z[w]. In this
[17] that is a relatively easy consequence of the definitionscase the two smallest prime ideals are generate@ laynd
Lemma 3.7:Let E/F be as above, assume thatis an 1—w and as noted abO\_/e_they havg norms 4 and 3 respectively.
algebraic integer ofF, and let A be the natural order of BY Theorem 4.1 the minimal discriminant 4¢1 —w)2.wh9n
Definition 3.4. Ifd(E/F) is theOp-discriminant of0; (often " = 2- AS the absolute value af —w is v/3 an application

referred to as the relative discriminant of the extengipty), ©f the formula in Corollary 3.6 shows that the lattide
then of the code achieving this bound has(L) = 27/4. In

d(A)Op) = d(OE/OF)n,Yn(nfl)' [22] we showed that a maximal order of the cyclic algebra

To conclude the section, we include the following simplef/£:0(i) = —i,y = v/=3), where £ = Q(i, V=3),
but interesting result on maximal orders explaining why usirfFnieves this bound.

a principal one-sided (left or right) ideal instead of the entire For more information on finding maximal orders and their

order will not change the density of the code. For the progiiscriminants, see [17]. In practice maximal orders can easily

see [17, Lemma 7.1]. be computed with the aid of the (unfortunately commercial)
Lemma 3.8:Let A be a maximal order in a cyclic division MAGMA software [31], or in small cases by hand following

algebra over an imaginary quadratic number field. Assume thad2] (see also [33],[34]). The computation and decoding of

the minimum determinant of the lattice is equal to one. Let maximal order will be treated in more detail in a forthcoming

z € A be any non-zero element. Let> 0 be a real parameter paper by Hollanti and Ranto [35].

chosen so that the minimum determinant of the latti¢eA) We conclude this section by a couple of remaniedated to

is also equal to one. Then the fundamental parallelotopestié use of outer codes and our choice to consider only codes

these two lattice have the same measure having a minimum delay.

m(A) = m(u(zA)). Remz_irk 4.1:While the _concatenation of the maxim._al-order
space-time code as the inner code and the conventional error
correction code as the outer code is beyond the scope of this
) . ) work, it is expected that such concatenation will result in a
In this section, we recall some more material from [17] t@mgjler multiplexing gain as the outer code has rate less than 1.
be used later on in Section V. . ~__ However, the error performance will be significantly improved
“Again let F' be an algebraic number field that is finitgjye 1o the use of additional error correction techniques. On the
dimensional overQ and Or its ring of integers. In what 4iher hand, we must point out that since (1) the inner maximal-
follows by the size of ideals 00 we mean that ideals arey qer code makes use of sphere decoding, which is a hard-
ordered by the absolute values of their norm&)oso e.9. in gecision based decoding, and (2) such inner decoder cannot
the caseDr = Z[i] we say that the prime ideal generated by ,vide soft information for the input of output decoder,

2 + i is smaller than the prime ideal generatedbgs they i is technically impossible to use either low-density parity
have norms 5 and 9, respectively. check (LDPC) code or turbo code as the outer code as these
Theorem 4.1:[17, Discriminant bound] Assume thdt is codes requires a soft-input-soft-output decoder in order to
a totally complex number field, and th&y and P, are the deliver the promised near-capacity performance. Nevertheless,
two smallest prime ideals i@ . Then the smallest possiblesome conclusion can be easily drawn. From simulation we
discriminant of all central division algebras overof index have already seen that, in the symmetric case, the maximal
n is order code outperforms the perfect code, meaning that the

(P, Py)"(n=1), former has lower error probability than the latter; the overall
We remark that the division algebra achieving this bound fror probgbility of the concatenated maximal-order code after
by no means unigue. incorporating the outer decoder m_ust be even lower than that of
_ ) the concatenated perfect code, simply because the BER curve
Example 4.1:The smallest primes of the ririg[i] are1+i of the outer decoder is monotonically decreasing in SNR, and
and2+i. They have norms 2 and 5 respectively. The smallegtch conclusion holds for all outer codes.

primes of the ”ngZM arey —3_and2 with respective NOTMS - pemark 4.2:In this paper the focus is on square matrices,
3 and 4. Together with Corollaries 3.5 and 3.6 we have arrived . L .
i.e., on codes having a minimum delay. If longer delay is

at the following bounds. L .. allowed, then the optimal DMT can be achieved at least in
Let A be an order of a central division algebra of index ;
. , ome special cases. The authors of the present paper have
n over the fieldQ(:). Then the measure of a fundamenta . : ;
i ) submitted a separate work related to this subject, see [41].
parallelotope of the corresponding lattice : . . . . . .
Increasing the delay requires lattices with a higher dimension,

m(A) > 107 =1D/2, so also the decoding process will get more complex.

IV. THE DISCRIMINANT BOUND

Let A be an order of a central division algebra of index

over the fieldQ(w), w = (=1 + v/—3)/2. Then the measure ithe remarks are invoked by the comments of the anonymous reviewers
of a fundamental parallelotope of the corresponding lattice of this paper. We thank all the reviewers for the careful reading of our paper.
5 Also complexity issues were brought up by one of the reviewers, hence a
m(A) > (\/§/2)n 19n(n—1)/2 short discussion on the decoding complexity has been added in the simulation
- results section.
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V. CONSTRUCTING ASYMMETRIC AND MULTI-BLOCK and hencé det(M)| > 1. [ |

SPACETIME CODES BY THEBLOCK DIAGONAL METHOD Remark 5.1:In [36] an approach similar to the BDM was
(BDM) used for the MIMO amplify-and-forward cooperative channel.
A straightforward way to obtain AST lattices would be just Now the natural question is how to choose a suitable

to "SWitCh off the extr_a Ia)_/ers" (fo_II(_)wing [25] _and [24]) in 2 division algebra. In [15] and [16] several systematic methods
symmetric MIMO setting, i.e. by trivial puncturing. In the cas or constructing extension& /L are provided. All of them

of 4TX+2RX anten.nas this would mean that n the standamiake use of cyclotomic fields. Next we will show that also
matrix representation we set e.gy = x3 = 0 in order to

it a limited b f bols th b . ‘%ﬁ the asymmetric scheme, maximizing the code density (i.e.
trgnsmn a limite humper ot Symbols that can De TeCeVeflinimize the volume of the fundamental parallelotope, see
with only two receivers. In this and the following section w

histi q hods f ing A 17]) with a given minimum determinant is equivalent to
pre_sent two more sop |st_|c_ate methods Tor (_:onstructmg inimizing a certain discriminant. In the next section we shall
lattices that still admit efficient sphere decoding.

show that this also holds for the multi-block codes from [20].

A. Block diagonal asymmetric ST lattices First we need the following result. For the proof, see [29,

In this section, we recaMethod 1from [24]. Let us rename p. 223]. .
this method a8lock Diagonal Method BDM). Lemma 5.2:Suppose\ C A = (E/L,,7) is anOp-order

Let us consider an extension towgr C [ C E with the 2and thatF” C L. The discriminants then satisfy
degreesE : L] = n,, [L : F] = m and with the Galois groups d(A/OF) = Npr (d(A/OL)) d(Op/Op)dmeA,
Gal(E/F) = (r), Gal(E/L) = (o = 7). Let _ _

The same naturally holds in the commutative case when we
B=(E/L,o,7)=E®uE&---&u™ 'E replaceA with E.

be an indexn, division algebra, where the centéris fixed  As a generalization to Lemma 3.4, we prove the following
by o = ™. We denote by #Tx= n; = n,m. proposition.

Note that if one has a symmetric, index = n,.m CDA-
based STBC, the algebtican be constructed by just picking
a suitable intermediate field C F of a right degree as the

new center. 2 , . i
— |Cx m,nr
An elementb = o + - + w2, 1, @ € B, i = and§ |Sv|™mr If the orde'rC(/.\) defined as in Proposition
" . 5.1 is a freeOr-module (which is always the case(fy is a
0,...,n, — 1 of the algebra3 has the standard representation”> = ~ . )
. . . . principal ideal domain), then the measure of the fundamental
as ann, x n, matrix B = (b;;)1<;,j<n, @S given in Section

" parallelotope equals

Proposition 5.3: Assume thatF’ is an imaginary quadratic
number field and tha{l,»} forms aZ-basis of its ring of
integersOp. Letn, = [E : L], m = [L : F], ny = nym,

However, we can afford am; x n; packing as we m(C(A)) = s|d(A/OF)] (3)
are usingn; transmitting antennas. This can be achieved — SO JONN  md(A)O 4
by using the isomorphismr. Let us denote byr*(B) = sld(0/O) mL_/lF (A/00)l “)
(E/L,o,7"(¥)), k = 0,...,m — 1 the m isomorphic copies — Sld(O, ]O: (A(AO 5
of B and the respective matrix representations by s|d(0L/Or) g T (dA/O))]- )

™(B) = (7%(bij))1<ij<n,, k=0,...,m — 1. ) Proof: In order to keep the notation simple let us assume
m = 2. The proof directly generalizes to an arbitrary Let

The next proposition shows that by using these copies as di-_ (a5;) be amng xn, complex matrix. We flatten it out into a

agonal blocks we obtain an infinite lattice with non-vanishing><4n2 matrix L(A) by first forming a vector of length? out
determinant. L . ¢
of the entries (e.g. row by row) and then replacing a complex
Proposition 5.1 (BDM):Let b € A C B and F' = Q(6), numberz by a diagonal four by four matrix with entries
whered € {i,w}. Assumey € Or. The block diagonal lattice ; r(z), »* and7(z)* (z* is the usual complex conjugate of

B 0 0 z). If A and B are two square matrices witk, rows we can
0 7(B) 0 easily verify the identitied.(A)L(B)! =
CA) =M= : N : tr(ABY) 0 0 0
0 .- 0 +m 4B 0 T(tr(ABT)) 0 0
. - _( ) 0 0 tr(ATB) 0 ©6)
built from (2) has a non-vanishing determinadt()M) = 0 0 0 F(tr(A1B))

17" det(7%(B)) € Z[5]. Thus, the minimum determinant is
equal to one for alln. The code rate equalsm/n,m = n,. andL(A)L(B")" =

Proof: According to Definition 3.1 and Proposition 3.3, tr(AB) 0 0 0
m—1 ‘ m—1 , 0 7(tr(AB)) 0 0 7
det(M) = [ det(v'(B)) = [ nr((v)) 0 0 tr(AB)* 0 :
=0 =0 0 0 0 7(tr(AB))*

m—1
- H 7 (nr(b))) = Ny (nr(b)) € Z[5), Next let X' = {x1,zs,...,zn2} be anOL-basis forA. We
iy form the 4n2 x 4n? matrix L(X) by stacking the matrices
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L(x;)4x4r2 ON top of each other. Similarly we gét(X) by "]
using the matrice4(z7)” as column blocks. Then by (7) the Corollary 5.4: In the caseF’ = Q(i) the volume equals
et m(C(N)) = [d(A/Z[i))

M = L(X)R(X) Corollary 5.5: In the caseF' = Q(w) we get
consists of four by four blocks of the forth(z;)L(z])" = V3

m(C(A)) = (7)”‘”3 |[d(A/Z[w])]-

diag(tr(z;x;), T(tr(z;x;)), tr(z;x;)*, 7(tr(z;x;))*) . ]
Qltr(@iay), 7(tr(@i;)), tr(@i;), rir(@i;))") Now we can conclude (cf. (4)) that the extensions

Clearly E/L,L/F and the orderA C B should be chosen in such
det R(X)R(X)T = +det L(X)L(X)1 a way that the_ discriminantﬁ(OL/OF)_andd(A/OL_) are as
small as possible. By choosing a maximal order within a given
and division algebra we can minimize the norm &fA/Oy,) (cf.
det M = |d(A/OL)|?|T(d(A/OL))|?. Remark 3.4). As in practice an imaginary quadratic number

field F' is contained inL, we know thatL is totally complex.
In that case the fact that

d(A/Or) > (P Py)" (D), (11)
Next we turn our attention to the Gram matrix. L€{yhere p, and P, are prime idealss O with the smallest
{1,0,...,0°} be aZ-bgsls_ forO,. Then by our assumptions noyms (toQ) helps us in picking a good algebra (for the proof,
the setY UGX'U---UO°X is aZ-basis forA. From the theory gee 117, Theorem 3.2]). Note that optimization with respect to

of algebraic numbers we know that d(OL/OF) may result in a loss inl(A/Oy) and vice versa.
d(Or)Z) = det D(v)? andd(O1,/Z) = det D(0)%,  (9) Keeping the above notation, we have now arrived at the
following theorem.

