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Abstract

This thesis improves on the best result of an open problem, showing that Hamilto-
nian graphs with low independence number are pancyclic. It also describes graphs
with the most triangle-free 5- and 6-colourings and generalises a packing theorem
for degenerate graphs from graphs to hypergraphs.

A graph on = vertices is called pancyclic if it contains a cycle of every length
3 ≤ ℓ ≤ =. Given a Hamiltonian graph � with independence number at most : ,
we are looking for the minimum number of vertices 5 (:) that guarantees that � is
pancyclic. The problem of finding 5 (:) was raised by Erdős in 1972, who showed
that 5 (:) ≤ 4:4, and conjectured that 5 (:) = Θ(:2). Improving on a result of Lee
and Sudakov, we show that 5 (:) = $ (:11/5).

Let : ≥ 3 and A ≥ 2 be natural numbers. For a graph �, let � (�, :, A) denote
the number of colourings of the edges of � with colours 1, . . . , A such that, for
every colour 2 ∈ {1, ..., A}, the edges of colour 2 contain no complete graph on :
vertices  : . Let � (=, :, A) denote the maximum of � (�, :, A) over all graphs �
on = vertices. The problem of determining � (=, :, A) was first proposed by Erdős
and Rothschild in 1974, and has so far been solved only for A = 2, 3, and a small
number of other cases. In this thesis we consider the question for the cases : = 3
and A = 5 or A = 6. We approximately determine the value � (=, 3, 5) and � (=, 3, 6)
for large values of =. We also prove a stability result for both cases. This is joint
work with F. Botler, J. Corsten, N. Frankl, H. Hàn, A. Jiménez and J. Skokan.

Given � ≥ 1, whenever n is sufficiently large, if we are given any family of
D-degenerate graphs of individual orders at most n, with maximum degree 2 =

log(=) ,
and total number of edges at most (1−Y)

(=
2
)
, then the family packs into the complete

graph =, as proved byAllen, Böttcher, Hladký, and Piguet. If we add the condition
that a linear fraction of the degenerate graphs have linearly many leaves, we can
weaken the condition on the total number of edges to at most

(=
2
)
and still obtain a

packing of the family into  =, as proved by Allen, Böttcher, Clemens and Taraz. In
this thesis we generalise both results to hypergraphs of any given uniformity. This
is joint work with P. Allen and J. Böttcher.
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1
Introduction

Extremal problems in graph theory refer to problems of the following form. Given
a family of graphs G and a graph parameter ) , for which graph � ∈ G is ) (�)
maximal?

We can also ask what the value of this maximal ) (�) is. More broadly, any
statement of the form "For all � ∈ G we have ) (�) ≤ 2" or "There exists � ∈ G
such that ) (�) ≥ 2" are statements belonging to the field of extremal graph theory.

One of the most well known classical extremal graph theory results is due to
Mantel.

Theorem 1.0.1 (Mantel [4242]). Graphs with = vertices that contain no triangles
have no more than

⌊
=2

4

⌋
edges.

In this case, the family of graphs is "graphs with = vertices that contain no
triangles" and the parameter is "number of edges". Mantel also proved that this
result is sharp. Indeed the balanced complete bipartite graph on = vertices fulfills
all conditions and has exactly

⌊
=2

4

⌋
edges.

In Chapter 22 and Chapter 33, we consider questions of this format. A graph is
Hamiltonian if it contains a cycle going through all vertices. A graph on = vertices
is called pancyclic if it contains a cycle of every length 3 ≤ ℓ ≤ =. It is widely
studied what cycle lengths must show up in graphs. One graph property of interest
is the sum of the reciprocals of cycle lengths in the graph, introduced by Erdős and
Hajnal [2020].

In Chapter 22, the family of graphs is "Hamiltonian but not pancyclic graphs on
= vertices" and the parameter is independence number. This problem was also
introduced by Erdős, and we improve on the best known result. In Chapter 33, the
family is "graphs on = vertices" while the parameter is "number of triangle free
colourings with 5 (or 6) colours".



1 Introduction

In Section 1.11.1 and Section 1.21.2, we introduce these problems in more detail,
provide some background on the history and relevance of the problems and state
our main results on the topics.

Graph packing problems can be formulated the following way. Given a set
of graphs �1, . . . , �: and a host graph �, can we embed the vertices of each of
�1, . . . , �: into � such that edges are assigned to edges and each edge of � is used
at most once. Many classical problems can be phrased as graph packing problems.
For example an equivalent definition of Hamiltonicity is the following. A graph �
on = vertices is Hamiltonian if the complement of � and the cycle �= pack into
the complete graph  =. Especially useful are results that not only state that such
an assignment is possible, but also provide an efficient algorithm.

A packing is perfect if each edge of the host graph is used exactly once. A
classical packing problem is whether the complete graph can be perfectly packed
with triangles. The first solution is by Kirkman [3838], who proved that if the
obvious divisibility requirements are met, this is always possible. As the question
got popularised by Steiner [5454], these packings are known as Steiner triples.

Hypergraphs are a generalisation of graphs. While in graphs each edge connects
exactly two vertices, in hypergraphs an edge can contain any number of vertices.
Packing questions can be more generally asked for hypergraphs. In Section 1.31.3,
we pose such a problem, and in Chapter 44, we provide a simple algorithm with a
complicated analysis that generates the required packing.

1.1 Low Independence Number and Hamiltonicity
Implies Pancyclicity

A Hamilton cycle of a graph is a cycle that passes through all its vertices. A graph
isHamiltonian if it contains a Hamilton cycle as a subgraph. It is difficult to decide
whether a graph contains a Hamilton cycle, therefore it is valuable to establish
useful sufficient conditions for Hamiltonicity. The most well known sufficient
condition is by Dirac [1515].

Theorem 1.1.1 (Dirac [1515]). Let � be a graph on = vertices. If each vertex of �
has at least =2 neighbours, then � is Hamiltonian.

A graph is pancyclic if it contains a cycle of every length 3 ≤ ℓ ≤ =, where =
denotes the number of vertices. By definition pancyclicity implies Hamiltonicity.
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1 Introduction

Although the converse is not true, it is often the case that conditions that imply
Hamiltonicity turn out to also imply pancyclicity. A famous meta-conjecture of
Bondy [1010] states that almost all non-trivial sufficient conditions of Hamiltonicity
also imply pancyclicity with the possible exception of a few graphs. An example
of this is the following theorem by Bondy [99].

Theorem 1.1.2 (Bondy [99]). Let � be a graph on = vertices. If each vertex of
� has at least =2 neighbours, then � is either pancyclic or the complete balanced
bipartite graph  =

2 ,
=
2
.

The independence number of a graph� is the size of the largest stable set, denoted
by U(�). A famous result of Chvátal and Erdős [1212] states that if ^(�) ≥ U(�),
where ^(�) is the vertex connectivity of �, then � is Hamiltonian. Keevash and
Sudakov [3535] showed that the similar but stronger condition ^(�) ≥ 600U(�), is
sufficient to conclude pancyclicity.

In this thesis we study a connection between Hamiltonicity, pancyclicity and
independence number. Assuming � is a Hamiltonian graph with independence
number at most : , we are looking for the minimum number of vertices 5 (:) that
guarantees that � is pancyclic. The problem of finding 5 (:) was raised by Erdős,
who showed that 5 (:) ≤ 4:4 and conjectured that a stronger statement holds.

Conjecture 1.1.3 (Erdős [1919]). There are constants 21 and 22 such that for all :
we have 21:

2 ≤ 5 (:) ≤ 22:
2.

The following construction due to Erdős provides a lower bound for this conjec-
ture. Let &1, . . . , &: be cliques of size : − 2 and add an edge between successive
cliques (including between the last and the first) such that these edges are independ-
ent. It is easy to check that this graph is Hamiltonian, has independence number :
and : (: − 2) vertices, but does not contain a cycle of length : − 1.
The result of Erdős was later improved by Keevash and Sudakov [3535], who

showed that 5 (:) ≤ 150:3 holds and by Lee and Sudakov [4040], who proved that
5 (:) = $ (:7/3) holds.
Here we improve their results.

Theorem 1.1.4. There exists 2 > 0, such that if � is a Hamiltonian graph with
= ≥ 2:11/5 vertices and independence number at most : , then � is pancyclic. In
other words 5 (:) ≤ 2′:11/5.

9



1 Introduction

1.2 Maximum Number of Triangle-free Edge
Colourings

A fundamental theorem of graph theory by Turán [5555] asserts that among the graphs
on = vertices that do not contain a complete graph on : vertices  : , the complete
balanced (: − 1)-partite graph, also known as the Turán graph ):−1(=), has the
largest number of edges C:−1(=). Clearly, no matter what subset of edges from a
Turán graph we take, the resulting graph is also  : -free. A natural question is:
How many  : -free graphs are there? In 1976 Erdős, Kleitman and Rothschild
proved that the number of  : -free graphs is asymptotically the same as the number
of subgraphs of ):−1(=) [2222].
Similarly, no matter how we colour the edges of the Turán graph, the edges of

the same colour form a graph with no  : in it. We call such a colouring  : -free.
Hence ):−1(=) has A C:−1 (=)  : -free colourings with A colours. A natural question is
whether we can find a graph with more  : -free colourings, and if yes, what’s the
largest possible number of such colourings.

Let : ≥ 3 and A ≥ 2 be natural numbers. By a colouring of a graph � = (+, �)
with A colours here we mean edge-colouring, that is a function 5 : � → {1, . . . , A}.
In this context we refer to the numbers 1, . . . , A as colours and by the colour class
of 2 we mean 5 −1(2). A colouring is  : -free, if no colour class contains a copy of
 : . For a graph �, let � (�, :, A) denote the number of  : -free colourings of �
with A colours. Let � (=, :, A) denote the maximum of � (�, :, A) over all graphs
� on = vertices. Let ):−1(=) denote the Turán graph on = vertices with clique size
: − 1. Let C:−1(=) denote the number of edges of ):−1(=). Then the above lower
bound obtained from the Turán graph can be restated as

� (=, :, A) ≥ A C:−1 (=) . (1.2.1)

The problem of determining � (=, :, A) was first proposed by Erdős and Roth-
schild in 1974 [1717, 1818]. They conjectured that in the case : = 3 and A = 2 the lower
bound (1.2.11.2.1) is sharp for large enough =, and furthermore that )2(=) is the unique
extremal graph. Their conjecture was proved by Yuster [5656] who also proved an
approximate version of the statement for general : and A = 2.
Improving onYuster’s results, Alon, Balogh, Keevash andSudakov fully resolved

the cases where A = 2 and A = 3 for large values of =.
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1 Introduction

Theorem 1.2.1 (Alon, Balogh, Keevash, Sudakov [44]). For : ≥ 3 and = ≥ =0(:),
we have � (=, :, 2) = 2C:−1 (=) and � (=, :, 3) = 3C:−1 (=) . Moreover, the correspond-
ing unique extremal graph is ):−1(=).

In their paper [44] the authors also noted that the case A > 3 is more challenging
as the behavior of � (=, :, A) changes. Indeed, they proved that if A > 3 then
� (=, :, A) is exponentially larger than A C:−1 (=) . To prove this, they provided the fol-
lowing construction: in ):−1 take two maximal independent sets, and replace them
with complete bipartite graphs. They also determined the approximate values of
� (=, 3, 4) and � (=, 4, 4). Subsequently, Pikhurko andYilma [4747] improved on their
result, showing that � (=, 3, 4) = � ()4(=), 3, 4) and � (=, 4, 4) = � ()9(=), 4, 4) and
the corresponding extremal graphs are unique.

More recently, Pikhurko, Staden andYilma [4646] proved that for every =, :, A there
is a complete multipartite graph � such that � (=, :, A) = � (�, :, A). This graph is
not necessarily unique and not necessarily balanced. They also devised an optim-
isation problem with 'A (:) variables, where 'A (:) is the A-colour Ramsey-number
for  : . Very recently, Pikhurko and Staden [4545] proved a stability result, stating all
asymptotically optimal graphs are close to one of the solutions of their optimiza-
tion problem. Their proofs use Szemerédi’s regularity lemma and a symmetrisation
method.

In this thesis we construct many examples of approximately extremal graphs for
: = 3, A = 5 and every = ∈ Nwhich are not Turán-graphs. However, all of them are
complete multipartite and for each = there is a Turán-graph that is approximately
extremal as well. Whether there is always at least one extremal Turán-graph and
whether all extremal graphs are complete multipartite is still an open question.

Our approach andmethods are different from that of Pikhurko, Staden andYilma,
but our results can be interpreted in a way to draw parallels between the results.
The focus of Section 3.43.4 is to prove Theorem 3.4.33.4.3, which can be interpreted as
an optimization problem with only 2A variables (A ∈ {5, 6}) and extra constraints.
Our optimisation problem is different to the one proposed by Pikhurko et al. and
contains less variables. Then in Section 3.63.6, we solve this optimization problem
thus proving a stability result.

In the current thesis we consider the case : = 3 and A ∈ {5, 6}. Let iA (�) =
� (�, 3, A) and iA (=) = � (=, 3, A). We find the approximate value of i5(=) and
i6(=). We also prove stability results for both cases.
We use the following simplified definition of edit distance to state our stability
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results.

Definition 1.2.2 (Edit distance). Given two graphs�1 = (+, �1) and�2 = (+, �2)
on the same vertex set, we define their edit distance as 3 (�1, �2) = |�14�2 |,
where 4 denotes the symmetrical difference of sets.

This definition is equivalent to only allowing edge deletion and edge insertion
of the usual edit operations, but it is sufficient for us.

Assumption 1.2.3. For simplicity we will assume that |+ (�) | is divisible by 24 in
the future. Thus when we define balanced graphs, we don’t have to consider parts
of different size. It will be easy to see that the error term introduced by this is
negligible.

We first state the technical stability result for A = 6 as that is the easier of the
two.

Definition 1.2.4. Let+ be a set of vertices. We define�6(+) as the set of balanced
complete 8-partite graphs that has vertex set + .

Theorem 1.2.5 (Stability for A = 6). For every 0 < X < 10−30 there is an =0

and 0 < X′ such that for all graphs � = (+, �) on = > =0 vertices the following
holds. Suppose i6(�) ≥ 3=2/443=2/16−X=2 . Then there is a �′ ∈ �6(+) such that
3 (�,�′) < X′=2.

Calculating the number of 3-free colourings for these graphs gives the following
corollary.

Corollary 1.2.6. For every = we have i6(=) ≤ 3=2/443=2/16+>(=2) .

In our unpublished paperwith Botler, Corsten, Frankl, Hàn, Jiménez and Skokan,
we prove that the complete balanced 8-partite graph is the unique extremal graph
for A = 6. This is not part of the present thesis.

The case of A = 5 is more complicated, as the structure of approximately optimal
graphs is more varied.

Definition 1.2.7. Let+ be a set of vertices with |+ | = =. We define�5(+) as the set
of complete 8-partite graphs that has vertex set + and has the following part sizes:
(=/4, =/4, 0, 0, 1, 1, =/4 − 0 − 1, =/4 − 0 − 1) for some 0 ≤ 0, 1 and 0 + 1 ≤ =/4;
or (0, 0, =/4 − 0, =/4 − 0, 1, 1, =/4 − 1, =/4 − 1) for some 0 ≤ 0, 1 ≤ =/4.

Note: In edge cases this might be a complete 4-partite or 6-partite graph instead
of 8-partite, these graphs are part of �5(+) as well.

12
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Theorem 1.2.8 (Stability for A = 5). For every 0 < X < 10−30 there is an =0 and
0 < X′ such that for all graphs � = (+, �) on = > =0 vertices the following holds.
Suppose i6(�) ≥ 6=2/4−X=2 . Then there is a�′ ∈ �5(+) such that 3 (�,�′) < X′=2.

Calculating the number of 3-free colourings for these graphs gives the following
corollary.

Corollary 1.2.9. For every = we have i5(=) ≤ 6=2/4+>(=2) .

The fact that the aforementioned graphs all have asymptotically equal number of
 3-free colourings makes the case A = 5 particularly difficult and interesting. We
are currently working on finding the exact solution for this case.

1.3 Packing Degenerate Hypergraphs

A packing of a family G = {�1, . . . , �: } of hypergraphs into a hypergraph � is
a colouring of the edges of � with the colours 0, 1, . . . , : such that the edges of
colour 8 form an isomorphic copy of �8 for each 1 ≤ 8 ≤ : . The packing is perfect
if no edges have colour 0. We will often say an edge is covered in a packing if it
has colour at least 1, and uncovered if it has colour zero.

Packing problems have been studied for several decades. Classical theorems and
conjectures of extremal graph theory can often be written as packing problems.
For example, Turán’s theorem can be read as the statement that if the =-vertex �
does not have too many edges, then � and  A pack into  =. However packings
in this context are usually very far from being perfect packings, with a large
fraction of � (�) uncovered. By contrast, in Chapter 44 we are interested in almost
perfect packings and perfect packings, that is, packings in which >

(
4(�)

)
edges are

uncovered. One of the first problems asking for perfect packings in graphs is the
problem of Steiner-systems and it is over a century old. Plücker [4848] in 1835 found
perfect packings of 1

3
(=
A

)
copies of  3 into  = for various values of =, and more

generally, Kirkman [3838] in 1847 solved the problem for all values of =. Unaware
of Kirkman’s results, in 1853 Steiner re-asked the question [5454] and popularised it.
More generally, one can ask the following question.

Question 1.3.1. Given 2 ≤ : ≤ A, for which values of = does the complete :-
uniform hypergraph  (:)= have a perfect packing with copies of  (:)A ?

A packing of this form is called a combinatorial design. There are some simple
divisibility conditions on =which are necessary for an affirmative answer. Recently
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and spectacularly, Keevash [3232] proved that for sufficiently large = these conditions
are also sufficient. He used a method called randomised algebraic construction,
setting aside a structure with algebraic properties allowing him to absorb whatever
is leftover after an almost perfect packing. Keevash reached an almost perfect
packing by using Rödl nibble.

Rödl nibblewas first introduced byRödl in 1985 [5050]. Given the packing problem
in Question 1.3.11.3.1, the idea is to choose a small number of copies of  (:)A in the
host hypergraph, then throw out intersecting ones. Next, update our host graph and
repeat until we have an almost perfect packing. This method is more difficult to use
in problems where the graphs that we want to pack are larger, as they will almost
always intersect if we don’t take extra precautions. This is one of the reasons we
do not use Rödl nibble in our present work.

Keevash’s result was reproved independently, using a more combinatorial
method, by Glock, Kühn, Lo and Osthus [2626], who were also able to extend
the result to pack with arbitrary fixed hypergraphs [2626]. Their method, called
iterative absorption, was also based on absorption, but the structure they set aside
had basic combinatorial properties instead of algebraic. They applied this method
repeatedly to make the leftover part more and more structured. After the leftover
is structured enough, they can use an absorber, set aside at the start, that can ab-
sorb everything that’s left. The toroidal =-queens problem asks how many ways =
queens can be placed on a =G= chessboard, where the board is considered on the
surface of the torus, such that no pair of queens attack each other. In 2021, Bowtell
and Keevash used a random greedy algorithm and a complex absorption method,
utilising ideas of the iterative absorption and randomised algebraic construction,
to assymptotically resolve the problem for = ≡ 1, 5 (mod 6).

In general, a proof using the absorption method can be described as follows.
First, we set aside a structure in the host graph, called the absorber. Next, we
almost perfectly pack into the rest of the graph. Finally, we prove that whatever
is leftover, together with our absorber it can be perfectly packed into. This last
step usually relies on properties of the absorber established at their construction,
as well as properties of the leftover maintained through the almost perfect packing
process. Generally speaking, the stronger an absorber we can create, the less careful
we have to be in the almost perfect packing part. This method was used, described
and popularised under the name absorption by Rödl, Ruciński and Szemerédi in
2006 [5151]. We note that a similar method was already used by Krivelevich in 1997
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[3939].
Intuitively, perfect packing results are hard precisely because every edge must

be used. If the hypergraphs G were embedded in order to �, on coming to the last
hypergraph of G we would need to find that a hole is left in � of precisely the right
shape to accommodate it; this clearly requires some foresight in the packing. If
some edges remain uncovered at the end, this difficulty decreases.

In our work we consider �-degenerate hypergraphs. First, let us define the term.
An ordering of+ (�) is �-degenerate if for each vertex E, there are at most � edges
of� whose final vertex is E. We say� is �-degenerate if+ (�) has a �-degenerate
ordering. In particular, we define trees as connected 1-degenerate hypergraphs.
We also need to define the maximum degree Δ(�) := maxE∈+ (�)

��{4 ∈ � (�) : E ∈
4}

��. Of course, every hypergraph of bounded maximum degree has automatically
bounded degeneracy. Note that an =-vertex �-degenerate hypergraph has less than
�= edges, and so trivially has maximum degree at most �=.
Our results can be interpreted as hypergraph analogues of the two widest known

tree packing conjectures with a maximum degree 2=
log(=) condition.

Conjecture 1.3.2 (Ringel’s conjecture). Given = and a tree on =+1 vertices, 2=+1
copies of this tree pack into the complete graph  2=+1.

Ringel stated this conjecture in 1968 [4949]. Simple calculations show that the
packing in this conjecture is a perfect packing. Early results towards proving the
conjecture only packed simple trees, for example stars or paths. The first general
result was by Böttcher, Hladký, Piguet and Taraz in 2016 [1111]. They proved an
almost perfect packing version of Ringel’s conjecture for bounded degree graphs.
Joos, Kim, Kühn and Osthus [3131] proved the perfect packing result, assuming
bounded degree as well. Most recently, Montgomery, Pokrovskiy and Sudakov [4343]
and later Keevash and Staden [3333] proved Ringel’s conjecture for all sufficiently
large =.
Note, that both the almost perfect packing results of Böttcher, Hladký, Piguet

and Taraz [1111] and the perfect packing results of Joos, Kim, Kühn and Osthus [3131]
allow for much more general families of trees than Ringel’s conjecture.

Conjecture 1.3.3 (Gyárfás’ conjecture). Given = and a family of trees )1, . . . , )=

with |+ ()8) | = 8, the family packs into the complete graph  =.

Gyárfás stated this conjecture, also known as the tree packing conjecture, in 1978
[2828]. Note, that once again the conjecture requires a perfect packing. Similarly to
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Ringel’s conjecture, the initial results were about very specific tree-types. In 2013,
Balogh and Palmer [55] proved that the largest = 1

4 trees can be packed if none of them
are stars. This was an important step, as in general spanning or almost spanning
trees are much harder to pack than smaller trees. The first general almost perfect
packing result is again by Böttcher, Hladký, Piguet and Taraz [1111] for bounded
degree graphs. Joos, Kim, Kühn and Osthus [3131] in their already mentioned paper
also proved Gyárfás’ conjecture for all large values of = and bounded degree trees.

Moving one step forward from trees, in 1967, attending a conference in Ober-
wolfach, Ringel posed the following problem.

Problem 1.3.4 (Oberwolfach problem). Given an odd number = and a two-regular
graph � on = vertices, for what = and � can we perfectly pack copies of � into  =?

In 2021, Glock, Joos, Kim, Kühn and Osthus showed that this is always possible,
if = is sufficiently large, no matter what � is [2727]. They use an absorption method,
utilising tools from several already mentioned papers, including Rödl nibble and
Keevash’s proof of the existence of designs. Later, Keevash and Staden solved
a generalised version of the Oberwolfach problem [3434]. They proved that any
quasirandom dense large graph in which all degrees are equal and even can be
decomposed into any given collection of two-factors.

After this short detour to graph packing results, let us return to hypergraph
packings. In 2021, Ehard and Joos proved that a family of uniform bounded degree
hypergraphs packs into any quasirandom host graph almost perfectly. With this
result they address questions of Kim, Kühn, Osthus and Tyomkyn [3737], as well
as Keevash [3636]. This result is similar to our Theorem 4.7.14.7.1, which proves the
same type of statement for bounded degeneracy and a maximum degree of 2=

log(=) ,
therefore it can be applied to a wider family of graphs. Their results however apply
to the partite setting and sparser graphs.

Our results

In the entirety of Chapter 44 we consider hypergraphs that are A-uniform, that is
each edge of a hypergraph � is an A-element subset of + (�). We will refer to
(A − 1)-element vertex sets as semi-edges.
Our first main result says that we can approximately pack the complete graph

 
(A)
= with hypergraphs of bounded degeneracy and not too large maximum degree.
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Theorem 1.3.5. For each A ≥ 2, each W > 0 and each � ∈ N there exist 2 > 0 and
a number =0 such that the following holds for each integer = > =0. Suppose that
(� C)C∈[C∗] is a family of �-degenerate A-uniform hypergraphs, each of which has at
most = vertices and maximum degree at most 2=

log = . Suppose further that the total
number of edges of (� C)C∈[C∗] is at most

(=
A

)
− W=A . Then (� C)C∈[C∗] packs into the

complete graph  (A)= .

Our second main result is a bit more complicated. If we insist that the graphs
� C each have linearly many vertices of degree 1, and in addition these graphs are
not too close to spanning, then we can upgrade ‘covering almost all the edges’ to a
perfect packing.

Theorem 1.3.6. For each A ≥ 2, every � and ` > 0 there are =0 and 2 > 0 such
that for every = ≥ =0, the following holds. Suppose that (� C)C∈[C∗] is a family of
�-degenerate A-uniform hypergraphs, each of which has at most =− b`=c vertices,
at least b`=c leaves and maximum degree at most 2=

log = . Suppose further that the
total number of edges of (� C)C∈[C∗] is exactly

(=
A

)
. Then (� C)C∈[C∗] perfectly packs

into the complete graph  (A)= .

Note that with this theorem we also prove reasonable hypergraph analogues of
Ringel’s conjecture and Gyárfás’ conjecture for typical hypergraphs. Trees for us
are 1-degenerate hypergraphs. In Ringel’s conjecture all graphs are non-spanning,
which this theorem can handle. In case of Gyárfás’ conjecture, some graphs are
close to spanning, but the technical version of this theorem which is stated as
Theorem 4.1.44.1.4 can handle that. Our two extra restrictions are the requirement of
`= leaves as well as the maximum degree 2=

log = . Both of these are true for typical
1-degenerate hypergraphs. Here by typical we mean that if we randomly generate
the back-edges in degeneracy order to get a tree, this tree will have these properties
with high probability.

Most of the work of Chapter 44 is to analyse a natural randomised algorithm
which packs almost-spanning hypergraphs. The graph version of this algorithmwas
previously analysed by Allen, Böttcher, Hladký and Piguet [33] and further by Allen,
Böttcher, Clemens and Taraz [22]. They proved Theorem 1.3.51.3.5 and Theorem 1.3.61.3.6
for A = 2 respectively. Some of the analysis carries over to hypergraphs, but there
are points where a new idea is needed which we will highlight.
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2
Low Independence Number and
Hamiltonicity Implies Pancyclicity

2.1 Introduction

A Hamilton cycle of a graph is a cycle that passes through all its vertices. A graph
isHamiltonian if it contains a Hamilton cycle as a subgraph. It is difficult to decide
whether a graph contains a Hamilton cycle, therefore it is valuable to establish
useful sufficient conditions for Hamiltonicity. A graph is pancyclic if it contains
a cycle of every length 3 ≤ ℓ ≤ =, where = denotes the number of vertices. The
independence number of a graph � is the size of the largest stable set, denoted by
U(�).
In this chapter we study a connection between Hamiltonicity, pancyclicity and

independence number. Assuming � is a Hamiltonian graph with independence
number at most : , we are looking for the minimum number of vertices 5 (:) that
guarantees that � is pancyclic.

In this section we introduce an equivalent theorem to Theorem 1.1.41.1.4.

Definition 2.1.1. For V > 0, let (� (V) denote the following statement, called short
cycle statement. There exists 2 > 0 such that given a Hamiltonian graph � with
= ≥ 2: V vertices and independence number at most : , and any subset of vertices,
of size at most 20:2, we can find a cycle of length = − 1 containing all the vertices
from, .

Theorem 2.1.2 (Lee, Sudakov [4040]). For all V ≥ 2, assuming (� (V) the following
statement holds. There exists 2′ > 0, such that if � is a Hamiltonian graph with
= ≥ 2′: V vertices and independence number at most : , then � is pancyclic. In
other words 5 (:) ≤ 2′: V.
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The above theorem is implicitly proved in [4040]. To see this one follows their
Proof of Theorem 1.1. This gives the stronger conclusion if their Theorem 2.1 is
replaced by (� (V).

Theorem 2.1.3. (� (11/5) holds.

Using Theorem 2.1.22.1.2 and Theorem 2.1.32.1.3, Theorem 1.1.41.1.4 immediately follows.
For a proof of Theorem 2.1.32.1.3 we substantially extend the methods of [4040]. The

improvement comes from Lemma 2.3.92.3.9 and the inductive approach to proving
Lemma 2.3.52.3.5, which is made possible by Lemma 2.3.112.3.11. Proving these new
lemmas constitutes most of Section 2.32.3. Before that, we will state some definitions
and prove a basic structural proposition in Section 2.22.2.

The goal of Section 2.22.2 is to prove Theorem 2.1.32.1.3.

2.2 Definitions, earlier results

The core idea of the proof of Theorem 2.1.32.1.3, as well as those of previous results, is
the following. We break down the graph into parts along theHamilton cycle, we call
these parts arcs. Next we show that if we have certain edge configurations between
these arcs, then we can also find a cycle of length = − 1. Finally, we prove that a
graph contains either a sparse subgraph that contradicts the independence number
constraint, or a certain type of expander that implies the existence of one of the
aforementioned edge configurations. In this section we state the basic definitions
and prove Proposition 2.2.92.2.9, which shows the existence of the arc-system we will
use in Section 2.32.3.
We make no attempt to find the optimal value of 2 in Theorem 1.1.41.1.4. For

this reason we can ignore small rounding errors and thus will omit all floor and
ceiling signs. We fix a large constant 2, how large we actually need will come
from later calculations so we do not specify at this point. We can also assume that
2:11/5 ≤ 4:4 by the result of Erdős [1919], thus by setting 2 large we can assume that
: is also large.

Assumption 2.2.1. From this point we assume for a contradiction to Theorem 2.1.32.1.3
the following:

• � is a Hamiltonian graph with = ≥ 2:11/5 vertices,

• � has independence number at most : ,

• , is a subset of + (�) with at most 20:2 vertices,
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2 Low Independence Number and Hamiltonicity Implies Pancyclicity

• � has no cycle of length = − 1 containing, ,

• � is a Hamilton cycle in �.

We call a vertex of � problematic if it has degree at most 2: or is an element of
, . There are at most 2:2 vertices with degree at most 2: (by the greedy algorithm
for finding independent sets), so there are at most 22:2 problematic vertices. Let
,̃ denote the set of problematic vertices. The motivation for calling these vertices
problematic comes from Proposition 2.2.22.2.2.
We call a cycle � a contradicting cycle if it has length = − : ≤ |� | ≤ = − 1 and

contains all problematic vertices.
The following proposition shows that in the graphs we are considering no con-

tradicting cycle exists, thus justifying their name.

Proposition 2.2.2 ([4040] Proposition 3.1). If� satisfies Assumption 2.2.12.2.1, then there
is no contradicting cycle in �.

We say two vertices of � are consecutive if they are neighbours in �. A set
of vertices is continuous if they form a path in �. For a subset � ⊆ + (�) the
continuous closure of the set is the � continuous set of minimum size that contains
it (in general this might not always be unique, but we will use it only in cases when
it is).

Next we define arc-systems, which are the objects that we will primarily use in
the rest of the section.

Definition 2.2.3. A family of subsets of + (�) (where the graph � has a fixed
Hamilton cycle �) denoted by A is called an arc-system and its elements arcs if
the following properties hold:

(i) For all � ≠ � ∈ A, we have �∩ � = ∅, that is, the continuous closures of
arcs are pairwise disjoint,

(ii) For all � ∈ A, we have �∩ ,̃ = ∅, that is, the continuous closure of each
arc has no problematic vertex in it,

(iii) For all � ∈ A, no two vertices in � are consecutive.

Remark 2.2.4. If � is an arc and |�| ≤ : +2, then � is an independent set. Indeed,
if there was an edge {D, E} where D, E ∈ �, then using the longer path between D
and E in� and the edge {D, E} we would get a contradicting cycle (see Figure 2.1a2.1a).

Definition 2.2.5. We call an arc system A independent if it has the property that
for all � in A we have |�| ≤ :/6.

20
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We use :/6 in the definition instead of : + 2 for technical reasons, as in later
proofs we will want to remove vertices from up to six arcs to find a contradicting
cycle.

We say the size of the arc-system is |A| and the length of the arc system is
min�∈A |�|.

Proposition 2.2.6. Given 21 and 22, there exists 2 such that if we assumeAssumption
2.2.12.2.1, then there is an independent arc-system in the graph� of size 21:

2 and length
22:

1/5.

Proof. We start with the empty arc-system. Removing the problematic vertices
from �, we obtain a set P of at most 22:2 paths. From this set we will construct
an arc-system A with the desired properties.

While there is a path {E1, E2, . . . , E<} = % ∈ P such that < ≥ 222:
1/5 we do

the following. Remove % from P. Add {E222:1/5+1, E222:1/5+2, . . . , E<} to P. Add
{E1, E3, . . . , E222:1/5−1} to A. In words, we remove the first 222:

1/5 vertices of %
and form an arc from every second vertex in it, and add that arc to A. Since we
choose such sets, by definition A fulfills properties (ii)(ii) and (iii)(iii) of arc-systems.
Also since : is large enough we have 222:

1/5 ≤ :/6, so A is independent by
definition. The change to P ensures that property (i)(i) will also hold for A.
At the end of this process we have at most (22:2) (222:

1/5) leftover vertices
(from paths shorter than 222:

1/5), we removed 22:2 problematic vertices at the
start, and the half of the other vertices were used to form arcs in A. So we
have at least 2:

11/5−(22:2) (222:
1/5+1)

222:1/5 arcs in A, which is more than 21:
2 if 2 is large

enough.

Definition 2.2.7. We denote by "2 the matching of size two, or equivalently two
independent edges. We say a graph is "2-free if it doesn’t have two independent
edges (or equivalently in bipartite graphs, there is a vertex that is incident to all
edges).

Definition 2.2.8. We say an arc-system is simple if it is independent and for each
pair of arcs, the subgraph of � induced by them is "2-free.

Proposition 2.2.9. Given 21 and 22, there exists 2 such that if we assume Assump-
tion 2.2.12.2.1, then in the graph � there is a simple arc-system of size 21:

2 and length
22:

1/5.
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D E

(a) An arc with an edge
inside

G1 G2

H1

H2

(b) An intersecting "2
between arcs

G1 G2

H2
H1

H4
H3

G3
G4

(c) Two non-intersecting
"2

Figure 2.1: Contradicting cycles implied by edge configurations

Proof. We fix an independent arc-system A provided by Proposition 2.2.62.2.6. We
draw the vertices of the graph � on a circle in the plane in the order of the cycle �
and connect neighbouring vertices with line segments. If there are two independent
edges {G1, H1}, {G2, H2} between arcs �1 and �2, then these can intersect on this
drawing or not.

If they intersect, then we immediately find a contradicting cycle the following
way. Starting from �, remove the edges of the shorter path between G1, G2 and,
similarly, remove the edges of the shorter path between H1, H2 and instead add the
edges {G1, H1} and {G2, H2} (see Figure 2.1b2.1b). This gives a cycle with at least
= − 422:

1/5 > = − : vertices. By Proposition 2.2.22.2.2, this is a contradiction to
Assumption 2.2.12.2.1.

If we find two pairs of arcs each with non-intersecting "2 such that these two "2

({G1, H1}, {G2, H2} between �1 and �2 and {G3, H3}, {G4, H4} between �3 and �4)
intersect each other on the drawing, then again we can find a contradicting cycle
the following way. From � remove the edges of the shorter path between G1, G2;
H1, H2; G3, G4; H3, H4 and instead add the edges {G1, H1}, {G2, H2}, {G3, H3}, {G4, H4}
(see Figure 2.1c2.1c). This gives a cycle with at least = − 822:

1/5 > = − : vertices. By
Proposition 2.2.22.2.2, this is a contradiction to Assumption 2.2.12.2.1.
This implies that if we look at the graph on the arcs as vertices where a pair of

arcs form an edge if the subgraph of � induced by them contains an "2, then this
is a planar graph. That implies 5-colourability. By taking the majority colour, we
get a simple arc-system with size 21

5 :
2 and length 22:

1/5.

In some cases we want to consider an auxiliary graph, in which the arcs are the
vertices.
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Definition 2.2.10. The arc-graph of an arc-system A is the graph �A where the
vertices are the arcs in the system and there is an edge between two arcs in the
arc-graph if and only if there is an edge between the two arcs in �. We call the
edges of the arc-graph arc-edges.

2.3 Key lemmas, proof of the main theorem

The goal of this section is to prove Lemma 2.3.52.3.5, which states that arc-systems
with certain size and length contain large independent sets. This will imply
Theorem 1.1.41.1.4. To prove it, we will use induction and two structural lemmas.
Lemma 2.3.92.3.9 states that an arc system contains either a large independent set or
a subsystem of arcs that are expanding. Lemma 2.3.112.3.11 states that an expanding
arc system must have a certain edge-configuration that we will call a semi-triangle.
Finally we show that this implies the existence of a contradicting cycle, which is
impossible.

Given an arc-system A, let � [A] denote the subgraph induced by all vertices
in the arcs of A.

Lemma 2.3.1. Given a simple arc-systemA with length 0, size 1, and< arc-edges
in the corresponding arc-graph, there is an independent set in� [A] of size 01−<.

Proof. Since the arc-system is simple, the edges of� [A] corresponding to a single
arc-edge 4 can be covered by a single vertex of � [A] (that is, there is a vertex E
in � [A] such that all the edges corresponding to 4 are incident to E). Removing
these vertices we get an independent vertex set in � [A] of size 01 − <.

Now we define the function that we want to work with.

Definition 2.3.2. Let 6(0, 1) denote the largest number such that given a simple
arc-system A of length 0 and size 1 there is always an independent set of size
6(0, 1) in � [A].

Setup 2.3.3. For all 8 ∈ N we define the following constants that we will use in the
following section; 08 = 10 · 38, 18 = 10008 · 482 .

The lemma that we want to prove in this section is the following.

Definition 2.3.4. For every ? ∈ N let �� (?) denote the following statement, called
the arc-independence statement. For every G ≥ 1 with 0?G ≤ :/6 we have

6

(
0?G, 1?G

?(?−1)/2
)
≥ G? + 1 .
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Lemma 2.3.5. For every ? ∈ N, �� (?) holds.

This means that givenΘ
(
G?(?−1)/2

)
arcs with each having at leastΘ(G) vertices,

we can find an independent set of size Θ(G?).
First, we prove Theorem 1.1.41.1.4 using Lemma 2.3.52.3.5.

Proof of Theorem 1.1.41.1.4. Using Lemma 2.3.52.3.5 for ? = 5 and G = :1/5, together
with Proposition 2.2.92.2.9, we get an independent set of size : + 1, and therefore a
contradiction. This proves Theorem 2.1.32.1.3 and thus Theorem 1.1.41.1.4.

