58 research outputs found

    Perfect Packings in Quasirandom Hypergraphs II

    Full text link
    For each of the notions of hypergraph quasirandomness that have been studied, we identify a large class of hypergraphs F so that every quasirandom hypergraph H admits a perfect F-packing. An informal statement of a special case of our general result for 3-uniform hypergraphs is as follows. Fix an integer r >= 4 and 0<p<1. Suppose that H is an n-vertex triple system with r|n and the following two properties: * for every graph G with V(G)=V(H), at least p proportion of the triangles in G are also edges of H, * for every vertex x of H, the link graph of x is a quasirandom graph with density at least p. Then H has a perfect Kr(3)K_r^{(3)}-packing. Moreover, we show that neither hypotheses above can be weakened, so in this sense our result is tight. A similar conclusion for this special case can be proved by Keevash's hypergraph blowup lemma, with a slightly stronger hypothesis on H.Comment: 17 page

    Hamilton cycles in quasirandom hypergraphs

    Get PDF
    We show that, for a natural notion of quasirandomness in kk-uniform hypergraphs, any quasirandom kk-uniform hypergraph on nn vertices with constant edge density and minimum vertex degree Ω(nk−1)\Omega(n^{k-1}) contains a loose Hamilton cycle. We also give a construction to show that a kk-uniform hypergraph satisfying these conditions need not contain a Hamilton ℓ\ell-cycle if k−ℓk-\ell divides kk. The remaining values of ℓ\ell form an interesting open question.Comment: 18 pages. Accepted for publication in Random Structures & Algorithm

    Minimalist designs

    Full text link
    The iterative absorption method has recently led to major progress in the area of (hyper-)graph decompositions. Amongst other results, a new proof of the Existence conjecture for combinatorial designs, and some generalizations, was obtained. Here, we illustrate the method by investigating triangle decompositions: we give a simple proof that a triangle-divisible graph of large minimum degree has a triangle decomposition and prove a similar result for quasi-random host graphs.Comment: updated references, to appear in Random Structures & Algorithm

    An Approximate Version of the Tree Packing Conjecture via Random Embeddings

    Get PDF
    We prove that for any pair of constants a>0 and D and for n sufficiently large, every family of trees of orders at most n, maximum degrees at most D, and with at most n(n-1)/2 edges in total packs into the complete graph of order (1+a)n. This implies asymptotic versions of the Tree Packing Conjecture of Gyarfas from 1976 and a tree packing conjecture of Ringel from 1963 for trees with bounded maximum degree. A novel random tree embedding process combined with the nibble method forms the core of the proof

    Packing k-partite k-uniform hypergraphs

    Get PDF
    Let GG and HH be kk-graphs (kk-uniform hypergraphs); then a perfect HH-packing in GG is a collection of vertex-disjoint copies of HH in GG which together cover every vertex of GG. For any fixed HH let δ(H,n)\delta(H, n) be the minimum δ\delta such that any kk-graph GG on nn vertices with minimum codegree δ(G)≥δ\delta(G) \geq \delta contains a perfect HH-packing. The problem of determining δ(H,n)\delta(H, n) has been widely studied for graphs (i.e. 22-graphs), but little is known for k≥3k \geq 3. Here we determine the asymptotic value of δ(H,n)\delta(H, n) for all complete kk-partite kk-graphs HH, as well as a wide class of other kk-partite kk-graphs. In particular, these results provide an asymptotic solution to a question of R\"odl and Ruci\'nski on the value of δ(H,n)\delta(H, n) when HH is a loose cycle. We also determine asymptotically the codegree threshold needed to guarantee an HH-packing covering all but a constant number of vertices of GG for any complete kk-partite kk-graph HH.Comment: v2: Updated with minor corrections. Accepted for publication in Journal of Combinatorial Theory, Series

    Euler tours in hypergraphs

    Get PDF
    We show that a quasirandom kk-uniform hypergraph GG has a tight Euler tour subject to the necessary condition that kk divides all vertex degrees. The case when GG is complete confirms a conjecture of Chung, Diaconis and Graham from 1989 on the existence of universal cycles for the kk-subsets of an nn-set.Comment: version accepted for publication in Combinatoric
    • …
    corecore