1 1
where D(v) = < . > and Theorem 5.6 (Density bound for lattices from BDMpor

Thus,
| det L(X)L(X)T|'/? = |d(A/OL)||7(d(A/OL))|.  (8)

v the density of the lattic€(A), A C A it holds that
11 1 1 1
_ - —1 —n2 ny(l1—n,)
I () A () p=—aayy =5 |dOL/OF)[ 7" N r(PLP)] ~
PO=1 e woh @ o) | et 12
07 r(07) ()" 7(6°) Remark 5.2:Note that as opposed to Example 4.1 (cf. [17]),
From the identitiesR(zy*) = (zy* + 2*y)/2 and here we do not automatically achieve nice, explicit lower
. () o (@) bounds form(C(A)). That is a consequence of the fact that the
' ' center can now be any field containin@(¢) or Q(w), and
D(0)L(z) = : : thus determining the smallest ideals and P, or even the
3z 7(032) (032)° T(0%)* minimal d(O/OF) is not at all straightforward. An exact
ogethr i (5 it folows that forany o, matrices 41 BN s Mare o cerve n e gener) case o e
A andB havel (D(A)L(A)) (D(9)L(B))" = .
and B we have; (D(9)L(4)) (D) L(B)) be a tricky problem. The reader may ponder over the fact that
R(tr(ABY)) -+ R@tr(AGB)Y) tables for minimal discriminants do exist in literature (though

: : ] only for certain degrees, see e.g. [37]) so why not use them.
] X We want to emphasize that these tables cannot be adapted
3ABT)) .. 3A(03B)T

R(tr(0°ABT) R(tr(6°A(6°B)")) here, as the fields in question do not necessarily contain the

Therefore, if we denote bl the 4n2 x 4n? matrix having desired subfieldQ(i) or Q(w). However, in the smallest (and

n? copies of D(#) along the diagonal and zeros elsewhere, wgerhaps the most practical) case4dix+2Rx antennas we are

get able to give an explicit and even achievable upper bound for
1 f the density. We believe that the best one can do in the other
A) = = (D*Ipx)) (D n(x)) . Y
Gem) 2 ( ( )) ( ( )) cases is to take advantage of known bounds of more general
Thus, nature such as Odlyzko’s bound [38].
m(C(A)) = /detG(C(A)) B. Minimum-delay multi-block ST codes
= |det L()()L(X)T‘l/z . (l)nf |det D(9)|"3. The n,Tx+n,Rx antenna AST code from Proposition 5.1
4 can be transformed into am, Tx+n,Rx antenna multi-block
As code [20] by an evident rearrangement of the blocks:
1,2 2 2 2
(502" [det D(O)|"" = |d(O1/OF)|™ [Sv|*" B 0 .- 0
2 0 7(B) 0
by (9) and Lemma 5.2, Equation (8) now gives us the claim| . _ . = (B - ™Y(B).

when we still note (again by Lemma 5.2) that

(O] Or) " d(A)OL)7(d(AJOL)) = d(AJOr).  (10) (13)



PREPRINTED, WITH PERMISSION, FROM IEEE TRANSACTIONS ON INFORMATION THEORY©Q008 IEEE). 9

As the Gram matrices of an AST lattice and a multi-blocwhere z; € Og. As the center isL with [L : Q(i)] = 2

ST lattice coincide, Lemma 5.3 also holds for multi-block S&nd O;, = Z[i,7 = (1 4+ /5)/2], the elements;, in the

codes with the same parameters. Let the notation be asmatrix are of the forme, = ar o + ar17™ + ar 20 + ax 370,

Section V-A. whereay, ; € Z[i]. Thus, the code transmits, on the average,

Proposition 5.7:Let b € A C B and F' = Q(J), where 2 independent QAM symbols per channel use. )

§ € {i,w}. Assumey € O;. As the lattice We can further improve the performance by taking the

elementse; from the ideak@g, wherea = 1—3i+i6? € Og.
C'(A)={M = (B,7(B),...,7"'(B))} Moreover, a change of basis given by

built from (2) satisfies the generalized non-vanishing deter- 1 0
minant property (cf. [20],[12]), it is optimal with respect to 0 1
the DMT for all numbers of fading blocks:. Similarly as 0 -3
in Proposition 5.1, ["," det(r?(B))| > 1. The code rate -1 -3
equalsn?m/n,.m = n,.

— o O O
_= = O O

guarantees an orthogonal lattice.
2) Cyclotomic algebr& A: The algebraC A = (E/L,0c =
Proposition 5.8: The Gram determinants (cf. (1)) of the;2. ¢, _¢ ~ =14 5—4) = EquE (cf. [12], [22], [24]),

Proof: For the proof, see [20].

latticesC(A) andC’(A) coincide: for its part, has the nested sequence of fiellss L C E
_ ’ with FF = Q(i), L = Q(s = (g), and E = Q(£ = (16). As
'dejc G(C('A)) — et we haver : ¢ — i€, s — —s, the field L is fixed by o = 72.
Proof: This is obvious, as Again by embedding the algebead as in Proposition 5.1, the
tr(diag(BBT, ..,7™ Y(B)T™ Y(B)")) AST code
S (i (B zo yo(z1) 0 0
= > (BB IR 0
i=0 ) 1= 0 0 T(xo) T(y)7T(0(71))
m— i '3 O O T(Z‘l) T(g(mo))
=tr(Y_(T(B)T'(B))).
=0 with z; € Op is obtained. The center Ewith [L : Q(i)] = 2

m andOp = Z[s]. The elements;, in the matrix are of the form
Ty = Zj:o ax,;&7, whereay, ; € Z[i], hence the above code
transmits on the average, independent QAM symbols per

Corollary 5.9: The latticesC(A) andC’(A) share the same channel use.

density, i.e. Proposition 5.3 can be adapted as such to thyote that we have chosen here a suitable non-norm element

An immediate consequence of Proposition 5.8 is

multi-block scheme. ~ from Oy, instead of Oy (cf. Section V-A). We get some
energy savings ad + s —i| < |2 +1].
C. Explicit codes using BDM The codeC.A; can be made perfect (see [11]) by forcing

. . . . . . to be unit, i.e. we can choose = 2ti, The loss in the
In this section we provide explicit asymmetric constructions.. . : S€ = 5 . .
for the important case afTx + 2Rx antennas. These codes Carr]mmmum determinant is compensated by an Improvement in
be modified for2 x 2 multi-block use (cf. (13). The primitive performance. We denote the perfect version of the code by

nth root of unity will be denoted by,. The first three Cfllsly]ijoiig.this we need not sacrifice the NVD property:
examples are given in terms of an asymmetric <:onstruct%1ét X — (X1 X» X3 Xo)T € CA, PERF. If we denote

whereas the last one is described as a multi-block co e.M the matrix where we have multiplied the matrix row
However, with the aid of (13), an asymmetric code can alwa Y € ma ere we have multiphe ¢ ma ows

be transformed into a multi-block code and vice versa. ontainingy by 2 — i, that is

1) Perfect algebraP.A: Let us consider an algebra with the M= ((2—9)X, X2 (2—9)X;5 X)T € CA,
same maximal subfield that was used for 2hed Perfect code ’
in [10]. We have the nested sequence of fields L C E, then we have
where F' = Q(i), L = Q(v/5,i), and E = Q(6,i) with
0 = Ci5 + ¢;5° = 2cog27/15). We denote this algebra by |det(M)| = |(2 —4)?det(X)| > 1
PA= (E/L,oc =71%~)=FE ®uFE, whereu? = v =i and
7(0) = 6% — 2. As 7(v/5) = —/5, the field L is indeed fixed and hence
by o = 72. By embedding the algebrB.A as in Proposition | det(X)| > 1 < 0.
5.1 we obtain the AST code -5

xo to(zy) 0 0 Note also that this is only possible because of tui-
DA, C z1  o(xo) 0 0 tive structure of the code. Taking powers of the elements
t= 0 0 T(x0) iT(0(21)) ’ X € CA; PERF into the code would result in a vanishing

0 0 7(z1) 7(o(x0)) determinant (cf. Remark 3.3).
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3) AlgebraZ A — an improved maximal orderSimilarly as The elementsz;, in the above are of the formx;, =
in the two previous subsections, we obtain a B#&ST code Z?:o ar;C2, where a; € Z[i], hence the above code
ZA; by introducing yet another algebBA = (E/L,c = transmits on the average, independent QAM symbols per
72 4 =+/=3), whereF = Q(i), L = Q(i,v/3), E= L(a = channel use.

Vi4i), and7 : V3 — —/3,/1+i — —/1+i. Among Among our example algebra®.A has the densest natural
our example algebrag, 4 has the densest maximal order. Irorder.

Section V-D we will show that its maximal order is also the
densest in general, wheli = Q(i) andm = n, = 2.

Let us now describe the code explicitly. If we order the
Z-basis of the natural order afA as{e;}1<i<16 =

TABLE |
NORMALIZED MINIMUM DETERMINANT & AND NORMALIZED DENSITY
p = 1/m(A) OF NATURAL AND MAXIMAL ORDERS OF DIFFERENT

ALGEBRAS.
{1, u, 1,7, a,ui, uy, ua, iv, ia, a7y, uivy, uia, uay, iay, uiay},
. . A CA TA PA
then (according to the MAGMA software [31]) the maxima AQ A n n
orderAy ax € ZA has aZ-basis NAT NAT NAT NAT
s 0.0894 0.0361 0.0340 0.0298
{ % ( €1+€2+63+€6 ), p 576: 2716_372: 2710‘376: 374_576:
1 6.4-107° 1.7-1076 1.4-1076 7.9-1077
3 ( e2test+egterrtennters), TA CcA oA PA
1 A A A A
- ( €3 _|_ €6 + er + €9 _|_ €14 + e1s )’ MAX MAX MAX MAX
2 5 0.1361 0.1214 0.0894 0.0894
1 2 oo 90 a_ - ”
= ( estestertegten), po|27%:370=] 279372 = 570 = 570 =
% 3.4-1074 2.2-107% 6.4-107° 6.4-107°
5 ( es+es+egters), e, e,
1 . .-
3 ( es+eis+es+es), e, Example 5.1:Let us calculate the normalized minimum
1 determinant of the algebrd.A as an example (cf. Section
3 ( eo+es+es+ers), I, Definitions 3.4, 3.5, and Propositions 5.1,5.3). The other
1 algebras can be treated likewise. In Table | we have listed the
3 (e +ewtes+tes), normalized minimum determinants and densities of the

natural and maximal orders of the algebfad,C.A,Z.A, and
QA. Note that forQ.A these two actually coincide. We can
Now the codeboolC C Aj;ax Of an arbitrary size can be conclude that among the natural orders, that of the algebra

€12, €13, €14, €15, €16 }

produced as QA has the largest normalized minimum determinant, i.e. the
highest density. The algebfaA, for its part, has the densest
CC{M € Amax | [[M]| < EY, maximal order. The corresponding numbers are shbod
where|| - || denotes the Frobenius norm (corresponds to g Table 1.

squared Euclidean norm of the vectorized matrix, i.e. the sum' " th_el natural order af.A Welgaveﬁdetmi”(C(ANAZg)/;

of the squares of all the matrix elements), aAdis some 1_%%” = m(C(Ayar)) =27 - 37, hencgt =277

desired energy limit. 3 . Now m(tC(ANAT)) = 1 and the norr;?hzedgglmmum
4) AlgebraQ.A — an improved natural orderLet us use the det;l(r)mnant i9) = detimin(tC(Anar)) = 2 -3 R

multi-block notation for a change. Here we consider anothgrO : )

tower of number fields® L c E, where E = Q(Cs, i), The maximal orger 06EA hasdetmiﬂ%(AMg;/(S)) =1and

F = Q(i), and wherel = Q(6, i) with 6 = ¢5 + (; 1. Clearly m((/'(AMAXAD = 2°- 3, thust = 27/% . 37%% and § =

we have GAlE/F) = (r), 7(Cs) = (2, andr(8) = 62 — 2. detmin(IC(Arrax)) = 37575 ~ 0.1361.

Thus we obtain the CDRA = (E/L,0 = 72,v) = E®uE,

andy :_u2 = @is anon-norm element. Embedding the algebig  an explicit density upper bound for the lattic8g\) with

QA as in Proposition 5.1 yields the following multi-block STz _ Q(i) andn; = 4

code with coding ovel consecutive fading blocks: ) )
As shown in Example 5.1, for the maximal orderof ZA

oA, C {(B7(B)) |z, €O0g}, we have

where ] m(C(A)) = d((’)L/OF)dimLIANL/F(d(A/OL))
o= (5 %) 10100, 5 P 1)

= 3%.2%.3% = 2916,
(B) = ( T(z0) iT(0(x1)) ) whereP; and P, are the norm wise smallest ideals®f.. In

and

what follows, we will show that whed = Q(:) andm =



PREPRINTED, WITH PERMISSION, FROM IEEE TRANSACTIONS ON INFORMATION THEORY©Q008 IEEE). 11

n, = 2 we cannot go below this, i.e. the maximal order ofor all [ € L. Thus, the centelr' of A is extended by the
ZA has optimal density. elementu”r.