To prove Lemma 2.3.52.3.5, we will use induction. To prepare for the induction step,
first we prove Lemmas 2.3.92.3.9 and 2.3.112.3.11.

Definition 2.3.6. Given an arc-system A of the graph � and a subset of an arc
- ⊆ � ∈ A, we say that the arc-neighbourhood of - is

#A (-) = {� ∈ A : (∃1 ∈ �) (∃G ∈ -){1, G} ∈ � (�)} .

We sometimeswrite #A (E)meaning #A ({E}) for simplicity. We denote by 3A (-)
the size of the arc-neighbourhood, that is 3A (-) = |#A (-) |.

Definition 2.3.7. Using the constants from Setup 2.3.32.3.3 and given ? > 1 integer,
we say an arc � is good in the arc-systemA if to at least half of the vertices E ∈ �
we can assign a set of

41?−1G
(?−1) (?−2)/2

arcs in #A (E), each arc ofA being assigned to at most one E ∈ A. If an arc is not
good, we call it bad.

Also, we say that a subset - of an arc � ∈ A is expanding in A if (∀. ⊆
-)3A (. ) ≥ |. |41?−1G

(?−1) (?−2)/2.
The definition of good and expanding depends on ?, but it will always be clear

from the context which ? is meant.
We will use the following simple proposition in the proof of Lemma 2.3.92.3.9.

Proposition 2.3.8. Given an arc-system A of a graph �, the function 3A is
submodular.

Proof. We trivially have

|#A (�) | + |#A (�) | = |#A (�) ∪ #A (�) | + |#A (�) ∩ #A (�) |

24
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and |#A (� ∩ �) | ≤ |#A (�) ∩ #A (�) | as the former is a subset of the latter.
Furthermore, #A (�) ∪ #A (�) = #A (� ∪ �). Putting these together we get

3A (�) + 3A (�) ≥ 3A (� ∪ �) + 3A (� ∩ �) .

Lemma 2.3.9. Let the constants 08 and 18 be as defined in Setup 2.3.32.3.3. For each
integer ? > 1, given a simple arc-system A of size 1?G?(?−1)/2 and length 0?G,
either there is an independent set of size G? + 1 in � [A] or there is a non-empty
A′ ⊆ A such that for all � ∈ A′, � is good in A′.

Proof. We observe that an arc � is good if and only if it has an expanding subset
of size at least |�|/2, by Hall’s theorem.
We define a process, by the end of which we either have the required independent

set or the good subset. Let A0 = A be the given arc system of size 1?G?(?−1)/2

and length 0?G. Let B0 be the empty system. In step C we will define arc-systems
AC and BC as follows.
If each � ∈ AC−1 is good in AC−1, then we define A′ = AC−1, B = BC−1 and the

process terminates.
Otherwise we take a bad arc � from AC−1 and a maximal expanding set - in

it. Note that |- | < |�|/2 = 0?G/2 in this case. We say that . ⊆ - is tight if
3AC−1 (. ) < ( |. | + 1)41?−1G

(?−1) (?−2)/2. Let � denote � \ - . Now for every E ∈ �
there is a tight set )E such that 3AC−1 ()E ∪ {E}) < ( |)E | + 1)41?−1G

(?−1) (?−2)/2 (by
the maximality of -). Let ) denote ∪E∈�)E.

First we claim that if a set )8 is the union of 8 tight sets, then

3AC−1 ()8) ≤ (|)8 | + 8)41?−1G
(?−1) (?−2)/2 (2.3.1)

holds, which we will prove by induction. We can assume )8 = )8−1 ∪) ′ where )8−1

is the union of 8 − 1 tight sets and ) ′ is tight. Then

3AC−1 ()8) ≤ 3AC−1 ()8−1) + 3AC−1 () ′) − 3AC−1 ()8−1 ∩ ) ′)
≤

(
( |)8−1 | + 8 − 1) + (|) ′| + 1) − |)8−1 ∩ ) ′|

)
41?−1G

(?−1) (?−2)/2 ,

(2.3.2)

where the first inequality is an application of Proposition 2.3.82.3.8. The second
inequality follows by induction on )8−1, tightness of ) ′ and expansion of ) ′ ∩ )8−1.
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This proves inequality (2.3.12.3.1).
Next, we claim that

3AC−1 (�) ≤ 20?G41?−1G
(?−1) (?−2)/2 . (2.3.3)

First we see that for each E ∈ � we have

|#AC−1 (E) \ #AC−1 ()E) | ≤ 41?−1G
(?−1) (?−2)/2 ,

since )E is expanding, as it is a subset of - , and )E ∪ {E} is not expanding. This
implies

|#AC−1 (�) \ #AC−1 ()) | ≤ 0?G41?−1G
(?−1) (?−2)/2 . (2.3.4)

By its definition,) is the union of tight sets, therefore it is also the union of atmost
|) | tight sets. As ) is a subset of - , |) | ≤ 0?G/2. Thus, using inequality (2.3.12.3.1)
on ) gives us

3AC−1 ()) ≤ 0?G41?−1G
(?−1) (?−2)/2 . (2.3.5)

(2.3.42.3.4) and (2.3.52.3.5) together imply (2.3.32.3.3). So in this step we define BC = BC−1∪{�}
and AC = AC−1 \ {�}. Note that the total size of AC and BC is 1?G?(?−1)/2.
If by the end of this process we have a non-empty good arc-system A′, then we

have found what we are looking for.
If A′ is empty, then we have an arc-system B with length at least 0?G/2 and

size 1?G?(?−1)/2. We count the arc-edges of �B in the following way. We assign
each arc-edge to the arc that was added to B in the earlier step. By the Equa-
tion (2.3.32.3.3) property of � proven in the process, each arc will be assigned at most
20?G41?−1G

(?−1) (?−2)/2 arc-edges this way. Thus �B has at most

1?G
?(?−1)/220?G41?−1G

(?−1) (?−2)/2

arc-edges. This means �B has an edge density of at most

1?G
?(?−1)/220?G41?−1G

(?−1) (?−2)/2( 1?G? (?−1)/2

2
) ≤ 3

1?G
?−2

where 3 is a constant not depending on G or 1?.
We take a subset C of B of size G?−1 with the minimal amount of arc-edges. �C
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Figure 2.2: Semi-triangles

will have at most the same edge density as �B . Therefore, �C has at most(
G?−1

2

)
3

1?G
?−2 ≤

3G?

1?

edges. Thus, by Lemma 2.3.12.3.1, � [C] has an independent set of size 0?
2 G

? − 3G?

1?
≥

G? + 1 as 0? ≥ 6 and 1? ≥ 3.

Definition 2.3.10. Let us fix a direction on the Hamilton cycle � so we can order
the vertices of an arc D < E if D is before E in the given direction. We say that three
arcs (�, �, �) form a semi-triangle if they are in the given order and there exists
01 < 02 ∈ �, 11 < 12 ∈ �, 21 < 22 ∈ � such that one of the following conditions
holds (see Figure 2.22.2):

• Type 1: {01, 21}, {02, 11}, {12, 22} ∈ � (�) and � and � are not consecutive
arcs,

• Type 2: {01, 11}, {02, 21}, {12, 22} ∈ � (�).

Note that a Type 2 semi-triangle gives us a contradicting cycle (see Figure 2.3a2.3a),
therefore it can not exist. Using the good arc-system given by Lemma 2.3.92.3.9,
we will show the existence of certain Type 1 semi-triangles. Later, using those
semi-triangles, we find a contradicting cycle.

Given an arc �weget themain part of it by taking the second half of it in the given
order. That is, " (�) ⊆ �, |" (�) | = |�|/2 and for all E ∈ " (�), D ∈ � \ " (�)
we have E > D. We define leftover part as ! (�) = � \ " (�). For an arc-system
A, " (A) and ! (A) are the sets of the main and leftover parts, respectively, of
each arc in the system.

Lemma 2.3.11. Let the constants 08 and 18 be as defined in Setup 2.3.32.3.3. For each
? > 1, if �� (? − 1) holds, then the following is true.
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2 Low Independence Number and Hamiltonicity Implies Pancyclicity

Fix a simple arc-system A of length 0?G and an arc � ∈ A. Assume that there
is an assignment of arcs to vertices with the following properties:

• The range of the assignment is �′, a subset of � of size at least |�|/6,
• To each E ∈ �′ at least 1?−1G

(?−1) (?−2)/2+1 arcs are assigned from#" (A) (E),
• None of the arcs are assigned to more than one vertex.

Then either there are arcs �,� ∈ A such that (�, �, �) is a semi-triangle of Type
1, or there is an independent set in � [A] of size G? + 1.

Proof. If any of the assigned neighbouring arcs is consecutively after �, we un-
assign it. Let us fix E ∈ �′. We look at the corresponding leftover arcs of the
assigned neighbours of E, which form an arc-system AE of size 1?−1G

(?−1) (?−2)/2

and length 0?G/2. Using �� (? − 1) and by 0? ≥ 20?−1 there is an independent
set �E in � [AE] of size G?−1 + 1. Taking G of these sets, which we can do because
0?G/6 > G, we get either an independent set of size more than G? + 1 or an edge
{1, 2} between �F and �D. Let � and� be the arcs containing 1 and 2, respectively.
Without loss of generality, we can assume that �, �, � are in this order on the
Hamilton cycle. Then (�, �, �) is a semi-triangle, because of the edge proving
that " (�) is a neighbour of F, the edge proving that " (�) is a neighbour of D
and the edge {1, 2} going between ! (�) and ! (�). Since Type 2 semi-triangles
cannot exist, this must be a Type 1 semi-triangle.

With this, we are ready to prove the main lemma of the section.

Proof of Lemma 2.3.52.3.5. We will use induction to prove the lemma. As the base
case, we observe that 6(G +1, 1) = G +1 by Remark 2.2.42.2.4. Also, 6(2G, 2G) ≥ G2+1,
since an arc-system of size 2G can have at most 2G(2G−1)

2 arc-edges, therefore by
Lemma 2.3.12.3.1 it has an independent set of size 4G2 − 2G(2G+1)

2 ≥ G2 + 1.
For the induction step we can assume ? ≥ 3 and that the lemma is true for all

lower values of ?.
Let A′ be a simple arc system of size 1?G?(?−1)/2 and length 0?G. Applying

Lemma2.3.92.3.9 on" (A′), we obtain a good subsystemM′, orwefind an independent
set of size G? + 1 and we are done. For each arc in " ∈ M′, there is an arc � ∈ A′

such that " (�) = " . Let A denote the set of such �’s. Thus, " (A) is good by
definition. Using Lemma 2.3.112.3.11, we get either a Type 1 semi-triangle or the desired
independent set. We define the length of a semi-triangle (�, �, �) as the number
of arcs between � and � (note that this is at least 1 by definition ). Let (�, �, �)
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2 Low Independence Number and Hamiltonicity Implies Pancyclicity
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A� case
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(c) Type 1 semi-triangles,
A� case

Figure 2.3: Contradicting cycles implied by semi-triangles

be a semi-triangle of Type 1 in A with the shortest length. Let � denote the arc
consecutively after � and A� those arcs between �, �; A� those arcs between
�,�; and A� those arcs between �, �.
Recall that by the definition of good, there is a subset of vertices �′ ⊆ �, with
|�′| ≥ |� |, such that we can assign 41?−1G

(?−1) (?−2)/2 neighbouring arcs to each.
For each vertex in�′, using the pigeonhole principle, at least 1?−1G

(?−1) (?−2)/2+1 of
the assigned arcs are in eitherA�,A� orA� . Using the pigeonhole principle again,
at least |� |/6 vertices of � are assigned at least 1?−1G

(?−1) (?−2)/2 +1 neighbouring
arcs from eitherA�,A� orA� . If this isA�, then by applying Lemma 2.3.112.3.11 to �
and A� we find either a shorter Type 1 semi-triangle contradicting the minimality
of (�, �, �), or the desired independent set. If this is A� or A� , then we get a
new Type 1 semi-triangle.

Considering this new Type 1 semi-triangle together with (�, �, �), we get one
of the arrangements on Figures 2.3b2.3b or 2.3c2.3c. We call the vertices incident to the
edges used in the semi-triangles relevant vertices. Note that the order of these
six arcs as well as that of the relevant vertices is determined by the definition of
Type 1 semi-triangles and the definition of the sets A� and A� . We construct a
contradicting cycle the following way: starting from the fixed Hamilton cycle, we
remove the edges between the pairs of relevant vertices in the six arcs and add the
six edges used in the two semi-triangles. Note that we removed at most 6 · :/6
edges as A is an independent arc-system. This graph is clearly 2-regular, and
connectivity can be checked using the Figures as the order of vertices used in them
is established.

As finding a contradicting cycle is impossible, we must have found the inde-
pendent set we are looking for at one of these steps.
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3
Maximum Number of Triangle-free
Edge Colourings

3.1 Introduction

Let : ≥ 3 and A ≥ 2 be natural numbers. By a colouring of a graph � = (+, �)
with A colours here we mean edge-colouring, that is a function 5 : � → {1, . . . , A}.
In this context we refer to the numbers 1, . . . , A as colours and by the colour class
of 2 we mean 5 −1(2). A colouring is  : -free, if no colour class contains a copy of
 : . For a graph �, let � (�, :, A) denote the number of  : -free colourings of �
with A colours. Let � (=, :, A) denote the maximum of � (�, :, A) over all graphs
� on = vertices.

In this chapter we consider the case : = 3 and A ∈ {5, 6}. Let iA (�) = � (�, 3, A)
and iA (=) = � (=, 3, A). We find the approximate value of i5(=) and i6(=). We
also prove stability results for both cases.

In this section we state stronger, technical versions of Theorem 1.2.81.2.8 and The-
orem 1.2.51.2.5. The reason for this is that these stronger technical theorems will be
useful when we want to find the exact extremal graph for the Erdős-Rothschild
problem. While the search for the exact result is beyond the scope of this thesis,
we state and prove the following technical results.

We first state the technical stability result for A = 6 as that is the easier of the
two. For two bit vectors 9(1) , 9(2) ∈ {0, 1}=, with 9(1) = (Y(1)1 , . . . , Y

(1)
= ), we define

their distance as their Hamming-distance, which is the number of indices where
they differ.

To state our theorems, we need the following notation.

Definition 3.1.1. For a graph �, a positive integer =, a bit vector 9 ∈ {0, 1}= and
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vertex partitions +0
8
∪+1

8
= + (�) for all 8 ∈ {1, . . . , =}, we define

+ (9) =
⋂
9∈[=]

+
9 9
9
.

Theorem 3.1.2 (Technical stability for A = 6). For every 0 < X < 10−30 there is
an =0 such that for all graphs � on = > =0 vertices the following holds. Suppose
i6(�) ≥ 3=2/443=2/16−X=2 . Then there are balanced bipartitions +0

8
∪ +1

8
= + (�)

for each 8 ∈ [6] and E = {9(1) , . . . , 9(8)} with 9( 9) ∈ {0, 1}6, furthermore, there is
a partition of E into E0 and E1 such that

(i) We have ��� ⋃
9∈E

+ (9)
��� ≥ (

1 − 105√X
)
= .

(ii) We have ��� ⋃
9∈E0

+ (9)
��� = ��� ⋃

9∈E1

+ (9)
��� ± 108√X= .

(iii) For any pair (9, 9′) ∈ E2 we have

4

(
+ (9), + (9′)

)
≥

���+ (9)��� · ���+ (9′)��� − 107X=2 .

(iv) For any 9 ∈ E we have

4

(
+ (9)

)
≤ 107X=2 .

(v) Each pair (9, 9′) ∈ E0 × E1 has distance three and each pair (9, 9′) ∈
E0

2 ∪ E1
2 has distance four.

(vi) Moreover, for any pair (9, 9′) ∈ E2 we have���+ (9)��� = ���+ (9′)��� ± 104 4√
X= .

Next we state the technical stability result for the more complex A = 5 case.

Theorem 3.1.3 (Technical stability for A = 5). For every 0 < X < 10−30 there is
an =0 such that for all graphs � on = > =0 vertices the following holds. Suppose
i5(�) ≥ 6=2/4−X=2/4. Then there are balanced bipartitions +0

8
∪ +1

8
= + (�) for

each 8 ∈ [5], an integer C ∈ {4, 6, 8} and E = {9(1) , . . . , 9(C)} with 9( 9) ∈ {0, 1}5,
furthermore, there is an B ∈ [5] and a partition of E into E0 and E1 such that
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3 Maximum Number of Triangle-free Edge Colourings

(i) We have ��� ⋃
9∈E

+ (9)
��� ≥ (

1 − 105 4√
X

)
= .

(ii) We have ��� ⋃
9∈E0

+ (9)
��� = ��� ⋃

9∈E1

+ (9)
��� ± 108√X= .

(iii) For any pair (9, 9′) ∈ E2 we have

4

(
+ (9), + (9′)

)
≥

���+ (9)��� · ���+ (9′)��� − 107X=2 .

(iv) For any 9 ∈ E we have

4

(
+ (9)

)
≤ 107X=2 .

(v) Each pair (9, 9′) ∈ E0 × E1 has distance three and each pair (9, 9′) ∈
E2

0 ∪ E
2
1has distance two or four.

(vi) Moreover, pairs of distance four form a perfect matching in E and for each
of these matched pairs (9, 9′) we have���+ (9)��� = ���+ (9′)��� ± 104 4√

X= .

Following the implied partitions, it is easy to prove the main theorems using
these technical results. The goal of the following sections is to prove these two
theorems.

In Section 3.23.2 we introduce basic notation that we’ll use throughout the chapter
and cite a container theorem by Balogh et al.[66] which will be a key tool in
proving our results. In Section 3.43.4 we prove a technical theorem, Theorem 3.4.33.4.3,
which provides an upper bound on the number of colourings and some structural
properties of any graph and corresponding containers which comes close to this
upper bound. This result is based on the structure of edges appearing in exactly
3 containers, which is the main novelty in this chapter. In Section 3.53.5 we prove
matching lower bounds by providing a family of constructions and colourings on
them. In Section 3.63.6 we build on Theorem 3.4.33.4.3 to prove Theorem 3.1.23.1.2 and
Theorem 3.1.33.1.3.
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3.2 Preliminaries

We denote by iA (�) the number of triangle-free A-colourings of � (�), and by
iA (=) := max{iA (�) : � is a graph with = vertices}. We denote by CA (�) the
number of triangles in �.

Suppose we are given a graph � and subgraphs �1, . . . , �A ⊆ � with � (�) =
� (�1) ∪ . . . ∪ � (�A). We denote by Φ(�1, . . . , �A) the family of all colourings
j in which j−1(8) ⊆ � (�8) for all 8 ∈ [A]. If each �8 is triangle-free, then
every such colouring is triangle-free, hence we have iA (�) ≥ |Φ(�1, . . . , �A) |
in this case. Furthermore, the number of such colourings is easy to count. For
8 ∈ [A], let "8 = "8 (�1, . . . , �A) ⊆ � denote the graph on + (�) whose edges
are those of � contained in exactly 8 of the subgraphs �1, . . . , �A . We denote by
<8 = <8 (�1, . . . , �A) the number of edges in "8. We then have

|Φ(�1, . . . , �A) | =
∏
8∈[A]

8<8 and
∑
8∈[A]

8 · <8 =
∑
8∈[A]
|�8 |, (3.2.1)

We will make use of the container theorem below proved by Mousset, Nenadov
and Steger [4444] using the hypergraph container method of Balogh, Morris and
Samotĳ [77] and Saxton and Thomason [5353]. We use an equivalent formulation of
their result as stated by Balogh et al. in [66]. This approach was introduced by Hàn
and Jiménez [2929] using ideas of Clemens, Das and Tran [1313].

Theorem 3.2.1 ([66, Theorem 3.2]). There exists constant � such that for every
graph � on = > � vertices there exists a collection C = C(�) of subgraphs of �
such that the following holds:

(a) every triangle-free subgraph �′ ⊆ � is a subgraph of some � ∈ C,
(b) CA (�) ≤ =25/9 for every � ∈ C,
(c) |C| ≤ exp

(
=16/9) .

Theorem 3.2 from [66] is stated for � =  = only, however, by taking the intersec-
tion of each container � with � we obviously obtain the family C = C(�) from
above.

For a graph� on = vertices, let us denote by C(�) the family of all graphs� ⊆ �
on = with CA (�) ≤ =25/9. An immediate corollary of Theorem 3.2.13.2.1 provides the
following.
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Corollary 3.2.2. There is a constant =0, such that for = > =0 and all graphs � on
= vertices and every A ∈ N, we have

iA (�) ≤ exp
(
A · =16/9

)
· max
�1,...,�A∈C(�)

|Φ(�1, . . . , �A) | .

3.3 An approximate upper bound for many colours

In this section, we showcase the strength of the container method on the Erdős-
Rothschild problem. The following theorem and proof is byHàn and Jiménez. Note
that all previous theorems of this type made use of Szemerédi’s regularity lemma
and were much more technical. In Section 3.43.4 we will strengthen this theorem for
5 and 6 colours.

Theorem 3.3.1. We have iA (=) ≤
(
A
2
) (1+>(1))(=2) .

Theorem 3.3.13.3.1 basically follows from the following claim and Corollary 3.2.23.2.2.

Claim 3.3.2. Let Y > 0, let A ≥ 6 be an integer and let �1, . . . , �A be graphs on
[=] with 4(�8) ≤ (1/2 + X)

(=
2
)
. Then we have

|Φ(�1, . . . , �A) | ≤
((

1
2
+ X

)
A

) (=2)
.

Proof. Let < := 4(�) and let 80 =
∑
8∈[A] 4(�8)/< ≤ A ( 12 + X)

(=
2
)
/<. Note that, by

convexity, we have

|Φ(�1, . . . , �A) | ≤
∏
8∈[A]

8<8 ≤ 8<1+...+<A
0

≤
(
A

(
1
2
+ X

)
=2

2<

)<
.

Since A ≥ 6 > 24, it follows from elementary calculus that (A ( 12 + X)
=2

2< )
< is

monotone increasing in <. The claim now follows since < ≤
(=
2
)
.

To finish the proof of Theorem 3.3.13.3.1, wewould like to bound the number of edges
based on the number of triangles. The problem of finding the best such bound is
known as the Erdős-Rademacher problem, first asked by Erdős [2121] in 1955. The
problem was resolved Liu, Pikhurko and Staden [4141] in 2017. Their answer is quite
complex, therefore we will make use of the following simpler theorem of Bollobás
[88] instead.
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Theorem 3.3.3 (Bollobás, [88]). A graph with = vertices and < edges has at least
=
9 (4< − =

2) triangles.

Proof of Theorem 3.3.13.3.1. Let� be an = vertex graph and let C(�) be the collection
provided by Theorem 3.2.13.2.1. Let �1, . . . , �A ∈ C(�) with

|Φ(�1, . . . , �A) | = max
�1,...,�A∈C(�)

|Φ(�1, . . . , �A) | .

Using Theorem 3.3.33.3.3, we deduce that 4(�8) ≤ =2/4+ 9/4 · =16/9 = (1/2+ >(1))
(=
2
)

for every 8 ∈ [A]. Hence, using Corollary 3.2.23.2.2 and Claim 3.3.23.3.2, we deduce

iA (�) ≤ exp
(
A · =16/9

)
· |Φ(�1, . . . , �A) |

≤
( A
2

) (1+>(1))(=2)
.

3.4 An approximate upper bound for five and six
colours

In this section, we improve the upper bound from Theorem 3.3.13.3.1 for five and six
colours. These improved upper bounds are asymptotically best possible in =.

Theorem 3.4.1. For every graph � on = vertices, the number of 5-colourings of
� (�) without monochromatic triangles is at most

6=
2/4+>(=2) .

Theorem 3.4.2. For every graph � on = vertices, the number of 6-colourings of
� (�) without monochromatic triangles is at most

3=
2/443=2/16+>(=2) .

In fact we shall prove a more general result, which will be useful for the stability
results we will discuss later.

Theorem 3.4.3. There exists 2 > 0 such that for every 10−20 > X > 0 there is an =0

such that for all = > =0 and all graph � on = vertices the following holds. Suppose
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(i) �1, . . . , �5 ⊆ �, are such that |Φ(�1, . . . , �5) | ≥ 6=2/4−X=2 or

(ii) �1, . . . , �6 ⊆ �, are such that |Φ(�1, . . . , �6) | ≥ 3=2/443=2/16−X=2 .

and in either case CA (�8) ≤ =25/9 for all �8.
Then all the�8’s and"3(�1, . . . , �A) are 2X=2-close to being balanced complete

bipartite. Furthermore, <1, <5, <6 ≤ 2X=2. In case (i)(i) we have <2 + 2<4 =

=2/4± 2X=2. In case (ii)(ii) we have <2 + 2<4 = 3=2/8± 2X=2. In particular, we have
|Φ(�1, . . . , �5) | ≤ 6=2/4+2X=2 and |Φ(�1, . . . , �6) | ≤ 3=2/443=2/16+2X=2

.

Remark 3.4.4. Our proof provides the constant 2 = 106 and we make no effort to
find the lowest possible 2. We don’t believe the dependency on X can be improved,
apart from the constant 2. If you start with our extremal examples and remove X=2

arbitrary edges, the conditions hold but you cannot hope for anything better.

Theorem 3.4.13.4.1 and Theorem 3.4.23.4.2 easily follow from Theorem 3.4.33.4.3 and Corol-
lary 3.2.23.2.2.
We will use the following theorem of Füredi [2525].

Theorem 3.4.5 (Füredi, [2525]). Every triangle-free graph with at least =2

4 − C edges
has a bipartite subgraph with at least =

2

4 − 2C edges.

3.4.1 Upper bound proof for five colours

We will now prove Theorem 3.4.33.4.3 for A = 5. By the triangle removal lemma [5252],
there is some X′ > 0, so that every graph with at most X′=3 triangles can be made
triangle-free by removing X=2/5 edges. Hence, for every 8 ∈ [5] and every large
enough =, there are triangle-free subgraphs �̃8 ⊆ �8 with 4(�̃8) ≥ 4(�8) − X=2/5.
It is easy to see now that��Φ(�̃1, . . . , �̃5)

�� ≥ 5−X=
2 |Φ(�1, . . . , �5) | ≥ 6=

2/4−2X=2
. (3.4.1)

Define U1, . . . , U5 ∈ R so that 4(�̃8) = (1/2 − U8)
(=
2
)
and note that −1/(2= − 2) ≤

U8 ≤ 1/2 for every 8 ∈ [5]. Furthermore, let U = (U1 + . . . + U5)/5 and define
`3 ∈ [0, 1] by <3 = `3

(=
2
)
. The theorem follows from the following three claims.

Claim 3.4.6. We have

`3 ≤
3
4

(
75
2
+ 75

8
U

)
U + 1

2
+$

(
1
=

)
.
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Claim 3.4.7. We have

U ≤ 1
5 log(4) ·

(
(4 log(3) − 3 log(4))`3 +

3 log(4)
2

− 2 log(3) + 16 log(6) · X
)
.

Claim 3.4.8. We have U ≤ 0.015.

Before proving the claims, we show how they imply the theorem.

Proof of Theorem 3.4.33.4.3. Putting together Claim 3.4.63.4.6 and Claim 3.4.73.4.7 we get

U ≤ 1
5 log(4) ·

(
(4 log(3) − 3 log(4))3

4

(
75
2
+ 75

8
U

)
U + 16 log(6) · X

)
+$

(
1
=

)
.

Since = is large enough we can assume that$
(

1
=

)
≤ X and thus we can rearrange

the quadratic inequality to
0 ≤ U2 − 1U + 2X,

where 1 = −4 + 5 log(4)
4 log(3)−3 log(4)

32
225 ≈ 0.18485 and 2 = 1 + 16 log(6)

4 log(3)−3 log(4)
32

225 ≈
18.3083.

By solving for U, we get that either

U ≤ 1 −
√
12 − 42X
2

or U ≥ 1 +
√
12 − 42X
2

> 0.1.

By Claim 3.4.83.4.8, the second case is impossible. A simple calculation shows that
1 − 32X

1
<
√
12 − 42X and thus we have U ≤ 32X

21 < 150X, which implies that
U8 < 750X for every 8 ∈ [5]. Therefore, �8 is 10000X=2 close to being balanced
complete bipartite (using Theorem 3.4.53.4.5, we get a large bipartite subgraph, which
we can balance by moving a few vertices and make it complete by adding the
missing edges). Using Claim 3.4.63.4.6 we also get that `3 < 1/2 + 100000X and
therefore "3(�1, . . . , �5) is 1000000X close to being balanced complete bipartite.

By (3.4.13.4.1) and (3.2.13.2.1), we have

6=
2/4−2X=2 ≤

��Φ(�̃1, . . . , �̃5)
�� ≤ 5∏

8=1
8<8

and
∑
8∈[5] 8 · <8 =

∑
8∈[5] 4(�̃8). Using our bounds on `3 we know that <3 ≤

=2/4 + 400X. Simple linear optimisation on <8 shows that the only solutions
to these constraints are in the form <1, <5, <6 ≤ 10000X=2 and <2 + 2<4 =

=2

4 ± 10000X=2.
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It remains to prove Claims 3.4.63.4.6, 3.4.73.4.7 and 3.4.83.4.8.

Proof of Claim 3.4.63.4.6. By applying Theorem 3.4.53.4.5 we get bipartite graphs �8 ⊆ �̃8
such that 4(�8) = (1/2 − 2U8)

(=
2
)
− $ (=) for every 8 ∈ [5]. We will denote

by %1(�8) and %2(�8) the smaller and larger part of vertices respectively in the
bipartition (breaking ties arbitrarily). Let �3 = "3(�̃1, �̃2, �̃3, �̃4, �̃5) and define
G8 ∈ [0, 1/2] such that E(%1(�8)) =

(
1
2 − G8

)
=.

We say an edge 4 is missing, if there is an 8 ∈ [5] such that 4 ∉ �̃8 and 4 shares
a vertex with both parts of �8. We say an edge 4 is extra if there is an 8 ∈ [5] such
that 4 ∈ �̃8 and 4 is contained in one part of �8.
For a triangle ) we define 48 ()) = |� ()) ∩� (�̃8) | and 4B ()) =

∑5
8=1 48 ()). Note

that, if a triangle) has nomissing or extra edges, then 48 ()) ∈ {0, 2}. Furthermore,
if a triangle ) is contained in �3, then 4B ()) = 9. This implies that each triangle
in �3 has a missing or an extra edge. We assign to each triangle of �3 a missing
or an extra edge such that, if it has both, then we choose a missing one.

The number of missing edges in �̃8 is at most 2(U8 − G2
8
)
(=
2
)
+ $ (=) and each of

them is assigned to at most = triangles. The number of extra edges in �̃8 is at most
U8

(=
2
)
+ $ (=) and each of them is assigned to at most

(
1
2 + G1

)
= triangles as the

third vertex must be on the same part of the bipartition (otherwise it would have a
missing edge as well, as �̃8 is triangle-free).

Let CA (�) denote the number of triangles in a graph �. From the above discus-
sion, we get

CA (�3) ≤
5∑
8=1

(
2(U8 − G2

8 )
(
=

2

)
= + U8

(
=

2

) (
1
2
− G8

)
=

)
+$ (=2)

=

(
=

3

) 5∑
8=1

(
15
2
U8 − 6

(
G8 −

U8

4

)2
+

3U2
8

8

)
+$ (=2)

≤
(
=

3

) 5∑
8=1

(
15
2
U8 +

3U2
8

8

)
+$ (=2).

Since U8 ≤ 5U and
∑5
8=1 U8 = 5U, we have

CA (�3) ≤
(
75
2
+ 75

8
U

)
U

(
=

3

)
+$ (=2) . (3.4.2)
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We now apply Theorem 3.3.33.3.3 in the following equivalent form,

CA (�3) ≥
4
3

(
`3 −

1
2

) (
=

3

)
. (3.4.3)

Putting (3.4.23.4.2) and (3.4.33.4.3) together and organising the inequality, we get

`3 ≤
3
4

(
75
2
+ 75

8
U

)
U + 1

2
+$

(
1
=

)
.

�

Proof of Claim 3.4.73.4.7. By (3.4.13.4.1) and (3.2.13.2.1), we have

6=
2/4−2X=2 ≤

��Φ(�̃1, . . . , �̃5)
�� ≤ 5∏

8=1
8<8

and
∑
8∈[5] 8 · <8 =

∑
8∈[5] 4(�̃8). A simple optimisation shows that

∏5
8=1 8

<8 is
maximised under this constraint for fixed <3 when <1 = <5 = 0 and 2<2 + 4<4 is
as large as possible. We conclude that

6(1/4−2X)=2 ≤
∏
8∈[5]

8<8 ≤ 3<3 · 4(
∑5
8=1 4(�̃8)−3<3)/4 (3.4.4)

By taking logarithms we obtain

log(6) ·
(
1
2
− 4X

)
· =

2

2
≤ log(3) · <3 + log(4) ·

∑5
8=1 4(�̃8) − 3<3

4

≤
(
log(3) · `3 + log(4) ·

5
2 − 5U − 3`3

4

)
· =

2

2
.

By cancelling =2

2 and rearranging we obtain

5
4
· log(4) · U ≤

(
log(3) + 3

4
· log(4)

)
`3 +

5 log(4)
8

− log(6)
2
+ 4X log(6).

The claim now follows, since 5
2 · log(4) − 2 log(6) = 3

2 log(4) − 2 log(3). �

Proof of Claim 3.4.83.4.8. Note that (3.4.43.4.4) is maximised under the condition∑
8∈[5]

<8 =
∑
8∈[5]

4(�̃8)
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if <3 is as large as possible, i.e. when

3<3 =
∑
8∈[5]

4(�̃8)

or in other words when `3 = 5(1/2 − U)/3. This implies

6(1/4−2X)=2 ≤ 35(1/2−U)/3·(=2) ≤ 35(1/2−U)=2/6.

Taking logarithms and solving for U, we get

U ≤ 1
2
− 3 log(6)

10 log(3) +
12 log(6)
5 log(3) · X ≤ 0.01073 + 3.915X ≤ 0.015.

�

3.4.2 Upper bound proof for six colours

This proof is very similar to the A = 5 case. We include it in this thesis, as these
calculations are essential to see that the proof actually works.

Similarly as in the 5-colour case, for large enough =, there is a triangle-free
subgraph �̃8 ⊆ �8 for every 8 ∈ [6] with��Φ(�̃1, . . . , �̃6)

�� ≥ 3=
2/443=2/16−2X=2

. (3.4.5)

Define U1, . . . , U6 ∈ R so that 4(�̃8) = (1/2 − U8)
(=
2
)
and note that −1/(2= − 2) ≤

U8 ≤ 1/2 for every 8 ∈ [6]. Furthermore, let U = (U1 + . . . + U6)/6 and define
`3 ∈ [0, 1] by <3 = `3

(=
2
)
. The theorem follows from the following three claims.

Claim 3.4.9. We have

`3 ≤
3
4

(
45 + 27

2
U

)
U + 1

2
+$

(
1
=

)
.

Claim 3.4.10. We have

U ≤
(
2 log(3)
3 log(4) −

1
2

)
`3 +

1
4
− log(3)

3 log(4) +
8
3
X.

Claim 3.4.11. We have U ≤ 0.016.

Before proving the claims, we show how they imply the theorem.
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Proof of Theorem 3.4.33.4.3. Putting together Claim 3.4.93.4.9 and Claim 3.4.103.4.10 and re-
arranging the quadratic inequality, we get

0 ≤ U2 − 1U + 2X

where 1 = 286 log(2)−180 log(3)
54 log(3)−81 log(2) ≈ 0.15404 and 2 = 12 (for large enough =).

By solving for U, we get that either

U ≤ 1 −
√
12 − 42X
2

or U ≥ 1 +
√
12 − 42X
2

> 0.1.

By Claim 3.4.113.4.11, the second case is impossible. A simple calculation shows that
1 − 32X

1
<
√
12 − 42X and thus we have U ≤ 32X

21 < 125X, which implies that
U8 < 750X for every 8 ∈ [6]. The rest of the proof is completely analogous to the
proof in the 5-colour case.

It remains to prove Claims 3.4.93.4.9, 3.4.103.4.10 and 3.4.113.4.11.

Proof of Claim 3.4.93.4.9. Analogously as in Claim 3.4.63.4.6, we derive

CA (�3) ≤
(
45 + 27

2
U

)
U

(
=

3

)
+$ (=2). (3.4.6)

The claim again follows from using (3.4.63.4.6) and Theorem 3.3.33.3.3 in the form (3.4.33.4.3).
�

Proof of Claim 3.4.103.4.10. By (3.4.53.4.5) and (3.2.13.2.1), we have

3=
2/443=2/16−2X=2 ≤

��Φ(�̃1, . . . , �̃6)
�� ≤ 6∏

8=1
8<8

and
∑
8∈[6] 8 · <8 =

∑
8∈[6] 4(�̃8). A simple optimisation shows that

∏6
8=1 8

<8 is
maximised under this constraint for fixed <3 when <1 = <5 = <6 = 0 and
2<2 + 4<4 is as large as possible. We conclude that

3=
2/443=2/16−2X=2 ≤

∏
8∈[6]

8<8 ≤ 3<3 · 4(
∑6
8=1 4(�̃8)−3<3)/4 (3.4.7)
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By taking logarithms we obtain(
log(3)

4
+ log(4) ·

(
3

16
− 2X

))
=2 ≤ log(3) · <3 + log(4) ·

∑6
8=1 4(�̃8) − 3<3

4

≤
(
log(3) · `3

2
+ log(4) ·

(
3
8
− 3U

4
− 3`3

8

))
=2 .

By cancelling =2 and rearranging we obtain

3
4
· log(4) · U ≤ log(3)

(
`3
2
− 1

4

)
+ log(4)

(
3
16
− 3

8
· `3 + 2X

)
,

which implies the claim. �

Proof of Claim 3.4.113.4.11. Note that (3.4.73.4.7) is maximised under the condition∑
8∈[6]

<8 =
∑
8∈[6]

4(�̃8)

if <3 is as large as possible, i.e. when

3<3 =
∑
8∈[6]

4(�̃8)

or in other words when `3 = 2(1/2 − U). This implies

3=
2/443=2/16−2X=2 ≤ 32(1/2−U)·(=2) ≤ 3(1/2−U)=

2
.

Taking logarithms and solving for U, we get

U ≤ 1
4
− 3 log(4)

16 log(3) +
2 log(4)
log(3) · X ≤ 0.01341 + 2.524X ≤ 0.016.