Le_t us now assume that we unld ha_ve such an eX'Proposition 6.1:Let O,
tension L/Q(i) that the corresponding lattice would havey -4 — Q
m(A) < 2916. If the prime 1 + ¢ splits, this would mean

be the ring of algebraic integers
(7). The lattice

thatd(Op/Z[i]) < V27 ~ 5.196. If 1+ i does not split, then Zo yr(xs) - T (@)

the discriminant should be even smaller so this is a sufficient x1 T(zo) o0 T N(2e)

upper bound fod(Oy,/Z]i]). Cr = : : ;
Leta € Op such thaf1, a} is an integral basis fak/Q(z). : ( ) nﬁi( )

Now this degree two extension has a minimal polynomial of Tny—1 TiTn,—2 T To

the form fo(x) = 2° + bx + ¢, whereb,c € Z[i], and the . ¢ ©, has a non-vanishing determinaitt(C) € Z[i].

discriminant Thus, the minimum determinant is equal to one.

d(OL/OF) =" — 4c € Z[i]. Proof: This immediately follows from the way of con-
Note that a minimal polynomial of the form? + ¢ is out of Struction. =

the question, as thefl(OL/OFr)| = 4lc| > 4v2 > 5.196. As we consider the construction of Proposition 6.1 only for
Furthermored(Or/OF) cannot be a square, as then it wouldchatural orders, we denote it 8§, as opposed to the notation
trivially follow that o € Q(i) and L = Q(z). Now we are (;(A) where we needed to specify the order in use. The above
left with the choicesi(O,/OF) € {1+14,(1+14)3,241i,(1+ subfield construction methd@4] can be generalized so that
i)(241), (1+i)3(2+14), 3(1+14),3,2+34, (1+4)(2+3i),4+4} it applies to any number of receiving antennas #Rx<#Tx. The
or the obvious translates with the same absolute value. idea is that instead of restricting the elementgo belong to

Let us treat in detail the casé$0;/OFr) = (1 +14)’, j = a subfield, we can puncture aylevel. By this we mean that
1,3 to set an example. As the primie+ ¢ ramifies in this we can set an arbitrary number of the QAM/HEX coefficients
extension, we know that the smallest ideal % < O equal to zero. More formally, let us denote
abovel + ¢ and N(P;) = 1 + 4. The second idealP,
would depend on the behavior of the prim2st ¢ and 3. .
However, asl(O,/Or) = b2 —4c = (r + si) — 4(t + ui) = =) akge; € Op (7 =0,m = 1),

(r? — 8% —4t) + (2rs — du)i = (1 +14), r,s,t,u € Z, h=0
it immediately follows that neither of = 1,3 fit into the Wwhereay; € Z[5] and e, ...,e,,—1 iS an integral basis of
equation. E/F. If we wish to usen,. receiving antennas, we set amy—

The other cases are equally straightforward. In the casg of the coefficientss;, ; to zero for eachr;. Nevertheless,
d(0r/OF) = +3 we note that we end up into an isomorphid¢o enable efficient decoding one should choose the same set
extension L/Q(i) ~ Q(¢12) ~ Q(i,v3)/Q(i) that we of indicesk at where to puncture for eaal}. We call this the
already have. Fod(OL/OFr) = 1 + 4i it would require that Smart Puncturing Method (SPM)

ne—1

1 + 4 splits which is not the case. For instance, one option is to defing ; = 0 for n, < k <
We have now proved the following proposition. For they;, — 1, that is
notation, cf. Proposition 5.1. nr—1
Proposition 5.10 (Density Bound far, = 4, F = Q(i)): i = ;} @k.3€5
Let m = n, = 2, i.e. n, = 4. For the density of the lattice -
C(A) it holds that forj=0,...,n, — 1.
1
p=1/m(CA)) < 555 ~ 0.00034 (14) A. Explicit codes using SPM
The lower bound is achieved e.g. by the maximal order of )
the algebraZ A, see Table 1. - Let us now use the SPM for constructing AST codes. To
simplify the notation, we use the subfield construction as a
VI. CONSTRUCTINGAST LATTICES BY THE SMART special case of SPM. To set an example, we write down the
PUNCTURING METHOD (SPM) constructions for the algebra&A4 andC.A, the other algebras

Another way to construct AST lattices would be as follow§a" be treated similarly. . .
(cf. [24]). Let A = (E/F, 7, ~) be an index:, division algebra 1) AlgebraP A: _ By using the_ algebr& A (cf. Section V-
and[E : L] = m, [L : F] = n,. If in the standard matrix C.1) and the subfield construction 6.1, we get
representation the elements are restricted to belong té zo it(zs) dwe iT(x1)
(rather than toE), we obtain another division algebrd’. a1 7(wo) dws ir(xa)
Obviously also the algebral’ is a division algebra as it is PA; C ( (
contained inA. This construction also yields rate. codes
for ny;Tx+n,Rx antennas with a non-vanishing determinant.
As L is fixed byo = 7"~ we have Each of the elements,, is of the formzy, = a0 + a1,

[ = (Dt = e =y (1) = w (D) = u ] whereay, ; € Z[i]. Thus, the code rate is again equal to two.

miEC’)L

T2 l‘l) o 1T £E3)
r3  T(22 z1  7(xo)

Bl
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2) AlgebraCA: Let us then construct a code usifigl (cf. the simulation results of th® A codes suggest that having a
Section V-C.2) and 6.1. This time we have good shaping is also important at low SNR regime and it is
better that the code has this property.

o ng?’; T2 nglg Do note that information losslessness is a property defined
CA; C il :(zo) 7?’ VZ(?) z; €O for linear dispersion (LD) codes and as such does not concern
x2 (xl) a:O i (xg) the maximal order codes (they are not linear dispersion codes
3 T2 1 T when optimally used). Orthogonal shaping, for its part, has

with v = 2 + 4. many other justifications than that of yielding information
Each of the elements, is of the formay o + ax,1s, where lossless codes. As mentioned earlier, orthogonal (or hexago-
ai,; € Z[i]. Thus, the code rate equals two. nal) shaping enables simple bit labeling and usually makes

Again we could also use a unit non-norm element g—jj the decoding less complex. Hence, in addition to density
(maximization of the normalized minimum determinant), it is
VIl. SIMULATION RESULTS preferable to have orthogonal or nearly orthogonal shaping.

In, our simulations we did not do lattice reduction or use any

In F'gur? 1’_ the d|ff_er-ent constrL_lctlon methods are denot%ﬂqer methods to simplify the decoding, as we feel that these
by subscripts:0 = Trivial Puncturing Method,1 = Block concepts should be treated in a paper of their own.

I?Alsgggial(cl;/l?;t% (cf. V-C), an@ = Subfield Construction To summarize the above, by orthogonal shaping one can
' L . mpensate somewhat the lower density. That is, if we have
'Ijhe.use of a maxm]al order mst_ead of the natural order w 0 equally dense codes, then one might prefer the one that is
Ee |lnd|03ted.by]\/ﬁAX €9 v;e Wr'teI.Al’lMAg for]:[hﬁ co<|je bcloser to being orthogonal. But do note that by using orthogo-
Iflgne using the BDM and a maximal order of the alge KAl codes only, one cannot achieve the excellent performance
' provided by the maximal order codes as is clearly shown
by the simulations. Also the data rate used in Figure 1 is
very much in favor ofPA as its shape fits perfectly with
the constellation. At a different data rate (e.g. at 5 bpcu),
however, the performance dP.A can be expected to get
worse as compared to the maximal order codes as then the
orthogonal shape does not help that much and the density
has more impact. Similar phenomenon was experienced when
comparing the Golden code with the Golden+ code [17]: At
the rate 4 bpcu that is ideal for the Golden code it could not
be beaten, but immediately when taking a bigger data rate
the difference became clear and the denser Golden+ code was
shown to outperform the Golden code.
The codeZ A, s 4x obtained by combining BDM with the
use of a maximal order (cf. V-C.3 and [22]) triumphs over
. ‘ ‘ ‘ ‘ ‘ ‘ all the other codes. It outperforms the next best cqilé,
10 u 12 2 owam 15 16 7 by approximately0.3 dB andP.A; prax by 0.5 dB. In [25]
the authors show that the DjABBA code wins the punctured
Perfect code by).5 dB or less in the BER performance at
the rate 4 bpcu. The same holds for the BLER performance
First of all, we have to admit that we have not carriednd thus our code improves even upon the DJABBA code.
out optimization as much as would have been possible. Falso the Icosian code for 4Tx+2Rx antennas exploiting the
example, the use of ideals has not been taken advantageladsian ring (which also happens to be a maximal order) loses
except in the case of the punctured Perfect cBdk and the toZ.A; arax by 0.7-1 dB. The curves depicting the DJABBA
codeP.A;, for which we used the ideal given in V-C.1. Still,code, the Icosian code and the perfect versiod.4f are not
the simulation results are indeed very satisfactory. shown in the picture in order to keep it readable. The perfect
The codesCA;, PAz, PA;, and PA, perform more or version of the cod& A; pprr performs almost equally to
less equally. The cod€A, is beaten by these by 0.2-0.7 dB;P.A; v ax being just slightly better.
depending on the SNR. Next comésy (ry = x3 = 0), Remark 7.1:There are some practical problems related to
losing still by 0.7 —1 dB to C.A,. Despite of its lower density, maximal order codes in general. Using maximal orders or
the codeP A; performs equally well as the coded,, possibly more generally highly skewed lattices can make the bit label-
because of the careful optimizationBf4; carried out in [10] ing less obvious and the decoding process more complex even
such that it falls into the category @iformation lossless (IL) when the same decoding procedure is used. E.g. comparing
codes (see [40] for the definition) and has a good (orthogon#iie number of points in the search tree visited by a sphere
lattice shaping Probably for the same reason, it appears ttecoder shows that usually a skewed lattice causes more visits
be irrelevant to which construction method is used fad, than an orthogonal one. So these are purely properties the
whereas the same is not true at all for the other algebras. Thaxstem designer can choose to use or not to use, depending

10° T ;

Block error rate

Fig. 1. Block error rates at 4 bpcu.
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on the situation. Nevertheless, the decoding complexity can Blee notations of> and < are defined similarly.

significantly reduced by using sphere encoding together withZheng and Tse [19] showed that there exists a fundamental

some suboptimal decoding techniques getting very close ttadeoff between the multiplexing and the diversity gains,

the maximal-likelihood (ML) performance, see [42] for theaeferred to as theliversity-multiplexing tradeoffDMT). For

promising results. the cases whed” > n; + n, — 1 and when the codet
Here, a suitably modified (more details will follow in aspans overn independent block fading channels, the DMT

forthcoming paper, see [35]) sphere decoder was used &wsserts that the maximum possible diversity géfrr) for

decoding the lattices. Briefly, the sphere decoder performs amy space-time coding scheme with multiplexing gairs

additional energy check, checking that the decoded codewargiecewise linear function connecting the poiftsd*(k)),

is valid and within the desired energy sphere. This step is=0,1,--- ,min{n;,n,}, and

required because of the spherical shape used for the constella- y

tion. The codebook can be formed beforehand, so it has to be d*(k) = m(ne—k) (n, — k). (19)

carried out only once. Alternatively, maintaining a codebookyrthermore, it has been shown in [20] using explicit con-
can be overcome by using sphere encoding as mentiorgfctions that the tradeoff (19) holds whene@> n,. On

above. The maximal order codes can be also used as lin@@f other hand, ifl’ < n, only upper and lower bounds on
dispersion codes, but then the full advantage of the density(,) are available in [19].

of maximal orders is not achieved. If used as LD codes, no
additional steps are needed for decoding. . . .

The DMT analysis (Section VIII) tells us that asymptotically™ PMT for the trivial puncturing construction
BDM should outperform the other constructions methods, butLet ®, denote the cyclic division algeb(& / F, o, v) where
we want to emphasize that, as suggested by Figure 1, at the [&w: F| = n, and E/F' is cyclic Galois. LetF' = Q(:) and
SNR this is not necessarily the case. Indeed it seems that atl#ieD, be the corresponding; x n.) cyclic algebra:
low SNRs, the best construction method depends on the very
algebra (and especially on its density) that is in use. Figure
1 also shows that the trivial puncturing method used by othep —
authors [25] is not always the first choice (as again implied by : : . :
the DMT analysis too, see Section VIII), hence proving the Tny—1  O(Tp,—2) - o~ L(zg)
point of new construction methods. Actually, for the algebra

C.A puncturing actually yields the worst performance Where z; € E. The puncturing constructionty is thus
P 9 yy P ) obtained by setting:,,, = --- = z,,—1 = 0 in Dy and by

restricting the elements,, - - - ,z,,_1 to be of form

Zo ’Ya(xm—l) VUm_l(xl)
T o(xo) - yo™ ! (xg)

VIIl. DIVERSITY-MULTIPLEXING TRADEOFF ANALYSES

Diversity-Multiplexing Tradeoff (DMT) analyses of several el )
constructions of asymmetric space-time codes will be given in = i = Z aijei, ij € Ao, 1=0,00 np —1,
this section. We try to make this section self contained. In a J=0
MIMO communication system with, transmit and,. receive where A, C Z[i] is the underlying base-alphabet and where
antennas, under the quasi-static MIMO Rayleigh block fading,, - -- ,e,, 1} is an integral basis foE /F.
channel model, it is known that the ergodic MIMO channel Remark 8.1:If |y| = 1, it does not matter which ones of the
capacityC equals [39] coefficientsz; we set equal to zero. However,|if| > 1, then

C = m log, SNR+O(1) bits/channel use (15 we should choose the indices for whigh= 0 in such a way
min{ng, n }logy +00) ( )that the overall energy is minimized. It can be easily verified

at high SNR regime. that the above puncturing method, g, = --- = 2,1 = 0,
Let R denote that data rate of a space-time caddefined s the most efficient in energy.

in Definition 1.1, and letr denote thenormalized rateof X, To achieve multiplexing gain at valuge we require
also known as thenultiplexing gain[19], given by I -

R |Xo] = [Ap|™"" = SNR™", (20)

roi= —— (16)
log, SNR hence )

From (15) it can be seen that the maximum achievable | 40| = SNRw. (21)

multiplexing gain equalsain{n., n, }. Given the codet with
multiplexing gainr, we sayX achievediversity gaind(r) if
at high SNR regime, the codeword error probability &f is

Given the transmitted code matriX, € X;, the received
signal matrixY; at the receiver end is

on the order of Yo = 00HXo+ W (22)
P.(r) = SNR™". (17) where we set
2 _ 1-7=
By = we mean the exp(gnential equality [19], i.e. we say the % = SNR (23)
function f(SNR) = SNR" if and only if to ensure the power constraiftE || X,|” < SNR. Let A; <
log f(SNR) b 18 -+ A\, be the ordered eigenvalues B f, and for anyX, #
SNR—o logSNR (18) X, € Xy, let6; > --- > 4§, be the ordered eigenvalues
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of AXOAXg, where AX, = X, — X{. Then givenH, the Given the transmitted code matrix
squared Euclidean distance betweRit{ X, and 0o H X/, is .
a ot Xo 07420 diag X, 7(X), - , 7" (X)) € A1,

dy (X0, X)) = OF|HAX|> > 63> Aidn,—n,4i  the received signal matrix; at the receiver end is
=1
e Y = 6 Hdiag X, 7(X),---, 7" HX)+W  (28)
> 2 ; ;
= 0 ‘_ Zk X Ailng—n, i where we set -
e . 9> = SNR!" 7" (29)
Ny k
> 62 ( H )\iént_nTJri) to ensure the power constraint. On the other hand, we may
i=n,—k+1 partition the matricey”, H, andW into
for k=1,2,---,n,. In particular, Y = [YoYi - Y], H = [Hy Hy -+ Hp_1],
1 : Co(m.— W = [WoWp - Wp_
H (Sntfnrﬁ,i Z —— Z ||AX()H 2(ns—k) [ 0 1 1]
i=n,—k+1 [LL 6 and rewrite (28) as
. _ r(ng—k) .
= SNR . Y, = 00H; 7" (X)+W;
Combining the two results above and setting = forj=0,1,---,m — 1. Let

—loggyr A We haved?, (Xo, X}) >SNR”* and
Ai,l S e S )\i,’rbr

rl & r(ne — k)
By = 1- .k Z A be the ordered eigenvalues Bt H, and for any
r i=n,—k+1 r
1 ny diag X, 7(X),--- , 7™ (X))
= = Z (1—aq) —mr|.
Pl # diag X', 7(X), -+, 7" LX) € &,
Now we see the DMT for the puncturing construction it
lower bounded by 0i1 >+ 2 0im,
NS be the ordered eigenvalues d@fX;AX,, where AX; =
do(r) = ozi:%l;f<0 — (2 =1+ n,(m = 1)) o (24) 78 (X — X'). We will re-order and re-index the set of eigen-

) T ) . values{)\;;} and {4, ;} such that\; < Xg--- < A,, and
and the right-hand-side is given by the lines connecting the ~ 5, >"... > 5 Thus the squared Euclidean distance
points (n; — mr)(n, —mr) for integral values ofnr. between the two noise-free received signal matrices can be
lower bounded by

B. DMT for the block diagonal construction o1 e

Let E/F be cyclic Galois WithE : F] = n,, Gal(E/F) = Ay (X, X)) = ) HAX)? = 607 N
(ry and F' = Q(i). Let L C E be such thafE : L] = n, =0 i=1
and[L : F] = m with Gal(E/L) = (o) whereo = 7. It ik

07 D N

should be noted that we have assumgd= mn... Let D, 2
be the cyclic division algebr@F/L,o,~) and letD; be the =y —k+1
correspondingn,. x n,.) algebra: . ny %
N I O Y
zo Yo (Tn,—1) - 0" (1) iy b1
x o(xg) -+ o l(xg) -
D, = . . i ., Moreover,
' ’ ’ ’ ) _ —(ni—k)
T Ty n,e—1 T nt ) m—1
r—1 | o (n,-2) | o | (o) H 5 > ”%k 3 (Z 1AX, |2
x; € E. The block diagonal constructioft; is iy k41 | Y =
Xy = {diag Xy, 7(X1),--, 7" (X))}, (25) = SNRET
where X; € Dywitha; = Y7 'aije;, ai; € Combining the two results above and setting =

Ai. Ar C Z[i] denotes the underlying base-alphabet andiogg . \; we havedZ (X, X’) >SNR”* and
{eo, -+ ,en,—1} is an integral basis foE/F.

To achieve multiplexing gain at value we require B - 11 _ 1 i o, _ e —k)
’ k
X1 = [A™" = SNR™7, (26) Tt i=ne—k+1 Mo
1 vt
hence = = Z (1-ay)— rm) )
|~’41| = SNR™. (27) k (i_nthrl
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Now we see the DMT for the block-diagonal construction i®. DMT for the original CDA construction

given by Let E/F be a cyclic Galois extension wittial(E/F) =
) e (o) and [E : F] = ny, and F' = Q(i). Let ©3 be the cyclic
di(r) = nf | 2 (20 = 1) e (30)  division algebra(E/F, o, ~) and let
_ . _ . _ zo Yo (Tn,—1) - o™ H(a1)
and is obtained by the lines connecting the poifits — 1 o(zo) - o™ (xg)
mr)(n, —r) for integral values of-. D3 = : — : )
Tpo-1 O(Tn,—2) -0 0™ (zo)
C. DMT for the subfield construction x; € E. The original constructiod’s (cf. e.g. [15]) is obtained
icting the el _ f f
The DMT derived here for the subfield construction alsgy restricting the elementsy, - - , 2, to be of form

nyg—1

holds for the more general codes designed using the smart )
puncturing method. vo= Y e ai; €A, i=0,,m—1,

Let E/F be a cyclic Galois extension witial(E/F) = =0
(o) and [E : F] = ny, and F = Q(4). Let D, be the cyclic where A3 C Z[i] is the underlying base-alphabet and where

division algebra(E/F,0,v) and let {eg, -+ ,en,—1} is an integral basis foE//F.
To achieve multiplexing gain at value we require
Zo Pya(xntfl) T ’yo'nt_l(xl) ngng - ngr
T O'(mo) . ’yo‘nt—l(l’g) |X3| = |A3| = SNR ) (36)
D; = : * hence )
Tnyo1 O(Tny—2) - o™ (x) |A3| = SNR7. (37)

) Given the transmitted code matriX; € A, the received
where z; € L, L C E and[L : F] = n,. The subfield gjona| matrixy; at the receiver end is

constructionX’, is thus obtained by restricting the elements

To, -+ ,Tn,_1 to be of form Yy = 3HX3+W (38)
— where we set

x; = Z a;jei, i € Az, 1=0,---,n4—1, 07 = SNR'™ 7 (39)

j=0 to ensure the power constraint. Lag < --- ), be the

r%rdered eigenvalues df H', and for anyX; # X} € A,
let 9, > --- > 4,, be the ordered eigenvalues mX3AX§,
whereA X3 = X3— X/. Then givenH, the squared Euclidean
distance betweefi; H X3 and 03 H X} is

where A, C Z[i] is the underlying base-alphabet and whe
{eo, - ,en,—1} IS an integral basis fof./F'.
To achieve multiplexing gain at value we require

|X| = |Ag["" = SNR™", (31) e
dh (X0, Xg) == OF|HAX|® > 63D Nibn,n,ti
hence . =t
As| = SNR. (32) > 05 ), Aidnns
i=n,—k+1
Given the transmitted code matriX, € X, the received ny '
signal matrixY, at the receiver end is > 63 < H )\iém_m“)
i=n,—k+1
Yy = 6bHXo+ W ©3) for k=1,2,--- ,n,. In particular,
where we set e 1 : —2(ni—k
2 - [T dunse = e 2 AX 7Y
05 = SNR™ »r (1) Y [LL " 0
r(ng—k)
= SNR

to ensure the power constraint. Now we see the DMT for
this construction has the same lower bound as that for th@mpining the two results above and settmg =

puncturing construction, hence —loggnp A We haved, (X5, X4) SSNRZ* and
T ro1 s r(ny — k)
i i _ . E, = 1—-—__= -
dy(r) > ai:1£1f<0 ‘ (20 —14+n.(m—1)) (35) k o - z_: ! T
=1 i=n,—k+1
and the right-hand-side is obtained by the lines connecting the - 1 Z (1—ag)—r].

points (n; — mr)(n, —mr) for integral values ofnr. k imn, k1
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Now we see the DMT for the CDA construction is given bygeometry of the lattice will change. While we cannot always
N turn the lattice into a rectangular one in this manner, some
ds3(r) = inf (2 — 14+ n.(m—1)) ay (40) energy savings and perhaps also shaping gains are available.
The simulations were carried out by using a suitably modified
and the right-hand-side is obtained by the lines connecting ffilhere decoder (on which more details in a forthcoming
points (n; — r)(n, — r) for integral values of- paper [35]). It was shown that the newly proposed codes
Remark 8.2:0ne might ponder why not use the Origimﬂputperform in block error performance the punctured Perfect
symmetric construction with a smaller constellation as it 0de, the DJABBA code as well as the Icosian code, all
DMT optimal. In principle, AST codes can indeed be designé‘ﬂmed at transmission with four transmitting and two receiving
just by using the standard CDA-based MIMO code with gnténnas. _ _ _
smaller constellation. Nevertheless, this destroys the lattice”ISO extensive DMT analysis was provided, showing that

structure and causes exponential complexity at the receivefMongst the previously and newly proposed methods, the
BDM is the best way to construct asymmetric codes in this

respect.
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Optimal Diversity Multiplexing Tradeoff and Code
Constructions of Constrained Asymmetric MIMO
Systems

Hsiao-feng (Francis) Lu and Camilla Hollanti

Abstract— In multiple-input multiple-output (MIMO) commu-
nications, the type of asymmetric channel refers to the situation
when the number of transmit antennas is strictly larger than the
number of receive antennas, and such channel can often be found
in MIMO downlink transmissions. While existing cyclic-division-
algebra-(CDA-)based codes can still be applied to this channel
and achieve optimal performance in terms of the well-known
diversity-multiplexing tradeoff (DMT) at high SNR regime, such
codes cannot be decoded using either zero-forcing or sphere
decoding. Other methods such as minimal mean-square-error
estimators would not perform well in this situation either, due to
the shortage of observations. Thus, these codes cannot achieve
the promised optimal performance unless maximal likelihood
decoding is employed. To make simple decoding possible, it is
better to constrain the number of active transmit antennas to be
no larger than the number of receive, and the resulting system
is coined constrained asymmetric MIMO system.

Two general types of asymmetrical channels are considered in
this paper. Specifically, when 1) there are two receive antennas
and arbitrary number of transmit antennas, and 2) the number
of transmit antennas is one larger than the number of receive
antennas, the optimal transmission schemes of the constrained
asymmetric MIMO channels are presented. The newly proposed
constrained coding schemes are shown to achieve the same DMT
performance as their unconstrained counterparts, meaning there
is no performance loss in using lesser number of active transmit
antennas. Explicit constructions of DMT optimal constrained
codes for these constrained channels are also given. Furthermore,
these codes are shown to be approximately universal and can be
applied to more general asymmetric MIMO channels.

I. INTRODUCTION

The use of multiple antennas for wireless communication
has been proved to be able to linearly increase the channel
capacity [1] and at the same time, improve the diversity gain
and provide better reliability [2]. In an (n; x n,.) MIMO com-
munication channel consisting of n; transmit and n, receive
antennas, most of the existing literature [2]-[15] has focused
on the case of n; < n, and has extensively investigated the
corresponding code designs. On the other hand, in MIMO
downlink transmissions, it is often found that there can be
more transmit antennas available at the base stations than the
receive antennas at the mobile user end. That is, it corresponds
to the case of ny > n,. Such MIMO channel is commonly
referred to as the asymmetric MIMO channel [16].

Assuming that all the n; transmit antennas are active during
transmission, let z be the length-n; code vector' sent from
the transmitter to the receiver and let H be the corresponding

IThroughout paper, all the vectors are column vectors.

(n, x ny) channel matrix. The length-n,. received signal vector
y at the receiver end is given by

y = Hr+uw, (1)

where w is a length-n, vector used to capture the effects of
additive white Gaussian noise. For Rayleigh fading channels,
entries of the channel matrix H and the noise vector w are
modeled as i.i.d. complex Gaussian random variables with zero
mean and unit variance. Further, the code vector  is required
to satisfy the following power constraint

Tr (Ezz') < SNR, )

where by  we mean the Hermitian transpose of a vector.

When the channel matrix H is known completely to the
receiver but not to the transmitter, Telatar [1] first showed that
the ergodic channel capacity of such (n; x n,) MIMO chan-
nel approximates min{n;,n, } log, SNR at high SNR regime,
regardless of the relation between n; and n,. Furthermore,
it was shown that such capacity can be achieved by using
i.i.d. complex Gaussian random vectors z having covariance
matrix Kx = %Int. On the other hand, assuming that the
transmitter communicates at rate

R = rlog, SNR (bits/channel use), 3)

where 7, 0 < r < min{n,n,}, is termed multiplexing gain,
Zheng and Tse [17] proved that given r, the smallest bit error
probability that can be achieved by any coding schemes is
given by

Pe,min (SNR) = SNR_d* (7‘)’ (4)
where by = we mean the exponential equality defined by
10g Pe.min (SNR) .
s, T Togsnk - 40 5)

The negative exponent d*(r) is termed diversity gain, and is
given by a piecewise-linear function connecting the points

{(k. (ne — K)(n, — k)
k=0,1,--- ,min{nt,nr}}.

(6)
d*(r) indicates an optimal tradeoff between the multiplexing
gain r and the diversity gain, and is thus termed the diversity-
multiplexing tradeoff (DMT). It is also proved in [17] that
d*(r) can be achieved by using i.i.d. length-n; complex Gaus-
sian random vectors, provided that the asymmetric MIMO
Rayleigh fading channel is quasi-static and the channel matrix

H remains fixed for T > n; + n, — 1 channel uses.
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Invigorated by this remarkable results, a considerable
amount of research activities has been devoted to constructing
coding schemes [10]-[12], [15], [18] to achieve the optimal
tradeoff d*(r) in (6). In particular, Elia er al. [11] have
provided a sufficient condition for having deterministic DMT
optimal codes. Furthermore, for any n;, using a cyclic division
algebra (CDA) with degree n? over its center Q(z), where
1 = v/—1, an algebraic construction of (n; X n;) matrix codes
meeting this sufficient condition is proposed in [11] for all
T Z Nt.

While all the aforementioned coding schemes, including
the Gaussian random codes and the CDA-based codes, are
DMT optimal, it should be noted that all the n; transmit
antennas must be active during each channel use. Specifically,
we mean that the signals sent by each transmit antenna during
each channel use are non-zero with probability one. Such
requirement would lead to some unavoidable difficulty in
decoding. To see this, note that the channel matrix H is of size
(n, xng) with n; > n,.. Therefore H has no left multiplicative
matrix inverse, and it is impossible to use zero-forcing (ZF)
decoder to decode the code. Similarly, the same requirement
again forbids the possibility of using sphere decoder which
relies on the QR decomposition of the matrix H, and H has
linearly dependent column vectors. In particular, in Appendix
IV we will give a brief discussion of the obstacle of using
sphere decoding to decode the conventional CDA-based codes.