�

3.5 Extremal configurations

In this section we construct families of graphs that satisfy all the conditions of our
stability theorems, Theorem3.1.23.1.2 and Theorem3.1.33.1.3, and give a lower bound on the
triangle-free colourings these graphs have. These lower bounds are asymptotically
close to our upper bounds, proving that our upper bounds are asymptotically sharp
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with an 4>(=2) error factor.
Recall that we assume that the number of vertices = is divisible by 24.
We define the following matrices

�1 =

©«

0 0 0 0 0
0 1 1 1 1
1 1 1 0 0
1 0 0 1 1
1 0 1 0 1
1 1 0 1 0
1 0 1 1 0
1 1 0 0 1

ª®®®®®®®®®®®®®®®¬

�2 =

©«

0 0 0 0 0
0 1 1 1 1
1 1 1 0 0
1 0 0 1 1
1 0 1 0 1
1 1 0 1 0
0 1 0 0 1
0 0 1 1 0

ª®®®®®®®®®®®®®®®¬

�3 =

©«

0 0 0 0 0 0
1 1 1 1 0 0
1 1 0 0 1 1
0 0 1 1 1 1
1 0 1 0 1 0
0 1 0 1 1 0
0 1 1 0 0 1
1 0 0 1 0 1

ª®®®®®®®®®®®®®®®¬
and for a matrix � ∈ {�1, �2, �3} let E� = {91, . . . , 98} be the set of its row
vectors. In these matrices columns represent colours while rows represent disjoint
sets of vertices. The details of how exactly follows.

3.5.1 Extremal configurations for five colours

For � = �1 and 0, 1, = ∈ Nwith 0+1 ≤ =/4. Let 2 denote =/4−0−1 and consider
a partition of [=] into sets + (91) t · · · t+ (98) such that

(i) |+ (91) | = |+ (92) | = =/4 and

(ii) |+ (93) | = |+ (94) | = 0 and
(iii) |+ (95) | = |+ (96) | = 1 and
(iv) |+ (97) | = |+ (98) | = 2.

Let ��1

(
+ (91), . . . , + (98)

)
be the complete 8-partite graph with the partition

classes + (91), . . . , + (98) and let B (5)�1
(=) denote the set of all graphs obtained this

way. Note that in edge cases these graphs might be 4-partite or 6-partite instead of
8-partite. These graphs are also included in B (5)

�1
(=).

Proposition 3.5.1 (Lower bound for A = 5, part 1). For each � ∈ B (5)
�1
(=) we have

i5(�) ≥ 6=2/4.

Proof. Let� = ��1

(
+ (91), . . . , + (9C)

)
. Let us define c(9, 9′) as the set of colours

2 for which 92 ≠ 9′2. We colour the edges of � according to the pattern c = c�1 ,
i.e., for any (9, 9′) ∈ E2

�
and DE ∈ + (9) × + (9′) we colour DE with any of the
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colours in c(9, 9′). For example, an edge between vertices D, E where D ∈ 93 and
E ∈ 95 can have colours 2 or 5, as their rows differ at these coordinates.
Each of these colourings is triangle-free as c−1

�
(2), for any 2 ∈ [5], is bipartite.

Moreover, the number of such colourings is∏
{9,9′}∈(E�2 )

|c(9, 9′) | |+ (9) |·|+ (9′) | = 3
=2
4 · 4 =2

16 +0
2+12+22 · 2401+402+412

which is easily verified to be 6=2/4.

Note that this lower bound is not sharp, for example we can get further col-
ourings by permuting the colours. This also applies to Proposition 3.5.23.5.2 and
Proposition 3.5.33.5.3.

For � = �2 and 0, 1, = ∈ N with 0, 1 ≤ =/4. Let 2 denote =/4 − 0, 3 denote
=/4 − 1 and consider a partition of [=] into non-empty sets + (91) t · · · t + (98)
such that

(i) |+ (91) | = |+ (92) | = 0 and
(ii) |+ (93) | = |+ (94) | = 1 and
(iii) |+ (95) | = |+ (96) | = 3 and

(iv) |+ (97) | = |+ (98) | = 2.
Let ��2

(
+ (91), . . . , + (98)

)
be the complete 8-partite graph with the partition

classes + (91), . . . , + (98) and let B (5)�2
(=) denote the set of all graphs obtained this

way. Note that in edge cases these graphs might be 4-partite or 6-partite instead of
8-partite. These graphs are also included in B (5)

�2
(=).

Proposition 3.5.2 (Lower bound for A = 5, part 2). For each � ∈ B (5)
�2
(=) we have

i5(�) ≥ 6=2/4.

The proof is analogous to the proof of Proposition 3.5.13.5.1 and therefore omitted.

3.5.2 Extremal configurations for six colours

For � = �3 and = ∈ N consider a partition of [=] into non-empty sets+ (91) t · · · t
+ (98) such that |+ (98) | = =/8 for all 8 ∈ {1, . . . , 8}. Let ��3

(
+ (91), . . . , + (98)

)
be the complete 8-partite graph with the partition classes + (91), . . . , + (98) and let
B (6)
�3
(=) denote the set of all graphs obtained this way.
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Proposition 3.5.3 (Lower bound for A = 6). For each � ∈ B (6)
�3
(=) we have

i6(�) ≥ 3=2/443=2/16.

The proof is analogous to the proof of Proposition 3.5.13.5.1 and therefore omitted.

3.6 Stability

In this section we prove Theorem 3.1.33.1.3 and Theorem 3.1.23.1.2 with the help of The-
orem 3.4.33.4.3.

We can assume that + (�) = [=], we will do so for convenience. A ver-
tex partition +0 ∪ +1 = + (�) of the graph � is called a C-bipartition if
|� (�)4 (+0, +1) | ≤ C, and it is called balanced if |+0 | = |+1 |±1. Furthermore, for
graphs �1, . . . , �A with bipartitions +0

8
∪ +1

8
= [=] and 9 = (Y1, . . . , YA) ∈ {0, 1}A

we define the partition class

+ (9) =
⋂
8∈[A]

+
Y8
8
,

and set E(9) = |+ (9) |. Let dist(9, 9′) denote the Hamming distance of the vectors
9, 9′ ∈ {0, 1}: . Moreover, we call a pair 9, 9′ an <8-pair (or an <8-edge) if their
Hamming distance is 8. Let us define the following constants, which will be used
in both proofs.

W = 2 · 106X , U = 10
√
W , V = 10

√
U .

3.6.1 Stability proof for five colours

Proof of Theorem 3.1.33.1.3. By Theorem 3.2.13.2.1 and Corollary 3.2.23.2.2 taking
�1, . . . , �5 ∈ C(�) such that |Φ(�1, . . . , �5) | is maximal, we have CA (�8) < =25/9

and |Φ(�1, . . . , �5) | ≥ 6=2/4−2X=2 .
By Theorem 3.4.33.4.3 there are balanced W=2-bipartitions +0

8
∪ +1

8
= [=] of �8,

8 ∈ [5], and - ∪ . = [=] of "3. We consider the partition + (�) = ⋃
9∈{0,1}5 + (9)

and let
E- = {9 ∈ {0, 1}5 : |+ (9) ∩ - | > U=}.

Let E. be defined analogously. Trivially + (E-) =
⋃

9∈E- + (9) has size

|+ (E-) | ≥ |- | − 25U= and |+ (E. ) | ≥ |. | − 25U=. (3.6.1)

This establishes properties (i)(i) and (ii)(ii) for E- and E. .

45



3 Maximum Number of Triangle-free Edge Colourings

Note that E0 will be chosen to be a subset of E- and similarly E1 will be chosen
to be a subset of E. . For now we work on establishing the needed properties for
E- and E. . For many of the properties this implies them trivially for subsets, for
others we will discuss the changes when we define E0 and E1 at the end of the
proof.

It will be more convenient to work only with edges of � whose profiles are
consistent with the the partition classes containing its end vertices. More precisely,
we call DE ∈ � a good edge (w.r.t. E- ∪ E. ) if there are 9 = (Y1, . . . , Y5), 9′ =
(Y′1, . . . , Y

′
5) ∈ E- ∪ E. such that D ∈ + (9) and E ∈ + (9′) and

{8 : DE ∈ �8} = {8 : Y8 ≠ Y′8} .

In other words, for each 8 ∈ [5] with Y8 ≠ Y′8 the edge DE is contained in the bipartite
graph �8

[
+
Y8
8
, +

Y′
8

8

]
while DE ∉ �8 if Y8 = Y′8 . Note that in this case DE is an <3-edge

where 3 = dist(9, 9′). and a good <3-edge is a witness for the existence of a pair
{9, 9′} ∈

(E-∪E.
2

)
with 3 = dist(9, 9′).

As each +0
8
∪ +1

8
= [=] is an W=2-bipartition, there are at most 5W=2 pairs of

vertices from + (9) × + (9′), over all (9, 9′) ∈ (E- ∪ E. )2, which do not form
good edges. Since - ∪ . is an W=2-partition of "3 and <0, <1, <5 ≤ 2W=2 from
Theorem 3.4.33.4.3, we derive from the above and E(9)E(9′) > U2=2 > 10W=2 that

each pair (9, 9′) ∈ E- × E. has distance three and

each pair (9, 9′) ∈ E2
-
∪ E2

.
has distance two or four.

(3.6.2)

This establishes that properties (iii)(iii), (iv)(iv) and (v)(v) hold.
Let �8 be the bipartite graph induced by the good edges of � on the bipartition

+0
8
∪ +1

8
and let � =

⋃
8∈[5] �8. Moreover, let #8 = "8 (�1, . . . , �5), let =8 = 4(#8)

and call an edge an =8-edge if it is contained in #8. Since all but at most 5W=2+26U=2

edges of � are good we have∑
8∈[5]

<8 − =8 = 4(�) − 4(�) ≤ 27U=2 (3.6.3)

and, for each 8 ∈ [5],

|<8 − =8 | ≤ 27U=2. (3.6.4)
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Furthermore, as each �8 is triangle-free and the restriction of each colouring
i ∈ Φ(�1, . . . , �5) of � to � is a colouring in Φ� (�1, . . . , �5), we have∏

8∈[5]
8=8 = |Φ(�1, . . . , �5) | ≥ |Φ(�1, . . . , �5) |5−27U=2 ≥ 6

=2
4 −27U=2

. (3.6.5)

We now set out to establish property (vi)(vi) and that |E | ≤ 8. From Theorem 3.4.33.4.3
and (3.6.33.6.3) we have

=2 + 2=4 ≥ <2 + 2<4 − 28U=2 ≥ =
2

4
− 29U=2. (3.6.6)

Due to (3.6.23.6.2) we have =2(-,. )+2=4(-,. ) = 0 and as =8 = =8 (-)+=8 (. )+=8 (-,. )
for each 8 ∈ [5], we conclude therefore that either

=2(-) + 2=4(-) ≥
=2

8
− 29U=2 or =2(. ) + 2=4(. ) ≥

=2

8
− 29U=2.

(3.6.7)

Hence, as - ∪. is a equipartition, either - or . will satisfy the presumption of the
following claim.

Claim 3.6.1. If =2(-) + 2=4(-) > 2
5 |- |

2 + 26V=2 then there are 90, 91 ∈ E- with
Hamming distance four and |+ (90) |, |+ (91) | > V=. The analogous statement holds
for . .

Proof. Let  be the largest clique in #2 [-] and considerK = {9 : + ( ) ∩+ (9) ≠
∅} ⊆ E- . By possibly swapping the upper indices of +1

8
and +0

8
for some 8 ∈ [5]

we may assume that (0, 0, 0, 0, 0) ∈ K. Then, by definition of #2 each of the
remaining element inK has exactly two 1-entries and two of them differ at exactly
two entries. This implies that any two elements from K \ {(0, 0, 0, 0, 0)} coincide
in (exactly) one 1-entry, hence, the family corresponds to a 2-uniform intersecting
family on a ground set of size five. By the Erdős-Ko-Rado Theorem [2323] we know
that the set has size at most four. Hence, |K | ≤ 5 and Turán’s Theorem [5555]
implies that #2 [-] contains at most 4

5
|- |2

2 edges. From the presumption on - we
then obtain =4(-) > 25V=2. Therefore there must be an =4-edges in - with ends
vertices in partition classes of size larger than V=. This edge is a witness for the
desired pair in E- with Hamming distance four. �

By possibly renaming the partition classes - and . suppose that - satis-
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fies (3.6.73.6.7). Hence, Claim 3.6.13.6.1 provides a pair 90, 91 ∈ E- with Hamming
distance four and let B ∈ [5] be the (unique) coordinate where 90, 91 agree. By
possibly reordering the �8’s and swapping the upper indices of +1

8
and +0

8
for some

8 ∈ [5] we may also assume that 90 = (0, 0, 0, 0, 0) and 91 = (1, 1, 1, 1, 0).
From (3.6.23.6.2) we know that the Hamming distances of any 9 ∈ E. to 90 and

to 91 are both three. Therefore each 9 = (Y1, . . . , Y5) ∈ E. must satisfy Y5 = 1
since otherwise (Y1, . . . , Y4) must contain three ones and three zeroes. Hence,
+ (9) ⊆ . ∩+1

5 for each 9 ∈ E. . Recall from (3.6.13.6.1) that+ (E. ) ⊆ . ∩+1
5 covers at

least |. | − 25U= vertices of . ∩+1
5 , hence all but at most 25U= + 1 vertices of +1

5 as
|+1

5 | = |. | ± 1. Thus the sizes of those + (9) with 9 = (Y1, . . . , Y5) ∈ E- , Y5 = 1,
all together is at most |+1

5 ∩ - | = |+
1
5 \ . | ≤ 25U= + 1. With this in mind we set

E′. = E. and E′- = {(Y1, . . . , Y5) ∈ E- : Y5 = 0} (3.6.8)

and from (3.6.13.6.1) we have |+ (E′
-
) | ≥ |+ (E-) | − 25U= − 1 > |- | − 27U=.

Claim 3.6.2. For each 9̃ ∈ E′
-
there is at most one element at distance four to 9̃

in E′
-
. Furthermore, if E(9̃) > V= then there is an 9̂ ∈ E′

-
at distance four to 9̃

which, moreover, satisfies E(9̃) = E(9̂) ± V=/2.

Proof. The first part is clear as Y5 = 0 for all (Y1, . . . , Y5) ∈ E′- . For a contradiction
suppose that there exists 9̃ = (Ỹ1, . . . , Ỹ5) ∈ E′- with E(9̃) > V= which has
Hamming distance two to all 9 ∈ E′

-
, in particular to 90 = (0, 0, 0, 0, 0) ∈ E′- and

91 = (1, 1, 1, 1, 0) ∈ E′- .
Let � = + (90), � = + (91) and let ! ∪ ' = + (9̃) be an equitable partition

of + (9̃). We modify � by deleting all vertices not contained in + (E′
-
∪ E′

.
) and

further, deleting the edges between � and ! and those between � and ', and adding
all possible edges edges between ! and '. Let �′ denote the so obtained graph.
Furthermore, define a partition of + (E′

-
∪ E′

.
) by

• * (90) = � ∪ ! and* (91) = � ∪ ',
• * (9̃) = ∅ and* (9) = + (9) for each 9 ∈ (E′

-
∪ E′

.
) \ {90, 91, 9̃}.

Let*0
8
∪*1

8
= [=], 8 ∈ [5], be the corresponding bipartition defined by

*
9

8
=

⋃
9∈E ′

-
∪E ′

.
Y8= 9

* (9), so that * (9) =
⋂
8∈[5]

*
Y8
8

for all 9 ∈ E′- ∪ E′. .

For each 8 ∈ [5] let �′
8
be the bipartite graph �′

8

[
*0
8
∪ *1

8

]
. Further, let
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#′
8
= "8 (�′1, . . . , �

′
5) and =

′
8
= 4(#′

8
). Note that the edges deleted from � either

has an end vertex in a partition class + (9) with 9 ∈ E- \ E′- or are edges in #2.
On the other hand, the =2-edges between ! and �, those between ' and � as well
as the new edges between ! and ' are now edges of #′4. All remaining edges of �
do not change their type, hence

• =′3 ≥ =3 − 26U=2,

• =′2 ≥ =2 − =2(! ∪ ', � ∪ �) − 26U=2, and

• =′4 ≥ =4 + =2(!, �) + =2(', �) + |! | |' | − 26U=2.

Up to renaming ! and ' suppose that =2(!, �) + =2(', �) ≥ =2(!, �) + =2(', �).
Then

2=2(!, �) + 2=2(', �) ≥ =2(!, �) + =2(', �) + =2(!, �) + =2(', �)
= =2(! ∪ ', � ∪ �) ,

and hence =′2 + 2=′4 ≥ =2 + 2=4 + 2|! | |' | − 28U=2. As all the �′
8
are triangle-free

we obtain from |! | |' | ≥ V2=2/5 and (3.6.53.6.5) that

|Φ(�′1, . . . , �
′
5) | = 2=

′
23=

′
34=

′
4 ≥ 3=3−26U=2

2=2+2=4+2|! | |' |−28U=2

> 6
=2
4 −29U=2

4|! | |' | > 6
=2
4 +W=

2
.

This, however, yields a contradiction to the upper bound given by Theorem 3.4.33.4.3
and hence, 9̃ must be at distance four to some 9̂ ∈ E′

-
.

To show that E(9̃) = E(9̂) ± V=/2 we argue in a similar manner. If, say,
E(9̃) > E(9̂) + V= then we make the two sets equitable by moving vertices from
+ (9̃) to + (9̂) and changing the edges accordingly. This increases the number of
=4-edges by at least V2=2/20 which would again yield a contradiction to the upper
bound given by Theorem 3.4.33.4.3. �

In view of the lemma we choose E0 to consist of those 9̃ ∈ E′
-
with E(9̃) > V=

together with the unique corresponding 9̂ ∈ E′
-
at distance four. Hence, + (E0)

covers all but at most 25V= vertices of - . Further, note that the projections of
9 ∈ E0 and of 9′ ∈ E′

.
to the first four coordinates yields vectors with distance

two, while the projections of 9 and 9′ with {9, 9′} ∈
(E0

2
)
∪

(E ′
.

2
)
yields vectors with

distance two or four. Hence, |E0 ∪E′. | ≤ 8 and as E′
.
≠ ∅ we have |E0 | ∈ {2, 4, 6}.

Note that if E0 has size two then the largest value of =2(-) + 2=4(-) is achieved by
a balanced complete bipartite graph. In this case =2(-) = 0 and =4(-) ≤ |- |

2

4 . If
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E0 has size four then the optimum is achieved by any four partite graph consisting
of two pairs of equitable parts, say the first pair of sizes 0 and the second with
sizes 1 and 1 ± 1 with 20 + 21 = |- | ± 1. In this case, =2(-) ≤ 401 + 20 and
=4(-) ≤ 02 + 12 + 1, hence, =2(-) +2=4(-) ≤ 2(0 + 1)2 +2(0 + 1). For E- of size
six the optimum is achieved by any six partite graph consisting of three pairs of
equitable parts, say the first of sizes 0, the second of sizes 1 and the third of sizes 2
and 2±1with 20+21+22 = |- |±1. In this case, =2(-) ≤ 401+402+412+20+21
and =4(-) ≤ 02+212+222+2, hence, =2(-) +2=4(-) ≤ 2(0+1+2)2+2(0+1+2).
Hence, in any of these cases, we have =2(-)+2=4(-) ≤ |- |

2

2 +5|- | and by (3.6.63.6.6)
we derive that =2(. ) + 2=4(. ) > 2

5 |. |
2 + 26V2=2. By Claim 3.6.13.6.1 there is a pair

of elements at distance four in E′
.
and the same argument as in Claim 3.6.23.6.2 shows

that for each 9̃ ∈ E′
.
with E(9̃) > V= there is an 9̂ ∈ E′

.
at distance four to 9̃ and

E(9̃) = E(9̂) ± V=/2. We choose E1 to consist of those 9 ∈ E′
.
with E(9) > V=

together with the unique corresponding 9̂ ∈ E′
.
at distance four. This establishes

property (vi)(vi).
This yields the desired families E0 and E1. Since we only lost vertex groups of

size at most V= and at most 25 of them, properties (i)(i) and (ii)(ii) still hold.
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3.6.2 Stability proof for six colours

By Theorem 3.2.13.2.1 and Corollary 3.2.23.2.2 taking �1, . . . , �5 ∈ C(�) such that
|Φ(�1, . . . , �5) | is maximal, we have CA (�8) < =25/9 and |Φ(�1, . . . , �5) | ≥
6=2/4−2X=2 .

Proof of Theorem 3.1.23.1.2. By Theorem 3.2.13.2.1 and Corollary 3.2.23.2.2 taking
�1, . . . , �5 ∈ C(�) such that |Φ(�1, . . . , �6) | is maximal, we have CA (�8) < =25/9

and |Φ(�1, . . . , �6) | ≥ 3=243=2/16−2X=2 .
By Theorem 3.4.33.4.3 there are balanced W=2-bipartitions +0

8
∪ +1

8
= [=] of �8,

8 ∈ [6], and we consider the partition + (�) = ⋃
9∈{0,1}6 + (9). Consider

E0 = E- = {9 ∈ {0, 1}6 : |+ (9) ∩ - | > U=}

and let E1 = E. be defined analogously. Trivially + (E-) =
⋃

9∈E- + (9) has size

|+ (E-) | ≥ |- | − 26U= and |+ (E. ) | ≥ |. | − 26U=. (3.6.9)

This establishes properties (i)(i) and (ii)(ii).
It will be more convenient to work only with edges of � whose profiles are

consistent with the the partition classes containing its end vertices. More precisely,
we call DE ∈ � a good edge (w.r.t. E- ∪ E. ) if there are 9 = (Y1, . . . , Y6), 9′ =
(Y′1, . . . , Y

′
6) ∈ E- ∪ E. such that D ∈ + (9) and E ∈ + (9′) and {8 : DE ∈ �8} =

{8 : Y8 ≠ Y′8}. In other words, for each 8 ∈ [6] with Y8 ≠ Y′8 the edge DE is contained
in the bipartite graph �8

[
+
Y8
8
, +

Y′
8

8

]
while DE ∉ �8 if Y8 = Y′8 . Note that in this case

DE is an <3-edge where 3 = dist(9, 9′) and a good <3-edge is a witness for the
existence of a pair {9, 9′} ∈

(E-∪E.
2

)
with 3 = dist(9, 9′).

As each +0
8
∪ +1

8
= [=] is an W=2-bipartition, there are at most 6W=2 pairs of

vertices from + (9) × + (9′), over all {9, 9′} ∈
(E-∪E.

2
)
, which do not form good

edges. Since - ∪ . is an W=2-bipartition of "3 and <0, <1, <5, <6 ≤ W=2, by
Theorem 3.4.33.4.3, we derive from the above and E(9)E(9′) > U2=2 > W=2 + 3W=2 +
6W=2 > 10W=2 that

each pair (9, 9′) ∈ E- × E. has distance three and

each pair (9, 9′) ∈ E2
-
∪ E2

.
has distance two or four.

(3.6.10)

This establishes that properties (iii)(iii) and (iv)(iv) hold.
Let �8 be the bipartite graph induced by the good edges of � on the bipartition
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3 Maximum Number of Triangle-free Edge Colourings

+0
8
∪ +1

8
and let � =

⋃
8∈[6] �8. Moreover, let #8 = "8 (�1, . . . , �6), let =8 = 4(#8)

and call an edge an =8-edge if it is contained in #8. Since all but at most 6W=2+26U=2

edges of � are good we have∑
8∈[5]

<8 − =8 = 4(�) − 4(�) ≤ 6W=2 + 26U=2 ≤ 27U=2 (3.6.11)

and for each 8 ∈ [6]

|<8 − =8 | ≤ 27U=2. (3.6.12)

Furthermore, as each �8 is triangle-free and the restriction of each colouring
i ∈ Φ(�1, . . . , �5) of � to � is a colouring in Φ� (�1, . . . , �5), we have∏

8∈[5]
8=8 = |Φ(�1, . . . , �5) | ≥ |Φ(�1, . . . , �5) |6−27U=2 ≥ 3=

2/443=2/166−28U=2
.

(3.6.13)

Due to (3.6.103.6.10) and (3.6.113.6.11), we have =3(-,. ) = =3(�) ≥ 4("3) − 27U=2 ≥
=2/4 − 28U=2.

Our next goal is to prove |E | ≤ 8, the rest of the properties will easily follow.

Claim 3.6.3. |E- |, |E. | ≥ 4

Proof. We first note that for each 8 ∈ [6]

|#3(-,. ) ∩ � (�8) | ≥
=2

8
− 29U=2 ≥ =

2

8
− 29U=2.

Also, we have that∑
8∈[6]
|#3(-,. ) ∩ � (�8) | = |{(4, 8) : 4 ∈ #3(-,. ) ∩ � (�8)}| ≤ 3=3(-,. )

≤ 3(=2/4 + W=2) .

Hence, for each 8 ∈ [6] we have that |#3(-,. ) ∩� (�8) | ≤ =2

8 +
1
6W=

2 ≤ =2

8 +29U=2.

Altogether, for each 8 ∈ [6],

|#3(-,. ) ∩ � (�8) | =
=2

8
± 29U=2 .
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Therefore, for each 8 ∈ [6], the following holds

|- ∩+0
8 | = |- ∩+1

8 | = |. ∩+0
8 | = |. ∩+1

8 | =
=

4
± 25U= , (3.6.14)

and hence, |E- |, |E. | ≥ 2.
Fromnowon in this proof, for a subset* ⊆ + (�), we use the notation *̃ = -∩*.

Suppose that 2 ≤ |E- | ≤ 3. Then, for some ordering 91, . . . 926 of the elements of
{0, 1}6, we have that |+̃ (98) | ≤ U= for each 8 ∈ {4, . . . , 26} and therefore�����⋃

8≥4
+̃ (98)

����� ≤ 26U=. (3.6.15)

Since 26U= < =
4 ± 25U=, due to (3.6.143.6.14) and (3.6.153.6.15), for each 8 ∈ [6], there are

distinct :8, C8 ∈ {1, 2, 3} such that

+̃ (9:8 ) ⊆ +̃1
8 and +̃ (9C8 ) ⊆ +̃0

8

Hence, we can assume that for a fixed 8 ∈ [6], by possibly interchanging +1
8
,+0
8
,

that there distinct :, ℓ, C ∈ {1, 2, 3} such that

(+̃ (9: ) ∪ +̃ (9ℓ)) ⊆ +̃1
8 and +̃ (9C) ⊆ +̃0

8 . (3.6.16)

Moreover, since 9: ≠ 9; there is some 9 ∈ [6] with 9 ≠ 8 such that

+̃ (9: ) ⊆ ∩+1
9 and (+̃ (9C) ∪ +̃ (9ℓ)) ⊆ +̃0

9 , (3.6.17)

by possibly interchanging +1
9
,+0
9
, and 9: , 9ℓ.

Due to (3.6.153.6.15), (3.6.163.6.16) and (3.6.173.6.17), we have that |+̃0
8
| ≤ |+̃ (9C) | + 26U= and

|+̃1
9
| ≤ |+̃ (9: ) | + 26U=. Hence, using (3.6.143.6.14), we obtain that

|+̃ (9C) | ≥ =/4 − 27U= and |+̃ (9: ) | ≥ =/4 − 27U=. (3.6.18)

Furthermore, by (3.6.143.6.14) and (3.6.163.6.16), we have |+̃ (9: ) | + |+̃ (9;) | ≤ |+̃0
8
| ≤ =/4 +

25U=, which combined with (3.6.183.6.18) yields

|+̃ (9;) | ≤ 28U=.

Now, due to (3.6.143.6.14), (3.6.153.6.15), the previous inequality and the fact that 29U= <
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=
4 ± 25U=, we have that for each 8 ∈ [6], :8, C8 ∈ {:, C}, and 9: , 9C are at distance 6.
Due to (3.6.183.6.18), 9: , 9C ∈ E- , and we have obtained a contradiction to 3.6.103.6.10.

�

From Theorem 3.4.33.4.3 and (3.6.113.6.11) we have

=2 + 2=4 ≥ <2 + 2<4 − 27U=2 ≥ 3=2

8
− 28U=2. (3.6.19)

It follows from (3.6.103.6.10) that we have =2(-,. ) + 2=4(-,. ) = 0. Since =8 =
=8 (-) + =8 (. ) + =8 (-,. ) for each 8 ∈ [6], we conclude therefore that either

=2(-) + 2=4(-) ≥
3=2

16
− 27U=2 or =2(. ) + 2=4(. ) ≥

3=2

16
− 27U=2.

(3.6.20)

Hence, as - ∪. is a equipartition, either - or . will satisfy the presumption of the
following claim.

Claim 3.6.4. If =2(-) + 2=4(-) > 5
12 |- |

2 + 26U=2 then there are 90, 91 ∈ E-
with Hamming distance four and |+ (90) |, |+ (91) | > U=. The analogous statement
holds for . .

Proof. Let  be the largest clique in #2 [-] and considerK = {9 : + ( ) ∩+ (9) ≠
∅} ⊆ E- . By possibly swapping the upper indices of +1

8
and +0

8
for some 8 ∈ [6]

we may assume that (0, 0, 0, 0, 0, 0) ∈ K. Then, by definition of #2 each of the
remaining element inK has exactly two 1-entries and two of them differ at exactly
two entries. This implies that any two elements fromK\{(0, 0, 0, 0, 0, 0)} coincide
in (exactly) one 1-entry, hence, the family corresponds to a 2-uniform intersecting
family on a ground set of size six. By the Erdős-Ko-Rado Theorem [2323] we know
that the set has size at most five. Hence, |K | ≤ 6 and Turán’s Theorem [5555] implies
that #2 [-] contains at most 5

12 |- |
2 edges. From the presumption on - we then

obtain =4(-) > 25U=2. Therefore there must be an =4-edge in - with end vertices
in partition classes of size larger than U=. This edge is a witness for the desired
pair in E- with Hamming distance four. �

By possibly renaming the partition classes - and . suppose that - satis-
fies (3.6.203.6.20). Hence, the claim provides a pair 90, 91 ∈ E- with Hamming distance
four. By possibly reordering the �8’s and swapping the upper indices of +1

8
and +0

8

for some 8 ∈ [6] we assume that 90 = (0, 0, 0, 0, 0, 0) and 91 = (1, 1, 1, 1, 0, 0).
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We now define set E′
-
. If the last coordinate of 9 ∈ E- is 0, then 9 ∈ E′

-
and

if the last coordinate of 9 ∈ E- is 1, then 9 ∈ E′
-
, where 9 + 9 = (1, 1, 1, 1, 1, 1).

The set E′
.
is defined analogously. Since no pair 9, 9′ of elements in E- ∪ E. is at

distance 6, we have that |E′
-
| = |E- |, |E′. | = |E. | and

|E′- ∪ E′. | = |E- ∪ E. | . (3.6.21)

Moreover, due to (3.6.103.6.10), we have that

each pair (9, 9′) ∈ E′- × E′. has distance three and

each pair (9, 9′) ∈ (E′
-
)2 ∪ (E′

.
)2 has distance two or four.

(3.6.22)

Moreover, each 9 = (Y1, . . . , Y6) ∈ E′- ∪ E′. satisfies Y6 = 0. From (3.6.223.6.22)
we know that the Hamming distances of any 9 ∈ E′

.
to 90 and to 91 are both

three. Therefore each 9 = (Y1, . . . , Y6) ∈ E′. must satisfy Y5 = 1 since otherwise
(Y1, . . . , Y4) must contain three ones and three zeroes. Also, the following claim
holds.

Claim 3.6.5. Each 9 = (Y1, . . . , Y6) ∈ E′- satisfies Y5 = 0.

Proof. For the sake of contradiction suppose that there is 9 = (Y1, . . . , Y6) ∈ E′-
with Y5 = 1. Due to (3.6.223.6.22), 9 is at distance 2 or 4 from 90 and 91 and hence,
there is 8 ∈ {1, 2, 3, 4} such that Y8 ≠ Y 9 ∈ {1, 2, 3, 4} − {8}. Again due to (3.6.223.6.22),
the distance between 9 and 9′ = (Y′1, . . . , Y

′
6) ∈ E

′
-
is three, and since Y5 = Y′5

and Y6 = Y′6, we must have that (Y1, . . . , Y4) and (Y′1, . . . , Y
′
4) are at distance

3. Moreover, (Y′1, . . . , Y
′
4) is at distance 2 with (0, 0, 0, 0) and (1, 1, 1, 1), which

implies that (Y′1, . . . , Y
′
4) has exactly two 1-entries. It implies that Y8 = Y′8 and there

are at most
(3
2
)
= 3 elements in E′

.
, a contradiction to Claim 3.6.33.6.3. �

Claim 3.6.53.6.5 implies that |E′
-
∪ E′

.
| ≤ 8. Moreover, |E- ∪ E. | ≤ 8 by (3.6.213.6.21)

and due to Claim 3.6.33.6.3, we have |E | = |E- ∪ E. | = 8.
We now need to show that each pair (9, 9′) ∈ E2

-
∪ E2

.
has distance four. But

this is clear from the fact that it can be realized. This establishes property (v)(v).
Finally we show that for each (9, 9′) ∈ (E- ∪ EH)2 we have E(9) = E(9′) ± V=.

This proof is analogous to the proof of (vi)(vi) in Theorem 3.1.33.1.3. Since -,. is an
equipartition we only need to consider pairs (9, 9′) ∈ E2

-
∪ E2

.
. If, say, E(9) >

E(9′) + V= then we make the two sets equitable by moving vertices from + (9) to
+ (9′) and changing the edges accordingly. This increases the number of =4-edges
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by at least V2=2/5 which would yield a contradiction to the upper bound given by
Theorem 3.4.33.4.3. This establishes property (vi)(vi).
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4
Packing Degenerate Hypergraphs

4.1 Introduction

Recall, in the entirety of Chapter 44 we will consider hypergraphs that are A-uniform,
that is each edge of a hypergraph � is an A element subset of + (�). We will refer
to (A − 1)-element vertex sets as semi-edges.

A packing of a family G = {�1, . . . , �: } of hypergraphs into a hypergraph �
is a colouring of the edges of � with the colours 0, 1, . . . , : such that the edges of
colour 8 form an isomorphic copy of �8 for each 1 ≤ 8 ≤ : . The packing is perfect
if no edges have colour 0. We will often say an edge is covered in a packing if it
has colour at least 1, and uncovered if it has colour zero.

In our work we consider �-degenerate hypergraphs. First, let us define the term.
An ordering of+ (�) is �-degenerate if for each vertex E, there are at most � edges
of� whose final vertex is E. We say� is �-degenerate if+ (�) has a �-degenerate
ordering. In particular, we define trees as connected 1-degenerate hypergraphs.

Our results

In this section we restate Theorem 1.3.51.3.5 and Theorem 1.3.61.3.6 in stronger, more
technical forms. We will use these forms for the remainder of the chapter.

To state our more technical results, we need the following concept of quasiran-
domness.

Definition 4.1.1 (density, quasirandom). The density of a hypergraph � is the
number 4(�)/

(E(�)
A

)
. Suppose that � is a hypergraph with = vertices and with

density ?. We say that � is (U, !)-quasirandom if for every set ( ⊆
(+ (�)
A−1

)
of size

at most !, the number of vertices E which form an edge with every member of ( is
|N� (() | = (1 ± U)? |( |=.
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Our first main technical result then says that we can approximately pack any
sufficiently quasirandom � with hypergraphs of bounded degeneracy and not too
large maximum degree. Note that in particular  (A)= is sufficiently quasirandom.

Theorem 4.1.2. For each A ≥ 2, each W > 0 and each � ∈ N there exist b, 2 > 0
and a number =0 such that the following holds for each integer = > =0. Suppose that
� is any =-vertex hypergraph which is (b, 4(A + 1)A� + 3)-quasirandom. Suppose
that (� C)C∈[C∗] is a family of �-degenerate A-uniform hypergraphs, each of which
has at most = vertices and maximum degree at most 2=

log = . Suppose further that the
total number of edges of (� C)C∈[C∗] is at most 4(�) − W=A . Then (� C)C∈[C∗] packs
into �, and furthermore the hypergraph of leftover edges is (W, (A + 1)A� + 3)-
quasirandom.

Our second main technical result is a bit more complicated. If we insist that a
small fraction of the hypergraphs � C each have linearly many vertices of degree 1,
and in addition those graphs are not too close to spanning, then we can upgrade
‘covering almost all the edges’ to a perfect packing. Specifically, we can perfectly
pack a collection of hypergraphs defined as follows.

Definition 4.1.3 ((`, =)-sequence). We say that a sequence (�8)8∈[<] of hyper-
graphs is a �-degenerate (`, =)-hypergraph sequence with maximum degree Δ
if

(G 1) �8 is �-degenerate and for each E ∈ + (�8) we have deg(E) ≤ Δ for each
8 ∈ [<],

(G 2) E(�8) ≤ = for each 1 ≤ 8 ≤ < − b`=A−1c, and
(G 3) E(�8) ≤ =−`= and�8 has at least `= leaves for each 8 with<− b`=A−1c <

8 ≤ <.
We also call the �8 with < − b`=A−1c < 8 ≤ < the special hypergraphs of the
sequence.

Theorem 4.1.4. For each A ≥ 3, every � and ` > 0 there are =0 and b, 2 > 0
such that for every = ≥ =0 and every <, the following holds. Suppose that � is
any =-vertex hypergraph which is (b, (A + 1)A� + 3)-quasirandom with density at
least `. Every �-degenerate (`, =)-hypergraph sequence (�8)8∈[<] with maximum
degree 2=

log = such that
∑
8∈< 4(�8) ≤ 4(�) packs into �.

For future use, we will state a technical version of Theorem 4.1.24.1.2 in which
we not only pack into a quasirandom host hypergraph and obtain at the end a

58



4 Packing Degenerate Hypergraphs

quasirandom hypergraph of leftover edges, but also obtain a collection of additional
quasirandomness conditions on the packing as a whole. Although we do consider
this theorem to be a main result of this paper, since it is rather more complicated to
state, we defer it to Section 4.74.7, where it is Theorem 4.7.14.7.1. We note that it is this
technical version of Theorem 4.1.24.1.2 which we need to prove Theorem 4.1.44.1.4.

We now briefly discuss the optimality of our conditions in Theorems 4.1.24.1.2
and 4.1.44.1.4. First, we observe that for packing into quasirandom hypergraphs, the
maximum degree bound is optimal up to the value of 2, even if we want only to
embed one single spanning hypergraph. To see this, consider � a typical =-vertex
hypergraph generated by selecting A-sets as edges independently with probability
1
2 , and � an =-vertex hypergraph which is the disjoint union of 1

10 log = stars (that
is, hypergraphs consisting of an (A − 1)-set centre which forms an edge with each
one of the remaining vertices, and no further edges) of equal size. This � is 1-
degenerate and has maximum degree less than 20A =

log = , but a standard calculation
(essentially the same as for the 2-uniform graph case) shows that � is unlikely to
be contained in �, even though � is very quasirandom.