For the minimum-mean square error (MMSE) detector, due
to the number of observations, n,, in each channel use, is
strictly less than the number of unknowns, which is n; in this
case, the performance of MMSE decoding technique cannot
be good in general.

In order to use ZF decoder, sphere decoder, or MMSE
decoder to reduce the decoding complexity, the number of
active transmit antennas in each channel use must not exceed
n,. With this additional constraint, the resulting system is
termed constrained asymmetric MIMO system in this paper,
and coding schemes satisfying this additional requirement are
coined constrained asymmetric space-time codes. Similarly,
codes without this constraint will be termed wunconstrained
codes.

In [16], Hollanti and Ranto considered the special case
of 4 transmit and 2 receive antennas, i.e., n; = 4 and
n, = 2, and proposed a block-diagonal coding method for
constructing the constrained asymmetric space-time codes.
The construction first partitions the 4 transmit antennas into
two groups, say {71,T>} and {T3,T4}, and then performs
a joint-encoding between these two groups by making use
of the multi-block space-time codes [19]. Specifically, let X
be a (2 x 4) multi-block space-time code where the coding
is applied over 2 consecutive (2 x 2) independent fading
blocks, and let H; (resp. Hs) denote the (2 x 2) channel
matrix corresponding to the transmit {77, 75} (resp. {T5,T4})
and the receive antennas. Given the transmitted code matrix
X = [X1 X,] € X, where each submatrix X is of size (2x2),

the resulting receive signal matrix is
Yi = HiX;+W;, i=1,2, (7

where W; is the (2 x 2) noise matrix. Clearly the original

(2 x4) channel matrix equals H = [H; H,]. Given the desired
multiplexing gain r, it can be easily shown by using results
in [19] that the resulting diversity gain d(r) achieved by X
is given by a piecewise-linear function connecting the points
(k,2(2—k)(2—k)), for k = 0,1,2. From Fig. 1 it can be
seen that the DMT performance achieved by X is far from
being optimal compared to d*(r) in (6) .

: Unconstrained d*(r)
T '\\ """"" """""""" — = — Block—Diagonal Method |

Diversity Gain d(r)

Multiplexing Gain r

Fig. 1. The DMT performances of unconstrained coding schemes and codes
derived from block-diagonal constructions [16].

In this paper, we will investigate the optimal DMT of the
constrained asymmetric MIMO systems, and in particular, we
will focus on the following two cases:

1) ny > n, = 2: it corresponds to the case when there are
two receive antennas and when the number of transmit
antennas is strictly larger than two, and

2) ng = n, + 1: it is the case when the number of
transmit antennas is one larger than the number of
receive antennas.

The two cases above have covered almost all the practical
MIMO downlink scenarios. Specifically, it includes the (3 x 2),
(4 x 2), and (4 x 3) asymmetric MIMO channels as special
cases which can be widely found in the existing MIMO-based
wireless communication standards [20]-[23].

As for the case of n; > n, = 1, here we remark that
by regarding the (n; x 1) asymmetric MIMO channel as an
SISO channel with n; independent fading blocks, it can be
easily shown that the optimal DMT of this (n; x 1) constrained
asymmetric channel equals d*(r) = n,(1 —r), for 0 <r <1,
which is exactly the same as that of the unconstrained channel.
In other words, the transmission scheme we are proposing
here is to allow only one transmit antenna to be active in
each channel use, hence the (n; x 1) asymmetric channel
is equivalent to the n; consecutive (1 x 1) SISO channels,
each having a different fading coefficient. Furthermore, the
optimal diversity gain d*(r) can be achieved by using the
multi-block space-time codes [24] for SISO channel when
coding is applied over n; consecutive channel uses.



PREPRINTED, WITH PERMISSION, FROM IEEE TRANSACTIONS ON INFORMATION THEORY. (2008 IEEE). 3

This paper is organized as follows. In Section II, we
will present DMT optimal transmission schemes for any
constrained asymmetric MIMO systems with n; > n, = 2
and with n; = n, + 1, and show that the resulting DMT
equals d*(r) in (6), respectively. It means that if the codes are
properly designed, there will be no performance loss with the
additional constraint on the number of active transmit antennas
used in each channel use. In a nutshell, our proposed DMT
optimal transmission schemes are selection patterns of active
transmit antennas in each channel use, and given the number
of transmit and receive antennas, our schemes only use 7,
antennas for transmission at every channel use. Hence, all
the aforementioned decoding schemes, such as ZF, sphere-
decoding, or MMSE, can be safely and easily applied at the
receiver end. For the ease of presentation, detailed proofs to
the DMT optimality of the proposed transmission schemes
will be relegated to appendices. Having obtained the optimal
transmission schemes, the corresponding DMT optimal coding
schemes, termed transmit antenna selection (TAS) codes, that
follow the proposed optimal selection pattern will be given in
Section III. Furthermore, it will be shown that the TAS codes
are much stronger than what is required in the constrained
asymmetric MIMO coding, in the sense that they will be
shown to satisfy the approximately universal property. What
this means is that for any given selection pattern of the
transmit antennas, the TAS codes are guaranteed to achieve
the optimal DMT performance associated with that selection
pattern, regardless of the underlying fading statistics and of
whether such pattern is optimal or not.

II. PROPOSED DMT OPTIMAL TRANSMISSION SCHEME
FOR CONSTRAINED ASYMMETRIC MIMO SYSTEMS

In the previous section, we have shown that in order to em-
ploy ZF, sphere, or MMSE decoding techniques for decoding
the transmitted signal matrix in an asymmetric MIMO channel,
the number of active transmit antennas in each channel use
cannot exceed the number of receive antennas n,. In this
section, we will focus on two cases: 1) when n; > n, = 2,
and 2) when n; = n, + 1. For both cases, we will present
DMT optimal transmission schemes that can achieve the
same optimal DMT d*(r) of the unconstrained asymmetric
channels. To describe the proposed transmission scheme, we
first define the following.

Definition 1: In an (n; X n,) constrained asymmetric
MIMO channel, let T = {T},---,T),, } be the set of indices
of n; transmit antennas. We say

S = {(7—1777'1)7'“ 7(7;777'3)} (8)

is an antenna-selection transmission scheme if the antenna
selection patterns 7; are distinct proper subsets of 7 and have
size 1 < |T;| < n, < n, for each i. Moreover, each antenna
selection pattern 7; will be used for n; transmissions and it is
assumed that the MIMO channel remains fixed for 7' channel
uses with

T Y ©)
i=1

Example 1: For example, the block-diagonal coding
method proposed in [16] for the (4 x 2) constrained
asymmetric MIMO channel can be regarded as an antenna-
selection transmission scheme with

Sep = {({Th,12},2), ({15, 14}, 2)} . (10)
However, we have already seen in Section I that the
above scheme Spp is not DMT optimal in the (4 X
2) constrained asymmetric MIMO channel. On the other
hand, for any antenna-selection transmission scheme S =
{(T1,n1),---,(Ts,ns)} with |T;| = n,, it is clear that the
ergodic channel capacity achieved by S is the same as that
achieved by the unconstrained schemes. To see this, let H;
denote the channel matrix associated with the selection pattern
T; and the set of all receive antennas, and let z; 1<i<s
and 1 < j < n; be i.i.d. zero-mean complex Gaussian random
vectors having the same covariance matrix K = Snﬁl'nr. Then
following the same approach as in [1] the ergoaic channel
capacity achieved by S using random code z; as transmitted
signal vectors is

C (SNR)
1

- S iE [nz log, det (Inr + HZKHJ)}
i=1 Tl

= Elog, det (Inr +
~ n,log, SNR

i=1
SNR
oy

HJ{{)
(1D

at high SNR regime, and is the same as that achieved by the
unconstrained schemes.

A. Proposed Optimal Transmission Scheme for ny > n, = 2

Earlier we have seen that the block-diagonal method has
no loss in channel capacity, but it is not optimal in terms of
DMT. To improve the DMT performance, for any ny; > n, = 2
below we provide another transmission scheme and we will
prove that it can achieve the optimal DMT d*(r) given in (6).

Clearly, in this case, the maximal value of multiplexing gain
r is upper bounded by min{n;,n,} = 2, hence 0 < r < 2.
The proposed scheme is the following.

Theorem 1: In an (n; X 2) constrained asymmetric MIMO
system with n, > 2, let T = {T3,---,T),,} be the set of
indices of n; transmit antennas. Given the desired multiplexing
gain r,

1) if the multiplexing gain 7 falls within the range of [1, 2],

the following antenna-selection scheme

S o= {({T17T2}72)7({T27T3}72)a"'7

({Tnt_l7Tnt} 72)} (12)
achieves the optimal DMT d*(r) of (6), and
2) if r €[0,1),
82 = {({T17T2}74)a({T2aT3}a2)7"' B
({Tm—2a Tm—l} ) 2) ) ({Tm—la Tm} 34)}
13)

is DMT optimal in terms of d*(r).
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First of all, the only difference between the selection pat-
terns Sy and S, is that when 0 < r < 1, the sets {T},T»}
and {7T),,-1,T,,} are used twice more than the other sets.
Secondly, for the case of (4 x 2) constrained asymmetric
MIMO channel, the scheme in Theorem 1 is given by

S = {({Th T2} ) 2) ) ({T27T3} 72) s ({T37 T4} ) 2)}

for multiplexing gain r € [1,2] and

S = {({Th T2} 74) ) ({T27T3} 72) s ({T37 T4} 74)}

for r € [0,1). Comparing to the block-diagonal method Sgp,
the proposed scheme requires two more transmissions for r >
1 and six more for r < 1. However, the price of using more
transmissions is well paid off by having a much better error
performance and achieving the same DMT performance as the
unconstrained systems.

The proof of Theorem 1 involves the outage performance
analysis of the proposed transmission scheme and is relegated
to Appendix I for the ease of reading. In particular, we will
prove in Appendix I that the diversity gains achieved by the
proposed scheme are given by

1) for the scheme S;, we have

dir) > (ny —1)(2—r) and
d(r) > 2ny—2(ng — 1)r. (14)
2) for the scheme S,, we have
diry > 2n;—(ny+1)r and
2d(r) > (m+1)(2-r). (15)

Based on (14) and (15), in Fig. 2 we have provided the exact
DMT performances of the transmission schemes S; and S
proposed in Theorem 1 for the (4 x 2) constrained asymmetric
MIMO system. It can be easily seen that the schemes are DMT
optimal and achieve the optimal DMT d*(r) of (6) within the
designated regions.

B. Proposed Optimal Transmissions Schemes for ny = n, + 1.

Given n; and n,, the numbers of transmit and receive
antennas with n; = n, + 1, the transmitter is constrained to
use at most n, antennas to transmit signals in each channel
use. Let {T, Ty, , Ty, ,Th.+1} be the set of transmit
antennas. The proposed transmission scheme is a two-phase
transmission. In the first phase, the transmitter uses the set
T = {Th,--- ,Tn,-1,T,,} of transmit antennas for the
first transmission. For the second transmission, the transmitter
changes the selection to the set 7o = {11, ,Tp.—1,Th, +1}-
This transmission scheme can be applied to signal transmission
in, for example the (3 x 2), (4 x 3), or (5 x 4) constrained
asymmetric MIMO communication systems. It should be noted
that here we have assumed that the transmitter has no access
to the channel state information. However, even having no
channel state information at the transmitter side, the above
scheme turns out to be DMT optimal, and achieves the same
DMT performance as the unconstrained ones. We have the
following theorem.

8
; D\ Unconstrained d*(r
N : |- - -Proposed S,
\ : : -
6F AN D
- N
= D
S I A N SN
5° i
=) :
(54\\ .............................................
z N
= ~N
.g B R
[a]
2b N
Th oo NG
0 i i i
0 0.5 1 1.5 2
Multiplexing Gain r
(a)
8
Unconstrained d*(r
Tho N - = - Proposed S,
OF N
z
e 2 I N S SN
£ >
S
.@4 --------------------------------------------------------------------
wa
| 1] SR I WECHEUES MR
[a) RN
2fF \;-\----g -----------------
NN
\'\
b I RN
: Y
0 i i i
0 0.5 1 1.5 2
Multiplexing Gain r
(b)
Fig. 2. DMT performances of (a) the proposed scheme S; and (b) the

proposed scheme Sy for the (4 x 2) constrained asymmetric MIMO system.

Theorem 2: In an (n; X n,) constrained asymmetric MIMO
system with n;, = n, + 1, let {7, -+, Ty, ,Th,+1} be the
set of indices of n; transmit antennas. Given the desired
multiplexing gain r, the following transmission scheme

P = {(7—1 :{Tla"‘ aan—laan}anr)a

(Ts = {Tsy -+ To 1, T i1 }o11y) } (16)

achieves the optimal DMT d*(r) of (6).
Proof: The proof is relegated to Appendix II for the ease
of reading. [ |
Comparing to the conventional CDA-based unconstrained
space-time codes [11] where only n; channel uses are required
to complete the transmission of codeword matrices, the trans-
mission scheme proposed in Theorem 2 has asked for 2n,
channel uses, i.e., it is (n; — 2) more than the CDA-based
codes. Below we provide an example to further illustrate the
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scheme proposed in Theorem 2

1 T T T
—8— Unconstrained d'(r)
—— Proposcd P
e
gho LN
= B
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3 :
b 6— -------------- é ---------------------------------------------------------------------------
Z :
g :
2 :
a :
ab e NG D
2— -------------- ; ...........................................................................
0 i i i i i
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1.5
Multiplexing Gain r

Fig. 3. DMT performances of unconstrained and the constrained transmission
scheme P for (4 x 3) asymmetric MIMO system.