Our proofs do allow � to grow with =; we believe (but did not check carefully)
the dependency is roughly as log log log =, but this is presumably not optimal. On
the other hand, � cannot be as big as 10 log =, since a typical random hypergraph
is unlikely to contain any given hypergraph with 9= log = edges.
We cannot allow all hypergraphs to be spanning in Theorem 4.1.44.1.4. For example,

if � is obtained by choosing A-sets as edges independently with probability either 1
2

or 1
2 +Y, depending on whether the A-set contains one of the first =/2 vertices or not,

then � will likely be (b, &)-quasirandom for any given b > 0 and natural number
&, provided Y > 0 is sufficiently small. However, some Θ(=) vertices will be in
Θ(=A−1) more edges than others, so that we certainly cannot pack any collection of
regular spanning hypergraphs. In fact, if for example each �B is a matching, then
we need thatΘ(=A−1) of the matchings areΘ(=) vertices away from being spanning
to correct the imbalance in degrees. This shows that the restriction on the size of
the hypergraphs in (G 3)(G 3) is optimal up to the choice of constants. However, we do
not believe that it is necessary to have many hypergraphs with many leaves. We
should note that one cannot simply omit this condition, because for example for
A = 2 no collection of cycles can perfectly pack  2=, due to a parity obstruction:
cycles use an even number of edges at each vertex, but  2= has odd degree vertices.
However for the case � = 1 (i.e. forests) we believe one can omit the condition
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entirely (as the leaves should allow for parity correction). This is demonstrated to
be true in [11] for graphs.

Proof outline

To pack a collection of guest hypergraphs G into a host hypergraph �, in which
each guest hypergraph has order at most (1 − X)=, we do the following. We take
hypergraphs in G in succession. For each �, we embed vertex by vertex into  (A)=
in a degeneracy order, at each time embedding to a vertex of  (A)= chosen uniformly
at random subject to the constraints that we do not re-use a vertex previously used
in embedding �, or an edge used in embedding a previous hypergraph. This
procedure succeeds with high probability, and after each stage of embedding a
hypergraph, the unused edges in  (A)= are quasirandom (in a sense we will later
make precise). The analysis of this process is what gives the quasirandomness
statements of Theorem 4.7.14.7.1.
To allow for spanning hypergraphs, we modify this slightly. We adjust the

degeneracy order so that (for some small X > 0) the last X= vertices are strongly
independent (that is, no pair of them is contained in an edge of �) and all have
the same degree. This can be done while at worst multiplying the degeneracy of
the order by A . Then for each hypergraph we follow the above procedure to embed
the first (1 − X)= vertices, and finally complete the embedding arbitrarily using a
matching argument. We will see that this last step is with high probability always
possible. The only point to be careful about is that we have to split � ( (A)= ) into a
very dense bulk main part, whose edges we use only for the embedding of the first
(1− X)= vertices, and a sparse reservoir which we use only for the completion; we
do this randomly. This is the hypergraph analogue of the main result of [33].
To obtain a perfect packing, we perform a different modification. We use the

above procedure to pack all the non-special guest graphs of our (`, =)-hypergraph
sequence, and observe that the resulting leftover edges form a quasirandom graph
�. We then need to pack the special graphs. We first remove from each special
graph a strongly independent set of vertices of degree 1: the omitted leaves. We
pack the resulting collection of graphs into �, using the randomised algorithm
described above. What now remains is, for each guest graph, to pack in addition
the omitted leaves. By definition, each omitted leaf is in exactly one edge of
the guest graph, together with its parent semi-edge, and all the vertices of the
parent semi-edge have been packed. This reduces our remaining packing to a
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matching problem: each semi-edge D of  (A)= has some dangling leaves, namely the
collection of omitted leaves (over all special guest graphs) whose parent semi-edge
is embedded to D. We need to match the dangling leaves at D to the vertices which
form leftover edges of  (A)= with D, such that we do not use any edge of � twice
and such that we do not match dangling leaves of any graph �8 with vertices which
were used for embedding the rest of �8, or for another dangling leaf of �8.

It is relatively easy to ensure that we do not use leftover edges multiple times.
We orient the edges of � by marking one vertex in each edge, and we insist on
matching dangling leaves at D ∈ ((�) to an edge containing D where none of the
vertices in D are marked. This reduces the problem to ensuring that we pick distinct
edges of � to embed the dangling leaves at D. Note, that matching a dangling
leave to an edge means embedding the dangling leaf (which is a vertex in one
of the graphs we want to pack) to the marked vertex of the edge we matched to.
Therefore, we need to ensure that nothing is embedded to that vertex in the host
graph, from the relevant guest graph. In order for this to work, we of course need
that the number of dangling leaves at D is equal to the number of edges containing
D whose marked vertex is not in D. We can obtain this by performing the marking
uniformly at random and then correcting the resulting small errors.

We then go through all the
( =
A−1

)
semi-edges of � in turn, and at each semi-edge

D embed all its dangling leaves. We do this as follows. We draw a bipartite leaf
matching graph whose parts are the dangling leaves at D and the marked vertices
of edges containing D, putting an edge from a dangling leaf of a guest graph�8 to a
marked vertex if the marked vertex has not previously been used in the embedding
of �8. We choose uniformly at random a perfect matching in the leaf matching
graph, and embed the dangling leaves accordingly. The difficulty with this — and
the reason we need to pick a matching uniformly at random — is that when we
embed dangling leaves at one semi-edge, we need to remove a few edges from the
leaf matching graphs of other semi-edges. We will argue that the leaf matching
graphs begin with a strong quasirandom property and are only changed slightly
through the entire process, so that they are still quasirandom at the end; this is
enough to guarantee the desired matchings always exist and hence complete a
perfect packing. This second part is the hypergraph analogue of the main result
of [22].
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Organisation of the chapter

In the following Section 4.24.2, we introduce notation, the probabilistic tools we need,
and state and prove a result on random matchings in bipartite graphs.

In Section 4.34.3, we reduce Theorem 4.1.24.1.2 to a technical statement, Theorem 4.3.14.3.1
which is convenient for our proof, formally state the algorithm sketched above
which proves it (i.e. which produces a packing), state the main lemmas which we
need to prove it, and finally give the proof of Theorem 4.3.14.3.1 from these lemmas.

In Section 4.44.4, we analyse the embedding of the first (1− X)= vertices of a single
guest hypergraph into (what remains of) the bulk of the host hypergraph, and argue
that our randomised embedding is likely to succeed and maintain various desirable
properties. We build on this in Section 4.54.5 to analyse the sequential embedding
of the first (1 − X)= vertices of all guest hypergraphs into the bulk. Finally in
Section 4.64.6 we argue that it is always possible to complete the embedding in the
reservoir, which finishes the proof of Theorem 4.1.24.1.2.

In Section 4.74.7 we state and prove Theorem 4.7.14.7.1, the above mentioned technical
version of Theorem 4.1.24.1.2 which also gives various quasirandomness properties
of the packing. Most of the work here is done in the preceding sections, so this
section mainly consists of using established probabilistic estimates to prove the
desired quasirandomness properties are likely to hold.

In Section 4.84.8 we prove Theorem 4.1.44.1.4. Again, most of the work is done by
Theorems 4.1.24.1.2 and 4.7.14.7.1, and what remains to do is formalise the above sketched
packing algorithm and prove that it works with high probability.

4.2 Preliminaries

4.2.1 Notation

We will almost always work with A-uniform hypergraphs; when we write ‘hyper-
graph’ without specifying the uniformity, it should be understood that the hyper-
graph considered is A-uniform.
We refer to vertex sets of size A − 1 as semi-edges. Let ((�) denote the set

of semi-edges of a hypergraph �, that is ((�) =
(+ (�)
A−1

)
, the set of unordered

A − 1-subsets of the vertex set. Given a vertex set � ⊆ + (�), we write N� (�) for
the neighbourhood of �, that is, the collection of subsets � of + (�) \ � such that
�∪� ∈ � (�). We will often write N� (E) for the set N� ({E}) of semi-edges. Note
that the neighbourhood of � in a hypergraph is a (A − |�|)-uniform hypergraph on

62



4 Packing Degenerate Hypergraphs

+ (�) \ �. However, when � is a semi-edge, we will usually think of N� (�) as
a set of vertices in + (�) \ � (even though formally it is a set of singleton sets of
vertices). Finally, if ( is any subset of

(+ (�)
:

)
, we write N� (() for the intersection⋂

�∈( N� (�).
We call a set of vertices � ⊆ + (�) strongly independent if for any pair of

different vertices D, E ∈ � we have N� ({D, E}) = ∅. For any : ≤ A − 1 we call a
hypergraph � a :-star with centre � if |�| = : and for each 4 ∈ � (�) we have
� ⊆ 4. The leaves of the star � are the vertices {E ∈ + (�) : {E} ∪ � ∈ � (�)}.
For any given natural number ℓ, we write [ℓ] := {1, 2, . . . , ℓ}. The definition

of degenerate graphs naturally suggests to label the vertices of a hypergraph by
integers. Suppose that the vertex set of a hypergraph� is+ (�) = [ℓ] and 8 ∈ + (�).
We write N−(8) = N(8) ∩

([8−1]
A−1

)
and deg−(8) = |N−(8) | for the left-neighbourhood

and the left-degree of 8. We make use of the natural order on [ℓ] also in other
ways, like referring to sets of the form [ℓ1] ⊆ + (�) and {ℓ2, ℓ2 + 1, . . . , ℓ} ⊆ + (�)
as initial vertices and final vertices, respectively. We write '(E) := {D : ∃H ∈
N−
�
(E) with D = max(H)}. That is, '(E) denotes the set of vertices which are the

second-to-last vertices in hyperedges of � whose last vertex is E.
The hypergraphs to be packed are denoted �B and referred to as guest hy-

pergraphs. By contrast, during our packing procedure, we shall work with host
hypergraphs �B which are obtained from the original  (A)= by removing what was
used previously.

An orientation of a hypergraph � = (+, �) is an oriented hypergraph ®� on +
which contains, for each undirected edge 4 ∈ � , exactly one directed edge (E, 4)
where E is a vertex in 4. We say the edge 4 is directed towards E. The outdegree
deg+®� (B) of a semi-edge B in an oriented hypergraph ®� is the number of vertices E
in + ( ®�) such that

(
E, B ∪ {E}

)
is an edge of ®�; the set of these vertices E is the

outneighbourhood #+®� (B) of B. The indegree deg−®� (E) of a vertex E in an oriented
hypergraph ®� is the number of B in ((�) such that

(
E, B ∪ {E}

)
is an edge of ®�;

the set of these hyperedges B is the inneighbourhood #−®� (E) of E.
We write 0 < 0 � 1 to mean that given 1 > 0, any sufficiently small 0 will

make our calculationswork. In otherwords, there is amonotone increasing function
5 : R>0 → R>0 with 5 (1) ≤ 1 such that any choice 0 < 0 ≤ 5 (1) will work. We
define longer strings similarly; thus 0 � 0 � 1 � 2 means that 0 � 1 � 2 and
in addition 0 � 0 � 1, where the two monotone functions need not be the same.
We can always find constants satisfying such a sequence by choosing from the
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right-hand side: in the example above we would choose first 2, then a sufficiently
small 1, and given that a sufficiently small 0.

4.2.2 Probabilistic tools

In this subsection we give the notation and tools we need to analyse our randomised
processes. These are taken directly from [22, Section 2.2] and we refer the reader
there for exposition and proofs.

Let Ω be a finite probability space. A filtration F0, F1, . . . , F= is a sequence
of partitions of Ω such that F8 refines F8−1 for all 8 ∈ [=]. In our application, the
partition F8 is given by all possible histories of the run of one of our algorithms up
to time 8. (For more explanation see [33].) We say that a function 5 : Ω → R is
F8-measurable if 5 is constant on each part of F8. Further, for any random variable
. : Ω → R the conditional expectation E(. |F8) : Ω → R and the conditional
variance Var(. |F8) : Ω→ R of . with respect to F8 are defined by

E(. |F8) (G) = E(. |-),
Var(. |F8) (G) = Var(. |-),

where - ∈ F8 is such that G ∈ - .

Suppose that we have an algorithm which proceeds in < rounds using a new
source of randomness Ω8 in each round 8. Then the probability space underlying
the run of the algorithm is

∏<
8=1Ω8. By history up to time C we mean a set of the

form {l1} × · · · × {lC} × ΩC+1 × · · ·Ω<, where l8 ∈ Ω8. We shall use the symbol
HC to denote any particular history of such a form. By a history ensemble up to
time C we mean any union of histories up to time C; we shall use the symbol L to
denote any one such. Observe that there are natural filtrations associated to such
a probability space: given times C1 < C2 < . . . we let FC8 denote the partition of Ω
into the histories up to time C8.

Our first tool is the well known Chernoff bound about the sum of independent
Bernoulli variables.

Theorem 4.2.1 (Chernoff bounds, [3030, Theorem 2.10]). Suppose - is a random
variablewhich is the sumof a collection of independent Bernoulli randomvariables.
Then we have for X ∈ (0, 3/2)

P
[
- > (1 + X)E-

]
< 4−X

2E-/3 and P
[
- < (1 − X)E-

]
< 4−X

2E-/3 .

When analysing randomised algorithms, usually one has to deal with a sum of
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random variables which are not independent, but rather are sequentially dependent.
When we use this term, what we mean is that there is some filtration F0, F1, . . . ,
F= associated to the randomised algorithm such that the random variable -8 is
F8-measurable for each 8. The filtration in question will generally be a filtration
defined by histories up to a sequence of increasing times in the algorithm; when it is
clear from the context we will simply say that the random variables are sequentially
dependent without specifying the filtration explicitly. In this chapter, we need the
following concentration inequality for sequentially dependent random variables,
which is a corollary of Freedman’s inequality [2424] deduced in [22].

Corollary 4.2.2 (Corollary 6, [22]). Let Ω be a finite probability space, and
(F0, F1, . . . , F=) be a filtration. Suppose that we have ' > 0, and for each
1 ≤ 8 ≤ = we have an F8-measurable non-negative random variable .8, nonnegat-
ive real numbers ˜̀, ã and an event E.

(a ) Suppose that either E does not occur or we have
∑=
8=1 E

[
.8

��F8−1
]
≤ ˜̀, and

0 ≤ .8 ≤ ' for each 1 ≤ 8 ≤ =. Then

P

[
E and

=∑
8=1
.8 > 2 ˜̀

]
≤ exp

(
− ˜̀

4'

)
.

(b ) Suppose that either E does not occur or we have
∑=
8=1 E

[
.8

��F8−1
]
= ˜̀ ± ã,

and 0 ≤ .8 ≤ ' for each 1 ≤ 8 ≤ =. Then for each r̃ > 0 we have

P

[
E and

=∑
8=1
.8 ≠ ˜̀ ± (ã + r̃)

]
≤ 2 exp

(
− r̃2

2'( ˜̀ + ã + r̃)

)
.

In particular, if ã = r̃ = ˜̀[̃ > 0 and [̃ ≤ 1
2 , then

P

[
E and

=∑
8=1
.8 ≠ ˜̀(1 ± 2[̃)

]
≤ 2 exp

(
− ˜̀[̃2

4'

)
.

Finally, let us note that we shall be using many statements of the form

with probability at least ?, provided event A we get event B. (4.2.1)

We emphasize that such statements are not statements about conditional probabil-
ities. That is, the meaning of (4.2.14.2.1) is P[A \ B] ≤ 1− ?. A prototypical example
is with probability at least 1 − >(1), if a given randomized algorithm does not fail,
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then it produces an output with certain desired properties.

4.2.3 Degenerate hypergraphs

We need to bound
∑
G∈+ (�) deg(G)2 for degenerate hypergraphs �.

Lemma 4.2.3. Let � be an =-vertex hypergraph with degeneracy � and maximum
degree Δ. Then we have ∑

G∈+ (�)
deg(G)2 ≤ A�=Δ .

Proof. Suppose that for each 1 ≤ 8 ≤ Δ there are F8 vertices in � of degree 8. We
have

∑Δ
8=1 8F8 =

∑
G∈+ (�) deg(G) = A4(�) ≤ A�=. By convexity of the function

I ↦→ I2, among all choices of non-negative reals F8 such that
∑Δ
8=1 8F8 ≤ 2�=,

the one maximising
∑Δ
8=1 8

2F8 is F1 = · · · = FΔ−1 = 0 and FΔ = A�=/Δ. The
maximum attained is A�=Δ, proving the lemma.

We also need to show that degenerate hypergraphs contain large strongly inde-
pendent sets all of whose vertices have the same degree.

Lemma 4.2.4. Let � be a �-degenerate =-vertex hypergraph. Then there exists
an integer 0 ≤ 3 ≤ A� and a set � ⊆ + (�) with |� | ≥ (A� + 1)−4= which is
independent, and all of whose vertices have the same degree 3 in �.

Proof. Wefirst claim that at least (A�+1)−1= vertices of� have degree at most A�.
Indeed, if this were false then there would be more than A�=/(A� + 1) vertices
of � all of whose degrees are at least A� + 1, so that we obtain 4(�) > �=,
which contradicts �-degeneracy of �. Let 0 ≤ 3 ≤ A� be chosen to maximise
the number of vertices in � of degree 3, and let ( be the set of vertices in � with
degree 3. We thus have |( | ≥ (A� + 1)−2=. Now let � be a maximal independent
subset of (. Each vertex of � has at most 3 ≤ A� incident edges, so that the number
of vertices of � which are either in � or in an edge containing a vertex of � is at
most (A − 1)A� |� | + |� | ≤ (A� + 1)2 |� |. By maximality this set of vertices covers
(, hence |� | ≥ (A� + 1)−2 |( | ≥ (A� + 1)−4=, as desired.

The following auxiliary lemma takes an arbitrary family of graphs we want to
pack and produces a family with not too many members and the same bound on
maximum degree and degeneracy.
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Lemma 4.2.5 (compression lemma). LetG = (�8)8∈[B] be a family of�-degenerate
hypergraphs with maximum degree at mostΔ, with

∑B
8=1 4(�8) ≤

(=
A

)
and E(�8) ≤ =

for all 8 ∈ [B]. Then there is a family of hypergraphsG′ = (�̌8)8∈[B∗] with B∗ ≤ 2=A−1

(A−1)!
such that

∑B∗

8=1 4(�̌8) ≤
(=
A

)
, such that for each 8 ∈ [B∗] we have E(�̌8) ≤ =,

Δ(�̌8) ≤ Δ, and �̌8 is �-degenerate, and such that G perfectly packs into G′.

Proof. We successively modify the family G as follows. If there are two hyper-
graphs �,�′ ∈ G with E(�), E(�′) ≤ =/2, we replace � and �′ with the disjoint
union � ∪ �′. We repeat this until no further such pairs exist, giving G′.

Observe that the maximum degree and the degeneracy of the hypergraphs in G
is the same as in G′. Furthermore G′ is a packing of G. Finally, there is at most one
hypergraph in G′ with less than =/2 vertices. Hence all but at most one hypergraph
has at least =/(2A) edges. We conclude that the total number B∗ of hypergraphs in
G′ satisfies (B∗ − 1)=/(2A) ≤ (1 − W)

(=
A

)
, and hence B∗ ≤ 2=A−1/(A − 1)!. Finally,

we let the hypergraphs (�′B)B
∗

B=1 be obtained from the hypergraphs G′ by adding if
necessary isolated vertices to each in order to obtain =-vertex hypergraphs.

4.2.4 Random matchings in bipartite graphs

There are two places in this chapter where we reduce ‘completing’ embeddings to
a perfect matching problem in bipartite graphs. In both cases, we can show that the
bipartite graph in question is suitably quasirandom, and this not only implies that
a perfect matching exists, it also implies that a uniform random perfect matching
is about equally likely to use any given edge (which, in both cases, we need). The
following statement, which is rather similar to [22, Lemma 20], formalises this. The
proof is very similar to that given in [22], but we provide it for completeness.

Lemma 4.2.6 (matching lemma). Assume 0 � 1
<
� Y, r � ` � 1. Let � =

� [*,,] be a bipartite graph with |* | = |, | = (1 ± Y)< such that

(M 1) deg� (G) = (1 ± Y)`< for all G ∈ * ∪, , and

(M2) deg� (D, D′) = (1 ± Y)`2< for all but at most <2

log< pairs {D, D′} ∈
(*

2
)
,

and let �′ = �′[*,,] be a spanning subgraph of � [*,,] such that
(M 3) deg� (G) − deg� ′ (G) < r< for all G ∈ * ∪, .

Then �′ has a perfect matching and for a perfect matching f chosen uniformly at
random among all perfect matchings in �′ and for all DF ∈ � (�′) we have

P[f(D) = F] ≤ 2
`<

.
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This lemma is a straightforward consequence of a lemma (Lemma 4.2.94.2.9) on
random matchings in super-regular pairs by Felix Joos (see [3737]) and the degree-
codegree characterisation of super-regular pairs (Lemma 4.2.84.2.8) provided by Duke,
Lefmann, and Rödl in [1616]. The proof of this lemma is the only place in this chapter
where we use the concept of a regular pair.

Definition 4.2.7 (density, (Y, 3)-regular, (Y, 3)-super-regular). Let � be a graph
and *,, ⊆ + (�) be disjoint vertex sets. The density of the bipartite graph
� [*,,] is

3� (*,,) =
4(� [*,,])
|* | |, | .

We say that � [*,,] is (Y, 3)-regular if for all *′ ⊆ * and ,′ ⊆ , with
|*′| ≥ Y |* | and |,′| ≥ Y |, | we have

3� (*′,,′) = 3 ± Y .

The graph � [*,,] is (Y, 3)-super-regular if it is (Y, 3)-regular and for all D ∈ *
and for all F ∈ , we have

deg� [*,,] (D) = (3 ± Y) |, |, and deg� [*,,] (F) = (3 ± Y) |* | .

It is well-known that regular pairs are forced by a degree-codegree condition;
we use the following formulation due to Duke, Lefmann, and Rödl in [1616].

Lemma 4.2.8 (degree-codegree condition [1616]). Assume 0 < Y′ < 2−200 and let
� [*,,] be a bipartite graph with parts* and, of size |* | = |, | = = and density
3 = 3� [*,,] (*,,). If

(i ) deg� [*,,] (D) > (3 − Y′) |, | for all D ∈ *, and
(ii ) deg� [*,,] (D, D′) < (3 + Y′)2 |, | for all but at most 2Y′|* |2 pairs {D, D′} ∈(*

2
)
,

then � [*,,] is
(
(Y′) 1

6 , 3
)
-regular.

If we choose a perfect matching uniformly at random in a super-regular pair then
each edge is roughly equally likely to appear in the matching, as was shown by Joos
(see [3737]).

Lemma4.2.9 (perfectmatchings in super-regular pairs [3737, Theorem4.3]). Assume
0 � 1

<′ � Y′ � 3 � 1. Let � [*,,] be an (Y′′, 3)-super-regular graph with
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|* | = |, | = <′. Then � [*,,] contains a perfect matching. Moreover, for a
perfect matching f chosen uniformly at random among all perfect matchings in
� [*,,] and for all DF ∈ � (�) we have

P[f(D) = F] = (1 ± (Y′′) 1
20 ) 1
3<′

.

The proof of the matching lemma simply combines these two lemmas.

Proof of Lemma 4.2.64.2.6. By (M 1)(M 1) and (M 3)(M 3), for all G ∈ * ∪, we have

deg� ′ (G) =
(
` ± (r + Y)

)
< (4.2.2)

By (M 2)(M 2) and (M 3)(M 3), for all but at most <2

log< pairs {D, D′} ∈
(*

2
)
we have

deg� ′ (D, D′) =
(
`2 ± (2r + Y)

)
< . (4.2.3)

We want to apply Lemma 4.2.84.2.8 with 3 = 3� ′ (*,,) = ` ± (r + Y) and Y′ = 5(r +
Y)`−1 to conclude that �′[*,,] is super-regular, and now check the conditions of
this lemma. By (4.2.24.2.2), for D ∈ * we have

deg� ′ (D) =
(
3±2(r+Y)

)
< =

(
3±2(r+Y)

) |, |
1 ± Y =

(
3±4(r+Y)

)
|, | > (3−Y′) |, | ,

and similarly for F ∈ , we have deg� ′ (F) =
(
3 ± 4(r + Y)

)
|* | > (3 − Y′) |* |.

By (4.2.34.2.3), for all but at most <2

log< pairs {D, D′} ∈
(*

2
)
we have

deg� ′ (D, D′) ≤
(
32 + (2r + Y)

)
< ≤

(
32 + (2r + Y)

) |, |
1 − Y ≤

(
32 + 4(r + Y)

)
|, |

<
(
32 + 2Y′3 + (Y′)2

)
|, | = (3 + Y′)2 |, | ,

where the last inequality uses 3 = ` ± (r + Y) and Y′ = 5(r + Y)`−1. We conclude
that, if <2

log< ≤ 2Y′|* |2, which holds for log< > 10/Y′, then �′ is
(
(Y′) 1

6 , 3
)
-regular

by Lemma 4.2.84.2.8. Since deg� ′ (G) =
(
3 ± 2(r + Y)

)
|* | for all G ∈ * ∪, , it follows

that �′ is
(
(Y′) 1

6 , 3
)
-super-regular.

Hence we can apply Lemma 4.2.94.2.9 to �′ with

<′ = |* | = (1 ± ?)< , Y′′ =
(
Y′

) 1
6 , and 3 = ` ± (r + Y) ,

and conclude that �′ has a perfectmatching and that for a perfectmatchingf chosen

69



4 Packing Degenerate Hypergraphs

uniformly at random among all perfect matchings of �′ and for all DF ∈ � (�′) we
have

P[f(D) = F] =
(
1 ±

(
Y′

) 1
120

) 1
3 (1 ± Y)< ≤

2
`<

,

as required.

4.3 Almost perfect hypergraph packing

In this section we give a randomised algorithm which almost perfectly packs
almost spanning hypergraphs, and a modification which allows for almost perfect
packing of spanning hypergraphs. We state the main lemmas which show that the
randomised algorithm is likely to succeed, and assuming themproveTheorem4.1.24.1.2.

4.3.1 Reducing the first main theorem

We deduce Theorem 4.1.24.1.2 from the following technical result.

Theorem 4.3.1 (Approximate packing technical result). For each A ≥ 2, W > 0 and
each � ∈ N there exist numbers =0 ∈ N and 2, b > 0 such that the following holds
for each = > =0. Suppose that �̂ is an (b, (A + 1)� + 3)-quasirandom hypergraph
with = vertices and density ? > 0. Suppose that B∗ ≤ 2=A−1/(A − 1)!. Suppose
that for each B ∈ [B∗] the hypergraph �B is a hypergraph on vertex set [=], with
maximum degree at most 2=

log = , such that deg−(G) ≤ � for each G ∈ + (�B) and
such that the last (� + 1)−4= vertices of [=] form a strongly independent set in �B,
and all have the same degree 3B in �B.

Suppose further that the total number of edges of (�B)B∈[B∗] is at most (?−3W)
(=
A

)
.

Then (�B)B∈[B∗] packs into �̂. In addition, the hypergraph of leftover edges is
(W, (A + 1)� + 3)-quasirandom.

We briefly explain how to deduce Theorem 4.1.24.1.2 from this result.

Proof of Theorem 4.1.24.1.2. Given (� C)C∈C∗ to pack, we create a sequence (�′B)B∈[B∗]
by applying Lemma 4.2.54.2.5 to the graphs (� C)C∈[C∗] . By Lemma 4.2.54.2.5, we have the
required B∗ ≤ 2=A−1/(A − 1)!.

Now, for each �′B with B ≤ B∗ we choose an order on + (�′B) as follows. First,
we pick an order witnessing �-degeneracy of �′B. Next, we pick an integer
0 ≤ 3B ≤ 2� and a strongly independent �B set of (A� + 1)−4= vertices each
of which has degree 3B in �′B and change the order by moving these vertices to
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the end. Such an integer 3B and strongly independent set exist by Lemma 4.2.44.2.4.
Observe that moving vertices to the end of the order cannot increase the left-degree
of vertices which are not moved, which therefore have at most � left-neighbours
in the new order. The moved vertices have degree at most A�, all of which are
left-neighbours. The result is an ordering of + (�′B) with degeneracy at most A�,
as required for Theorem 4.3.14.3.1 with input W/3 and A�. Then Theorem 4.3.14.3.1 returns
the desired packing.

Proof of Theorem 4.3.14.3.1

For the proof of Theorem 4.3.14.3.1, we need some algorithms and definitions. We
give these now along with a sketch of the proof. At this level, the proof is very
similar to that in [33]. We will do a bit of extra analysis (as compared to the proof
in [33]) in order to obtain additional properties of the packing (in order to later prove
Theorem 4.7.14.7.1), and the analysis itself will need some modifications to deal with
hypergraphs.

We prove Theorem 4.3.14.3.1 by analysing a randomised algorithm, which we call
PackingProcess, that packs the guest hypergraphs �B into �̂. We prove that this
algorithm succeeds with high probability. In this algorithm we assume that the
last X= vertices of each hypergraph �B form an strongly independent set, where
X < (� + 1)−4 is to be chosen later.
PackingProcess begins by splitting the edges of the input hypergraph �̂ into a

bulk �0 and a reservoir �∗0 by independently selecting edges into the latter with
probability chosen such that 4(�∗0) ≈ W

(=
A

)
. As a result, the hypergraphs �0 and

�∗0 are with high probability quasirandom.
Now PackingProcess proceeds in B∗ stages. In each stage B, it runs a randomised

embedding algorithm, called RandomEmbedding and explained below, to embed
the first = − X= vertices of �B into the bulk �B−1. Then in the completion phase
the last X= vertices of �B are embedded into the reservoir �∗

B−1. Since there are
exactly X= vertices of �B left to embed and exactly X= vertices of + (�̂) unused so
far in this stage, we want to find a bĳection between these. Since all neighbours
of each yet unembedded vertex are already embedded, this completion amounts
to choosing a system of distinct representatives. The completion phase relies on
choosing a random matching in a super-regular bipartite graph. Now �B and �∗B
are defined simply by removing the edges used in this embedding.

Both RandomEmbedding and the completion phase may fail at any stage B;
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this means that it is not possible to embed a certain part of �B. In that case
PackingProcess fails, too. If PackingProcess does not fail then it always produces
a valid packing of (�B) into �. So, we need to show that PackingProcess (see
Algorithm 11) succeeds with positive probability.

Algorithm 1: PackingProcess
Input : hypergraphs �1, . . . , �B∗ , with �B on vertex set [=] such that the

last X= vertices of �B form a strongly independent set; a hypergraph
�̂ on = vertices

choose �∗0 by picking edges of �̂ independently with probability
W
(=
A

)
/4(�̂) ;

let �0 = �̂ − �∗0 ;
for B = 1 to B∗ do

run RandomEmbedding(�B,�B−1) to get an embedding iB of �B [ [=−X=]]
into �B−1;
let �B be the hypergraph obtained from �B−1 by removing the edges of
iB

(
�B [ [=−X=]]

)
;

choose uniformly at random an extension i∗B of iB embedding all of
+ (�B), and embedding � (�B) \ �

(
�B [ [=−X=]]

)
into � (�∗

B−1) ;
let �∗B be the hypergraph obtained from �∗

B−1 by removing the edges
i∗B

(
� (�B) \ �

(
�B [ [=−X=]]

) )
;

end

For describing our randomised embedding algorithm RandomEmbedding we
need the following definitions. We shall use the symbol ↩→ to denote embeddings
produced byRandomEmbedding. Wewrite� ↩→ � to indicate that the hypergraph
� is to be embedded into �. Also, if C ∈ + (�), E ∈ + (�) and � ⊆ + (�) then
C ↩→ E means that C is embedded on E, and C ↩→ � means that C is embedded on
a vertex of �. If ®C ∈ + (�): , ®E ∈ + (�): ordered vertex sets then ®C ↩→ ®E means
that ®C is embedded on ®E in the given order. If k is an embedding + (�) → + (�)
and � ⊆ + (�) is a vertex set then we write k(�) = {k(E) |E ∈ �} for the
image of �. Similarly if A ⊆ P(+ (�)) is a system of vertex sets then we write
k(A) = {k(�) |� ∈ A}.

Definition 4.3.2 (partial embedding, candidate set). Let � be a hypergraph with
vertex set [E(�)], and � be a hypergraph with E(�) ≥ E(�). Further, assume
k 9 : [ 9] → + (�) is a partial embedding of � into � for 9 ∈ [E(�)], that is, k 9
is a hypergraph embedding of �

[
[ 9]

]
into �. Finally, let C ∈ [E(�)] be such that
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N−(C) ⊆ %( [ 9]). Then the candidate set of C (with respect to k 9 ) is

�
9

�↩→� (C) = N�
(
k 9

(
N−� (C)

) )
.

RandomEmbedding (see Algorithm 22) randomly embeds a guest hypergraph �
into a host hypergraph �. The algorithm is simple: we iteratively embed the first
(1 − X)= vertices of � randomly to one of the vertices of their candidate set which
was not used for embedding another vertex already.

Algorithm 2: RandomEmbedding
Input : hypergraphs � and �, with + (�) = [E(�)] and E(�) = =
k0 := ∅;
C∗ := min(E(�), (1 − X)=);
for C = 1 to C∗ do

if �C−1
�↩→� (C) \ im(kC−1) = ∅ then halt with failure;

choose E ∈ �C−1
�↩→� (C) \ im(kC−1) uniformly at random;

kC := kC−1 ∪ {C ↩→ E};
end
return kC∗

To show that PackingProcess does not fail at any stage, we shall show that the
host hypergraph �B constructed in PackingProcess in embedding stage B is quasir-
andom in the sense of Definition 4.1.14.1.1. In fact, in order to analyse the completion
phase of PackingProcess we need quasirandomness of the pair (�B, �∗0), where
�∗0 is the initial reservoir. We now define this coquasirandomness of a pair of
hypergraphs. Recall that quasirandomness of one hypergraph means that common
neighbourhoods of semi-edges are always about the size one would expect in a
random hypergraph of a similar density. Coquasirandomness of two hypergraphs
means that the intersection of a common neighbourhood in the first hypergraph
and another in the second hypergraph has about the size one would expect in two
independent random hypergraphs of the respective densities.

Definition 4.3.3 (coquasirandom). For U > 0 and ! ∈ N, we say that a pair of
hypergraphs (�, �∗), both on the same vertex set + of order = and semi-edge set
((+) and with densities ? and ?∗, respectively, is (U, !)-coquasirandom if for
every set ( ⊆ ((+) of at most ! semi-edges and every subset ' ⊆ ( we have

|N� (') ∩ N�∗ (( \ ') | = (1 ± U)? |' | (?∗) |(\' |= .
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The reader should make the following important observation: while we are
currently thinking of the reservoir �∗0 as being a hypergraph of small but positive
density, we will also want to make use of the same analysis when �∗0 is a zero-
edge hypergraph in order to consider the embedding of the non-spanning graphs.
Coquasirandomness of (�, �∗) makes sense if �∗ has no edges (and so ?∗ =

0): it reduces to quasirandomness of �. Similarly, in the following setting, and
consequently in most of the following lemmas, we assume that �∗ has density
either bounded away from zero or equal to zero. If the final X= vertices of each
�B are isolated vertices, and �∗0 has density zero, then the embedding loop of
PackingProcess effectively just runs RandomEmbedding repeatedly to embed the
first = − X= vertices of each �B into �B−1 and then removes the used edges to form
�B. We will see this algorithm explicitly (as PackingProcess2) in Section 4.74.7, and
will use the lemmas below and in the following two sections for its analysis.

With this we can state the setting of our main lemmas and fix various constants
which we will use throughout this chapter.

Setting 4.3.4. Let �, =, A ∈ N and W > 0 be given. Without loss of generality, we
may suppose W is sufficiently small to play the rôle of ` in Lemma 4.2.64.2.6. We define

& = � (A + 1) + 3 , Bmax =
2=A−1

(A − 1)! , [ ≤ W&

200&
,

X =
W10&[

106&4 , � = 40& exp
(
1000&X−2W−2&−10) ,

UG =
X2

108�3&
exp

(108��3&3A3A!X−2W−2& (G − Bmax)
=A−1

)
for each G ∈ R,

Y =
U0X

8W10&

1000�&A
, 2 = 10−8�−2A−22−2&&−4Y8 and b = U0/100 ,

(4.3.1)

and we require that 10�[ to be small enough to play the rôle of Y in Lemma 4.2.64.2.6
for input ` = W� .
Let �1, �2, . . . , �B∗ (for some B∗ ≤ Bmax) be hypergraphs on [=], such that for

each B and G ∈ + (�B) we have deg−�B (G) ≤ �, such that Δ(�B) ≤ 2=/log =,
and such that the final X= vertices of �B all have degree 3B and form an strongly
independent set.

Let�0 and�∗0 be two edge-disjoint hypergraphs on the same vertex set of order =
such that (�0, �

∗
0) is (

1
4U0, &)-coquasirandom, and

∑
B∈[B∗] 4(�B) ≤ 4(�0) − W=A .

Suppose that �∗0 has either zero edges or at least (W − U0)
(=
A

)
edges.

74



4 Packing Degenerate Hypergraphs

Note that in (4.3.14.3.1) we give numbers UG which we call ‘constant’ even though
= appears in their definition. Observe that UG is strictly increasing in G. We will
be interested only in values 0 ≤ G ≤ Bmax (though it is technically convenient to
have the definition for all G ∈ R), and it is easy to check that neither U0 nor UBmax

depends on =.

Remark 4.3.5. Note that for the proof to work it is sufficient to choose the constants
in the following manner.

�−1, W, A−1 � [ � X � �−1 � U0 � Y � 2 (4.3.2)

We give exact formulas so our calculations can be properly checked, but most of
the time one should simply think of the constants as being of very different orders
of magnitude.

The next lemma justifies splitting our host graph into bulk and reservoir, main-
taining quasirandomness.

Lemma 4.3.6. For each A ≥ 2, � ∈ N and each W > 0, and for each = sufficiently
large, let us suppose that the constants &, U0 and b are as in Setting 4.3.44.3.4.

Suppose that �̂ is a (b, &)-quasirandom hypergraph of order = and density
? ≥ 3W. Let �∗0 be a @-random subgraph of �̂, where @ = W/?. Let �0 be the
complement of �∗0 in �̂. Then with probability at least 1 − =−5� , we have that
4(�∗0) = (1 ± U0)W

(=
A

)
and the pair (�0, �

∗
0) is

( 1
4U0, &

)
-coquasirandom.

The next lemma states that coquasirandomness of (�B, �∗0) is preserved when
we embed into the bulk.

Lemma 4.3.7. For each A ≥ 2, � ∈ N and each W > 0, and for each = sufficiently
large, the following holds with probability at least 1 − =−4� . Suppose that the
constants and �1, �2, . . . , �B∗ and the hypergraph �0 ∪ �∗0 = � and the constant
& are as in Setting 4.3.44.3.4. When PackingProcess is run, for each B ∈ [B∗] either
PackingProcess fails before completing stage B, or the pair (�B, �∗0) is (UB, &)-
coquasirandom.

The next lemma estimates the probability that a single execution of Ran-
domEmbedding succeeds.

Lemma 4.3.8. For each A ≥ 2, � ∈ N, each W > 0, and any sufficiently large =, let
&, X, [, U0, UBmax , Y and 2 be as in Setting 4.3.44.3.4. Given any U0 ≤ U ≤ UBmax , let �
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be a hypergraph on vertex set [=] with maximum degree at most 2=/log = such that
deg−(G) ≤ � for each G ∈ + (�), and let � be any (U,&)-quasirandom =-vertex
hypergraph with at least W

(=
A

)
edges. When RandomEmbedding is run then it fails

with probability at most =−5� .

For the following lemma we need to define the following property which states
that the random choice of the extension has desirable random properties.

Our final two main lemmas concern the completion phase of PackingProcess.
The first states that the completion phase is likely to delete very few edges at any
vertex of �∗0.

Lemma 4.3.9. For each A ≥ 2, � ∈ N and W > 0, let = be sufficiently large.
Suppose that the constants and �1, �2, . . . , �B∗ and � are as in Setting 4.3.44.3.4, and
suppose �∗0 has at least (W − U0)

(=
A

)
edges. When PackingProcess is run, with

probability at least 1 − =−3� one of the following three events occurs.

• PackingProcess fails.

• There is some B ∈ [B∗] such that (�B, �∗0) is not (UB, &)-coquasirandom.
• For each B ∈ [B∗] and H ∈ ((�∗B ) we have deg�∗0 (H) − deg�∗B (H) ≤

10A!W−��X=, and (�B, �∗B ) is ([, &)-coquasirandom.

We will show in the proof of Theorem 4.3.14.3.1 that the first two events are unlikely,
so that the likely event is the last one.

Our last lemma states that with high probability, at any stage B, provided
(�B−1, �

∗
B−1) is sufficiently coquasirandom, running RandomEmbedding to par-

tially embed �B into �B−1 is likely to give a partial embedding which can be
completed to an embedding of �B using �∗B .

Lemma 4.3.10. For each A ≥ 2, � ∈ N and each W > 0, and for each = sufficiently
large, let the constants be as in Setting 4.3.44.3.4. Suppose that � is a hypergraph on
[=], such that we have deg−(G) ≤ � for each G ∈ + (�), we have Δ(�) ≤ 2=/log =,
and such that the final X= vertices of � form a strongly independent set, and all
have degree 3. Suppose (�, �∗) are a pair of ([, &)-coquasirandom hypergraphs
on = vertices, and � is (UB∗ , &)-quasirandom, with 4(�) = ?

(=
A

)
and 4(�∗) =

(1 ± [)W
(=
A

)
, where ? ≥ W. When RandomEmbedding is run to embed � [ [=−X=]]

into �, with probability at least 1 − =−2� it returns a partial embedding i which
can be extended to an embedding i∗ of � into � ∪ �∗, with all the edges using a
vertex in {= − X= + 1, . . . , =} mapped to �∗.
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Let us briefly explain why we cannot simply perform the whole embedding
in the quasirandom �̂, but have to split it into a bulk and a reservoir. In order
to analyse RandomEmbedding, we require that the bulk is very quasirandom, but
RandomEmbedding is verywell-behaved and preserves this good quasirandomness.
In contrast, we are not able to show that the completion stage, where we choose a
system of distinct representatives for the remaining vertices, is so well-behaved. If
we used the bulk for this embedding the errors would rapidly become unacceptably
large. However, to show that choosing such a system of distinct representatives
is possible, we do not need much quasirandomness. Thus the reservoir �∗B does
rapidly lose its quasirandomness (compared to �B), but it is sufficient for the
completion.

We now argue that our main lemmas imply Theorem 4.3.14.3.1.

Proof of Theorem 4.3.14.3.1. We can assume that ? > 3W as the statement is vacuous
otherwise.

Suppose that we run PackingProcess on the input hypergraphs �1, . . . , �B∗ . For
the course of the analysis of this run, we shall first ignore possible failures during
the completion phase. That is, if any failure during the completion phase occurs,
we ignore it and continue embedding using RandomEmbedding into the bulk.
Clearly, this does not change behaviour of future rounds of RandomEmbedding or
the evolution of the bulk.

It is clear that PackingProcess does not fail (in the RandomEmbedding stage)
unless at least one of the following exceptional events occurs:

(i) (�0, �
∗
0) is not (

1
4U0, &)-coquasirandom.

(ii) RandomEmbedding proceeded through stages B = 1, . . . , B0 (for some B0 ∈
[B∗ − 1]) without failure, the pairs (�B, �∗0) are (UB, &)-coquasirandom
for B < B0, and (�B0 , �

∗
0) is not an (UA , &)-coquasirandom pair.

(iii) RandomEmbedding proceeded through stages B = 1, . . . , B0 (for some
B0 ∈ {0, . . . , B∗ − 1}) without failure, the hypergraphs �B are (UB, &)-
quasirandom for B ≤ B0. Then, in stage B0 + 1, RandomEmbedding fails.

Lemma 4.3.64.3.6 gives an upper bound on the probability of the event in (i)(i).
Lemma 4.3.74.3.7 gives an upper bound on the probability of all the events in (ii)(ii). For
each fixed B0 ∈ {0, . . . , B∗−1}, the event in (iii)(iii) can be bounded using Lemma 4.3.84.3.8.
Thus, the probability that PackingProcess fails in the RandomEmbedding part is at
most =−5� + =−4� + =−5� .
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Let us now analyse the completion phases of PackingProcess. If PackingProcess
fails in one of the completion phases then one of the following events occurs:

(iv) One of the events described under (i)(i)-(iii)(iii).

(v) None of (i)(i)-(iii)(iii) occurs. RandomEmbedding and the completion phase pro-
ceed successfully through the first B0 stages (for some A ∈ {1, . . . , B∗ − 1}.
For B ∈ [B0] all the pairs (�B, �∗0) are (UB, &)-coquasirandom. However,
there is a stage B ∈ [A] where (�B, �∗B ) is not ([, &)-coquasirandom.

(vi) None of (i)(i)-(iii)(iii) occurs. RandomEmbedding and the completion phase pro-
ceeds successfully through the first B0 stages (for some B0 ∈ {0, . . . , B∗ −
1}, and throughout all the pairs (�B, �∗0) and (�B, �

∗
B ) are (UB, &)-

coquasirandom and ([, &)-coquasirandom, respectively. In stage B0 + 1,
RandomEmbedding successfully embeds but the completion phase fails.

Lemma 4.3.94.3.9 bounds the probability of the event in (v)(v) by =−3� . Finally,
Lemma 4.3.104.3.10 bounds the probability of events in (vi)(vi) for each given B0 by =−2� .
Thus, the total probability of failure due to (v)(v) or (vi)(vi) is at most =−2� + =−3� .
We conclude that PackingProcess packs the hypergraphs �1, . . . , �B∗ into �̂,

and none of the above bad events occur, with probability at least 1 − =−� . This
in particular gives the desired packing. In addition, we see that (�B∗ , �∗B∗) is
([, &)-coquasirandom. Let �′ be the hypergraph of leftover edges, i.e. � (�′) =
� (�B∗) ∪ � (�∗B∗). Given a set ( of semi-edges of size at most &, the set N� ′ (() is
partitioned into sets

N�B∗ (') ∩ N�∗
B∗
(( \ ')

as ' runs over all subsets of (. Since these sets have sizes controlled by (�B∗ , �∗B∗)
being ([, &)-coquasirandom, we see that �′ is (2&[, &)-quasirandom, as desired.

It thus remains to prove all the main lemmas from this section. Lemmas 4.3.64.3.6
and 4.3.74.3.7 are proven in Section 4.54.5. We actually prove a stronger statement than
Lemma 4.3.84.3.8 in Section 4.44.4. This stronger form, Lemma 4.4.34.4.3 is also needed for
proving Lemma 4.3.74.3.7. Lemmas 4.3.94.3.9 and 4.3.104.3.10 are proven in Section 4.64.6.

4.4 Staying on a diet

In this section we consider the running of RandomEmbedding to embed one de-
generate hypergraph �B into a quasirandom hypergraph �B−1. Since we will only
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consider one stage B, to avoid a profusion of subscripts we write � in place of �B

and � in place of �B−1.
The basic strategy here is broadly similar to that in [33]. Our main aim is to

show that during the embedding of � into �, if - is the set of vertices which have
been used in the embedding at any given time C, then - looks like a random set of
vertices in that it intersects any given common neighbourhood in about as many
vertices as a uniform random set of the same size would do.

Definition 4.4.1 (diet condition, codiet condition). Let � be a hypergraph on =
vertices and ?

(=
A

)
edges, and let - ⊆ + (�) be any vertex set. We say that the pair

(�, -) satisfies the (V, !)-diet condition if for every set ( ⊆ ((�) of at most !
semi-edges we have |N� (() \ - | = (1 ± V)? |( | (= − |- |).

Let �, �∗ be two hypergraphs on vertex set+ of order = vertices with semi-edge
set ((+) and ?

(=
A

)
and ?∗

(=
A

)
edges, respectively, and let - ⊆ + be any vertex set.

We say that the triple (�, �∗, -) satisfies the (V, !)-codiet condition if for every
set ( ⊆ ((+) of at most ! semi-edges and for every subset ' ⊆ ( we have��� (N� (') ∩ N�∗ (( \ ')

)
\ -

��� = (1 ± V)? |' | (?∗) |(\' | (= − |- |) .
Observe that the (V, !)-diet condition holding for (�, ∅) is simply the statement

that � is (V, !)-quasirandom, and similarly for the codiet condition. To see why
it is enough to show the diet condition holds for (�, -) where - is the set of
vertices used up to some given time C in the embedding, consider the embedding
of vertex C + 1 of �. The only way RandomEmbedding can fail is if there is no
vertex in the candidate set which is not contained in - . But the candidate set is
precisely a common neighbourhood of some at most � semi-edges in �, namely
the semi-edges to which were embedded the left-neighbourhood of C + 1. So the
diet condition tells us how many vertices in the candidate set are not covered by - ,
and in particular that that number is not zero.

In order to argue that we maintain the diet condition, we introduce the cover
condition. Roughly speaking, this states that for any given E in � and any short
interval of vertices (of length Y=) of �, about the ‘right fraction’ of vertices G in
the interval have E in their final candidate set when RandomEmbedding is run. To
make precise what we mean by ‘the right fraction’ some care is needed. How likely
it is that E is in the final candidate set of G depends on the number of semi-edges
in the left-neighbourhood of G. Therefore we will partition + (�) according to this
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number of previous neighbours. Thus we define

-8,3 := {G ∈ + (�) : 8 ≤ G < 8 + Y=, |N−(G) | = 3} .

When � is given with a �-degenerate ordering it is enough to consider 3 ∈
{0, 1, . . . , �}. So if � is quasirandom and has ?

(=
A

)
edges, then for an arbitrary

E ∈ + (�), we would expect that about a ?3-fraction of vertices G in each -8,3 have
E in their final candidate sets (at time G − 1).

Definition 4.4.2 (cover condition). Suppose that � and � are two hypergraphs
such that � has order =, the vertex set of � is [=], and � has density ?. Suppose
that numbers V, Y > 0 and 8 ∈ [= − Y=] are given. We say that a partial embedding
k of � into �, which embeds

⋃
N−(G) for each 8 ≤ G < 8 + Y=, satisfies the

(Y, V, 8)-cover condition if for each E ∈ + (�) \ imk, and for each 3 ∈ N, we have��{G ∈ -8,3 : E ∈ N�
(
k(N−(G))

)}�� = (1 ± V)?3 |-8,3 | ± Y2= .

Note that a corresponding condition for 3 = 0 is trivial, even with zero error
parameters.

The main idea of the analysis is to show that if the diet condition holds up to
some given time C, then it is unlikely that the cover condition fails at or before
time C, and similarly if the diet and cover conditions hold up to time C then the diet
condition is unlikely to fail at time C + 1 (and so RandomEmbedding does not fail
before this time either). We wrap this up in the following lemma.

Lemma 4.4.3 (Diet-and-cover lemma). For each � ∈ N, each W > 0, and any
sufficiently large =, let Bmax, &, X, [, U0, UBmax , Y and 2, � be as in Setting 4.3.44.3.4.
Let U ∈ [U0, UBmax] be arbitrary. Let � be a hypergraph on vertex set [=] with
maximum degree at most 2=/log = such that deg−(G) ≤ � for each G ∈ + (�), and
let � be any (U,&)-quasirandom =-vertex hypergraph with at least W

(=
A

)
edges.

Suppose in addition that �∗ is a hypergraph on + (�) with ?̂
(=
A

)
edges such that

(�, �∗) is ([, &)-coquasirandom and either ?̂ ≥ (1 − [)W or ?̂ = 0. Finally, fix
any set / of vertices of � with |/ | ≥ 2−1 log =. Then with probability at least
1 − =−5� all of the following good events hold.

(a) When RandomEmbedding is run it does not fail and generates a sequence
(k8)8∈[=−X=] of partial embeddings of � into �.

(b) For each C ∈ [=−X=] the pair (�, imkC) satisfies the (�U,&)-diet condition.
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(c) For each 1 ≤ C ≤ = + 1 − Y=, the partial embedding kC+Y=−2 of � into �
satisfies the (Y, �U, C)-cover condition.

(d) For each C ∈ [= − X=], the triple (�, �∗, imkC) satisfies the (2[, &)-codiet
condition.

(e) For each C ∈ [= − X=], we have |/ \ imkC | = (1 ± �U) =−C= |/ |.

Observe that conclusion (a)(a) of this lemma is the conclusion of Lemma 4.3.84.3.8, so
that proving Lemma 4.4.34.4.3 also proves Lemma 4.3.84.3.8.

The main difficulty is to establish that the cover and diet conditions hold. We
will see that the other two conditions are easy byproducts. The reason for the
difficulty is that the error terms in the cover and diet conditions for small times C
feed back into the calculations which will establish the cover and diet conditions
for larger times C, so that the errors grow. To bound their growth, we define a
new sequence of error terms, which we need only in the proof of Lemma 4.4.34.4.3.
There are three important points to note about the following sequence VC . It is an
increasing sequence, we have V0 = 2U, and V=/V0 is bounded by a constant which
does not depend on U (though it does depend on �, W and X). This last observation
will turn out to be crucial for the analysis of PackingProcess.

Definition 4.4.4. Given & and U, X, W > 0, we define

VC := 2U exp
( 1000&X−2W−2&−10C

=

)
. (4.4.1)

We will mainly take C integer in the range [0, =], but it is convenient to allow C to
be any real number. In particular, for each C ≥ 0, we have

1
=

∫ C

8=0
1000&X−2W−2&−10V8 d8

≤2U
∫ C

8=−∞

1000&X−2W−2&−10

=
exp

( 1000&X−2W−2&−108
=

)
d8 = VC .

(4.4.2)

One should read (4.4.24.4.2) as saying that when we want to estimate a parameter of
the process RandomEmbedding at some time C, even if we make in each step 8 an
error which is a rather large multiple of the current error V8, the total error is still
bounded by VC .

We split the proof of Lemma 4.4.34.4.3 into two parts. The cover lemma
(Lemma 4.4.54.4.5) states that if the (VC , &)-diet condition holds for (�, imk8) for
each 8 ∈ [C − 1], then it is very unlikely that the (Y, 20&VC , C)-cover condition fails
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for kC+Y=−2. Note that the time C + Y=− 2 is the first time at which the (Y, 20&VC , C)-
cover condition is guaranteed to be determined, since at this time all left-neighbours
of all vertices C, C + 1, . . . , C + Y= − 1 have certainly been embedded.

Lemma 4.4.5 (Cover lemma). For each �, each W > 0 and sufficiently large =, let
&, Bmax, U0, UBmax , Y, X and 2 be as in Setting 4.3.44.3.4. Suppose that U0 ≤ U ≤ UBmax

and � is a hypergraph on vertex set [=], with deg−(G) ≤ � for each G ∈ [=], with
maximum degree at most 2=/log =, and suppose that � is an =-vertex hypergraph
of density at least W. Let VC for 0 ≤ C ≤ = be defined as in (4.4.14.4.1) and assume that
V= ≤ 1

10 . Let C with 1 ≤ C ≤ = − X= − Y= + 1 be fixed.
When RandomEmbedding is run to embed � into �, with probability at most

=−6� the following holds. For each 0 ≤ 8 ≤ C − 1 the (VC , &)-diet condition holds
for (�, imk8), but the (Y, 20&VC , C)-cover condition does not hold for kC+Y=−2.

Note that for any 0 ≤ C ≤ =−X=−Y=, if RandomEmbedding runs up to time C and
the (VC , &)-diet condition holds for (�, imkC), then by choice of Y the (2VC , &)-diet
condition holds deterministically for (�, imk 9 ) for each C + 1 ≤ 9 ≤ C + Y=. In
particular RandomEmbedding cannot fail before time C + Y=.
The diet lemma (Lemma 4.4.64.4.6) states that when the (V8, &)-diet condition holds

for (�, imk8) for each 8 ∈ [C − 1], and the (Y, 20&V8, 8)-cover condition holds for
k8+Y=−2 for each 8 ∈ [C + 1 − Y=], then it is unlikely that the (VC , &)-diet condition
fails for (�, imkC). We also obtain the desired codiet condition.

Lemma 4.4.6 (Diet lemma). For each A ≥ 2, � ∈ N, each W > 0, and any
sufficiently large =, let &, U0, U2=, Y, X and [ be as in Setting 4.3.44.3.4. For any
C ≤ (1−X)=, andU0 ≤ U ≤ U2= the following holds. Suppose that� is a hypergraph
on [=] such that deg−(G) ≤ � for each G ∈ [=], and � is an (U,&)-quasirandom
hypergraph with = vertices with ?

(=
A

)
edges, with ? ≥ W. Suppose furthermore that

�∗ is a hypergraph on + (�) and ?̂
(=
A

)
edges with either ?̂ ≥ (1 − [)W or ?̂ = 0,

such that (�, �∗) satisfies the ([, &)-coquasirandomness condition. Let VC for
0 ≤ C ≤ = be defined as in (4.4.14.4.1) and assume that V= ≤ 1

10 . Finally let / be any
subset of + (�) of size at least 2−1 log =.

When RandomEmbedding is run to embed � into �, with probability at most
=−6� the following event occurs.

• For each 1 ≤ 9 ≤ C − 1 the (V 9 , &)-diet condition holds for (�, imk 9 ), and
• for each 1 ≤ 9 ≤ C + 1 − Y= the (Y, 20&V 9 , 9)-cover condition holds for
k 9+Y=−2, and
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• the (VC , &)-diet condition does not hold for (�, imkC), or the (2[, &)-codiet
condition does not hold for (�, �∗, imkC), or |/ \ imkC | ≠ (1 ± VC) =−C= |/ |.

Since the hypergraphs � and � are fixed in the proof of Lemma 4.4.34.4.3, in this
section we drop the subscript in the notation � 9

�↩→� (G) and write simply � 9 (G).
We now show that Lemmas 4.4.54.4.5 and 4.4.64.4.6, whose proofs are deferred to later in
this section, imply Lemma 4.4.34.4.3.

Proof of Lemma 4.4.34.4.3. Given & and W, X > 0, we have � as in Setting 4.3.44.3.4.
Given U > 0, we define VC for each 0 ≤ C ≤ = as in (4.4.14.4.1). We claim that
with high probability, when we run RandomEmbedding, the following event A
occurs: the algorithm RandomEmbedding does not fail, for each 1 ≤ C ≤ = − X=
the pair (�, imkC) satisfies the (VC , &)-diet condition and the triple (�, �∗, imkC)
satisfies the (2[, &)-codiet condition, and for each Y= − 1 ≤ C ≤ = − X= the
(Y, 20&VC−Y=+2, C − Y= + 2)-cover condition holds for kC .
Indeed, if the event A does not occur then there is a first time witnessing

its failure. Let us calculate what is the probability that this first time is C. We
can thus assume A does not fail before time C. This in particular means that
the (V 9 , &)-diet condition holds for (�, imk 9 ) for each 1 ≤ 9 < C, and the
(Y, 20&V 9−Y=+2, 9 − Y= + 2)-cover condition holds for k 9 for each Y= − 1 ≤ 9 < C.
Firstly, we show that RandomEmbedding cannot fail at time C, then we use

Lemma 4.4.54.4.5 to show that with high probability the (Y, 20&VC−Y=+2, C − Y= + 2)-
cover condition holds for kC . Because the (VC−1, &)-diet condition holds for (�,
kC−1), picking ( = kC−1(N−(C)), we have

���C−1(C)\imkC−1
�� = ��N� (()\imkC−1

�� > 0.
It follows that RandomEmbedding cannot fail at time C. Now by Lemma 4.4.54.4.5, the
probability of the (Y, 20&VC−Y=+2, C−Y=+2)-cover condition failing is at most =−6� .

Secondly, we use Lemma 4.4.64.4.6 to show that with high probability neither diet
condition fails at time C. More precisely, by Lemma 4.4.64.4.6, the probability that the
(VC , &)-diet condition fails for (�, imkC), or the (2[, &)-codiet condition fails for
(�, �∗, imkC), is at most =−6� .
We conclude that the probability that a given C is the first time that we witness

eventA failing is at most 2=−6� . Taking a union bound over the at most = choices
of C, we see that with probability at least 1−=−5� the good event from the statement
of Lemma 4.4.34.4.3 holds, i.e., that RandomEmbedding does not fail, and by the choice
of � and by (4.4.14.4.1), for each 1 ≤ C ≤ (1 − X)= the pair (�, imkC) satisfies the
(�U,&)-diet condition and the triple (�, �∗, imkC) satisfies the (2[, &)-codiet
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condition, and for each 1 ≤ C ≤ = + 1 − Y= the embedding kC+Y=−2 satisfies the
(Y, �U, C)-cover condition, as desired.

For the next proof we need the following notation. Given 1 ≤ ℓ ≤ 3 ≤ � we
call a sequence (01, . . . , 0ℓ) whose entries are in [3] an (ℓ, 3)-pattern if we have∑ℓ
8=1 08 = 3.
Next for a vertex G ∈ -C,3 we define a pattern. Let �G denote the following

hyperedge set:
{
4 ∈ � (�) : 4 ⊆ [G], G ∈ 4}, that is the hyperedges that contain

G as last vertex. For each vertex H ∈ [G − 1] let 5 (H) denote the number of edges
4 ∈ �G such that H ∈ 4 and H = max(4 \ {G}), i.e. H is the second largest vertex in
4. We need to remove the zeroes from this sequence in order to obtain the desired
pattern. To that end, let ℓ denote the number of H ∈ [G − 1] such that 5 (H) is
non-zero, and let 01, . . . , 0ℓ be the nonzero values of 5 (H) as H runs from 1 to
G − 1 in order. By construction, this is a (ℓ, |�G |)-pattern which we call the pattern
associated to G.
If a is any (ℓ, 3)-pattern with 1 ≤ ℓ ≤ 3 ≤ �, we let -C,a be defined as the set

of vertices in -C,3 whose associated pattern is a. We note that for each 3 there are
23−1 possible patterns.

We now prove the cover lemma.

Proof of Lemma 4.4.54.4.5. Let 4(�) = ?
(=
A

)
≥ W

(=
A

)
. Let D be the event that the

(VC , &)-diet condition holds for each (�, imk8) with 1 ≤ 8 ≤ C − 1. We fix a vertex
E ∈ + (�). Observe that if E ∈ imkC+Y=−2 then there is nothing to prove, so when
it is necessary we will assume E ∉ imkC+Y=−2. We also fix 1 ≤ ℓ ≤ 3 ≤ � and an
(ℓ, 3)-pattern a. Let B8 denote

∑8
9=1 0 9 and B0 = 0. Define BE,a as the event that D

holds, and that E and a witness the failure of the following condition,��{G ∈ -C,a : E ∈ N�
(
k(N−(G))

)}�� = (1 ± 20&VC)?3 |-C,a | ± Y2=/23 .

Our aim is to show that

P
[
BE,a

]
≤ =−7��−12−� . (4.4.3)

A union bound over the choices of E, 3 and a then gives the lemma.

Our strategy for proving (4.4.34.4.3) is as follows. Ideally, we would like to assert
that for each G ∈ -C,a the probability of E ∈ �G−1(G) is roughly ?3 and apply
Corollary 4.2.24.2.2 to bound the probability of the bad event BE,a. Note that at time
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8 = 0, we have E ∈ �8 (G), and as 8 increases, the set �8 (G) changes exactly at times
when a vertex H ∈ '(G) (i.e. a vertex which is second-to-last in a hyperedge with
last vertex G) is embedded. This ideal strategy is not possible because the indicator
variables 1{E∈�G−1 (G)} may not be sequentially dependent as G ranges over -C,a: the
sets '(G) may interleave each other. For a vertex H ∈ '(G), we write �G (H) for the
set of semi-edges 4 ∈ N−

�
(G) such that H = max(4) (i.e. �G (H) is the set of edges

which witness H ∈ '(G)). We write ,G (H) for the event that for each semi-edge
4 ∈ �G (H) we have {E} ∪ k(4) ∈ � (�). That is, the edges that have H as their
second to last vertex do not stop G from having E in their final candidate set. We
refine our previous strategy as follows. Let H1, . . . , H; be the vertices of '(G) in
increasing order, and we define

,̃G (:) =
(
,G (H1) ∩,G (H2) ∩ . . . ∩,G (H: )

)
so

{
E ∈ �G−1(G)

}
=

ℓ⋂
:=1

,̃G (:) .

(4.4.4)
The event ,̃G (ℓ), of course, equals the entire intersection (4.4.44.4.4). However, this
more complicated way of expressing (4.4.44.4.4) gets us into the setting of sequential
dependence as in Corollary 4.2.24.2.2.
More formally, given 1 ≤ : ≤ ℓ and H ∈ + (�), we define random variables

.:,1, . . . , .:,C+Y=−2 as follows. Let .:,H be the number of vertices G ∈ -C,a such that
H is the :th vertex of '(G) in increasing order and ,̃G (:) holds. In other words,
.:,H counts the number of G ∈ -C,a where H is the :th element of '(G) and which
immediately after embedding H could still be embedded to E (i.e. all the semi-edges
of N−(G) which are contained in [H] have been embedded to semi-edges that make
a hyperedge with E). Observe that .:,1, . . . , .:,C+Y=−2 are by definition sequentially
dependent.

We write B: =
∑:
8=1 08 for the number of semi-edges of N−(G) which are fully

embedded once we embed the :th element of '(G). These quantities are by
definition of a pattern the same for each G ∈ -C,a. For each 0 ≤ : ≤ ℓ, we let Y:
be the event that (1 ± 10VC)B: ?B: |-C,a | ± B:Y2=/(323) vertices G ∈ -C,a have the
property that ,̃G (:) holds. Observe that the event Y: is precisely the statement
that

C+Y=−2∑
H=1

.:,H = (1 ± 10VC)B: ?B: |-C,a | ± B:Y2=/(323) . (4.4.5)
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Our bad event then satisfies

BE,a ⊆
(
D and not Y3

)
,

because we have B: ≤ 3 and (1 ± 10VC)3 = 1 ± 20&VC . In order to bound the
probability of BE,a we cover BE,a with ℓ events, each of whose probabilities we can
bound with Corollary 4.2.24.2.2. For this purpose we define the event

E: = Y:−1 and D

for each 1 ≤ : ≤ ℓ. Note that E1 = D since Y0 holds trivially with probability
one. We thus have

BE,a ⊆
(
D and not Y3

)
⊆

⋃
1≤:≤ℓ

(
E: and not Y:

)
.

Our aim then is to show that for each 1 ≤ : ≤ ℓ we have

P[E: and not Y: ] ≤ =−7�ℓ−1�−12−� . (4.4.6)

Note that this and a union bound over the ℓ choices of : gives (4.4.34.4.3).
To establish (4.4.64.4.6) we would like to apply Corollary 4.2.24.2.2. Hence we need to

argue that either E: fails, or we can estimate
∑C+Y=−2
H=1 E[.:,H |HH−1], where HH−1 is

the history of embedding decisions taken inRandomEmbedding up to and including
the embedding of vertex H − 1. To this end, for H ∈ [C + Y= − 2] let /:,H be the
number of vertices G ∈ -C,a such that H is the :th vertex of '(G) and ,̃G (: − 1)
holds. Also let .:,H,G and /:,H,G be indicator variables that G is counted in .:,H and
/:,H respectively. Then the quantity /:,H,G is determined by HH−1 and

E[.:,H,G |HH−1] = /:,H,G · P
[
,G (H) |HH−1

]
. (4.4.7)

Observe further that
C+Y=−2∑
H=1

/:,H =

C+Y=−2∑
H=1

.:−1,H , (4.4.8)

because both sums count the number of vertices G ∈ -C,0 such that the first : − 1
vertices of '(G) are embedded to� so that ,̃G (:−1) holds, in the first sum grouped
by the :th vertex of '(G) and in the second sum by the (: − 1)st vertex.

Assume now that G, H ∈ + (�) are fixed and that HH−1 does not witness that E:
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fails, and let us bound P
[
,G (H) |HH−1

]
. Since HH−1 does not witness that E: fails

and D ⊆ E: , the (VC , &)-diet condition holds for (�, imkH−Y=), where we have to
subtract Y= in the index of kH−Y= because H could be as large as C + Y= − 2 (and we
only know that the diet condition holds up to time C − 1). This implies that for each
set ( of semi-edges in � with |( | ≤ & we have��N� (() \ imkH−1

�� = (1 ± VC)? |( | (= − H + Y=) ± Y=
= (1 ± VC)? |( | (= − H + 1) ± 2Y= = (1 ± 2VC)? |( | (= − H + 1) ,

where the last inequality follows from W ≤ ? and Y ≤ UW& ≤ 1
2 VCW

& . We conclude
that the (2VC , &)-diet condition holds for (�, imkH−1).

Given kH−1, we define a set # ⊆ �H−1(H) \ imkH−1 of vertices of � with the
following property: if we embed H to any D ∈ # , then we can still embed G to
E. That is, we put D ∈ �H−1(H) \ imkH−1 in # if and only if all the semi-edges
N−(G) ∩ [H] are embedded by kH−1 ∪ {H ↩→ D} to semi-edges of � which form
edges together with E. Note that this definition forces # ∩ imkH−1 = ∅.

We can write # differently: # = N� (() \ imkH−1 where ( is the collection
of semi-edges kH−1

(
N−(H)

)
together with semi-edges of the form {E} ∪ kH−1( 5 )

where H ∉ 5 and 5 ∪ {H} is a semi-edge of �G (H). There are deg−(H) semi-edges
of the first type, and 0: of the second type. Using this observation, we can estimate
|# | using the diet condition. Observe that these semi-edges are all distinct: by
definition the semi-edges kH−1

(
N−(H)

)
contain only vertices in imkH−1, while E is

not in imkH−1. Furthermore they are genuinely semi-edges, i.e. they have A − 1
vertices: for the first type this is obvious since kH−1 is injective, while for the
second type we need to observe that any such 5 has A − 2 vertices by definition and
kH−1( 5 ) does not contain E.
Since deg−(H) ≤ � we have���H−1(H) \ imkH−1

�� = (1 ± 2VC)?deg− (H) (= − H + 1) and

|# | = (1 ± 2VC)?0:+deg− (H) (= − H + 1) .

Therefore we have

P
[
,G (H) |HH−1

]
=

|# |���H−1(H) \ imkH−1
�� = (1 ± 10VC)?0: .
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We conclude from (4.4.74.4.7) that

C+Y=−2∑
H=1
E(.:,H |HH−1) = (1 ± 10VC)?

C+Y=−2∑
H=1

/:,H , (4.4.9)

unless E: fails. Further, unless E: fails, we have

C+Y=−2∑
H=1

/:,H
(4.4.84.4.8)
=

C+Y=−2∑
H=1

.:−1,H
(4.4.54.4.5)
= (1 ± 10VC)B:−1 ?B:−1 |-C,a | ± B:−1Y

2=
323 .

Plugging this into (4.4.94.4.9), and noting B:−1 + 1 ≤ B: , we get that E: fails or we have

C+Y=−2∑
H=1
E[.:,H |HH−1] = (1 ± 10VC)B: ?B: |-C,a | ± (B:−1+0.5)Y2=

323 .

Since 0 ≤ .:,H ≤ deg(H) for each H, we can thus apply Corollary 4.2.24.2.2 with
the event E = E: , with ' = Δ(�), with ˜̀ ± ã = (1 ± 10VC)B: ?B: |-C,a | ±

(
B:−1 +

0.5
)
Y2=3−12−3 , and with r̃ = 1

2Y
2=3−12−3 to conclude that

P [E: and not Y: ] = P
E: and

C+Y=−2∑
H=1

.:,H ≠ ` ± (a + r)


≤ 2 exp
(

− r̃2

2'( ˜̀ + ã + r̃)

)
.

Substituting Δ(�) ≤ 2=/log =, and because 2 ≤ 10−4�−1A−12−2��−4Y4/(100+ A)
and 3 ≤ �, we obtain (4.4.64.4.6) as desired.

We deduce the diet lemma from the following simplified version.

Lemma 4.4.7. For each A ≥ 2, � ∈ N, each W > 0, and any sufficiently large =,
let &, U0, U2=, Y, X and [ be as in Setting 4.3.44.3.4. For any C ≤ (1 − X)=, and
U0 ≤ U ≤ U2= the following holds. Suppose that � is a hypergraph on [=] such
that deg−(G) ≤ � for each G ∈ [=], and � is an (U,&)-quasirandom hypergraph
with = vertices with ?

(=
A

)
edges, with ? ≥ W. Suppose furthermore that �∗ is a

hypergraph on + (�) and ?̂
(=
A

)
edges with either ?̂ ≥ (1 − [)W or ?̂ = 0, such that

(�, �∗) satisfies the ([, &)-coquasirandomness condition. Let VC for 0 ≤ C ≤ = be
defined as in (4.4.14.4.1) and assume that V= ≤ 1

10 . Finally let /
′ be any subset of+ (�)

of size at least 2−1 log =.
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When RandomEmbedding is run to embed � into �, with probability at most
=−7� the following event occurs.

• For each 1 ≤ 9 ≤ C − 1 the (V 9 , &)-diet condition holds for (�, imk 9 ), and
• for each 1 ≤ 9 ≤ C + 1 − Y= the (Y, 20&V 9 , 9)-cover condition holds for k 9 ,
and

• we have |/′ \ imkC | ≠
(
1 ± 1

4 VC
)
=−C
=
|/′|.

Before we prove this lemma, let us briefly observe that it implies Lemma 4.4.64.4.6.

Proof of Lemma 4.4.64.4.6. Observe that the difference between Lemmas 4.4.64.4.6
and 4.4.74.4.7 is that the probability bound in Lemma 4.4.74.4.7 is stronger and the er-
ror term on the size of |/ ∩ imkC | is smaller, and that there are a few more ways
in which we can enter the unlikely event of Lemma 4.4.64.4.6, namely there can be a
failure of the diet or codiet conditions at time C.

Suppose that ' ⊆ ( ⊆ ((�) are sets of semi-edges, with |( | ≤ &. Then '
witnesses a failure of the (VC , &)-diet condition for (�, imkC) if and only if we
have ��N� (') \ imkC

�� ≠ (1 ± VC)? |' | (= − C) .
Observe that by (U,&)-quasirandomness of � we have

��N� (')�� = (1 ± U)? |' |=.
Letting /′ = N� ('), if we have |/′ ∩ imkC | =

(
1 ± 1

4XVC
)
C
=
|/ |, then we have��N� (') \ imkC

�� = (1 ± U)? |' |=(1 − (
1 ± 1

4XVC
)
C
=

)
= (1 ± U)? |' |

(
= − C ± 1

4XVC=
)

= (1 ± U)? |' |
(
1 ± 1

4 VC
)
(= − C) = (1 ± VC)? |' | (= − C)

where the first equality on the second line uses = − C ≥ X= and the second that
U = 1

2 V0 ≤ 1
2 VC and that VC is sufficiently small. In particular, what this cal-

culation establishes is that if ' witnesses a failure of the (VC , &)-diet condition
for (�, imkC), then the corresponding /′ = N� (') witnesses the low-probability
event of Lemma 4.4.74.4.7 occurring. Note that since |/′| ≥ (1 − U)? |' |= ≥ 1

2W
&=, the

condition on |/′| of Lemma 4.4.74.4.7 is indeed satisfied.
If ?̂ = 0, then the (2[, &)-codiet condition for (�, �̂, imkC) is implied by

the (VC , &)-diet condition for (�, imkC) since VC < [. If ?̂ ≥ (1 − [)W, then a
similar calculation shows that if ' and ( witness a failure of the (2[, &)-codiet
condition for (�, �∗, imkC) then the corresponding /′ = N� (') ∩ N�∗ (( \ ')
witnesses the low-probability event of Lemma 4.4.74.4.7 occurring. This calculation
holds with rather more room to spare since [ is much larger than U, and we omit
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the details. Taking a union bound over the at most =2A& + 1 choices of ' and
(, and of / in Lemma 4.4.64.4.6, we observe that the probability that any one of the
corresponding /′ for Lemma 4.4.74.4.7 witnesses the low-probability event occurring
is at most 2=2A&=−7� < =−6� . This is the required upper bound on the probability
of the unlikely event of Lemma 4.4.64.4.6.

We now prove Lemma 4.4.74.4.7.

Proof of Lemma 4.4.74.4.7. Observe that if kC−1 satisfies the (VC−1, &)-diet condition,
RandomEmbedding cannot fail at time C, so kC exists. To begin with, we show that
in any short interval of time, not too many vertices can be embedded to /′. This
analysis is not particularly accurate; we need it for the more accurate analysis that
follows.

Claim 4.4.8. For every 0 ≤ 9 ≤ C − 1, if the (V 9 , &)-diet condition holds for
(�, imk 9 ), then with probability at least 1 − =−10� we have��/′ ∩ (imkmin( 9+Y=,C) \ imk 9 )

�� ≤ 4YW−�X−1 |/′| .

Proof. At each time 9 + 1 ≤ 8 ≤ min( 9 + Y=, C), we embed the vertex 8 to the
set �8−1(8) \ imk8−1. This set is a common neighbourhood of some at most
� semi-edges, from which we remove imk 9 and a further at most Y= vertices.
Since (�, imk 9 ) satisfies the diet condition, we conclude that

���8−1(8) \ imk8−1
�� ≥

3
4W

�X= − Y= ≥ 1
2W

�X=. The probability of embedding 8 to /′ is thus at most
2W−�X−1 |/′|=−1. By Corollary 4.2.24.2.2, the probability that more than 4W−�X−1Y |/′|
vertices 8 with 9 + 1 ≤ 8 ≤ min( 9 + Y=, C) are embedded to /′, is at most exp

(
−

1
2W
−�X−1Y |/′|

)
≤ =−9� since |/′| ≥ 2−1 log = and by choice of 2. �

We now state a claim that if the diet condition holds up to time C − Y=, then for
any given large set ) ⊆ /′, with high probability either the cover condition fails at
some time before C − Y=, or kC embeds about the expected fraction of each interval
of Y= vertices to ) .

Claim 4.4.9. For every 1 ≤ 9 ≤ C − Y= + 1, and for every ) ⊆ + (�) \ imk 9

with |) | ≥ 1
2W

�X |/′|, if the (V 9 , &)-diet condition holds for (�, imk 9 ), then with
probability at least 1 − =−9� , one of the following occurs.

(a) kC does not have the (Y, 20&V 9 , 9)-cover condition, or
(b)

��{G : 9 ≤ G < 9 + Y=, kC−1(G) ∈ )}
�� = (1 ± 40&V 9 ) |) |Y==− 9 .
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We defer the proof of this claim to later, and move on to state a second claim,
which we will deduce from Claim 4.4.94.4.9. Let ℓ = b C

Y=
c. We claim it is likely that

either we witness a failure of the diet or cover conditions before time C, or the set
/′ \ imkℓY= has about the expected size.