Example 2: Consider a (4 x 3) asymmetrical MIMO com-
munication system consisting of 4 transmit and 3 receive
antennas. In [11], the authors have proposed to use a cyclic di-
vision algebra of degree 16 over its center Q( 2 ) to construct a
space-time code consisting of (4 x 4) code matrices. However,
as the received signal matrices are of size (3 x 4), it is not
possible to decode the code using low complexity techniques
such as ZF, sphere, or MMSE, and one might have to resort
to exhaustive search for maximal likelihood decoding.

On the other hand, in constrained asymmetric MIMO
transmission, at most n, = 3 receive antennas can be ac-
tive for transmission in each channel use. In particular, let
{T1,T>,T5, T4} be the set of indices of the transmit antennas.
Then Theorem 2 has shown that it is possible to have a space-
time code consisting of (3 x 6) matrices that can achieve the
same DMT performance as the unconstrained ones, provided
that, say, the left-half of the (3 x 6) matrix is sent by using
transmit antennas 7; = {73,7»,75} and the right-half by
Tz = {T1,T»,T4}. In Fig. 3 we have provided the DMTs of
the unconstrained and the constrained system, and it is clear
that both have the same DMT.

Finally, here we remark that the ordering of the antennas
in set 7;, and at which 3 out of 6 channel uses are used by
set 71, do not affect the DMT performance. Similarly, any
rearrangement of the indices {17, T5, T3, T4} would still result
in the same DMT.

III. DMT OPTIMAL CODES FOR CONSTRAINED
ASYMMETRIC MIMO SYSTEMS

In Section II, we have identified two DMT optimal transmis-
sion schemes for the constrained asymmetric MIMO systems,
one aimed at the case of n; > n, = 2 and the other at the
case of ny = n, + 1. In particular, these schemes use only
n, out of ny transmit antennas during each transmission, and
therefore enable the use of simple decoding methods, such

as ZF, sphere decoding, and MMSE decoders. To achieve
the promised optimal DMT performance, in this section we
will provide a systematic construction of codes that is able to
achieve this optimal DMT performance at high SNR regime.
Furthermore, the proposed construction can be applied to any
constrained MIMO channel with arbitrary selection patterns,
and it will be shown that the constrained codes obtained from
the proposed construction are in fact approximately universal
[18], meaning that these codes are able to achieve the optimal
DMT performance associated with the designated selection
pattern.

A. Extended Set of Transmit Antenna Selection

Since the construction can be applied to all kinds of con-
strained MIMO channels, below we begin with the considera-
tion of a general selection pattern. In an (n; X n,.) constrained
asymmetric MIMO channel, let 7 = {Ty,--- , T}, } be the set
of indices of n; transmit antennas, and let

S = {(7-17/”1)7"' 7(7;7n8)} (17)

be an antenna-selection transmission scheme with
7?[) 77; C Ta (18)
ne=[T| = - = || <n. (19)

The 7;’s represent the subsets of transmit antennas 7 that
are active during transmission, and the number n; means the
number of times that the subset 7; is used.

Given the selection pattern S in (17), we first define another
extended pattern, denoted by Seyx, as follows:

Sext = {(7-130'7/1)7 7(7;a£ns)}

where £ is the smallest positive integer such that the numbers
In; are divisible by n = |T;|. It should be noted that in (19)
we have required that all the subsets 7; are of the same size.

Furthermore, we remark that in a quasi-static MIMO fading
channel with a quasi-static interval T satisfying

i=1

it is straightforward to see that the scheme Sy has the same
outage performance? as S. Thus, assuming (21) holds, below
we will work with the selection pattern Sey instead of S.

(20)

21

B. Proposed Construction for Selection Sy

Given Sex we first define the parameter m

Zs
m::—E n;,
n <

i=1

which must be an integer due to the condition of ¢ given in
(20), where n is given in (19). Next, the proposed construction
calls for the use of multi-block space-time codes [24] that
are originally designed to encode information across multiple

(22)

2In fact, with a stronger condition on n; of n; > n for all 4, using results
in [11] it can be shown that both schemes Sex; and S have not only the same
outage performance, but also the same DMT performance.
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independent fading blocks, and it turns out such construction
can be modified to cater to the present scenario.

Specifically, let E be a number field that is a cyclic Galois
extension of the number field F = Q(z) of degree mn with
Galois group Gal(E/F) = (o) generated by o, where 1 :=
V/—1. By ( ¢) we mean the cyclic group generated by ¢, i.e.,
(o) = {id, @, %, -}, where id is the identity element. Also,
for any possible mn, the construction of such number field E
can be found in [11], [25].

Next, let I be the intermediate number field that is fixed
by the Galois group (7 = ¢™), i.e., we have Gal(E/L) = (7).
Let z be an indeterminate satisfying

1) zz = z7(x) for every x € E, and

2) 2" =~ € L*, for some non-norm element -, by which

we mean the smallest positive integer e such that ¢
the relative norm Ng/p () for some element z € E* is
n.

Thus, with proper choice of v € L*, the set

n—1 ]
= {Zz’azz : miGE}
i=0

is a cyclic division algebra (CDA) with center [L. The algebra
® defined as above is often shortly referred to as © =
(E/L,7,7).

Let ) : ® — E™*™ be the map of left-regular representation
of elements in ® [11]

(23)

R C VT"_i(m)
1 T(x0) sy (1)
Y(x) = : . . . , (24)
Tno1 T(Tp—2) T (zo)
where
n—1 ]
= Z 'z €D, z; € EX (25)
i=0

Thus, similar to the multi-block construction of [24] we
have the following code

Xg = { (X,O'(X), 70m_1(X)) 1 X :1/’(13),

nm—1

n—1
= E ', €D, ;= E a; j€;j,
i=0 7=0

a;j € Ay C Z[Z]}, (26)

where {eg, - ,enm—1} is an integral basis for E/F, A, is a
QAM base-alphabet of size

|4g| = SNR™w, 27

and where r is the desired multiplexing gain given in (3).

It should be noted that for each
(X,0(X), -+, 0™ (X)) € X, the code matrix X is
of size (n x n) with n < n, and furthermore that the code X,
satisfies the property of generalized non-vanishing determinant

[24], meaning that for every (X,o(X),---,0™ (X)) #
(X" o(X"), -+ 0™ 1(X")) € X, we have
m—1
H |det (0°(X) — o' (X"))| > 1. (28)
=0

To apply the code X, to the designated selection pattern
Sext» We first recall that

Sext = {(7'17€n1)7 ,(7;,(”5)}

in which each ¢n; is a multiple of n = |T;| by construction.
Define

In;
mi = —d =1, s, (29)
n
and it is clear that .
> mi = m (30)
i=1
where m is defined in (22). Next, let My, ---, M, be a
partition of the set {0,1,--- ,m — 1} with
IMi| = m;. (€29

Finally, the proposed code is the following. Given code
matrices (X,0(X), -+ ,0™m (X)) € X, the set of code

matrices '

{607 (X) @ j € M;} (32)
will be transmitted by the set of antennas 7; for each i =
1,---,s, where the parameter 6 is given by

9 := SNRz(1-%), (33)

The reason for having 6 is because for every a; ; € A, C Z[1]
we have
|ai;|° <SNR*. (34)

Hence it in turn implies that
nm—1

2
E : @i,5€;
Jj=0

since the basis elements do not change as SNR increases. Thus
for every (X,---,0™7 (X)) € X, we have

il = < SNR#

|07 (X)|3, < SNRF, (35)
where by |A|r we mean the Frobenius norm of the matrix
A. To ensure the power constraint (2) we need to add and set

parameter 6 as in (33) so that

607 (X)|, < SNR. (36)

2
I

Clearly, the transmission of each code matrix o/ (X) takes
n channel uses, hence the set of transmit antennas 7; will be
used exactly

n-|M;| =nm; = In; (37)

times. In other words, in the proposed scheme, to complete the
transmission of the codeword (X,o(X),---,0™ (X)) €
X, , each selection pattern 7; will be used exactly ¢n; times
and therefore the proposed scheme satisfies the requirement
specified by the antenna selection pattern Sey.
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We now use the following example to illustrate the proposed
coding and transmission scheme.

Example 3: Consider the following antenna selection pat-
tern for the (4 x 2) constrained asymmetric MIMO channel

Sy = {({leTZ} 74) 3 ({T27T3} ’ 2) ) ({T37T4}74)} .

Such pattern was shown to be DMT optimal when the mul-
tiplexing gain r falls in the range of [0, 1) in Theorem 1. To
apply the proposed coding scheme to this selection pattern we
have

{11, T} =--- = {15, T} =2 =y,
4, ng = 2,

n =

ny = and ns = 4.

Since all ny,ns,ng are divisible by n = 2, we have ¢ = 1,
hence Sy ex¢ = Sa. Next, the parameter m should be set as

(38)

Now let E be a cyclic Galois extension of F = Q(z) with
degree of extension equal to mm = 10. This can be easily
done by choosing

E = Q(%Cll):

where (y; is the complex, primitive, 11th root of unity. Let
o be the generator of the cyclic Galois group Gal(E/F),
o(¢1) = (%, and let L be the intermediate field fixed by
T = 0™ = o° Now let X, be the code resulting from the
CDA © = (E/LL, 7,y =) and be given by

X, = { (X,0(X), - ,0"(X)) : X = ¢(a),

1 9
— i — J
T = E ' €9, ;= E a;,;Ci1s
=0 7=0

aj; € Ag C Z[’L]}, 39)

where {1, (i1, , (7 } is an integral basis for E/F, A, is a
QAM base-alphabet of size

|4,| = SNR®. (40)

It should be noted that the matrices o?(X), i = 0,1,2,3,4,
are all of size (2 x 2).

The parameters m; are set according to (29) and are
therefore given by

my =2, mo =1, m3z = 2.
Similarly, the sets M; can be set for example as
My ={0,4}, My = {2}, and My = {1,3}, (4D

which are a partition of the set {0,1,2,3,4}. This means
that the code matrices {#X,00%(X)} will be transmitted
by antennas 7; = {T},T»}, {#o*(X)} by antennas 7o =
{T»,Ts}, and {#o! (X),00%(X)} by antennas T3 = {T3,T4}.

According to (33) of the proposed construction, given the
multiplexing gain r, the parameter 6 should be set at

9 = SNR3(1-3), (42)

In other words, if we let

t
_ _ HAT
where z;, ¢ = 1,2, are column vectors of length 2, the overall

transmitted code matrix is actually the following

z! ot (z1)
g

zh 2 (z) *(zh)
¢ 0.3 (ltl) ) (43)
2t
where the ¢th row is transmitted by the transmit antenna
T;, and where the columns correspond to each channel use.
Clearly there are 10 channel uses, and transmit antennas
Ti = {T1,T>} are used 4 times, T = {T»,T3} are used 2
times, and T3 = {T3,T4} are used 4 times. Thus, we have
fulfilled exactly the designated antenna selection pattern Sa.
To conclude this example, we remark that in the actual code
matrix given in (43) there are exactly n, = 2 active transmit
antennas in each channel use. Hence, this code can be easily
decoded by making use of ZF, sphere, or MMSE decoding
techniques.
Example 4: Consider now the following antenna selection
pattern for the (4 x 2) constrained asymmetric MIMO channel

Sl = {({TI’TZ}aQ) ’ ({T27T3} ’ 2) ) ({T3vT4}’2)} .

Such pattern was shown to be DMT optimal when the mul-
tiplexing gain r falls in the range of [1,2] in Theorem 1. To
apply the proposed coding scheme to this selection pattern we
have

T, o} = = {Ts5, Tu}| =2 =y,
2, Nog = 2,

n =

ny = and ng = 2.

Since all ny,ns,ng are divisible by n = 2, we have ¢ = 1,
hence S; exi = S1. Next, the parameter m should be set as

¢ 3

Now let E be a cyclic Galois extension of F = Q(z) with
degree of extension equal to nm = 6. This can be easily done
by choosing

m =

(44)

E = Q(Z’C7)a

where (7 is the complex, primitive, 7th root of unity. Let o be
the generator of the cyclic Galois group Gal(E/F), o((7) =
¢3, and let L be the intermediate field fixed by 7 = o™ =
o3. Now let X, be the code resulting from the CDA D =
(E/L,7,v =1) and be given by

Xy, = { (X,0(X),0%(X)) : X = ¢(2),

1 5
_ § i _ § J
r = zZ2'x; € @, T; = ai,j@;,
i=0 j=0
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ai; € Ag C Z[Z]}, 45)

where {1,(7,---,(2} is an integral basis for E/F, A, is a
QAM base-alphabet of size

|4,| = SNR®. (46)

It should be noted that the matrices o?(X), i = 0,1, 2, are all
of size (2 x 2).

The parameters m; are set according to (29) and are
therefore given by

m1:1, mzzl, m3:1.
Similarly, the sets M; can be set for example as

M1 - {0}, MQ = {1}, and Mg - {2}, (47)

which are a partition of the set {0,1,2}. This means that
the code matrix #X will be transmitted by antennas 7; =
{T1,T>}, 6o (X) by antennas 7> = {T»,T3}, and §o*(X) by
antennas T3 = {73,T4}. According to (33) of the proposed
construction, given the multiplexing gain r, the parameter 6
should be set at

SNR2(1-3).

6 = (48)

In other words, if we let
t
_ _ |
X =) = [ 4],
where z;, i = 1, 2, are column vectors of length 2, the overall
transmitted code matrix is actually the following

(49)

where the ith row is transmitted by the transmit antenna
T;, and where the columns correspond to each channel use.
Clearly there are 6 channel uses, and all the transmit antenna
patterns Ty, 72, and 73, are used twice. Thus, we have
fulfilled exactly the designated antenna selection pattern Sj.
To conclude this example, we remark that in the actual code
matrix given in (49) there are exactly n, = 2 active transmit
antennas in each channel use. Hence, this code can be easily
decoded by making use of ZF, sphere, or MMSE decoding
techniques.