Claim 4.4.10. With probability at least 1 − =−8� , one of the following holds.

(a) The (V 9 , &)-diet condition fails for (�, imk 9 ) for some 1 ≤ 9 ≤ C − 1, or

(b) the (Y, 20&V 9 , 9)-cover condition fails for kC−1 for some 1 ≤ 9 ≤ C +1− Y=,
or

(c) we have

��/′ \ imkℓY=
�� = |/′| ℓ−1∏

:=0

(
1 −

(
1 ± 40&V:Y=

)
Y=

=−:Y=

)
. (4.4.10)

Before proving these claims, we show that they imply the lemma. Suppose that
the likely event of Claim 4.4.104.4.10 holds, and, if ℓY= < C, that the likely event of
Claim 4.4.84.4.8 with 9 = ℓY= holds. Taking logs, we have

log
��/′ \ imkℓY=

��
= log

��/′�� + ℓ−1∑
:=0

log
(
1 − (1 ± 40&V:Y=) Y=

=−:Y=

)
= log

��/′�� + ℓ−1∑
:=0

(
log =−(:+1)Y=

=−:Y= + log
(
1 ± 40&V: Y=Y=

=−(:+1)Y=
) )

= log
��/′�� + log

(
1 − ℓY

)
± 2

ℓ−1∑
:=0

40&V: Y=Y
1−(:+1)Y ,

where the final equality holds since 1 − (: + 1)Y ≥ X, and hence by choice of Y
the quantity 40&V: Y=Y

1−(:+1)Y is close to 0. By the likely event of Claim 4.4.84.4.8 we assumed,
if ℓY= < C then the number of vertices embedded to /′ \ imkℓY= by kC is at most
4YX−1W−& |/′\kℓY= |. If ℓY= = C then the same estimate holds trivially. We conclude
|/′ \ kℓY= | = |/′ \ kC | ± 4YX−1W−& |/′|, and so

��/′ \ imkC
�� = |/′| · = − C ± Y=

=
· exp

(
± 80&X−1Y

ℓ−1∑
:=0

V:Y=

)
± 4YX−1W−& |/′| .

(4.4.11)
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Now since VG is increasing in G, we can estimate

80&X−1Y

ℓ−1∑
:=0

V:Y= ≤ 1
=
80&X−1

ℓ=−1∑
G=0

VG ≤ 1
=

∫ ℓ=

G=−∞
80&X−1VG dG

(4.4.24.4.2)
≤ 1

16 Vℓ= ≤
1
16 VC .

Since 1
16 VC is small, we have exp

(
± 1

16 VC
)
= 1 ± 1

8 VC . Plugging this into (4.4.114.4.11)
we get��/′ \ imkC

�� = |/′| · (= − C ± Y=
=

·
(
1 ± 1

8 VC
)
± 4YX−1W−&

)
=

(
1 ± 1

4 VC
)
|/′| =−C

=
,

where the final equality uses the fact that Y is tiny compared to VC , X2 and W& .
This concludes the proof of the lemma, modulo the proofs of Claim 4.4.94.4.9 and
Claim 4.4.104.4.10, which we now provide.

Proof of Claim 4.4.94.4.9. Let 9 and ) be as in the statement, and suppose that the
likely event of Claim 4.4.84.4.8 holds for /′ and 9 . Fix 0 ≤ 3 ≤ �. We want to show
how to make use of the (Y, 20&V 9 , 9)-cover condition for k 9 (which we have when
Part (a)(a) fails) to deduce that the assertion of Part (b)(b) holds with high probability.
That is, we consider the number of vertices in - 9 ,3 embedded to ) . In order to
apply Corollary 4.2.24.2.2, we want to estimate the sum over G ∈ - 9 ,3 of the probability
that G is embedded to ) , conditioning on kG−1, that is, we need to estimate the
number ��) ∩ �G−1(G) \ imkG−1

�����G−1(G) \ imkG−1
�� . (4.4.12)

By the diet condition, we have
���G−1(G) \ imk 9

�� = (1 ± V 9 )?3 (= − 9). Since
9 < C ≤ (1 − X)=, since G ≤ 9 + Y=, since ? ≥ W, and by choice of Y, we have���G−1(G) \ imkG−1

�� = (1 ± 2V 9 )?3 (= − 9) , (4.4.13)

thus providing a bound on the denumerator in (4.4.124.4.12). (Note that this bound on
the denumerator does not depend on the choice of G ∈ - 9 ,3 .) Now G is embedded
uniformly at random into �G−1(G) \ imkG−1, so it remains to determine the sum of
the numerators in (4.4.124.4.12). We rewrite the sum as∑

G∈- 9 ,3

��) ∩ �G−1(G) \ imkG−1
�� = ∑

E∈)

��{G ∈ - 9 ,3 : E ∈ �G−1(G) \ imkG−1}
�� .

We split this sum into two cases. For E ∉ imk 9+Y=, by definition E ∈ �G−1(G) \
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imkG−1 holds if and only if E ∈ �G−1(G), and by the (Y, 20&V 9 , 9)-cover condition
we have��{G ∈ - 9 ,3 : E ∈ �G−1(G) \ imkG−1}

�� = (1 + 20V 9 )?3 |- 9 ,3 | ± Y2= .

Observe that this quantity is bounded between 0 and Y=. For G ∈ imk 9+Y=, we use
the trivial bound 0 ≤

��{G ∈ - 9 ,3 : E ∈ �G−1(G) \ imkG−1}
�� ≤ Y=, which we write as��{G ∈ - 9 ,3 : E ∈ �G−1(G) \ imkG−1}

�� = (1 + 20V 9 )?3 |- 9 ,3 | ± Y2= ± Y= .

Since there are by the good event of Claim 4.4.84.4.8 at most 4YW−�X−1 |/′| vertices
G ∈ ) such that G ∈ imk 9+Y=, we obtain the estimate∑

G∈- 9 ,3

��) ∩ �G−1(G) \ imkG−1
�� = ∑

E∈)

��{G ∈ - 9 ,3 : E ∈ �G−1(G) \ imkG−1}
��

= |) |
(
(1 + 20V 9 )?3 |- 9 ,3 | ± Y2=

)
± 4YW−�X−1 |/′| · Y=

= |) |
(
(1 + 20V 9 )?3 |- 9 ,3 | ± 10Y2W−2�X−2=

)
, (4.4.14)

where the second line uses the bounds we calculated above and the third our
assumption |) | ≥ 1

2W
�X |/′|.

We can thus apply Corollary 4.2.24.2.2, setting E to be the event that the
(Y, 20�V 9 , 9)-cover condition holds for k 9 . Combining (4.4.134.4.13) and (4.4.144.4.14),
the expected number of vertices of - 9 ,3 embedded to ) is

(1 ± 20&V 9 )?3 |) | |- 9 ,3 | ± 10Y2W−2�X−2=|) |
(1 ± 2V 9 )?3 (= − 9)

=

= (1 ± 30&V 9 )
|) | |- 9 ,3 |
= − 9 ± 20Y2W−3�X−3 |) | ,

where we use =− 9 ≥ X= and ? ≥ W. By Corollary 4.2.24.2.2, with ' = 1, the probability
that the (Y, 20&V 9 , 9)-cover condition holds for k 9 and the outcome differs from
this by more than Y2 |) | is at most 2 exp(−Y4 |) |) ≤ =−10� , where the inequality
holds by our assumptions on |) | and |/′| and choice of 2. Taking the union bound
over the � + 1 choices of 3 and the unlikely events of Claim 4.4.84.4.8, we conclude
that with probability at most =−9� the (Y, 20&V 9 , 9)-cover condition holds for k 9
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and the number of vertices G with 9 ≤ G < 9 + Y= embedded to ) is not equal to

(1 ± 30&V 9 )
|) |Y=
= − 9 ± 40(� + 1)Y2W−3�X−3 |) | = (1 ± 40&V 9 )

|) |Y=
= − 9 ,

where the final equality uses our choice of Y tiny compared to �−1, V 9 , W3� and
X4. This is what we wanted to show. �

Proof of Claim 4.4.104.4.10. We set ): = /′ \ imk:Y=. Suppose that |): | ≥ 1
2W

�X |/′|,
and note that this assumption holds for : = 0 trivially. On this assumption, we can
apply Claim 4.4.94.4.9 with ) = ): and obtain that with probability at least 1 − =−9�

either a failure of the diet or the cover condition is witnessed before time : , or we
have

|):+1 | = |): |
(
1 −

(
1 ± 40&V:Y=

) Y=

= − :Y=

)
.

Inductively, taking the union bound over 0 ≤ : ≤ ℓ − 1, with probability at least
1 − =1−9� > 1 − =−8� one of the following occurs. Either we witness a failure
of the diet or cover condition before time ℓY=, or for each 1 ≤ : ≤ ℓ we have
|):−1 | ≥ 1

2W
�X |/′| and hence

��): �� = |/′| :−1∏
8=0

(
1 − (1 ± 40&V8Y=) Y=

=−8Y=

)
≥ 1

2W
�X |/′| . �

4.5 Maintaining quasirandomness

In this section we provide the proofs of Lemma 4.3.64.3.6 and Lemma 4.3.74.3.7.

4.5.1 Initial coquasirandomness

We begin with the easy proof of Lemma 4.3.64.3.6, which states that splitting the edges
of a quasirandom hypergraph randomly gives a coquasirandom pair with high
probability.

Proof of Lemma 4.3.64.3.6. Using Theorem 4.2.14.2.1 we see that the densities ?0 and ?∗0
of �0 and �∗0 satisfy

?0 = (1 ± U0
1000& ) (? − W) and ?∗0 = (1 ±

U0
1000& )W (4.5.1)
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with probability at least 1 − =−6� , giving the first part of Lemma 4.3.64.3.6.
Now, let ' ⊆ ( ⊆ ((�̂) be two sets of size at most&. By quasirandomness of �̂

we have |N
�̂
(() | = (1 ± b)? |( |=. Observe that each vertex of N

�̂
(() appears with

probability @ |' | (1 − @) |(\' | in N�∗0 (') ∩ N�0 (( \ '). Hence,

E
[���N�∗0 (') ∩ N�0 (( \ ')

���] = @ |' | (1 − @) |(\' | (1 ± b)? |( |= .
Observe also that for distinct vertices in N

�̂
(() the events whether these appear in

N�∗0 (')∩N�0 ((\') are independent. Using again Theorem 4.2.14.2.1, with probability
at least 1 − =−&−10 we have that���N�∗0 (') ∩ N�0 (( \ ')

��� = @ |' | (1 − @) |(\' | (1 ± 2b)? |( |= . (4.5.2)

Taking the union bound we conclude that (4.5.24.5.2) holds for all ( ⊆ ((�̂) with
|( | ≤ & and ' ⊆ ( with probability at least 1 − =−6� .
Now, assume that (4.5.14.5.1) holds. Then the right-hand side of (4.5.24.5.2) can be

rewritten as

(1 ± 2b)W |' | (? − W) |(\' |= = (1 ± 2b)
(

?∗0

1± b0
1000&

) |' | (
?0

1± U0
1000&

) |(\' |
=

= (1 ± 2b) (1 ± U0
100 ) (?

∗
0)
|' |? |(\' |0

=
(
1 ± 1

10U0
)
(?∗0)

|' |? |(\' |0 .

We conclude that (�∗0, �0) is
( 1

10U0, &)-coquasirandom with probability at least
1 − =−5� .

4.5.2 Maintaining coquasirandomness

In this subsection we prove Lemma 4.3.74.3.7. We need to show that, provided coquasir-
andomness is maintained up to stage B−1 and RandomEmbedding does not fail, it is
likely that coquasirandomness holds after stage B, when �B is embedded into �B−1

and we obtain �B. Let us briefly sketch the idea (for convenience focusing only on
quasirandomness of �B). We fix a set ' ⊆ ((�̂) with |' | ≤ &, and consider the
running of PackingProcess up to stage B. We want to show that it is very unlikely
that ' witnesses the failure of �B to be quasirandom, since then the union bound
over choices of ' tells us that it is likely that �B is quasirandom. In other words,
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we want to know that
��#�B (')�� is very likely close to the expected size. We write��#�B (')�� = ��#�0 (')

�� − .1 − · · · − .B ,

where .8 =
��#�8−1(')

��− ��#�8 (')�� is the change at step 8, and apply Corollary 4.2.24.2.2
to show that the sum .1 + · · · + .B is very likely to be close to its expectation. So
proving Lemma 4.3.74.3.7 boils down to estimating accurately E(.8 |�8−1). We now
sketch how this goes.

Observe that .8 is equal to the number of 1-stars in �8−1 whose leaves are '
with centre E ∈ N�8−1 (') (that is, the hypergraph obtained from ' by adding to
each semi-edge of ' the vertex E to make a hyperedge of �8−1), at least one of
whose hyperedges is used in embedding �8 to �8−1. By linearity of expectation,
E(.8 |�8−1) is equal to the sum, over 1-stars in �8−1 whose leaves are ', of the
probability that at least one edge in the star is used in embedding �8. We will see
that this probability is about the same for any given star (, and the problem is to
calculate it. To do this we need to consider the running of RandomEmbedding.
First, we find accurate bounds on the probability any one of a small set * of

vertices being used in a short time interval in RandomEmbedding. That is, we con-
dition on a give kC−1 and suppose*∩ imkC−1 = ∅. We then let RandomEmbedding
embed the following vertices C, C + 1, . . . , C + Y= − 1. If we embedded each such
vertex to an unused vertex uniformly at random, it would have a roughly |* |

=−C chance
of being embedded to *, and we would estimate a probability Y=|* |

=−C of using any
vertex of* during all the Y= embeddings. Note that we do not consider in this heur-
istic either the fact that the number of used vertices is decreasing or that we might
embed to two different vertices of*. These two facts do affect the probability, but
(because Y is tiny) the effect is negligible. What is important is that of course we
do not embed a vertex G uniformly to the unused vertices, but rather to the unused
vertices in its candidate set, which intersects* in an unknown amount. We use the
diet condition to control the number of vertices in the candidate set of G that are
unused, and the cover condition to control (on average) the size of the intersection
with *. A complication is that at time C − 1 the (Y, �U, C)-cover condition which
we want to use has not been decided: to get around this, we suppose it is unlikely
to fail.

Lemma 4.5.1. For each A ≥ 2, � ∈ N and W > 0, let &, X, U0, UBmax , �, Y be as in
Setting 4.3.44.3.4. The following holds for any U0 ≤ U ≤ UBmax and all sufficiently large
=. Suppose that� is a hypergraph on [=] such that deg−(G) ≤ � for each G ∈ + (�),
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and � is an (U,&)-quasirandom hypergraph with = vertices and ?
(=
A

)
edges, with

? ≥ W. Let 1 ≤ : ≤ 2� be fixed and * ⊆ + (�) with |* | = : be arbitrary. When
RandomEmbedding is run to embed � into �, for any 1 ≤ C ≤ = + 1 − (X + Y)=, if
the historyHC−1 up to and including embedding C−1 is such that |*∩ imkC−1 | = 0,
the (�U,&)-diet condition holds for (�, imkC−1), and the probability, conditioned
on HC−1, of the (Y, �U, C)-cover condition failing is at most =−3, we have

P
(��* ∩ imkC+Y=−1 | ≥ 1

���HC−1

)
= (1 ± 10�U) :Y=

=−C .

Furthermore, for any 0 ≤ @ < Y=, we have

P
(��* ∩ imkC+@−1 | ≥ 1

���HC−1

)
≤ 2YW�X: .

The main technical difficulty in this proof is to rigorously allow for embedding
to multiple vertices of *. To deal with this, we define the following Modified
RandomEmbedding, which generates a sequence of embeddings with an identical
distribution to RandomEmbedding, but which in addition generates a sequence of
reported vertices. The modification we make is simple: at each time 1 ≤ C′ ≤
= − X=, RandomEmbedding chooses a vertex of �C ′−1

�↩→� (C
′) \ imkC ′−1. In Modified

RandomEmbedding, we instead choose a vertexF of�C ′−1
�↩→� (C

′)\ (imkC ′−1\*), and
report this vertex. If the reported vertex F is not in imkC ′−1, we set kC ′ = kC ′−1 ∪
{C′ ↩→ F}, as in RandomEmbedding. If the reported vertex is in imkC ′−1 (which
happens only if F ∈ *) we choose F′ uniformly at random in �C ′−1

�↩→� (C
′) \ imkC ′−1,

and set kC ′ = kC ′−1 ∪ {C′ ↩→ F′}. It is not too hard to estimate the expected number
of vertices of * reported, and easy to show that the contribution due to multiple
reports of vertices of * is tiny. The probability of RandomEmbedding using E
is the same as the probability that Modified RandomEmbedding reports E at least
once, which we can thus calculate.

Proof of Lemma 4.5.14.5.1. Instead of RandomEmbedding, we considerModified Ran-
domEmbedding as defined above, which creates the same embedding distribution.
For each 8, let A (8) be the vertex reported by Modified RandomEmbedding at time
8.

Note that since the (�U,&)-diet condition holds for (�, imkC−1), for each C ≤
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G < C + Y=, setting ( = kG−1(N−(G)), we have���G−1(G) \ imkG−1
�� ± : = ��N� (() \ imkC−1

�� ± Y= ± :
= (1 ± �U)? |N− (G) | (= − C) ± Y= ± :
= (1 ± 2�U)? |N− (G) | (= − C) .

(4.5.3)

To begin with, we obtain an easy (but not very accurate) upper bound on the
probability of a vertex E ∈ * being used by a vertex G with C ≤ G < C + Y=.
By (4.5.34.5.3), the probability that any such G is embedded to E, conditioned on kG−1,
is at most 2W�X=−1, and so by the union bound the probability that some vertex G
with C ≤ G < C + Y= is embedded to E is at most 2YW�X. Summing over E ∈ * we
obtain the ‘furthermore’ statement of the lemma.

We shall use the following two auxiliary claims.
Define � as the randomvariable counting the timeswhen a vertex in* is reported

by Modified RandomEmbedding in the interval C ≤ G < C + Y=,

� =
�� {G ∈ [C, C + Y=) : A (G − 1) ∈ *

} �� .
The probability that RandomEmbedding uses vertices of * in the interval C ≤
G < C + Y=, conditioning on HC−1, is equal to the probability that Modified Ran-
domEmbedding reports a vertex of* at least once in that interval, which probability
is by definition at least

E
[
� |HC−1

]
−

Y=∑
ℓ=2
P
(��{G ∈ [C, C + Y=) : A (G − 1) = E

}�� ≥ ℓ |HC−1

)
.

Our first claim estimates E
[
� |HC−1

]
.

Claim 4.5.2. We have that

E
[
� |HC−1

]
= :

(
(1 ± 4�U) Y=

= − C ± 4(� + 1)Y2W−2�X−2
)
.

Our second claim is that the sum in the expression above is small.
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Claim 4.5.3. We have that

Y=∑
ℓ=2
P
(��{G ∈ [C, C + Y=) : A (G − 1) = E

}�� ≥ ℓ |HC−1

)
≤ 8:2Y2W−2�X−2

≤ 8:�Y2W−2�X−2 .

By choice of Y, we have 64(� + 1)�Y2W−2�X−2 < �UYX−1, so putting the two
claims together we have a proof of the Lemma.

Proof of Claim 4.5.24.5.2. Let us fix a vertex E ∈ *. By linearity of expectation, it is
enough to estimate the random variable �′ counting the number of times when E
is reported by Modified RandomEmbedding in the interval C ≤ G < C + Y=.
By linearity of expectation, we have

E
[
�′ |HC−1

]
=

C+Y=−1∑
G=C

P
(
E is reported at time G

��HC−1
)

=

C+Y=−1∑
G=C

E

[
1{E ∈ �G−1(G)}

|�G−1(G) \ (imkG−1 \ {E}) |

���HC−1

]
=

C+Y=−1∑
G=C

E

[
1{E ∈ �G−1(G)}

|�G−1(G) \ imkG−1 | ± :

���HC−1

]
.

(4.5.4)

Using (4.5.34.5.3), we get

E
[
�′ |HC−1

]
=

C+Y=−1∑
G=C

P
(
E ∈ �G−1(G)

��HC−1
)

(1 ± 2�U)? |N− (G) | (= − C)
.

Splitting this sum up according to |N−(G) |, and again using linearity of expectation,
we have

E
[
�′ |HC−1

]
=

�∑
3=0

E
(
|{G ∈ -C,3 : E ∈ �G−1(G)}|

��HC−1
)

(1 ± 2�U)?3 (= − C)
.

We now need to estimate E
(
|{G ∈ -C,3 : E ∈ �G−1(G)}|

��HC−1
)
. We do this by

separating two cases. In the case that the (Y, �U, C)-cover condition holds and
E ∉ imkC+Y=−1, the cover condition gives

|{G ∈ -C,3 : E ∈ �G−1(G)}| = (1 ± �U)?3 |-8,3 | ± Y2= .
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If either the (Y, �U, C)-cover condition fails, or E ∈ imkC+Y=−1, we use the trivial
bound that the given set size is in [0, Y=] since |-C,3 | ≤ Y=, and write

|{G ∈ -C,3 : E ∈ �G−1(G)}| = (1 ± �U)?3 |-8,3 | ± Y2= ± Y= .

The second case holds with probability at most =−3 + 2YW�X, by our assumption
on the likelihood of the cover condition failing and by our easy upper bound on the
probability of embedding some G to E. Putting these together, we get

E
(
|{G ∈ -C,3 : E ∈ �G−1(G)}|

��HC−1
)
= (1 ± �U)?3 |-8,3 | ± Y2= ±

(
=−3 + 2YW�X

)
Y=

= (1 ± �U)?3 |-8,3 | ± 3W�XY2= .

Substituting this in, we have

E
[
�′ |HC−1

]
=

�∑
3=0

(1 ± �U)?3 |-C,3 | ± 3W�XY2=

(1 ± 2�U)?3 (= − C)

= (1 ± 4�U) Y=
=−C ± 4(� + 1)Y2W−2�X−2 ,

where the last equality uses ? ≥ W and = − C ≥ X=.
By linearity of expectation, we have

E
[
� |HC−1

]
= :E

[
�′ |HC−1

]
,

which proves the claim. �

Proof of Claim 4.5.34.5.3. Since the (�U,&)-diet condition holds for (�, imkC−1),
since ? ≥ W, and since = − C ≥ X=, for each G ∈ [C, C + Y=), when we embed
G we report a uniform random vertex from a set of size at least 1

2W
�X=. The prob-

ability of reporting a vertex in * when we embed G is thus at most 2:W−�X−1=−1,
conditioning on HC−1 and any embedding of the vertices [C, G). Since the condi-
tional probabilities multiply, the probability that at each of a given ℓ-set of vertices
in [C, C + Y=) we report E is at most 2ℓ:ℓW−ℓ�X−ℓ=−ℓ. Taking the union bound over
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choices of ℓ-sets, we have

Y=∑
ℓ=2
P
(��{G ∈ [C, C + Y=) : A (G − 1) = E

}�� ≥ ℓ |HC−1

)
≤

≤
Y=∑
ℓ=2

(
Y=

ℓ

)
2ℓ:ℓW−ℓ�X−ℓ=−ℓ ≤

Y=∑
ℓ=2

(
2:YW−�X−1)ℓ ≤ 4:2Y2W−2�X−2

1−2YW−�X−1

≤8:2Y2W−2�X−2 ,

where we use the bound
(Y=
ℓ

)
≤ (Y=)ℓ and sum the resulting geometric series. �

We now extend this to deal with intervals of any length, and replace the single
history in which the cover condition is not too likely to fail with a sufficiently large
collection of histories.

Lemma 4.5.4. Given � ∈ N and W > 0, let &, X, U0, UBmax , �, Y be as in Set-
ting 4.3.44.3.4. Then the following holds for any U0 ≤ U ≤ UBmax and all sufficiently
large =. Suppose that � is a hypergraph on [=] such that deg−(G) ≤ � for each
G ∈ + (�), and � is an (U,&)-quasirandom hypergraph with = vertices and ?

(=
A

)
edges, with ? ≥ W. Let 0 ≤ C0 < C1 ≤ = − X=. Let L be a history ensemble
of RandomEmbedding up to time C0, and suppose that P(L ) ≥ =−4� . Then the
following hold for any fixed 1 ≤ : ≤ 2� and set of vertices* ⊆ + (�) with |* | = : .
If |* ∩ imkC0 | = 0 then we have

P( |* ∩ imkC1 | = 0|L ) = (1 ± 100�:UX−1)
( =−1−C1
=−C0

) :
.

We should note that the numerator = − 1 − C1 might look strange, since kC1 has
= − C1 unused vertices. The extra −1 is absorbed in the error term, and will make
for neater cancellation in a future lemma.

Proof. We divide the interval (C0, C1] into ℓ := d(C1 − C0)/Y=e intervals, all but
the last of length Y=. Let L0 := L . Let, for each 1 ≤ 8 < ℓ, the set L8 be
the embedding histories up to time C0 + 8Y= of RandomEmbedding which extend
histories in L8−1 and are such that |* ∩ kC0+8Y= | = 0. Let Lℓ be the embedding
histories up to time C1 extending those in Lℓ−1 such that |* ∩ kC1 | = 0. Thus we
have

P( |* ∩ imkC1 | = 0|L ) = P(Lℓ)/P(L0) .
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Finally, for each 1 ≤ 8 ≤ ℓ, let the set L ′
8−1 consist of all histories in L8−1 such that

the (�U,&)-diet condition holds for (�, imkC0+(8−1)Y=) and the probability that the
(Y, �U, C0 + 1 + (8 − 1)Y=)-cover condition fails, conditioned on kC0+(8−1)Y=, is at
most =−3. In other words, L ′

8
is the subset of L8 consisting of typical histories,

satisfying the conditions of Lemma 4.5.14.5.1.
We now determine P(Lℓ) in terms of P(L0), and in particular we show induct-

ively that P(L8) > =−9�/2 for each 8. Observe that for any time C, the probability
(not conditioned on any embedding) that either the (�U,&)-diet condition fails for
(�, imk 9 ) for some 9 ≤ C or that the (Y, �U, C + 1)-cover condition has probability
greater than =−3 of failing, is at most =−5� by Lemma 4.4.34.4.3. In other words, for
each 8 we have P(L8 \L ′

8
) ≤ =−5� . Thus by Lemma 4.5.14.5.1 we have

P(L8) =
(
1 − : (1 ± 10�U) Y=

=−C0−(8−1)Y=
)
P(L ′

8−1) ± =
−5�

=
(
1 − : (1 ± 10�U) Y=

=−C0−(8−1)Y=
) (
P(L8−1) ± =−5� ) ± =−5�

=
(
1 − : (1 ± 20�U) Y=

=−C0−(8−1)Y=
)
P(L8−1) ,

where the final equality uses the lower bound P(L8−1) ≥ =−9�/2. Similarly, using
the ‘furthermore’ statement of Lemma 4.5.14.5.1, we have

P(Lℓ) =
(
1 ± 4YW�X:

)
P(Lℓ−1) .

Putting these observations together, we can compute P(Lℓ):

P(Lℓ) =
(
1 ± 4YW�X:

)
P(L0)

ℓ−1∏
8=1

(
1 − : (1 ± 20�U) Y=

=−C0−(8−1)Y=

)
.

Observe that the approximation log(1+ G) = G ± G2 is valid for all sufficiently small
G. In particular, since = − C0 − (8 − 1)Y= ≥ = − C1 ≥ X= and by choice of Y, for each
8 we have

log
(
1 − : (1 ± 20�U) Y=

=−C0−(8−1)Y=

)
= −: (1 ± 30�U) Y=

=−C0−(8−1)Y= .
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Thus we obtain

logP(Lℓ) = logP(L0) ± 8YW�X: −
ℓ−1∑
8=1

: (1 ± 30�U) Y=
=−C0−(8−1)Y=

= logP(L0) ± 8YW�X: − : (1 ± 40�U)
∫ (ℓ−1)Y=

G=0

1
=−C0−G dG

= logP(L0) ± 8YW�X: − : (1 ± 50�U)
(
log(= − C0) − log(= − 1 − C1)

)
= logP(L0) + : log =−1−C1

=−C0 ± 8YW�X: ± 50:�U log X−1 , (4.5.5)

where we use C1 ≤ = − X=, and we justify that the integral and sum are close by
observing that for each 8 in the summation, if (8 − 1)Y= ≤ G ≤ 8Y= then we have

1
=−C0−8Y= ≤

1
=−C0−G ≤

1
=−C0−(8−1)Y= ≤ (1 + U)

1
=−C0−8Y= ,

where the final inequality uses = − C0 − 8Y= ≤ = − C1 ≤ X= and the choice of Y. By
choice of Y, and since X−1 > log X−1, this gives the lemma. Furthermore, (4.5.54.5.5),
and the fact C1 ≤ =−X=, imply that P(Lℓ) ≥ =−9�/2. Since theL8 form a decreasing
sequence of events the same bound holds for each L8.

Next, suppose that � is a small labelled induced subhypergraph of � whose
vertices are in [= − X=], and suppose that we have a not necessarily induced copy
of � in �, with r : + (�) → + (�) the embedding witnessing this. Suppose in
addition / is a small set of vertices of � disjoint from r(+ (�)). We now estimate
the probability that RandomEmbedding embeds � to �∗, preserving the labels (i.e.
we produce an embedding extending r) and does not use any vertex of / . For the
moment, the reader should think of � as being a single vertex.

The idea is the following. Suppose � = {D} is a single vertex. We embed D
to r(D) if and only if, as we run through + (�), for each semi-edge ( ∈ N−

�
(D),

we embed ( to a semi-edge which forms an edge of � together with r(D), all the
while not using the vertices r(D) or / . We then embed D to r(D), and complete the
embeddingwithout using / . The point of phrasing it like this is that we can estimate
accurately (using the diet condition) the probability of embedding ( ∈ N−

�
(D) to

a semi-edge which forms an edge of � with r(D): wherever we embed the first
A − 2 vertices of (, what matters is where we embed the final vertex to complete
the embedding of (. So we can split up the embedding of � into a collection of
intervals (in which we embed vertices which are neither D nor in the set '(D) of
maximum vertices of () together with the embeddings of the vertices of '(D) and
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finally of D. We can use Lemma 4.5.44.5.4 to estimate the chance that r(D) or / is
used in an interval. Finally, if we know that N−

�
(D) is embedded to a collection of

semi-edges which all form edges with r(D) and r(D) is not used when we come to
embed D, then we can also estimate accurately the probability of embedding D to
r(D).
For more general �, there are two points to change in the above sketch. First,

there are several different vertices in + (�) and consequently we need to split the
embedding up into more intervals. Second, it is no longer necessarily the case that
for each ( ∈ N−

�
(D) the embedding of the last vertex is what matters. Rather, what

matters is the embedding of the last vertex of ( \+ (�). Note that if ( \+ (�) = ∅,
then ( ∪ {D} is an edge of �.

In what follows, we also slightly extend the rôle of /: we allow for considering
only part of the run of RandomEmbedding up to some point =− X̃=, where X ≤ X̃ ≤
1 − X.

Lemma 4.5.5. For each A ≥ 2, � ∈ N, and W > 0, let constants&, X, Y, �, U0, UBmax

be as in Setting 4.3.44.3.4. Then the following holds for any U0 ≤ U ≤ UBmax and all
sufficiently large =. Suppose that � is a hypergraph on [=] such that deg−(G) ≤ �
for each G ∈ + (�), and � is an (U,&)-quasirandom hypergraph with = vertices
and ?

(=
A

)
edges, with ? ≥ W. Let X ≤ X̃ ≤ 1−X. Let � be an induced subhypergraph

of � with 0 ≤ |+ (�) | ≤ �, and suppose + (�) ⊆ [= − X̃=]. Let r : + (�) → + (�)
be an embedding of �. Finally let / ⊆ + (�) \ r(+ (�)) be of size at most�. When
RandomEmbedding is run to embed � into �, the probability that k=−X̃= extends
r and imk=−X̃= ∩ / = ∅ is(

1 ± 200� ( |+ (�) | + 2|/ |)UX−1) (2+2�) |+ (�) |+1?−|� (�) |=−|+ (�) | X̃ |/ | .
Observe that the number of labelled copies of � in � is easily seen (by quasiran-

domness of �) to be roughly ? |� (�) |=|+ (�) |, so this lemma states that we embed � in
� to a copy chosen (roughly) uniformly at random and this is roughly independent
of the set of vertices left unused.

Proof. If |+ (�) | = 0, the lemma statement follows directly from Lemma 4.5.44.5.4 with
C0 = 0 and C1 = = − X̃=, so we now assume |+ (�) | ≥ 1. Let + (�) = {G1, . . . , Gℓ} in
increasing order.

We define relevant vertices in the following way: for each edge 4 ∈ � (�) \� (�)
whose final vertex is in+ (�), we let the last vertex in 4 \+ (�) be a relevant vertex.
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Let I1, . . . , I: be the increasing sequence of relevant vertices. Note that : ≤ �ℓ as
each vertex of � has at most � left neighbours. Let (8 denote the set of hyperedges
4 ∈ � (�) such that max(4) is in + (�), and I8 = max

(
4 \ + (�)

)
. We say that a

partial embedding kI8 of [1, . . . , I8] is good for (8 if for each hyperedge 4 ∈ (8, the
set kI8

(
4 \+ (�)

)
∪ r

(
4 ∩+ (�)

)
is a hyperedge of �.

Let 90 = 0, and for each 1 ≤ 8 ≤ ℓ − 1, let 98 be the index such that I 98 <
G8 < I 98+1 . Let 9ℓ = : . Observe that the interval

[
1, = − X̃=

]
is split by removing

{G1, . . . , Gℓ, I1, . . . , I: } into : + ℓ + 1 intervals �1, . . . , �:+ℓ+1 in increasing order.
For convenience, when two vertices in {G1, . . . , Gℓ, I1, . . . , I: } are consecutive in
+ (�), we say there is an interval between them, but it contains zero vertices
(in order to justify having exactly : + ℓ intervals). Thus the interval �1 is either
[1, I1 − 1] or [1, G1 − 1], depending on whether I1 < G1 or not, and so on, and the
final interval �:+ℓ+1 is the interval [max(+ (�)) + 1, = − X̃=] (or the empty interval
if max(+ (�)) = = − X̃=).
We consider the run of RandomEmbedding split up in this way, with the various

intervals and the embeddings of the individual vertices {G1, . . . , Gℓ, I1, . . . , I: }.
We obtain an increasing sequence C0, . . . , C2:+2ℓ+1 of critical times, where C0 = 0,
C1 = max(�1) is the last vertex of �1 (or 0 if �1 = ∅), C2 is whichever is smaller from
G1 and I1, and so on. In general, C28−1 will be the last vertex of �8 (if this interval
is empty, we set C28−1 = C28−2 ) and C28 is the 8th vertex of {G1, . . . , Gℓ, I1, . . . , I: }.
Correspondingly, we define a nested collection of events L0, . . . ,L2:+2ℓ+1. The
first, L0, is the sure event, and the last is the event that k=−X̃= extends r and has
image disjoint from / whose probability we want to estimate. In general, we let
L8 be the event that after embedding C8 it is not yet impossible to have the desired
event. More formally, L28−1 is the event that L28−2 occurs and furthermore no
vertex of �8 was embedded to r

(
+ (�)

)
∪ / , and L28 is the event that L28−1 occurs

and furthermore, if C28−1 = G 9 then G 9 is embedded to r(G 9 ), while if C28−1 = I 9 then
kI 9 is good for ( 9 and I 9 is not embedded to any vertex of r

(
+ (�)

)
∪ / .

Since these events are nested, we have

P
[
L2:+2ℓ+1

]
= P[L0]

2:+2ℓ+1∏
8=1

P
[
L8

��L8−1
]
, (4.5.6)

and we will see that we can estimate each of the conditional probabilities in
this product accurately. These estimates will depend on an assumption that
P[L8] ≥ =−2� , which we will justify by establishing this bound for the smal-
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lest event L2:+2ℓ+1 at the end of the proof. We first state as a claim the bounds
on the various P

[
L8

��L8−1
]
which we need: there are three types, depending on

whether C8 is the end of an interval, or some G 9 , or some I 9 . Though the formulae are
somewhat complicated, we will see that most of the main terms end up cancelling.
We need one more definition: for each 8, we let ℓ8 :=

��+ (�) \ [1, C8]�� be the number
of vertices of � still to embed once C8 is embedded.

Claim 4.5.6. If C8 is the end of the interval � 9 , then we have

P
[
L8

��L8−1
]
=

(
1 ± 200� (ℓ8 + |/ |)UX−1) ( =−1−C8

=−C8−1

)ℓ8+|/ |
. (4.5.7)

If C8 = I 9 , then we have

P
[
L8

��L8−1
]
=

(
1 ± 100�ℓ8U

)
? |( 9 | . (4.5.8)

If C8 = G 9 , then we have

P
[
L8

��L8−1
]
=

(
1 ± 100�U

) 1
?

deg−
�
(G 9 ) (=−C8)

. (4.5.9)

Before proving this claim, we use it to prove Lemma 4.5.54.5.5. We first point
out which terms cancel in the product (4.5.64.5.6). If C8 is the end of the interval � 9 ,
and so C8+2 is the end of the interval � 9+1, observe that C8+1 = C8 + 1 and so the
numerator of the fraction in (4.5.74.5.7) for 8 is the same as the denominator in (4.5.74.5.7)
for 8 +2. Thus these terms either cancel exactly (if ℓ8 = ℓ8+2), or with an extra factor
= − 1 − C8 = = − C8+1 if ℓ8 = ℓ8+2 + 1. The latter case occurs exactly when C8+1 = G 9 ,
in which case the factor = − C8+1 cancels with the same factor in the denominator
of (4.5.94.5.9) for 8 + 1. Putting these observations together, when we multiply together
all the terms from the various cases of (4.5.74.5.7) and of (4.5.94.5.9) we have a collection
of error terms, the term =−ℓ−|/ | from the term P

[
L1

��L0
]
, a term

∏ℓ
9=1 ?

− deg−
�
(G 9 )

from the various cases of (4.5.94.5.9), and finally a term
(
X̃= − 1

) |/ | from the final case
C2:+2ℓ+1. The various terms from (4.5.84.5.8) simply give us a collection of error terms
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and the term
∏:

9=1 < 9 . Putting all this together, from (4.5.64.5.6) we have

P
[
L2:+2ℓ+1

]
= 1 ·

( 2:+2ℓ+1∏
8=1

(
1 ± 200� (ℓ8 + |/ |)UX−1))=−ℓ−|/ |

·
ℓ∏
9=1

?− deg−
�
(G 9 )

:∏
9=1

? |( 9 |
(
X̃= − 1

) |/ |
= 1 ·

( 2:+2ℓ+1∏
8=1

(
1 ± 200� (ℓ8 + 2|/ |)UX−1))=−ℓ

·
ℓ∏
9=1

?− deg−
�
(G 9 )

:∏
9=1

? |( 9 | X̃ |/ | .