In Appendix IV, we have provided a short discussion of
how to decode the proposed code using sphere decoders. It
will be seen that as the code uses at most n, active transmit
antennas for transmission in each channel use, it can be easily
decoded by using low complexity sphere decoding techniques.

C. DMT Performance of the Proposed Code

To analyze the DMT performance achieved by the proposed
code, we first focus on the transmission rate. To this end,
recall that A, is of size SNR = given in (27), and that
all (X,0(X),---,0m (X)) € X, are distinct due to the

generalized non-vanishing determinant property satisfied by
X,. Thus, we have

X = (JA4,["™)" = SNR™™". (50)
On the other hand, the transmission of
(X,0(X), -+, 0™ (X)) takes
S
Zﬁni = nm (51)
i=1

channel uses. Thus, the code X, transmits on the average

1
— 1 X,| = rlog, SNR 52
o 0gs | g| 108y (52)

bits per channel uses, meaning that it achieves exactly the
desired multiplexing gain at value r. Moreover, in the theorem
below we will show that the proposed code X, indeed achieves
the optimal DMT performance associated with the antenna
selection pattern Sex.

Theorem 3: In an (n; x n,) MIMO communication
system with antenna selection pattern  Sex =
{(Ti,n1),---,(Ts,€ns)}, where ¢ is defined as before.
Given the desired multiplexing gain r, let X, be the
corresponding space-time code defined in (26); then by
transmitting code matrices in X, according to the proposed
transmission scheme, the usage of transmit antennas follows
exactly the selection pattern S,,;. Furthermore, at high SNR
regime the codeword error probability of &, is upper bounded
by

Pee,x,(SNR) < Py (SNR) = SNR™4") (53)

where P, (SNR) is the outage probability associated with the
selection pattern Sey, and where d(r) is the corresponding
diversity gain advantage. In other words, the code & and
the proposed transmission scheme are optimal in terms of the
DMT of Sex-

Proof: The proof to the claim of the use of transmit
antennas follows from the above discussion, and we only need
to prove the claim of codeword error probability (53). For the
ease of reading, the proof of this part is relegated to Appendix
111 ]

In particular, we can apply the previous theorem to the
antenna selection patterns Sy, S2, and P given respectively in
Theorems 1 and 2. Namely, we have the following corollaries.

Corollary 4: In an (n; x 2) constrained asymmetric quasi-
static MIMO Rayleigh channel with n; > 2 and with quasi-
static interval 7', given the desired multiplexing gain r, let
S be the corresponding antenna selection pattern specified by
Theorem 1. Let &), be the constrained code obtained from
the construction in Theorem 3 using the designated pattern S.
Then by using the proposed transmission scheme, the resulting
codeword error probability P.we(SNR) is upper bounded by

P.ye(SNR) <SNR™4 (")

where d*(r) is the DMT of the unconstrained (n; x 2) MIMO
channel given by (6), provided that the quasi-static interval

T Z 2(7’Lt—1)
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if r € [1,2], and
T Z 2(7%4‘1)

if r €0,1).

Corollary 5: In an (n; X n,.) constrained asymmetric quasi-
static MIMO Rayleigh channel with n; = n, + 1 and with
quasi-static interval

T Z Q(nt - 1)3

given the desired multiplexing gain r, let S be the correspond-
ing antenna selection pattern specified by Theorem 2. Let X,
be the constrained code obtained from the construction in
Theorem 3 using the designated pattern S. Then by using the
proposed transmission scheme, the resulting codeword error
probability Pewe(SNR) is upper bounded by

P.ye(SNR) <SNR™4 (")

where d*(r) is the DMT of the unconstrained (n; x 2) MIMO
channel given by (6).

IV. CONCLUSION

When the number of transmit antennas n; is strictly larger
than the number of receive n,, almost all existing DMT
optimal codes require that all the transmit antennas are active
during transmission, hence forbid the possibility of having a
ZF, sphere, or MMSE decoder. To remedy this, the number
of active transmit antennas must be constrained to be less
than or equal to n,. For the cases when n, > n, = 2
and when n; = n, + 1, two optimal transmission schemes
satisfying the above constraint were presented in this paper
and were shown to achieve the same DMT performance as
the unconstrained schemes. A systematic construction of DMT
optimal constrained codes was also provided.

APPENDIX I
PROOF OF THEOREM 1

As the scheme & differs from S, only in the number of
times used for each antenna selection pattern 7;, here we
consider the following general scheme:

{({T17T2}7n1) s ({Tnt—lva}7nn:—1)} :

In the above scheme S, the ith selection {T;, T;41} will
be used for n; times during transmission. Moreover, for the
ith selection, let z;, be the length-n,, zero-mean, complex
Gaussian random code vector with covariance K; = %Im.
The subindex j, j = 0,1,--- ,n; —1, represents the jth use of
the selection pattern {7}, T;4+1 }. Thus given z; , the resulting
received signal vector is given by

S = 54

y, = Hiz, +u, (55)

=i; =
where H; := [h; h;,] and h; is length-2 vector consisting
of the fading coefficients between the ¢th transmit antenna
T; and the receive antennas. w; is the zero-mean complex
Gaussian random vector of length 2 used to model the effect of
additive white Gaussian noise. Thus, given the channel matrix

H;, the mutual information between the transmit and receive
signal vectors is

I (ﬁij;gilei) =

~ log, det (12 + SNRH;H] ) ,

SNR
log, det <12 + 5 HZH;'>

where we have neglected the 2 appearing in the denominator
of STNR as here we are only interested in the high SNR regime
for the sake of DMT performance analysis. Define

ng—1

N = an.
Jj=1

Given the desired multiplexing gain r, the channel outage
probability of S is

(56)

ny—1
Pulr) = { >~ nilogdet (I + SNRH;H} ) <

i=1

erogSNR} = SNR™4"), (57)

In particular, the mutual information associated with the se-
lection {7, T5} can be rewritten as

log det (12 + SNRH, H] )
= logdet (I2 + SNRiy, A} + SNRgzhg)
= logdet (I + SNRD;) +

log (1+ SNRE{U, (I + SNRDy) ™ U, )
= log (1 + SNR |h1|§7) +

log (1 + SNRg], (I, + SNRD;) ! QQ) ,

where U; D, Ullr is the eigen-decomposition of the rank-1
matrix QIQI and where g := U{r h, has the same joint
probability density function as that of h,. By |k, |, we mean
the Frobenius norm of vector h,. Hence, without affecting the
calculation of (57), we can set the channel matrix associated
with the second selection pattern {7, 75} as

o2 1

and the corresponding mutual information changes to
2
. Y —
I (§2j7£2j|H2) = log (1 +SNR‘Q2‘F> +

log (1 + SNRg] (I + SNRD,) " g, )

HY = (58)

where U2D2U;r is the eigen-decomposition of the rank-1
matrix 222; and g, = Ugﬁ?,. Continuing in this fashion, we
can rewrite the overall mutual information associated with
scheme S as

ng—1

> nilogdet (I + SNRH{H')

=1

ng—1

2
= Z n; [log (1 + SNR |gi|F> +
i=1
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SNR |gis1.1]°

log | 1+ 5 +SNR|git1217 | |,

1+SNR‘gi‘
—F

(59)

where we have set g, = hy, and for i = 2,--- ,ny, g, =
UZ_lhi = [gin gin)" UiDiU;' is the eigen-decomposition of
9.9
4id;

Now define

l9i.j1> = SNR™%3 (60)

and at high SNR we can rewrite (59) as

1 ng—1 —
1=
nt—l

max {(1 - ai7j)+} +

i=1 N _
~~

::(1—,81')"'

(max { (1 —aip11 — (11— 5i)+)+ ;
(1—*%+Lﬁ+}>]a

(z)* := max{0,z}.

where
(61)

Thus, the diversity gain achieved by the general scheme S is

Nt 2
d(r) = f%;; i (62)
where
nyg—1
Alr) = {(al,ly"'aantﬂ) : Zni[(l—ﬁi)Jr
i=1

+max{ (1 — a1 — (1= 5z’)+>+ )

(1- ai+1,2)+}] < Nr,a;; > 0}
(63)

While the optimization of d(r) subject to the constraint (63)
appears to be a non-linear optimization problem, below we
will convert it to a problem of linear programming. First note
that for each o ;, the probability of ; ; < 0 is zero. Secondly,
to minimize the diversity gain d(r), we do not need v ; to be
larger than 1 as (1 — ai,j)+ = 0 for o; ; > 1 and setting
a;;j = 1 minimizes the cost of d(r). Thus, we have the
following sets of linear constraints:

0<a;;<1 foralli=1,---,ny—1,j=1,2 (64)
Next, fori =1,2,--- ,n; — 1, setting
rig = (1-8)"
= max{(1—a;1)",(1—a;2)"} (65)

yields the following linear constraints:

a1 > 1—rig, (66)
ajp > 1—riy, (67)
1 > rip>0. (68)

Again, fori =1,2,--- ,ny; — 1, setting

Tip 1=
+\* +
max (1 —aiy11 — (1= 55) ) (1= aiy12)
(69)
gives the following linear constraints:

aiy11 2 1—=rin —rig, (70)
Qiyr12 2 1—rig, (71)
1 > riy1220. (72)

To achieve the desired multiplexing gain r, the linear con-
straint on the r; ; is given by

ng—1

Z n; (7‘1"1 +7'i,2) < Nr.

i=1

(73)

Using standard linear programming techniques to minimize
d(r) of (62) subject to the constraints of (64), (66), (67), (68),
(70), (71), (72), and (73), it can be shown that

1) for the scheme Sy, i.e., n; = 2 for all i, we have N =

2(ny — 1) and
diry > (ng—1)(2—-7r) and (74)
diry > 2n;—2(n,— 1)r. (75)

Hence for the region of 1 < r < 2, the DMT achieved
by S; is given by

d(r) > max{(n;—1)(2—r),
2ny — 2(ny — )1}
for1 <r <2.

(nt - 1)(2 - 7’),
(76)

2) for the scheme Ss, i.e., the case when ny = n,,_; =4
and the remaining n; = 2, we have N = 2n; + 2, and

d(r) > 2ny—(ng+ Dr a7
2d(r) > (ne+1)(2-71) (78)

Thus for the region of 0 < r < 1, the DMT achieved
by scheme & is given by

and

diry > max{2nt — (n¢ + Dr,

ng +1
Tle-n)

for0 <r <1.

= 20y — (ny + )r,
(719)

The proof is now complete after noting that the DMTs (76)
and (79) achieved respectively by schemes S; and S, in the
region of r € [1,2] and r € [0,1) match exactly the optimal
DMT d*(r) given in (6).
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APPENDIX II
PROOF OF THEOREM 2

First note that in the proposed transmission scheme

P o= {(7—1:{T17"'7an—17an}7n7’)7

(7—2 = {Tl7 e 7an—17Tn,~+1}7n7’) }
the set of transmit antennas

= {Tla‘” 7Tn7‘—1}

is used for both transmissions, and in each channel use, we
add a new transmit antenna to the set 7, i.e.,

Ti == ToU{Tn,—is1}

for ¢+ = 1,2. For the ¢th selection pattern of the proposed
scheme P, let z;, be the jth signal vector transmitted by using
the set 7; of transmit antennas, j = 0,1,--- ,n, — 1. Similar
to the proof of Theorem 1, to analyze the DMT performance
we use a random Gaussian codebook and the vector z;. is a
length n, complex Gaussian random code vector having zero

(80)

(81)

mean and covariance matrix K; = Sn—N}InT. Hence, the signal
vector Y, received at the receiver end is given by
y,, = Hiz;, +w, (82)
where the channel matrix is
H; = [Ho hy]. (83)

The random matrix Hy is of size (n, x (n, — 1)) and is
used to model the transmission channels between the set

{Ty,---,T,,.—1} of transmit antennas and the re-
ceive antennas. The length-n, vector h; represents the fading
coefficients between the transmit antenna 73, 4, 1 and the
receive antennas. Entries of H; are modeled as i.i.d. circularly
symmetric, complex Gaussian random variables having zero
mean and unit variance. The length-n, vector w;, represents
the additive white Gaussian noise and is composed of i.i.d.
circularly symmetric, zero-mean, complex Gaussian random
variables with unit variance. The transmit code vectors z;.
are also assumed to be i.i.d.

Assuming the receiver has complete knowledge of channel
state information, the mutual information between the received
signal vectors Y, ’s and the transmitted signal vectors Z;;’s
equals

I (@ij;gileth)

= logdet <I SNRH HT>
n

r

Given the desired multiplexing gain r, the channel outage
probability associated with scheme P is therefore given by

{ ;logdet ( )

< 2rlog SNR} . (84)

SNR

Poy(r) :=

First note that for each channel matrix H; = [Hy h;], the

matrix product H; H can be written as
H;H] = HoH} + h;h!. (85)

Hence, for each j, j = 0,1, ---,n, — 1, we can rewrite the

sum of mutual information as
2
ZI (gi»j;ﬂaﬂHl’H?)
i=1

2
= ; log det (Inr + SNRH, H )

2
= > logdet (I, + SNRHoH{ + SNR b )
i=1

(86)

Let HyH, ' =vU DoU' be the eigen-decomposition of the
(n, x n,) non-negative Hermitian symmetric matrix HyH, !
with non-decreasing eigenvalues

0=X <A <X -+ < Ay (87

and A\; > 0 with probability 1. Then following a similar
approach as in the proof of Theorem 1 we can rewrite each
summand in (86) as

logdet (I, + SNRH,HJ + SNRA;{ )
— logdet (Im + SNRD, + SNR U @ZEU)

= logdet (,, +SNRD, + SNRg ')
= logdet (I, + SNRDg) +
log [1 + SNRg! (I, + SNR D)~ gi]

ny—1
= Z log (1 4+ SNRJ;) | +
Jj=1
ny,—1
SNR |gz,]|

+ SNR|gin, |* | »

(88)

where g := U'h; = [gi1 -+ gin,]. It should be noted that
both h; and g, have the same statlstlcal property, i.e., have the
same joint probablhty density function.