Observe now that if 4 is an edge whose last vertex is in + (�), then it is counted
exactly once in

∑ℓ
9=1 deg−� (G 9 ), namely for G 9 = max(4). If 4 \+ (�) is non-empty,

it is also counted exactly once in
∑:
9=1 |( 9 |, namely for I 9 = max

(
4 \ + (�)

)
. If

4 \ + (�) = ∅ then 4 is not counted in
∑:
9=1 |( 9 |, and if 4 is any edge whose

last vertex is not in + (�), then it is counted in neither sum. Thus we have∑ℓ
9=1 deg−� (G 9 ) −

∑:
9=1 |( 9 | = 4(�), and we get

P
[
L2:+2ℓ+1

]
= 1 ·

( 2:+2ℓ+1∏
8=1

(
1 ± 200� (ℓ + 2|/ |)UX−1))=−ℓ?−4(�) X̃ |/ | ,

which is as claimed in the lemma statement. What remains is to prove the Claim.

Proof of Claim 4.5.64.5.6. We begin with (4.5.74.5.7), which is given immediately by
Lemma 4.5.44.5.4 with* = r

(
+ (�) \ [1, C8−1]

)
, by our assumption P[L8−1] ≥ =−2� .

To prove the other two statements of this Claim, we will first consider only
histories in which the (�U,&)-diet condition holds for (�, imkC) for each time
C, and the probability of the (Y, �U, C)-cover condition failing for any kC+Y=−2 is
less than =−4. Observe that by Lemma 4.4.34.4.3, the total probability of histories not
satisfying these conditions is at most =−4� , which we will see can be absorbed in
the error term.

We now prove (4.5.84.5.8). By the (�U,&)-diet condition, we embed I 9 uniformly
at random to a set of size (1 ± �U)?deg−

�
(I 9 ) (= − C8 − 1). We need to estimate the

number of these vertices which are good for ( 9 and not in r
(
+ (�)

)
. Observe that

E is in �I 9−1(I 9 ) and good for ( 9 if and only if it is in the common neighbourhood

107



4 Packing Degenerate Hypergraphs

of the semi-edge N−
�
(I 9 ), and also of all the semi-edges in the set

, :=
{
kI 9 − 1

(
4 \ (+ (�) ∪ {I 9 })

)
∪ r

(
4 ∩+ (�)

)
: 4 ∈ ( 9

}
.

Observe that, since we are inL8−1, the elements of, are sets each of A−1 vertices.
This collection of semi-edges has size deg−� (I 9 ) + |( 9 |: that is, no two semi-edges
listed are equal. This is automatic for N−

�
(I 9 ) and for, , because both of these sets

are obtained from sets of edges of � by removing I 9 , which is in all of them. So
we just need to check that no edge in N−

�
(I 9 ) is also in {( \ {I 9 } : ( ∈ ( 9 }. Notice

that every edge 4 of ( 9 has by definition its largest vertex in + (�), and since I 9 is
not in + (�) in particular the largest vertex of 4 is not embedded by kI 9−1, whereas
all vertices of each edge of N−

�
(I 9 ) are embedded by kI 9−1. Thus 4 is not in N−

�
(I 9 )

as required.
Using the (�U,&)-diet conditionwith the setN−

�
(I 9 )∪, , we see that the number

of vertices of�I 9−1(I 9 )\imkI 9−1 which are good for (� is (1±�U)?deg−
�
(I 9 )+|( 9 | (=−

C8 − 1). Taking account finally of the histories in which the diet or cover condition
fails, we see

P
[
L8

��L8−1
]
=
(1 ± �U)?deg−

�
(I 9 )+|( 9 | (= − C8 − 1)(

1 ± �U
)
?deg−

�
(I 9 ) (= − C8 + 1)

± =−4�P[L8−1]−1 ,

which by the assumption P[L8−1] ≥ =−2� gives (4.5.84.5.8).
Finally, we prove (4.5.94.5.9). When we embed G 9 , provided L8−1 holds, we have

r(G 9 ) ∉ imkG 9−1 and r(G 9 ) ∈ �G 9−1(G 9 ). Thus we simply need to estimate the
size of |�G 9−1(G 9 ) \ imkC8−1 | (to which we embed G 9 uniformly), which we can do
using the diet condition: it has size (1 ± �U)?deg−

�
(G 9 ) (= − C8 + 1). Taking account

of the possibility of the cover or diet conditions failing, we get

P
[
L8

��L8−1
]
=

1(
1 ± �U

)
?deg−

�
(G 9 ) (= − C8 + 1)

± =−4�P[L8−1]−1 ,

which by the assumption P[L8−1] ≥ =−2� gives (4.5.94.5.9). �

The immediate case of this lemma which we need is the case that � is an edge
of � contained in [= − X=] and / = ∅. We use this to estimate the probability
that, again for fixed � and �, at least one edge in a given 1-star in � is used by
RandomEmbedding.
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Lemma 4.5.7. For each A ≥ 2, � ∈ N, and W > 0, let the constants
&, X, Y, U0, UBmax , � be as in Setting 4.3.44.3.4. Then the following holds for any
U0 ≤ U ≤ UBmax and all sufficiently large =. Suppose that � is a hypergraph
on [=] such that deg−(G) ≤ � for each G ∈ + (�), with at least =/4 edges and
maximum degree Δ(�) ≤ =/log =, and � is an (U,&)-quasirandom hypergraph
with = vertices and ?

(=
A

)
edges, where ? ≥ W. Let D1, . . . , D: be semi-edges and E

a vertex of � for some : ≤ &, and suppose D8E is an edge of � for each 8. When
RandomEmbedding is run to embed � into �, the probability that there is at least
one D8E to which some edge of � is embedded is(

1 ± 1000�AUX−1)2(�+1)A+1
?−1=−A · A!:4(�′) ,

where �′ is the subhypergraph of � induced by [= − X=].

Proof. Given D1, . . . , D: , E and � and �, let ( be the event that there is at least one
D8E to which some edge of � is embedded.

Fix any given D8E. By Lemma 4.5.54.5.5, the probability that any one edge of �′

is embedded to D8E in any given order is (1 ± 200�AUX−1)2(�+1)A+1?−1=−A . Since
at most one edge in at most one order is so embedded, these events are disjoint,
and summing over all edges of �′ and all of the A! possible orders, we see that the
probability that some edge of �′ is embedded to D8E in some order is(

1 ± 200�AUX−1)2(�+1)A+1
?−1=−A · A!4(�′) .

By linearity of expectation, the expected number of edges D8E embedded to by
RandomEmbedding is, by Lemma 4.5.54.5.5 and linearity of expectation,

� :=
(
1 ± 200�AUX−1)2(�+1)A+1

?−1=−A · A!� (�′) · : ,

and by inclusion-exclusion, we have

�−
∑

1≤8<8′≤:
P
[
D8E and D8′E are embedded to by RandomEmbedding

]
≤ P[(] ≤ � .

We thus simply have to show that the above sum, which has
(:
2
)
≤

(&
2
)
terms,

is small. We will show that the probability of RandomEmbedding embedding to
any two fixed edges DE, D′E is small. This probability is equal to the sum over
triples G, G′ ∈ ((�), H ∈ + (�) such that GH, G′H ∈ � (�) of the probability that
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G ↩→ D, G′ ↩→ D′ and H ↩→ E. For any given H ∈ + (�) there are at most deg� (H)2

choices of (G, G′). If A = 2 then by Lemma 4.2.34.2.3, there are at most 2�=Δ(�) such
triples. If A > 2 we use the trivial upper bound (A4(�))2. It is now enough to
make the estimate for one such triple. Assuming the (�U,&)-diet condition holds
throughout RandomEmbedding, we embed each vertex of G, G′ and H uniformly
at random into a set of size at least 1

2 ?
�X= ≥ 1

2W
�X=, so the probability of the

event G ↩→ D, G′ ↩→ D′, H ↩→ E is at most 8W−(2A−1)�X−(2A−1)=−(2A−1) . Finally,
the probability of the (�U,&)-diet condition failing for some (�, imk8) is by
Lemma 4.4.34.4.3 at most =−5� . Putting this together, we have

P[(] =
(
1 ± 200�AUX−1)2(�+1)A+1

?−1=−A · A!:4(�′)
±

(&
2
) ∑
H∈+ (�)

deg� (H)2 · 8W−(2A−1)�X−(2A−1)=−(2A−1) ± =−5� . (4.5.10)

Because 4(�′) ≥ =/(2A) the first term in the above is Θ(=−(A−1)), while since
Δ(�) ≤ =/log = the other two terms are of asymptotically smaller order. Since =
is sufficiently large, this gives the desired result.

Finally, we use Lemma 4.5.74.5.7 to control the way in which subsets of common
neighbourhoods shrink during the embedding process. This in particular is what
we need to prove Lemma 4.3.74.3.7, though we will use the more general statement
again to prove Theorem 4.7.14.7.1.

Lemma 4.5.8. For each A ≥ 2, � ∈ N and W > 0, let the constants
&, X, Y, U0, U2=, � be as in Setting 4.3.44.3.4. Then the following holds for any
0 ≤ B ≤ B′ ≤ B∗. Suppose that when PackingProcess is run up to and in-
cluding stage B. Let : ≤ &, and let D1, . . . , D: be semi-edges of �B. Fix any
- ⊆ N�B (D1, . . . , D: ) satisfying |- | ≥ Y=. Then with probability at least 1 − =−5� ,
when PackingProcess is run further up to and including stage B′, if it does not fail
and if �8 is (U8, &)-quasirandom for each B ≤ 8 ≤ B′, we have���- ∩ N�B′ (D1, . . . , D: )

��� = (
1 ± 1

2UB′
) ( ?B′

?B

) :
|- | .

Proof. We claim that, for a given D1, . . . , D: , B and - , the probability of B′ being
the first time after B at which the given equation fails is at most 1 − =−6� , and by
taking a union bound over the at most Bmax choices of B′ we conclude the lemma
statement.
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For each B ≤ 8 ≤ B′, let -8 := - ∩ N�8 (D1, . . . , D: ), and for each B + 1 ≤ 8 ≤ B′

let .8 =
��-8 \ -8−1. Thus -B = - , and we want to know how much smaller -B′ is

than -B. This quantity is simply .B+1 + · · · + .B′. We aim to apply Corollary 4.2.24.2.2
with E being the event that after each stage 8 with B ≤ 8 ≤ B′, the hypergraph �8 is
(U8, &)-quasirandom, and we have

|-8 | = (1 ± 1
2U8

) ( ?8
?B

) :
|- | .

By definition, the failure event of the above claim is contained in E, and so it suffices
to estimate the probability that E occurs and the given equation does not hold. We
therefore assume in the estimates which follow that we are in E. The probability
space in which we work is the set of all possible histories of RandomEmbedding,
and the sequence of partitions required by Corollary 4.2.24.2.2 is given by the histories
up to increasing times B ≤ 8 ≤ B′ of RandomEmbedding.

For each 8, let �′
8
be the subhypergraph of �8 induced by [= − X=], and let ?8

be such that ?8
(=
A

)
= 4(�8) = 4(�0) −

∑8
9=1 4(�′9 ). Then by Lemma 4.5.74.5.7 and

linearity of expectation, we have

E[.8 |�8−1] =(1 ± 1
2U8−1

) ( ?8−1
?B

) :
|- |

(
1 ± 1000�AU8−1X

−1) (2�+2)A+1
· ?−1

8−1=
−AA!:4(�′8)

=
(
1 ± 2000�AU8−1X

−1) (2�+2)A+1 |- |?:−1
8−1 ?

−:
B =
−AA!:4(�′8) .

We now need to estimate the sum
∑B′

8=B+1 E(.8 |�8−1), on the assumption that each
�8−1 is (U8−1, &)-quasirandom. We first estimate the sum of the main terms, using
the facts that 4(�′

8
) = (?8−1 − ?8)

(=
A

)
, that 8 ≤ Bmax, that for any G ∈ [0, 1], any

0 < ℎ < 1 and any integer 0 ≥ 1 we have (G + ℎ)0 − G0 = 0ℎG0−1 ± 20ℎ2, and that
?8−1 − ?8 ≤ 4�=1−A :

B′∑
8=B+1
|- |?:−1

8−1 ?
−:
B =
−AA!:4(�′8) =

B′∑
8=B+1

: ?:−1
8−1 (?8−1 − ?8)?−:B |- | (1 ± A=−1)A

= |- | (1 ± 2A2=−1)?−:B
B′∑

8=B+1

( (
?:8−1 − ?

:
8

)
± 16�22:=2−2A

)
= |- |?−:B

(
?:B − ?:B′

)
± 64�2A22:=−1 |- |?−:B .
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Next, we estimate the sum of the error terms:

B′∑
8=B+1

106��2&A2A!X−1U8−1?
:−1
8−1 ?

−:
B 4(�′8)=−A |- | ≤

≤
∫ B′

−∞
107��3&A2A!X−1W−2&=1−A |- |UG dG

≤ 1
8UB′W

& |- | ,

where we use 4(�′
8
) ≤ �= and the final inequality is by (4.3.14.3.1). Putting these two

estimates together, we have

B′∑
8=B+1
E(.8 |�8−1) =

(
?:B − ?:B′

)
?−:B |- | ± 1

4UB′W
& |- | := ˜̀ ± ã .

The range of each .8 is at most :Δ(�8) ≤ 2&=

log = . We apply Corollary 4.2.24.2.2 with
r̃ = YW& |- | and E as above. We obtain that the probability that

B′∑
8=B+1

.8 ≠
(
?:B−?:B′

)
?−:B |- |±(UB′W& |- |/4+YW& |- |) =

(
?:B−?:B′

)
?−:B |- |±1

2UB′W
& |- |

is at most
2 exp

( −Y2W& |- |2

2 2&=

log = ( ˜̀ + ã + r̃)

)
< =−6� ,

where the last inequality is by choice of |- | and 2.
Observe that if the above likely event occurs, we have

|-B′ | = |- | −
(
?:B − ?:B′

)
?−:B |- | ± 1

2UB′W
& |- | =

( ?B′
?B

) :
|- | ± 1

2UB′W
& |- | ,

which implies the desired likely equation of the lemma. Taking the union bound
over the at most Bmax choices of B′ we obtain the lemma statement.

We are now in a position to prove Lemma 4.3.74.3.7.

Proof of Lemma 4.3.74.3.7. We define ?̂ by 4(�∗0) = ?̂
(=
A

)
. By assumption we have

either ?̂ = (1 ± [)W or ?̂ = 0.
Our aim is to show that with high probability, for a given B, eitherPackingProcess

fails before completing stage B or the pair (�B, �∗0) is (UB, &)-coquasirandom. Let
( be a set of at most & vertices in + (�∗0), and let ' ⊆ (. Suppose that these two
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sets witness a first failure at some time B′ of (UB′, &)-coquasirandomness. Recall
that for (�B′, �∗0) to be (UB′, &)-coquasirandom means that N�B′ (') ∩ N�∗0 (( \ ')
has about the size one would expect if both hypergraphs were random. Observe
that if ?̂ = 0 and ( \ ' ≠ ∅ then N�∗0 (( \ ') is empty, and consequently there is
nothing to check. We therefore assume that either ?̂ = (1 ± [)W or ( \ ' = ∅ in
what follows (and in the latter case we interpret the expression ?̂ |(\' | as 1).
We apply Lemma 4.5.84.5.8 with B = 0, with B′ as above, with D1, . . . , D: the

semi-edges of ', and with - = N�0 (') ∩N�∗0 (( \ '). Since (�0, �
∗
0) is (

1
4U0, &)-

coquasirandom, this set - satisfies |- | ≥ Y= as required. We see that with
probability at least 1 − =−5� we have��N�B′ (') ∩ N�∗0 (( \ ')

�� = (
1 ± 1

2UB′
) ( ?B′

?0

) |' |
|- |

=
(
1 ± 1

2UB′
) (

1 ± 1
4U0

) ( ?B′
?0

) |' |
?
|' |
0 ?̂

|(\' |
0 =

=
(
1 ± UB′

)
?
|' |
B′ ?̂

|(\' |
0 = ,

which precisely says that we do not have a witness to a failure of (UB′, &)-
coquasirandomness of (�B′, �∗0).
Taking the union bound over all choices of ' ⊆ ( and ( of size at most &,

and applying Lemma 4.4.34.4.3, we see that the following event has probability at
most =2A&−5� . The pair (�8, �∗0) is (U8, &)-coquasirandom for each 0 ≤ 8 ≤
B − 1, but either RandomEmbedding fails to embed �B or (�B, �∗0) is not (UB, &)-
coquasirandom. Taking now the union bound over all choices of 1 ≤ B ≤ Bmax, and
recalling that (�0, �

∗
0) is by assumption

( 1
4U0, &

)
-coquasirandom, we conclude

that the probability that for any 1 ≤ B ≤ Bmax, RandomEmbedding fails to embed
�B or the pair (�B, �∗0) fails to be (UB, &)-coquasirandom is at most =−4� . This
completes the proof.

4.6 Completing spanning embeddings

Recall that we complete the embedding of each hypergraph �B by embedding the
final X= vertices using only edges of �∗

B−1. From Setting 4.3.44.3.4, these vertices form
a strongly independent set and each of them has degree 3B. Lemma 4.3.94.3.9 states
that it is very likely, provided PackingProcess does not fail and provided (�B, �∗0)
is coquasirandom for each B, that only a few edges of �∗0 are used at any given
semi-edge to form �∗B , and hence (�B, �∗B ) is also coquasirandom. Complementing
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this, Lemma 4.6.14.6.1 states that this coquasirandomness guarantees that completing
the embedding is possible. We prove these two lemmas in this section, beginning
with Lemma 4.3.104.3.10.
Recall that Lemma 4.3.104.3.10 states that it is likely that the partial embedding iB

of each �B provided by RandomEmbedding can be extended to an embedding i∗B
of �B, with the completion edges used for the extension lying in �∗. Since the
neighbours of each of the last X= vertices of �B are embedded by iB, the set of
candidate vertices

�∗B (G) :=
{
E ∈ + (�∗B−1) \ im iB : iB (H) ∈ N�∗

B−1
(E) for each H ∈ N�B (G)

}
for each G of these last X= vertices in + (�∗

B−1) \ im iB are already fixed, and the
desired i∗B exists if and only if there is a system of distinct representatives for the
�∗B (G) as G ranges over the last X= vertices of �B. Recall that Lemma 4.4.34.4.3 states in
particular that (�∗, im iB) is likely to satisfy the (2[, &)-codiet condition, which
implies both that �∗B (G) is of size roughly ?3BX= for each of these last G, and also
that the collection of sets is well-distributed (in a sense we will make precise later).
We would like to apply Lemma 4.2.64.2.6, for which we need to prove that our bipartite
graph is super-regular. The codiet condition provides the degree and codegree
condition on one half of the graph, and the following lemma provides the other
half.

Lemma 4.6.1. For each A ≥ 2, � ∈ N and W > 0, let the constants be as in
Setting 4.3.44.3.4. Suppose that � is a hypergraph on vertex set [=], with deg−(G) ≤ �
for each G ∈ + (�), with maximum degree at most 2=/log = and whose last X=
vertices all have degree 3, where 0 ≤ 3 ≤ �, and form a strongly independent set.
Suppose that � is an (UB∗ , &)-quasirandom =-vertex hypergraph with ?

(=
A

)
edges,

where ? ≥ W, and that �∗ is a hypergraph on + (�) with (1 ± [)W
(=
A

)
edges such

that (�, �∗) forms an ([, &)-coquasirandom pair. When RandomEmbedding is
run to embed the first =− X= vertices of � into �, with probability at least 1− =−4�

we have that for all E ∈ + (�∗) \ imk=−X=���{G ∈ + (�) : = − X= < G ≤ =, k=−X= (N−(G)) ⊆ N�∗ (E)
}��� = (1 ± 10�[)W3X= .

The proof of this lemma is similar to the proof of Lemma 4.4.54.4.5. We use (ℓ, 3)-
patterns as described before the proof of Lemma 4.4.54.4.5.
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Proof. Fix E ∈ + (�∗), fix 1 ≤ ℓ ≤ 3 and an (ℓ, 3)-pattern a. Let B: denote∑:
8=1 08. Let � be the last X= vertices of �, which by assumption form a strongly

independent set. Let -a denote the set of vertices from the last X= vertices of �
that have associated pattern a. For G ∈ -a let '(G) denote the set of vertices C, for
which there is an edge 4 ∈ � such that G is the last vertex in it and C is second to
last. Let for each such C the set �C,G be the set of edges that caused C to be in '(G).
Given C ∈ '(G) and an embedding kC−1 of {1, . . . , C − 1}, we say the correct set of
C is

�G,C =
©«

⋂
4∈�G,C

N�∗
(
kC−1(4 \ {C, G}) ∪ {E}

)ª®¬ ∩ (+ (�) \ imkC−1) .

In other words, if at time C − 1 the embedded part of N−(G) has been embedded to
N�∗ (E), then �G,C is the set of vertices to which we can embed C and maintain this
property.

Given G among the last X= vertices of � and 1 ≤ : ≤ ℓ, suppose that C is the
:th vertex of '(G). We let N−

:
(G) denote the set of semi-edges in N(G) which are

contained in [C]. Let Y: denote the event that N−
:
(G) is embedded to N�∗ (E) for

about as many G as one would expect. More formally, Y: is the event that��{G ∈ � : k=−X=
(
N−: (G)

)
⊆ N�∗ (E)

}�� = (1 ± 10:[)WB:X= . (4.6.1)

Observe that what wewant is to show thatYℓ holdswith sufficiently high probability
for each choice of E ∉ imk=−X=, since Bℓ = 3 and ℓ ≤ �.

LetB be the event that the (2[, &)-codiet condition fails at some time C ≤ =−X=.
We define the Bernoulli random variable /:,G,C to be equal to 1 if C is the :th
vertex of '(G) and we have k=−X=

(
N−
:−1(G)

)
⊆ N�∗ (E), and zero otherwise. Note

that /:,G,C depends only on kC−1 and not the later part of the embedding. Let
.:,G,C := /:,G,C ·1k=−X= (C)∈�G,C . That is, /:,G,C tells us before embedding C if we have a
chance for G to contribute to the set in (4.6.14.6.1), and.:,G,C tells us if, having embedded
C, it does contribute or not.

We want to show that if Y:−1 occurs, then Y: is very likely to occur. We will
then show this implies the lemma. Observe that Y: is the event that

=−X=∑
C=1

=∑
G==−X=+1

.:,G,C = (1 ± 10:[)WB:X= .

Furthermore, Y:−1 implies that
∑=−X=
C=1

∑=
G==−X=+1 /:,G,C = (1 ± 10(: − 1)[)WB:−1X=.
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We would like to calculate
∑=−X=
C=1

∑=
G==−X=+1 E(.:,G,C

��HC−1), where HC−1 denotes
the embedding history of RandomEmbedding up to and including embedding C −1.
Given a time C, if C is the :th vertex of '(G), then at time C − 1 the first : − 1
vertices of '(G) have already been embedded, so /:,G,C is determined. Thus we
have E(.:,G,C

��HC−1) = P
(
kC (C) ∈ �G,C

��HC−1

)
· /:,G,C . Suppose that at time C − 1 we

have not seen a witness that B fails. If E ∈ imkC−1, then E ∈ imk=−X= and there
is nothing to prove. So we may suppose E ∉ imkC−1. Using the (2[, &)-codiet
condition once with ( = N−(C) ∪ {kC−1(4 \ {C, G}) ∪ {E} : 4 ∈ �G,C} (these two sets
are disjoint since E ∉ imkC−1) and ' = N−(C) ⊆ ( and once with ( = ' = N−(C),
we obtain

P
(
kC (C) ∈ �G,C

��HC−1

)
=
(1 ± 2[) (1 ± [)W0: ? |N− (C) | (= − C + 1)

(1 ± 2[)? |N− (C) | (= − C + 1)
= (1 ± 6[)W0: .

Therefore, if B and Y:−1 hold, we have

=−X=∑
C=1

=∑
G==−X=+1

E(.:,G,C
��HC−1) = (1 ± 10(: − 1)[) (1 ± 6[)WB:X= .

Applying Corollary 4.2.24.2.2 with r̃ = [W:X=, we deduce that the probability
that Y: fails is exponentially small. Indeed the probability that B holds but∑=−X=
C=1

∑=
G==−X=+1.:,G,C ≠ (1±10:[)W:X= is at most 2 exp

(
− [2W2:X2=2 log =

2�2=2

)
≤ =−5� ,

where we use that
∑=
G==−X=+1.:,G,C ≤ deg(C) ≤ 2=

log = .
As Y0 holds trivially with probability one, by a union bound over the choices of

ℓ, a, : and E we obtain that the probability thatB holds but there is some 1 ≤ : ≤ 3
for whichY: fails is at most =10−5� . Finally, Lemma 4.4.34.4.3 states that B holds with
probability at most =−5� , giving the lemma statement by the union bound.

Given a hypergraph � on [=] whose last X= vertices are strongly independent,
if RandomEmbedding is run to give an embedding i of the first = − X= vertices
of � into the =-vertex hypergraph �, and �∗ is a hypergraph on + (�), we define
the completion graph � (�, �∗, i) to be the bipartite graph with parts - = + (�) \
[= − X=] and . = + (�) \ im i, and an edge GH for G ∈ - and H ∈ . whenever
we have i

(
N� (G)

)
⊆ #���∗ (H). Recall that each stage of PackingProcess first

uses RandomEmbedding to embed the first = − X= vertices of �B into �B, then
picks a uniform random extension to complete the embedding of �B using edges
of �∗B . In other words, what is picked is a uniform random perfect matching in
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� (�B, i, �
∗
B ). The following lemma guarantees that � (�B, i, �

∗
B ) satisfies the

conditions of Lemma 4.2.64.2.6 which tell us how the uniform random perfect matching
behaves.

Lemma 4.6.2. For each A ≥ 2, � ∈ N and W > 0, let the constants be as in
Setting 4.3.44.3.4. Suppose that � is a hypergraph on vertex set [=], with deg−(G) ≤ �
for each G ∈ + (�), with maximum degree at most 2=/log = and whose last X=
vertices all have degree 3, where 0 ≤ 3 ≤ �, and form a strongly independent set.
Suppose that � is an (UB∗ , &)-quasirandom =-vertex hypergraph with ?

(=
A

)
edges,

where ? ≥ W, and that �∗ is a hypergraph on + (�) with (1 ± [)W
(=
A

)
edges such

that (�, �∗) forms an ([, &)-coquasirandom pair. When RandomEmbedding is
run to give an embedding i of the first =− X= vertices of � into �, with probability
at least 1 − 2=−4� it succeeds and the completion graph � (�, i, �∗) satisfies the
following. For every G ∈ - , we have deg(G) = (1 ± 2[)W3X=, and for all but at
most �2=log = choices of G

′ we have in addition deg(G, G′) = (1 ± 2[)W23X=. For every
H ∈ . , we have deg(H) = (1 ± 10�[)W3X=.

Proof. WhenRandomEmbedding is run to produce a partial embedding i of� into
�, by Lemma 4.4.34.4.3 with probability at least 1−=−5� the algorithm succeeds and the
triple (�, �∗, im i) satisfies the (2[, &)-codiet condition. By Lemma 4.6.14.6.1, with
probability at least 1−=−4� in addition we have, for every vertex E of+ (�∗) \ im i,���{G ∈ + (�) : =−X= < G ≤ =, i(N−(G)) ⊆ N�∗ (E)

}��� = (1±10�[)W3X= . (4.6.2)

Suppose that both good events occur, which happens with probability at least
1 − 2=−4� . Let � denote the last X= vertices of �. Since the triple (�, �∗, im i)
satisfies the (2[, &)-codiet condition we get, for every vertex G of �,���{E ∈ + (�∗) \ im i : i(N−(G)) ⊆ N�∗ (E)

}��� = (1 ± 2[)W3X= , (4.6.3)

and for every pair of vertices G, G′ of � such that N� (G) ∩ N� (G′) = ∅ we get���{E ∈ + (�∗) \ im i : i(N−(G)) ∪ i(N−(G′)) ⊆ N�∗ (E)
}��� = (1 ± 2[)W23X= .

(4.6.4)
For any given G ∈ �, the set N� (G) contains at most � semi-edges. Since no

semi-edge of � is in more than 2=
log = edges of �, we see that there are at most �2=log =

vertices G′ ∈ � such that N� (G) ∩ N� (G′) ≠ ∅.
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By definition of � (�, i, �∗), (4.6.24.6.2) gives the statement about degrees in . ,
while (4.6.34.6.3) and (4.6.44.6.4) give the degree and codegree statements for - .

The completion lemma, Lemma 4.3.104.3.10, now follows easily.

Proof of Lemma 4.3.104.3.10. The assumptions of Lemma 4.3.104.3.10 match those of
Lemma 4.6.24.6.2, so with probability at least 1 − 2=−4� RandomEmbedding succeeds
in producing an embedding i of the first = − X= vertices of � into �, and the
completion graph � (�, i, �∗) satisfies the degree and codegree conditions of that
lemma.

We apply Lemma 4.2.64.2.6 with � = �′ = � (�, i, �∗), with < = X=, with ` = W3 ,
with Y = 10�[, and any valid r > 0. Since <2

log< ≥
X2=2

log = >
�2=2

log = , the degree and
codegree conditions from Lemma 4.6.24.6.2 give us (M 1)(M 1) and (M 1)(M 1), while (M 3)(M 3) is
trivially true. Thus � (�, i, �∗) contains a perfect matching, which corresponds
to the existence of an extension of i to the desired i∗.

Finally, we prove Lemma 4.3.94.3.9. The idea is as follows. We fix a semi-edge H, give
an upper bound for the expected number of edges used at H in each stage, and apply
Corollary 4.2.24.2.2 to show that the actual outcome is with high probability not much
larger than this upper bound. In order to obtain this upper bound on expectation,
we will need to use again the observation just made that with probability at least
1−2=−4� the output ofRandomEmbedding gives us a completion graph� (�, i, �∗)
which satisfies the conditions of Lemma 4.2.64.2.6.

For each I ∈ ((�B), we define the completion degree of I, written deg∗(I), to
be the degree of I in the hypergraph �2

B whose vertex set is + (�B) and whose edge
set is all edges of �B which have exactly one vertex in the final X= vertices and the
other A − 1 in the first =− X= vertices. Then the number of edges of �∗0 at H used in
stage B is deg�B (I) where I is the semi-edge of �B embedded to H. Note that since
every edge of �2

B has exactly one vertex among the final X= vertices, and each of
these final X= vertices is in 3B edges, we have∑

H∈((�2B )
deg∗(H) = AX=3B . (4.6.5)

Let (0 denote the semi-edges in �2
B that have no vertices in the last X=, (1 those

that have one vertex in the last X= and (2 those that have at least two.

Proof of Lemma 4.3.94.3.9. Fix H ∈ ((�∗0). For each B ∈ [B
∗], let .B be the number of

edges of �∗0 at H used in stage B. For I ∈ (2 we have deg∗(I) = 0 since the last X=
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vertices of �B
2 are strongly independent, so we have

.B =
∑

I∈((�2B )
deg∗(I)1I↩→H =

∑
I∈(0

deg∗(I)1I↩→H +
∑
I∈(1

deg∗(I)1I↩→H +
∑
I∈(2

0 · 1I↩→H

(4.6.6)
We define EB to be the event that PackingProcess completes stages up to and

including B − 1, that (�B−1, �
∗
0) is (UB−1, &)-coquasirandom, and that for each

I ∈ ((�∗0) we have deg�∗0 (I) − deg�∗
B−1
(I) ≤ 10A!W−��X=. Observe if EB holds,

that if ' ⊆ ( are any two collections of semi-edges of �∗
B−1 with |( | ≤ &, since

(�B−1, �
∗
0) is (UB−1, &)-coquasirandom, we have��N�B−1 (') ∩ N�∗0 (( \ ')

�� = (1 ± UB−1)? |' |B−1W
|(\' |= .

We therefore have��N�B−1 (') ∩ N�∗
B−1
(( \ ')

�� = (1 ± [)? |' |
B−1W

|(\' |= ,

since the neighbourhood in question is smaller in size by at most 10A!W−��2X=;
by choice of X this is tiny compared to [W&=. Thus (�B−1, �

∗
B−1) is also ([, &)-

coquasirandom when EB holds. Thus EB implies the required coquasirandomness.
Suppose that HB−1 is an arbitrary history of PackingProcess up to and including

stage B − 1 which is in EB. We begin by estimating E(.B |HB−1).
To estimate the desired expectation, we use Lemma 4.5.54.5.5. If I ∈ (0, then we

need to consider the (A − 1)! possible ways that I can be mapped to H, each of
which mappings actually occurs with probability at most 2=A−1. If I ∈ (1, then let
I′ denote the A − 2 vertices of / which are in the first X= vertices and let I′′ = I \ I′.
There are (A − 1)! different ways to map I′ to H; fix one such and let H′′ be the
vertex of H not mapped to. By Lemma 4.5.54.5.5, the probability that I′ is embedded
to H and H′′ is not in the image of i when we run RandomEmbeddingis at most
2=A−2X. In order for I to then be mapped to H, we need that the final vertex I′′ of I is
embedded by the randommatching to the final vertex H′′ of H. If H′′I′′ is not an edge
of � (�B, iB, �

∗
B−1), then this probability is zero. Otherwise, it is the probability

that H′′I′′ is used in a uniform random perfect matching of � (�B, iB, �
∗
B−1). Since

HB−1 is in EB, as in the proof of Lemma 4.3.104.3.10, with probability at least 1 − 2=−4�

RandomEmbedding produces iB such that the conditions of Lemma 4.2.64.2.6 are met
for� (�B, iB, �

∗
B−1), and in this case the probability that the chosen perfectmatching

uses G′′H′′ is at most 2
W3B X=

, where 3B is the degree of the last X= vertices of �B.
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Putting this together, we obtain

P[I ↩→ H |HB−1] ≤ 2(A − 1)!=−(A−1) if I ∈ (0, and (4.6.7)

P[I ↩→ H |HB−1] ≤ 4(A − 1)!W−3B=−(A−1) + 2=−4�

≤ 5(A − 1)!W−3B=−(A−1) if I ∈ (1 . (4.6.8)

For (4.6.84.6.8), the term =−4� covers the possibility that RandomEmbedding pro-
duces iB which does not give a completion graph with the required degree and
codegree conditions.

We now put (4.6.54.6.5), (4.6.74.6.7) and (4.6.84.6.8) into (4.6.64.6.6). It follows that when HB−1

is in EB we have

E[.B |HB−1] ≤ 5(A − 1)!W−3B=−(A−1) · AX=3B ≤ 5A!�W−�X=−(A−2) .

Given any 1 ≤ B′ ≤ B∗, we estimate the probability that EB holds for each
1 ≤ B ≤ B′ but we have deg�∗0 (H) − deg�∗

B′
(H) > 10A!W−��X=.

Since 0 ≤ .B ≤ Δ(�B) holds for each B, and since B′ ≤ Bmax, we can apply
Corollary 4.2.24.2.2, with E = ⋂B′

B=1 EB, to give

P
[
E and

B′∑
8=1
.B > 10A!�W−�=−(A−2) · Bmax

]
≤ exp

(
− 20A!�W−�=−(A−2) Bmax

Δ(�B)
)
< =−4� ,

where the final inequality is since Δ(�B) ≤ 2=/log = and by choice of 2. Taking
the union bound over all choices of B′ and H, we see that the probability that neither
of the first two events of the lemma statement occurs, and yet EB fails for any B, is
at most =−3� as required.

4.7 Quasirandom packing

The main theorem of this section is the following, which states that if we want to
pack almost-spanning hypergraphs, we can obtain a packing with several additional
quasirandomness properties. To state these conveniently, we need a few definitions.

We first define weight functions on our guest graphs �B. Given a nonnegative
integer @ and an A-uniform hypergraph �B whose vertex set + (�B) is [E(�B)] (i.e.
it is the first E(�B) natural numbers), we say lB is a @-weight function on �B when
lB is a function whose domain is

(+ (�B)
@

)
, the @-vertex subsets of+ (�B), and whose
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codomain is R≥0. The support of lB is the set
{
f ∈

(+ (�B)
@

)
: lB (f) > 0

}
, and we

say that lB is free if all @-sets in its support contain no edges of �B. We will say
that the support of lB is contained in a set - ⊆ + (�B) if each @-set in the support
is in - . We write

Δ(lB) := max
G∈+ (�B)

∑
f∈(+ (�B )@ )

G∈f

lB (f) and sum(lB) :=
∑

f∈(+ (�B )@ )
lB (f) .

Given an embedding iB : + (�B) → + (�), where � is the A-uniform host hyper-
graph, and an ordered @-set e of distinct vertices of �, we define lB (e) to be the
weight iB assigns to e, with the natural order on �B corresponding to the order of
e. More formally, if i−1

B (41) < i−1
B (42) < · · · < i−1

B (4@), we set

lB (e) = lB
(
{i−1

B (41), . . . , i−1
B (4@)}

)
.

If some 48 is not in the image of iB, or if one of the above inequalities does not
hold, we set lB (e) = 0.

Given an A-uniform hypergraph �, a vertex E ∈ + (�), and a collection
-1, . . . , -A−1 of subsets of + (�), we write N� (E; -1, . . . , -A−1) for the collec-
tion of ordered (A − 1)-sets whose 8th element is in -8 for each 8 ∈ [A − 1] and
which are (as unordered sets) contained in N� (E).

Theorem 4.7.1. For each A ≥ 2, each W > 0 and each �,  ∈ N there exist
numbers =0 ∈ N and X, 2, b > 0 with X ≤ W such that the following holds for
each = > =0, with & = (A + 1)� + 3. Suppose that �̂ is an (b, &)-quasirandom
A-uniform hypergraph with = vertices and ?̂

(=
A

)
edges, where ?̂ > 0. Suppose that

B∗ ≤ 2=A−1/(A − 1)! and that for each B ∈ [B∗] the A-uniform hypergraph �B is on
vertex set [= − X=], with maximum degree at most 2=

log = , such that deg−(G) ≤ �

for each G ∈ + (�B). Let ? satisfy ?
(=
A

)
= ?̂

(=
A

)
−∑B∗

B=1 4(�B), and suppose ? ≥ W.
Given any 0 ≤ @ ≤ &, let lB :

(+ (�B)
@

)
→

[
0, 2=

log =
]
be a @-weight function on �B

for each B ∈ [B∗]. Let -, -1, . . . , -@ ⊆ + (�̂) satisfy |- |, |-1 |, . . . , |-@ | ≥ W=, and
suppose that for each 1 ≤ 8 ≤ @ the pair

(
�̂, + (�̂) \ -8

)
satisfies the (b, &)-diet

condition.
There is a randomised algorithm (whose running is unaffected by the choice

of @, lB, - , -1, . . . , -@) which with probability at least 1 − =− returns maps
iB : �B → �̂ for each B ∈ [B∗] which form a packing of (�B)B∈[B∗] into �̂, such
that the hypergraph � of leftover edges is (W, &)-quasirandom, and in addition the
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following hold for every X ≤ X̃ ≤ 1 − X, every * ⊆ + (�̂) with |* | ≤ &, and every
collection )1, . . . , )ℓ of distinct semi-edges in + (�̂) with 0 ≤ ℓ ≤ &.
(QUASI 1) For every ( ⊆ [B∗] with |( | ≤ &, if

��- ∩ N
�̂
()1, . . . , )ℓ)

�� ≥ 1
2W

&=,
we have���- ∩ N� ()1, . . . , )ℓ) \

⋃
B∈(

iB
(
[= − X̃=]

) ��� =
= (1 ± W)X̃ |( |

( ?
?̂

)ℓ���- ∩ N
�̂
()1, . . . , )ℓ)

��� .
(QUASI 2) Suppose that for each B ∈ [B∗] the weight function lB is free. Then

for every ordered @-set e in + (�̂) \*, if ∑B∗

B=1 sum(lB) ≥ W=@+1, we
have

B∗∑
B=1

lB (e)1*∩iB ( [=−X̃=])=∅ = (1 ± W)X̃
|* |=−@

B∗∑
B=1

sum(lB) .