Define

Ai = SNR™® and |g;;|* := SNR™P  (89)

and we can rewrite (88) as

loggxg det (In, + SNRHo H{ + SNR @i@})

(1- ﬂi,nr)—i_}v (90)
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where again, (z)" := max{z,0}.
With the above, we can now rewrite the mutual information
(86) at high SNR as

2
1
W 1—21 I (gij’gij |H1,H2)

ny—1

= 12 (-a)T|+
Jj=1
2
Q.. _ A~ \H\
2 13%%5—1{(1 Bij— (1 —aj)")T,

(1- 6i,nr)+}' oD

Next, it can be shown [17], [26] that the joint probability
density function for ay > -+ > ay,,—1 and f;;’s is given

by
f (Oé]_, T 7an,~—17ﬂ1,17 e 7B2Jl,~)
. 0, if any Oéi,ﬂi,j <0
_{ SNR™%,  otherwise, ©2)
where
np—1
l Z (R +ZZ§M (93)
i= i=1 j=1
Thus, define
704n,~—17ﬁ1,17 e 7B2,n1~) :

ny—1
2y (1-a)t
Jj=1

2

fi
|

max

{(1 —Bij— (=),

(]- _ﬁi,nr)-’_} S ZTa 6i,j Z 03

arZ2ay > 20p,-12>0 }, 94
and the diversity gain d(r) equals
ny—1
d(r) = mf [ Zz o +ZZ@J (95)
i=1 j=1

To find the infimum, note the symmetries between the f3; ;,
hence we are free to set 5 ; = [ ;. Therefore, we can
rewrite (95) as

(96)

and

A(r) = {(Oq,"',an,—l,ﬂl,la"'yﬂl,m) :

ny—1
Z (1 - Oéj)+ +
Jj=1
_ R _ At
lgjné%l}f_l {(1 Prj— 1 —a;)")7,

(]‘ _ﬂlynr)—i_} S T, BLj Z 07

ap > > > Qp, 1 20}- Gl

For n; = n, + 1, it can be shown that when K — 1 <r < K
for some integer K, the infimum is achieved at

1, ifi=1,---,n,— K —1
o = K-r, ifi=n.,—K (98)
0, ifi>n,—K+1
and
Brj = B2
aj, if1<j<n,—1
= 1, ifj=n,and K =1,--- ,n, -1
ny, —r, if j=mn, and K =n,
99)

and the corresponding diversity gain d(r) = d*(r) which is a
piecewise-linear function connecting the points

(ka (nr - k)(nr -1- k) + (nt — N, + 1)("7’ - k))
= (k, (e — k)(n, — k))
(100)
for k=0,1,--- ,n,. This completes the proof.

APPENDIX III
PROOF OF THEOREM 3

In an (n; X n,) constrained asymmetric MIMO channel,
let 7 = {T1,---,T,,} be the set of indices of the transmit
antennas. For each transmit antenna 77}, let h; be the length-n,.
vector consisting of the fading coefficients from the transmit
antenna 7 to the all n, receive antennas.

Given the antenna selection pattern

Sext = {(7-175711)7 T (7-87577“8)} 3
for each selection pattern 7; C T, let H;

H = ()

il et (101)

be the (n, x n) channel matrix associated with 7;, where
n = |T;| for all 4 by assumption. Prior to proving the main
claim, we first note that given the selection pattern Sex; and
the desired multiplexing gain r, the resulting channel outage
probability is

® R
Pou(r) = Pr{ZZnﬂogdet( 4N HTH>
i=1

< Nrlog SNR}, (102)
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where

N = Zen (103)
i=1

and where we have assumed the use of i.i.d. white Gaussian

complex random code vectors as channel input.

It then follows from Fano’s inequality [27] as well as
the results of [17] that any constrained coding scheme X
with multiplexing gain r that satisfies transmission selection
pattern Sexy cannot have error performance smaller than the
outage probability. That is, the codeword error probability
P.ye x(SNR) of X must be lower bounded by the outage
probability Poy(r), i.e.,

Pewe x(SNR) > Poy(r) (104)

at high SNR regime. Thus, to prove Theorem 3 we need to
establish the converse of (104) for the proposed code X, i.e.,
we have to show that

Peye,x,(SNR) < Poy(r) (105)

Given the code matrices (X, o(X), ---, 0™ (X)) € &,
and the partition {My,--- , M} of {0,1,--- ,;m—1} we can
assume without loss of generality that the code matrices are
transmitted in the order of X, (X),---,0™ 1(X), meaning
that the code matrix X is transmitted first, and then follows by
o(X), etc., each using the designated transmission antennas
as specified by the sets of M;’s and 7;’s. The set of (n, xn)
received signal matrices is thus given by

Y; = 0G;d/(X)+W; (106)
for j = 0,1,--- ,m — 1. The channel matrices G; are given
by

Gj = H; if j € M;, (107)

and the matrix W is a noise matrix consisting of i.i.d.
circularly symmetric, complex Gaussian random variables with
zero mean and unit variance. The 6 is set at

§%? := SNR'" =% (108)

to ensure the proper SNR value used for transmission.

Thus for any X, = (X,0(X),---,0™ (X)) # X =
(X', o(X"), -+ ,0m 1 (X")) € X,, the square Euclidean
distance between the noise-free received signal matrices is
given by
—1

3

d%(Xp’X;) = ¢

8\

Tr (GiA X, AX] GT)

3
L

— 62 Tr (AXP’,*AXLZ»G;[GZ*)

-
Il
)

(109)

where AX,; := o'(X — X').
Let 6;; and ¢; ; be the set of ordered eigenvalues of matri-
ces G;’Gi and AX, ;AX] ., respectively, with the following

p,%°
ordering:
0i1 < i <o < 0jm, (110)
lbig > lin> > L. (111)

Note that by assumption we have n < n,.. It then follows from
the mismatch eigenvalue bound [11], [28] that (109) can be
lower bounded by

m—1 n

dyy (X, X7) > 67> 6ijli;.

=0 j=1

(112)

Furthermore, by rearranging and re-indexing the ¢;;’s and
;. ;’s according to the following ordering:

61 §62§§6mna
ZlZKQZ"'Zgnma

(113)
(114)

we can further lower-bound the quantity d% (Xp, X;)) by

di (Xp, Xp) > 67> 6l > 67 > il
1=1 i=mn—k+1
mn %
> 0| 1 M]
Li=mn—k-+1
i - 1
mn 3 1 %
> 6| [ o —_k] (115)
Li=mn—k+1 _H?Zi Zz
- [ '
mn k 1
: 2
Z 0 H 6i —k mn—k
Li=mn—Fk+1 [ZZZ’; [1]
M mn 1%
> | ] o
Li=mn—k+1
1
k
1
m—1 9 mn—k
(205 1A Xl ]
= SNRl_ %SNR_% ;r;r:'nn—k--}-l Bi SNR— m’;_k %
where
log §;
bi B loggél\;R 17
B = [Bi,-, Bmnl’ (118)
and where £k =1,2,--- ,mn.

The inequality (115) is due to property of generalized non-
vanishing determinant satisfied by &}, namely, we have

=1

- o' [det (AX,08%] )] € 2,
1

3

det (AXp,iAX;’i)

[

3
i

(2

(119)

where by Z1T we mean the set of positive integers. Hence,

mn
[Ie=>1
=1

(120)
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Finally, for each £k =1,2,--- ,mn we have

1 mn
di (8) = ¢ |k —rm - S B (121)

i=mn—k+1

It should be noted that we have used lose lower bounds on
d}; (Xp, X,) and the resulting dj (8) depends only on the
channel matrices G; and is independent of the pair (Xp, X 1’,)

Next, recall that the received signal matrix Y; is given by

Y; = 0G;07(X)+W;

and that entries of W; are i.i.d. complex Gaussian random
variables CA(0, 1). Given 8 = [B1,- -, Bimn]’, the codeword
error probability of &, can be upper bounded by

Pcwe,X (SNR | B)

Xy, X,
< {Z Wil > M}
m—1
< Pr{ZIIWiH?p > SNde@}
i=0
npmn—1 dk(ﬁ) i
= —SNR%*(8) (SNR™E)*
exp( SNR ) ; F] .
(122)
It is clear that if dj, () > 0,
n.mn—1 dk(ﬁ) i
_oNRé(8) (SNR™W)*
SNhr—I)loo exp( SNR ) Z p] =0.

i=0

Thus, let f(3) be the joint probability distribution function of
the ordered vector f3; then the codeword error probability can
be upper bounded by

Pcwe,Xg (SNR)
_ / Poe,x, (SNR | B) £(8) dB
BER™™

;/ Peve,x, (SNR | 8) f(B)dB

/ f(B)dp, (123)
where
D(r) = {g €R™"
kdy (8) =k —rm — g‘: a; <0,
i=mn—k+1
forall k,By > - > an}. (124)

Furthermore, it can be shown [29], [30] that the set D(r) can
be alternatively represented by

mn

> (1=8)" <mr,

i=1

D(r) ::{ g eRrR™

Having obtained (125), the codeword error probability
Peye,x, (SNR) can be further upper bounded by

PcweX
/ f(B)ds = Pr{seDr)
= Pr{ﬁ eR™ Z(l - Bi)" < mr,
i=1
m—1
= Pr{ Z log det <I + —GTG )
=0
mrlogSNR}

s
= Pr{Z m;log det (In + SNTRH;'HZ») <
i=1
mrlog SNR}, (126)

where we recall that m; = |M;| and that the M;’s are a
partition of the set {0,1,---,m — 1}.
Note that by construction we have

éni

S
l N
mi:—andm:—gni:—.
n n n

i=1

Hence we can rewrite (126) as

(127)

Pcwe,Xg (SNR) S

2 NR
Pr{z&zi log det <In + STHJ H> <

i=1

Nrlog SNR}, (128)

which coincides exactly with the outage probability of the
transmit antenna selection Sexe given in (102). Hence it proves
that the code X is optimal in terms of achieving the DMT.

APPENDIX IV
SPHERE DECODABILITY OF CODES OVER ASYMMETRIC
CHANNELS

In this section, we will provide brief discussions of why
the conventional unconstrained CDA-based codes fail to be
sphere decodable, and how the codes from the proposed
construction in Theorem 3 can be decoded using sphere
decoding techniques.

First of all, for an (n; X n,.) asymmetric MIMO system with
ng > n,., the CDA-based code proposed by the authors of [11]
calls for a cyclic division algebra D of degree n? over number
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field Q(2), and each code matrix X has the following linear
dispersion form:

2
nt
X = Z aiEi (129)
i=1
for some independent QAM constellation points a; and where
the (ny x n;) matrices E; are the basis elements for /Q(2)
which can be regarded as vector space of degree n?. Set

B = [e (130)

° ei,nt]

and let

Yy = [gl---ynr} —9HX +W (131)

be the (n, xn;) received signal matrix, where H is the channel
matrix of size (n, x ny) and W is the noise matrix. § is
again some constant set to ensure the satisfaction of power
constraint. To perform sphere decoding of X over Y, we can
reformulate Y of (131) as

Y, H
o=
Y, H
=H
€11 0 En21 ay
+w7
€1n, En? on, ap2
~ ~ S N——
=k =a
(132)

where w is the (nyn, x 1) noise vector obtained by vertically
concatenating the column vectors of noise matrix W. Clearly,
we have

1) the (n,n; x n?) block-diagonal matrix H is of full rank
ng - n, with probability one, and

2) the (n? x n?) square matrix E has full rank since the
matrices {F;} form a basis for ©/Q(1).

It is now straightforward to see that the (n¢n, x n?) product
matrix HE has rank equal to nyn, and has linearly dependent
columns since ny > n, for asymmetric channel assumption.
Thus, we conclude that X is not sphere decodable.

Next, for the proposed construction of constrained codes
presented in Theorem 3, below we will show that unlike the
unconstrained ones, the proposed code can be easily decoded
using sphere decoders. Using notations defined in Appendix
IIL let X, = (X, 0(X),--- , 0™ (X)) € X, be the (nxmn)
code matrix chosen for transmission, and for each (n X n)
submatrix o/ (X), let Y; be the corresponding received signal
matrix

Vi =g, y,,] = 0G0 (X) + W, (133)

=1 =hn

7 =0,1,--- ;m — 1, where we recall that n is the size of

each selection pattern of the transmit antennas and we have
assumed n < n,.

First note that, similar to the CDA-based code, the proposed

X, can also be written in a linear dispersion form, i.e., for any

X, € X, we have

nzm

Z aiC'i

i=1

X, = (134)
for some independent QAM constellation points a; and for
some constant matrices C;, each of size (n x nm), since the
CDA D defined in (23) is of degree nm? over its center Q(2)
with a basis {C;}. Similar to the discussion of the previous
case, we can set

Ci = [Qi,1"‘§i7nm]

Now we are ready to rewrite (133) as

)
Zo,1
Go
g(),n =0 Go
Y91
Gm—l
L gm—l,n . “rG'
€11 e Cn2m,1 ap
+w,
C1,nm Cn2m,nm An2m
:=C =a

(135)

where G is a block-diagonal matrix of size (n,nm X n’m)

and C is of size (n®m x n*m). Thus, it is clear that the

product matrix GC is of size (n,nm x n>m) and has linearly
independent columns since n,, > n by assumption. Hence we
have shown that the proposed code X, can be decoded by
using sphere decoder.
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