(QUASI 3) Suppose that @ = A − 1 ≥ 2. For every B ∈ [B∗] and E ∈ + (�̂),
if sum(lB) ≥ W=, the support of lB is contained in [= − X̃=], and
Δ(lB) ≤ 2=

log = , then we have either E ∈ iB ( [= − X̃=]) or∑
e∈N� (E;-1,...,-A−1)

lB (e) = (1 ± W)
?

?̂
·
��N
�̂
(E; -1, . . . , -A−1)

��
· =1−Asum(lB) .

Observe that (QUASI 2)(QUASI 2) for @ = 0 does have content. There is only one ordered
0-set of vertices of �B; if for example we choose to give it weight 1 in each �B,
then (QUASI 2)(QUASI 2) counts the number of B such that* is disjoint from iB ( [= − X̃=]).

By taking the union bound, we can ask for a packing in which our properties hold
for polynomially many different choices of @, lB, -, -1, . . . , -@ simultaneously.

The proof of Theorem 4.7.14.7.1 mainly consists of using the tools developed in
Sections 4.44.4 and 4.54.5. As mentioned in the sketch in Section 4.3.14.3.1, we use the
cases of the various lemmas in which �∗0 has no edges, and �0 = �̂. That is, the
randomised algorithm of Theorem 4.7.14.7.1 is the following PackingProcess2 and the
various lemmas of the preceding three sections apply to it.

Proof of Theorem 4.7.14.7.1. To begin with, we prove that PackingProcess2 is likely to
succeed. This is much the same as the corresponding proof for Theorem 4.3.14.3.1,
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Algorithm 3: PackingProcess2
Input : hypergraphs �1, . . . , �B∗ , with �B on vertex set [= − X=]; a

hypergraph �̂ on = vertices
let �0 = �̂ ;
for B = 1 to B∗ do

run RandomEmbedding(�B,�B−1) to get an embedding iB of �B

into �B−1;
let �B be the hypergraph obtained from �B−1 by removing the edges of
iB

(
�B

)
;

end

so we omit the details. In order that PackingProcess2 does not succeed, there
must exist some smallest 1 ≤ B ≤ B∗ such that PackingProcess2 runs up to and
including stage B − 1, and �B′ is (UB′, &)-quasirandom for each 1 ≤ B′ ≤ B − 1, but
either RandomEmbedding fails to embed �B, or �B is not (UB, &)-quasirandom.
By Lemma 4.3.84.3.8, the probability of RandomEmbedding failing to embed �B is at
most =−5� , and by Lemma 4.3.74.3.7, if �B is successfully embedded, the probability
that �B is not (UB, &)-quasirandom is at most =−4� . Taking the union bound over
the choices of B, we see that the probability of either failure at any stage is at most
=−3� . In what follows, we refer to the likely event as PackingProcess2 behaves and
we will generally assume it occurs.

We next prove (QUASI 1)(QUASI 1), with the error bound 1
2W in place of W. Note that the

claim that � is (W, &)-quasirandom is a special case of this statement obtained by
taking - = + (�̂) and ( = ∅, since for any given collection of distinct (A − 1)-sets
)1, . . . , )ℓ, where ℓ ≤ &, we have

��N
�̂
()1, . . . , )ℓ)

�� = (1 ± b) ?̂ℓ= > 1
2W

&=.
Given a set - , we fix ( = {B1, . . . } in increasing order, ℓ and )1, . . . , )ℓ, and

X̃, as in the statement; we assume that
��- ∩ N

�̂
()1, . . . , )ℓ)

�� ≥ 1
2W

&= otherwise
there is nothing to prove. The idea is the following. We split up the running of
PackingProcess2 into several parts: the interval before embedding�B1 , embedding
�B1 , the interval between�B1 and�B2 , and so on. We use Lemma 4.5.84.5.8 to determine
how - ∩ N� 9 ()1, . . . , )ℓ) shrinks as 9 increases through the first interval, how
- ∩ N� 9 ()1, . . . , )ℓ) \ iB1 ( [= − X̃=]) shrinks as 9 increases through the second
interval, and so on. We use Lemma 4.4.34.4.3 to determine how much of each set is
covered by the next im iB8 ( [= − X̃=]), and observe that embedding any one graph
can only change N� 9 ()1, . . . , )ℓ) by a tiny amount.
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Claim4.7.2. For each−1 ≤ 8 ≤ |( | we havewith probability at least 1−3(8+1)=−5�

���- ∩ N�B8+1−1 ()1, . . . , )ℓ) \
8⋃
9=1
iB 9 ( [= − X̃=])

���
= (1 ± �UB8+1−1)38+3X̃max(0,8)

( ? (B8+1−1)
?̂

)ℓ
·
��- ∩ N

�̂
()1, . . . , )ℓ)

�� ,
where we set B |( |+1| := B∗ + 1 and B0 = 1.

Proof. The statement for 8 = −1 is a triviality. Suppose now that 8 ≥ 0 and the
statement holds for 8 − 1. Let

/ = - ∩ N�B8−1 ()1, . . . , )ℓ) \
8−1⋃
9=1
iB 9 ( [= − X̃=]) ,

/′ = - ∩ N�B8−1 ()1, . . . , )ℓ) \
8⋃
9=1
iB 9 ( [= − X̃=]) and

/′′ = - ∩ N�B8 ()1, . . . , )ℓ) \
8⋃
9=1
iB 9 ( [= − X̃=]) .

If 8 = 0, then we have / = /′. If 8 > 0, by Lemma 4.4.34.4.3(e)(e) with the given / , with
probability at least 1 − =−5� , we have |/′| =

��/ \ iB8 ( [= − X̃=])�� = (1 ± �UB8 )X̃ |/ |.
In either case, we conclude that with probability at least 1 − =−5� we have

|/′| = (1 ± �UB8 )38+1X̃max(0,8)
( ?B8−1

?̂

)ℓ
·
��- ∩ N

�̂
()1, . . . , )ℓ)

�� .
Observe that since �B8 has no vertex of degree more than 2=

log = , the number of
vertices in N�B8−1 ()1, . . . , )ℓ) which are not in N�B8 ()1, . . . , )ℓ) is at most & 2=

log = ,
and since 4(�B) ≤ �= we have ?B8−1 − ?B8 < =−0.5. Putting these together we have
with probability at least 1 − =−5�

|/′′| = (1 ± �UB8 )38+2X̃max(0,8)
( ?B8
?̂

)ℓ
·
��- ∩ N

�̂
()1, . . . , )ℓ)

�� .
Finally, we consider the embeddings of the graphs �B with B8 < B ≤ B8+1 − 1. By
Lemma 4.5.84.5.8, with probability at least 1− =−5� , if for each B with B8 ≤ B ≤ B8+1 − 1
the graph �B is (UB, &)-coquasirandom, we have

|/′′ ∩ N�B8+1−1 ()1, . . . , )ℓ)
�� = (

1 ± 1
2UB8+1−1

) ( ?B8+1−1
?B8

)ℓ
|/′′| ,
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and this implies the desired equation for 8. Summing the probability bounds we
obtain the claimed probability of this equation holding. �

Taking the 8 = |( | case of Claim 4.7.24.7.2, and a union bound over choices of (,
ℓ, )1 . . . , )ℓ and X̃, by choice of UBmax we see that (QUASI 1)(QUASI 1), with error bound
1
2W, holds with probability at least 1 − &=&A+&A2+1 · 3=−5� ≥ 1 − =−4� provided
PackingProcess2 behaves. Taking account of the possibility of misbehaviour, we
see that (QUASI 1)(QUASI 1) holds with probability at least 1 − =−2� . Note that since = − X̃=
is required to be in [=], the number of choices of X̃ over which we take a union
bound is at most =.
We next prove (QUASI 2)(QUASI 2). Given @ ≤ & and free @-weight functions lB on �B

for each B ∈ [B∗], fix* ⊆ + (�̂), X̃, and an ordered @-set e in+ (�̂) \*. Let for each
1 ≤ B ≤ B∗ the random variable .B := lB (e) by running PackingProcess2 to obtain
embeddings iB of each �B. Let E be the event that PackingProcess2 succeeds and
that �B is (UB, &)-quasirandom for each B ∈ [B∗]. Given � in the support of lB,
since lB is free, � is a @-set which contains no edges of �B. By Lemma 4.5.54.5.5,
provided that �B−1 is (UB−1, &)-quasirandom, the probability that the 8th vertex of
� (in the natural order on [= − X=]) is embedded to the 8th vertex of e, and in
addition im iB ( [= − X̃=]) ∩* = ∅, is(

1 ± 600�&UB−1X
−1) (2+2�)&+1?0

B−1=
−@ X̃ |* | =

(
1 ± 1

4W
)
=−@ X̃ |* | .

By linearity of expectation, if �B−1 is (UB−1, &)-quasirandom we have

E[.B |�B−1] = sum(lB) ·
(
1 ± 1

4W
)
=−@ X̃ |* | .

Since 0 ≤ .B ≤ 2=
log = , by Corollary 4.2.24.2.2 we have

B∗∑
B=1
.B =

B∗∑
B=1

sum(lB) ·
(
1 ± 1

2W
)
=−@ X̃ |* |

with probability at least 1− =−5� . Here we use the fact
∑B∗

B=1 sum(lB) ≥ W=@+1 and
choice of 2. Taking the union bound over choices of*, X̃ and e, and taking account
of the possibility of PackingProcess2 not behaving, we see that (QUASI 2)(QUASI 2) holds
with probability at least 1 − =−2� as desired.

We now complete the proof of Theorem 4.7.14.7.1 by proving (QUASI 3)(QUASI 3). Our
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calculations in the preceding parts go through for A = 2, but for this part we need
to assume A ≥ 3. Fix B and E ∈ + (�̂), and sets -1, . . . , -A−1 in + (�̂) each of size
at least W=. Suppose that lB is a (A − 1)-weight function on �B whose support is
contained in [=− X̃=] such that sum(lB) ≥ W=. Recall that we need to prove that it is
likely that either E ∈ iB ( [= − X̃=]), or we have control of

∑
e∈N� (E;-1,...,-A−1) lB (e).

We will assume for now that PackingProcess2 behaves, and take account of its
small failure probability later. Since there is nothing to prove if E ∈ iB ( [= − X̃=]),
we will assume this event does not occur.

The proof of (QUASI 3)(QUASI 3) is fairly involved, so we now sketch the idea. First,
we argue that when RandomEmbedding embeds the first = − X̃= vertices of �B

into �B−1, we can estimate
∑

e∈N�B−1 (E;-1,...,-A−1) lB (e) fairly accurately. We then
argue that the embedding of what remains of �B does not change the result much;
that is, we obtain an estimate for

∑
e∈N�B (E;-1,...,-A−1) lB (e). Finally, we argue that

as the remaining hypergraphs �B+1, . . . , �B∗ are embedded, we can maintain an
estimate of

∑
e∈N�B′ (E;-1,...,-A−1) lB (e). It is easy to estimate (using Lemma 4.5.54.5.5)

the conditional expected change .8 when any one �8 is embedded, and what we
would like to do is to show that

∑B∗

8=B+1.8 is close to the sum of the conditional
expected changes. However the range of these .8 is too large for Corollary 4.2.24.2.2
to give useful results. What we do to get around this is to define capped random
variables; that is, we define a random variable . ′

8
which is equal to the minimum

of the actual change when �8 is embedded and a fixed number, the cap. The cap is
small enough that we can apply Corollary 4.2.24.2.2 to show concentration of

∑B∗

8=B+1.
′
8
,

and we then argue that it is very likely that.8 = . ′8 for each 8 and that the conditional
expectations of the two random variables are very close. This final part is where
we use our assumption A ≥ 3 and where we need to do most work.

The following claim establishes the first step in the above argument. In this claim
we will write iB although we formally do not assume RandomEmbedding succeeds
in embedding all of �B but only the first =− X̃= vertices and should really therefore
write instead the partial embedding of these first vertices.

Claim 4.7.3. When PackingProcess2 is run up to and including the embedding of
the first = − X̃= vertices of �B, with probability at least 1 − 3=−3� , we have either
E ∈ iB ( [= − X̃=]) or∑

e∈N�B−1 (E;-1,...,-A−1)
FB (e) =

(
1 ± 5A�UB

)
?B−1 · |-1 | . . . |-A−1 |=1−Asum(lB) .
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Proof. We prove this claim by arguing that it is likely that the total weight of
semi-edges in �B whose first element is mapped to -1 is roughly |-1 |

=
sum(lB), and

inductively prove that the total weight of semi-edges in �B whose first 8 elements
are mapped to -1, . . . , -8 respectively is likely to be roughly |-1 |...|-8 |

=8
sum(lB), for

each 2 ≤ 8 ≤ A − 2. We finally use this to prove the claim statement. In each of
these steps, the critical point is that we can keep control of the probability that any
given vertex G of �B is embedded to any given set -8: we know how large is the set
of vertices to which we will embed G from the diet condition, and we will prove a
version of the diet condition for each set -8. We begin by stating and proving this
last condition.

We first claim that with probability at least 1 − 2=−3� , when PackingProcess2
is run up to and including the embedding of �B−1, it succeeds, �B−1 is (UB−1, &)-
quasirandom, and for any set ' of distinct semi-edges of �B−1 with |' | ≤ &, and
any 1 ≤ 8 ≤ @ we have

��N�B−1 (') ∩ -8
�� = (1± UB−1)? |' |B−1 |-8 |. The first two parts of

this are part of the event that PackingProcess2 behaves, whose failure probability
is at most =−3� , so we need to establish the final part. We use Lemma 4.5.84.5.8, once
for each -8 and for each choice of ', to establish that (for each fixed such choice)
we have with probability at least 1 − =−5� that either PackingProcess2 does not
behave, or��N�B−1 (') ∩ -8

�� = (
1 ± 1

2UB−1
) ( ?B−1

?̂

) |' | · ��N�B−1 (') ∩ -8
�� = (1 ± UB−1)? |' |B−1 |-8 | ,

where the second equality is since (�̂, + (�̂)\-8) satisfies the (b, &)-diet condition.
Taking the union bound over choices of 8 and ' we obtain the desired claim.
We now build on this to prove the desired version of the diet condition. That

is, we prove that assuming that the likely event of the first claim occurs, when
RandomEmbedding is run to embed the first = − X̃= vertices of �B into �B−1,
with probability at least 1 − =−4� it succeeds, for each 1 ≤ C ≤ = − X̃= the pair(
�B−1, iB ( [C])

)
satisfies the (�UB, &)-diet condition, and for any set ' of distinct

semi-edges of �B−1 with |' | ≤ &, and any 1 ≤ 8 ≤ @ we have��N�B−1 (') ∩ -8 \ iB ( [C])
�� = (1 ± 2�UB)? |' |B−1

=−C
=
|-8 | .

This follows directly from the first claim and Lemma 4.4.34.4.3, with / = N�B−1 (')∩-8,
taking the union bound over C and choices of ' and 8.

We now prove by induction on 8 the following. Suppose that the likely event
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of the first claim above holds. For each 0 ≤ 8 ≤ A − 2, with probability at least
1−=−4� − 8=−5� , when RandomEmbedding is run to embed the first =− X̃= vertices
of �B into �B−1, we have∑

(G1,...,GA−1)
lB ({G1, . . . , GA−1}) = (1 ± 58�UB)sum(lB)

8∏
9=1

|- 9 |
=
,

where the sum runs over vectors with G1 < G2 < · · · < GA−1 members of [= − X̃=],
such that iB (G 9 ) ∈ - 9 for each 1 ≤ 9 ≤ 8.

The induction statement is trivial for 8 = 0. Suppose now 8 ≥ 1, and the statement
holds for 8 − 1. For each 1 ≤ C ≤ = − X̃=, let

.C =
∑

(G1,...,GA−1)
lB ({G1, . . . , GA−1})1iB (C)∈-8 ,

where the sum runs over vectors with G1 < G2 < · · · < GA−1 members of [= −
X̃=], such that iB (G 9 ) ∈ - 9 for each 1 ≤ 9 ≤ 8 and G8 = C. Observe that 0 ≤
|.C | ≤ Δ(lB) ≤ 2=

log = by definition. Letting HC−1 denote the embedding history of
RandomEmbedding up to and including the embedding of C − 1, we have

P[iB (C) ∈ -8 |HC−1] =
(1 ± 2�UB)?deg− (C)

B−1
=+1−C
=
|-8 |

(1 ± �UB)?deg− (C)
B−1 (= + 1 − C)

= (1 ± 4�UB) |-8 |= ,

where we use the (�UB, &)-diet condition for
(
�B−1, iB ( [C − 1])

)
to estimate the

denominator and the second claim for the numerator. Assuming the likely event of
the 8 − 1 induction statement, we conclude

=−X̃=∑
C=1
E[.C |HC−1] = (1 ± 4�UB) |-8 |= · (1 ± 5(8 − 1)�UB)sum(lB)

8∏
9=1

|- 9 |
=
,

and by Corollary 4.2.24.2.2, with E the event that the diet condition, and the variant diet
conditions of the second claim, and the equation of the 8 − 1 statement, all hold,
we see that the probability that E holds and the equality of the 8 statement fails is
at most =−5� . This gives the desired induction statement for 8.

Finally, we prove the main Claim. The argument is very similar to the above
induction, except that we want to consider (G1, . . . , GA−1) such that not only
iB (GA−1) ∈ -A−1, but also iB ({G1, . . . , GA−1}) ∈ N�B−1 (E). Here we need to as-
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sume E ∉ iB ( [= − X̃=]). We define similarly as above

. ′C =
∑

(G1,...,GA−1)
lB ({G1, . . . , GA−1})1iB (C)∈-8 ,

where the sum runs over vectors with G1 < G2 < · · · < GA−1 members of [= − X̃=],
such that iB (G 9 ) ∈ - 9 for each 1 ≤ 9 ≤ A − 1, and iB ({G1, . . . , GA−1}) ∈ N�B−1 (E),
and GA−1 = C. For any C, and any G1 < G2 < · · · < GA−2 < C, we have

P[iB (C) ∈ -A−1 and iB ({G1, . . . , GA−2, C}) ∈ N�B−1 (E)] =

=
(1 ± 2�UB)?deg− (C)+1

B−1
=+1−C
=
|-A−1 |

(1 ± �UB)?deg− (C)
B−1 (= + 1 − C)

= (1 ± 4�UB)?B−1
|-A−1 |
=

,

where we obtain the extra factor of ?B−1 in the numerator by looking at the common
neighbourhood of iB

(
N−
�B
(C)

)
and the extra semi-edge {iB (G1), . . . , iB (GA−2), E}.

Note that this extra semi-edge is not in the set iB
(
N−
�B
(C)

)
since it contains E and

E is not in iB ( [= − X̃=]). An essentially identical application of Corollary 4.2.24.2.2 as
above now gives us the claim. �

Next, we show that the embedding of the rest of �B does not have much effect.

Claim 4.7.4. When PackingProcess2 is run up to and including the embedding of
�B, with probability at least 1 − 4=−3� , we have either E ∈ iB ( [= − X̃=]) or∑

e∈N�B (E;-1,...,-A−1)
FB (e) =

(
1 ± 10A�UB

)
?B · |-1 | · · · |-A−1 |=1−Asum(lB) .

Proof. Let E be the intersection of the likely event of Claim 4.7.34.7.3 and the event
that RandomEmbedding, run to embed �B into �B−1, succeeds and for each
1 ≤ C ≤ E(�B) the pair

(
�B−1, iB ( [C])

)
satisfies the (�UB, &)-diet condition.

By Lemma 4.4.34.4.3 and Claim 4.7.34.7.3, E occurs with probability at least 1 − 4=−3� .
Suppose that when RandomEmbedding embeds �B into �B−1, at some time C we

have iB (C) = E. If C ≤ = − X̃=, then the claim statement is true trivially, so we may
assume C > = − X̃=. We now consider the embeddings of vertices from C onwards.
Each vertex that we embed completes the embedding of at most � edges of�B, and
therefore is responsible for at most � semi-edges of N�B−1 (E) not being in N�B (E).
These � semi-edges have weight at most �2=log = .
Since C has degree at most 2=

log = in �B, there are at most 2=
log = vertices of �B
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which are in an edge with C, and only when we embed one of these vertices can
we remove a semi-edge from N�B−1 (E). Provided that we are in the event E, at
each time C′ when we embed such a vertex, by the diet condition we do so to a set
of size at least 1

2W
�X=. The expected weight of the semi-edges we remove from

N�B−1 (E) by one such vertex embedding, conditioning on the previous embedding
history, is thus at most 2W−�X−1sum(lB)=−1. We apply Corollary 4.2.24.2.2, with
˜̀ = ã = 2W−�X−1sum(lB)=−1 · 2=

log = and r̃ = Ysum(lB), to bound the probability
that E occurs and the total weight removed, i.e.∑

e∈N�B−1 (E)\N�B (E)
lB (e)

exceeds 2Ysum(lB). We obtain the upper bound

2 exp
(
− r̃2

2 �2=
log = (2 ˜̀ + r̃)

)
< =−5� ,

where the inequality uses the choice of 2. This bound, together with the choice
of Y, and the facts ?B−1 − ?B ≤ �=/

(=
A

)
, |-1 | · · · |-A−1 |=1−A ≥ WA−1, and ?B ≥ W,

establish the claim. �

We now need to deal with the embedding of �B+1, . . . , �B∗ . What we want to do
is establish the following claim.

Claim 4.7.5. With probability at least 1 − =− −2A , for each B ≤ B′ ≤ B∗, either
E ∈ iB ( [= − X̃=]) or we have∑

e∈N�B′ (E;-1,...,-A−1)
FB (e) =

(
1 ± 30A�UB′

)
?B′ · |-1 | . . . |-A−1 |=1−Asum(lB) .

Proof. Observe that to establish this claim, by the union bound it is enough to show
that, for a given B′ with B < B′ ≤ B∗, with probability at most =− −5A we have that B′

is minimal such that (4.7.14.7.1) fails, since Claim 4.7.44.7.4 already establishes this bound
for B′ = B. Furthermore, defining a weight function l′ on

(+ (�̂)
A−1

)
by

l′(H) =
∑

e∈N�B (E;-1,...,-A−1)
e is an ordering of H

lB (e)
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we see that the equation of Claim 4.7.54.7.5 is equivalent to∑
H∈N�B′ (E)

l′(H) =
(
1 ± 30A�UB′

)
?B′ · |-1 | · · · |-A−1 |=1−Asum(lB) , (4.7.1)

and we will aim to prove this version, in which we simply work with weights on
semi-edges of �̂.
Let, for each B < 8 ≤ B∗,

.8 =
∑

H∈N�8−1 (E)\N�8 (E)
l′(H) .

To begin with, we observe that, provided (4.7.14.7.1) holds for 8−1 and�8−1 is (U8−1, &)-
quasirandom, we can calculate E[.8 |�8−1, l

′].

Claim 4.7.6. Suppose that for some B < 8 ≤ B∗, (4.7.14.7.1) holds for 8 − 1 and �8−1 is
(U8−1, &)-quasirandom. Then we have

E[.8 |�8−1, l
′] =

(
1 ± 104�AU8−1&X

−1)A!|-1 | · · · |-A−1 |=1−2Asum(lB)4(�8) .

Proof. By definition of .8 we have

.8 =
∑

H∈N�8−1 (E)
l′(H) · 1HE is used when embedding �8

and therefore

E[.8 |�8−1, l
′] =

∑
H∈N�8−1 (E)

l′(H) · P[HE is used when embedding �8 | �8−1, iB] .

Since �8−1 is (U8−1, &)-quasirandom, Lemma 4.5.54.5.5 yields

E[.8 |�8−1, l
′] =

∑
H∈N�8−1 (E)

l′(H) · (1 ± 200�AU8−1X
−1)2+2� A!4(�8)

?8−1=A
,
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and since (4.7.14.7.1) holds for 8 − 1 we get

E[.8 |�8−1, l
′] =

(
1 ± 30A�U8−1

)
?8−1 |-1 | · · · |-A−1 |=1−Asum(lB)

· (1 ± 200�AU8−1X
−1)2+2� A!4(�8)

?8−1=A

=
(
1 ± 104�AU8−1&X

−1)A!|-1 | · · · |-A−1 |=1−2Asum(lB)4(�8) . �

What we would like to do now is to use Corollary 4.2.24.2.2 to estimate
∑B∗

8=B+1.8.
However the range of the .8 might be too large for this. To that end, we define, for
each B + 1 ≤ 8 ≤ B∗, the random variables

. ′8 := min
(
.8, 2 ′2

sum(lB)
log =

)
with  ′ = 1010 W−1A2��3X−1 .

The ‘capped’ random variable. ′
8
trivially does not have an excessively large range,

and so we can use Corollary 4.2.24.2.2 to show that
∑B∗

8=B+1.
′
8
is very likely to be

close to the corresponding sum of conditional expectations. For A ≥ 3, we will
now prove that for each 8, with very high probability we have . ′

8
= .8, so that

in particular (by the union bound) the statement holds simultaneously for all B <
8 ≤ B∗ and E[. ′

8
|�8−1, l

′] is very close to E[.8 |�8−1, l
′]. This is what we need

to establish (QUASI 3)(QUASI 3). We should note that our proof does not go through for
A = 2, and indeed for A = 2 one can find examples where it is likely that . ′

8
≠ .8 for

some 8. For a specific class of weight functions lB, and with -1 = + (�̂), in [22] a
different proof of (QUASI 3)(QUASI 3) is given; the approach there should generalise to prove
the entire A = 2 case of (QUASI 3)(QUASI 3), but we have not checked the details.

Let us define the event CapE(8) as .8 > 2 ′2 sum(lB)
log = . This means that the set

N�8−1 (D) \N�8 (D) of semi-edges has a large total weight. We want to separate cases
when this comes from few edges and when this comes frommany edges. Therefore
we define the set

, =

{
H ∈ N�8−1 (E)

���l′(H) > sum(lB)
(log =)10

}
as the heavy semi-edges and

! =

{
H ∈ N�8−1 (E)

��� sum(lB)
(log =)10 ≥ l

′(H) > 0
}

as the light semi-edges. We define CapE1(8) as ∑
H∈,\N�8 (E) l

′(H) >  ′2 sum(lB)
log =
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meaning that the heavy edges hit the cap and CapE2(8) as ∑
H∈!\N�8 (E) l

′(H) >
 ′2 sum(lB)

log = meaning that the light edges hit the cap. Clearly CapE(8) implies at
least one of CapE1(8) and CapE2(8) holds. By definition of sum(lB), we have
|, | ≤ (log =)10.
In order to prove CapE(8) is unlikely, it is enough to prove that each of CapE1(8)

and CapE2(8) is unlikely. We begin with CapE1(8). The idea here is that in order
for CapE(8) to occur, a reasonably large matching of semi-edges of , must form
edges with E which are used in embedding �8; we prove that any one such large
matching is unlikely and take the union bound over all such matchings. The next
claim justifies that a large matching must be chosen.

Claim 4.7.7. Let ( be a set of semi-edges of �̂ such that
∑
H∈( l

′(H) ≥ 0(A −
1)Δ(lB). There is a subset (′ ⊆ ( such that |(′| = 0 and (′ is a matching.

Proof. We greedily pick semi-edges H from (, add them to (′ and remove any
semi-edge from ( that shares at least one vertex with H. Since a semi-edge has A −1
vertices, in each step we remove semi-edges with total weight at most (A−1)Δ(lB),
and therefore the number of steps before removing all semi-edges from ( is at least
0. If we stop after 0 steps, we have |(′| = 0, and by construction (′ is a matching.

�

We now show that CapE1(8) is unlikely.

Claim 4.7.8. Suppose that �8−1 is (U8−1, &)-quasirandom and A > 2. Then we
have

P
[
CapE1(8)

���8−1, l
′] ≤ =− −10A .

Proof. Let k1, . . . , k=−X= the embedding sequence generated by RandomEmbed-
ding when called to embed �8 into �8−1. Let E be the event that for each
1 ≤ 9 ≤ = − X= the (�U,&)-diet condition holds for

(
�8−1, im(k 9 )

)
. By

Lemma 4.4.34.4.3 we have
P
[
E

���8−1, l
′] ≥ 1 − =−5� .

For the following calculations we assume E holds.
By Claim 4.7.74.7.7, since  ′2 sum(lB)

log = > ( + 20A) (A − 1)Δ(lB), if CapE1(8) holds
then there is amatching of 0 :=  +20A semi-edges H1 = (H1,1, . . . , H1,A−1), . . . , H0 =
(H0,1, . . . , H0,A−1) ∈ , such that H 9E is an edge of �8−1 which is used in the
embedding of �8 for each 1 ≤ 9 ≤ 0. That is, there exists G ∈ + (�8) and
a matching of semi-edges I1 = (I1,1, . . . , I1,A−1), . . . , I0 = (I0,1, . . . , I0,A−1) in
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N�8 (G), such that i8 maps G to E, and I 9 ,ℓ to H 9 ,ℓ for each 9 ∈ [0] and ℓ ∈ [A − 1].
We fix such a choice, and will later take the union bound over all possible such
choices. Let � denote the event that i8 (I 9 , ℓ) = H 9 ,ℓ for each 9 ∈ [0] and ℓ ∈ [A−1].
We order the pairs (I 9 ,: , H 9 ,: ) by increasing I 9 ,: and for convenience rename

them to pairs ((G1, H
′
1), . . . , (G0(A−1) , H

′
0(A−1))). Let, for each ℓ ∈ [0(A − 1)], the

event �ℓ be that i8 (Gℓ) = H′ℓ. Let �̃ℓ denote ∩
ℓ
ℎ=1�ℎ. Since E holds, we have

P
[
�ℓ

���8−1, l
′, �̃ℓ−1

]
≤ 2W−�X−1=−1 .

This implies

P[� |�8−1, l
′] = 1 − P[E|�8−1,l′] +

0(A−1)∏
ℓ=1
P
[
�ℓ

���8−1, l
′, �̃ℓ−1

]
≤ =−5� +

(
2W−�X−1=−1)0(A−1) ≤

( 1
4W

�X=
)−0(A−1)

.

Taking the union bound over choices of G, H 9 ,ℓ and I 9 ,ℓ, we see

P
[
CapE1(8)

���8−1, l
′] ≤ =( |, |

0

) (
N�8 (G)
0

)
((A − 1)!)0 ·

( 1
4W

�X=
)−0(A−1)

≤ =(log =)100 ·
(
2=

log =
)0 (4A−1A!W−� (A−1)X1−A )0 · =−0(A−1)

≤ =2−0(A−2) ≤ =− −10A ,

as desired. �

To deal with CapE2(8), we also consider the vertex-by-vertex embedding of
�8. The critical point is that each vertex embedding embeds at most � edges of
�8, and therefore is responsible for removing at most � light semi-edges from
N�8 (E). Since these semi-edges are light, the maximum weight removed is at
most � · sum(lB) (log =)−10, and the extra log factors here (as compared to heavy
semi-edges) give us better concentration.

Claim 4.7.9. Suppose that �8−1 is (U8−1, &)-quasirandom and A > 2. Then we
have

P
[
CapE2(8)

���8−1, l
′] ≤ =− −10A .

Proof. Again, let k1, . . . , k=−X= the embedding sequence generated by Ran-
domEmbedding when called to embed �8 into �8−1. Let E be the event that
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for each 1 ≤ 9 ≤ = − X= the (�U,&)-diet condition holds for
(
�8−1, im(k 9 )

)
. By

Lemma 4.4.34.4.3 we have
P
[
E

���8−1, l
′] ≥ 1 − =−5� ,

and for the following calculations we assume E holds.
Let us fix G ∈ + (�8) and assume i8 (G) = E; we will later take a union bound

over the choices of G.
Let G1 < · · · < Gℓ be the vertices of �8 which are maximum vertices of some

semi-edge in N�8 (G) and which are greater than G. Note that there can be some at
most � semi-edges of N�8 (G) all of whose vertices are smaller than G. Trivially
ℓ ≤ Δ. For each G 9 let ( 9 be the set of semi-edges in N�8 (G) whose last element is
G 9 , and note |( 9 | ≤ � since �8 is �-degenerate. We define

- 9 :=
∑

H∈i8 (( 9 )∩!
l′(H) .

We have 0 ≤ - 9 ≤ � · sum(lB) (log =)−10 for each 9 . Taking account of the at
most � light semi-edges which come entirely before G, we see that in order for
CapE2(8) to occur, we need

� · sum(lB) (log =)−10 +
ℓ∑
9=1

- 9 >  
′2 sum(lB)

log = ,

and so
∑ℓ
9=1 - 9 >

1
2 
′2 · sum(lB) (log =)−1. Our aim is now to show that this is

unlikely.
When we embed G 9 , by the diet condition we embed it uniformly at random to

a set of size at least 1
2W

�X= vertices; at most, all of sum(lB) could be distributed
over these vertices (making semi-edges with the remaining embedded parts of ( 9 )
and so we have

E[- 9 |�8−1, l
′, kG 9−1] ≤ sum(lB) · 2W−�X−1=−1 .

Summing over 9 , within E we get

ℓ∑
9=1
E[- 9 |�8−1, l

′, kG 9−1] ≤
2=

log =
·sum(lB) ·2W−�X−1=−1sum(lB) ≤ 1

4 
′2 sum(lB)

log =

by choice of  ′.
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Applying Corollary 4.2.24.2.2(a )(a ) with the given E, with ˜̀ = 1
4 
′2 sum(lB)

log = , and with
' = � · sum(lB) (log =)−10 we then obtain that conditioning on �8−1 and lB we
have

P

E and
ℓ∑
9=1

- 9 ≥ 1
4 
′2 sum(lB)

log =

 ≤ 2 exp ©«−
1
4 
′2 sum(lB)

log =

4� · sum(lB) (log =)−10
ª®¬

≤ =− −20A ,

and by the union bound over choices of G we have the claim. �

By Claims 4.7.84.7.8 and 4.7.94.7.9, we see that for each B < 8 ≤ B∗, provided that
PackingProcess2 behaves, we have P[CapE(8) |�8−1, l

′] ≤ 2=− −10A . Thus, by the
union bound, with probability at least 1 − =−3� − 2=− −9A we have . ′

8
= .8 for each

B < 8 ≤ B∗. In addition, since .8 ≤ sum(lB) trivially, provided PackingProcess2
behaves we have

E[. ′8 |�8−1, l
′] > E[.8 |�8−1, l

′] + (=−3� − 2=− −9A) · sum(lB)
> (1 + =−4)E[.8 |�8−1, l

′] .

ByCorollary 4.2.24.2.2, and since sum(lB) ≥ W=, with probability at least 1−=− −6A ,
conditioning on l′ and �B, if PackingProcess2 behaves and the good event of
Claim 4.7.44.7.4 occurs, we have

B′∑
8=B+1

. ′8 = (1 ± Y)
B′∑

8=B+1
E[. ′8 |�8−1, l

′] ,

and we claim that this equation is inconsistent with B′ being the first failure time
of (4.7.14.7.1). Summing up the failure probabilities, this then establishes the Claim.
Supposing that (4.7.14.7.1) holds up to and including B′ − 1 and the likely events
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above occur, we have∑
H∈N�B′ (E)

l′(H)

=
∑

H∈N�B (E)
l′(H) −

B′∑
8=B+1

.8

=
∑

H∈N�B (E)
l′(H) − (1 ± Y)

B′∑
8=B+1
E[. ′8 |�8−1, l

′]

=
∑

H∈N�B (E)
l′(H) − (1 ± Y) (1 ± =−4)

B′∑
8=B+1
E[.8 |�8−1, l

′]

=
∑

H∈N�B (E)
l′(H)

− (1 ± 2Y)
B′∑

8=B+1

(
1 ± 104�AU8−1&X

−1)A!|-1 | · · · |-A−1 |=1−2Asum(lB)4(�8) ,

and the main term of this last line is, by the good event of Claim 4.7.44.7.4,

?B · |-1 | · · · |-A−1 |=1−Asum(lB) − A!|-1 | · · · |-A−1 |=1−2Asum(lB)
B′∑

8=B+1
4(�8)

= (1 ± Y)?B′ |-1 | · · · |-A−1 |=1−A · sum(lB) ,

which is as desired. What remains is to estimate the error term

10A�UB?B |-1 | · · · |-A−1 |=1−Asum(lB)

+
B′∑

8=B+1
105�AU8−1&X

−1A!|-1 | · · · |-A−1 |=1−2Asum(lB)4(�8)

≤|-1 | · · · |-A |=1−Asum(lB) ·
(
10A�UB?B +

B′∑
8=B+1

105��AU8−1&X
−1A!=1−A

)
≤|-1 | · · · |-A |=1−Asum(lB) ·

(
10A�UB?B +

∫ B′

G=−∞
105��AUG&X

−1A!=1−AdG
)

≤|-1 | · · · |-A |=1−Asum(lB)
(
10A�UB?B + WUB′

)
≤20A�UB?B |-1 | · · · |-A |=1−Asum(lB) ,

where the penultimate line is by choice of the UG .
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Putting these together, the above likely events imply∑
H∈N�B′ (E)

l′(H) =(1 ± Y)?B′ |-1 | · · · |-A−1 |=1−A

· sum(lB) ± 20A�UB?B |-1 | · · · |-A |=1−Asum(lB) ,

which is precisely the statement that (4.7.14.7.1) holds for B′. This completes the proof
of Claim 4.7.54.7.5. �

Finally, Claim 4.7.54.7.5, for B′ = B∗, together with the union bound over E and
B ∈ [B∗], establishes (QUASI 3)(QUASI 3).

4.8 Perfect packings

In this section we prove Theorem 4.1.44.1.4. We deduce Theorem 4.1.44.1.4 from The-
orem 4.1.24.1.2 and the following technical result.

Theorem 4.8.1. For every � ≥ 1 and A ≥ 3, and every sufficiently small ` > 0
there are =0 and b, 2 > 0 such that for every = ≥ =0 the following holds. Suppose
that �̂ is a A-uniform (b, � (A + 1) + 3)-quasirandom hypergraph with = vertices.
Suppose that B∗ = b`=A−1c, and that the hypergraphs (�B)B∈[B∗] all have maximum
degree 2=

log = , have exactly =− b`=c vertices, and have at least `= vertices of degree
1. Suppose further that

∑
B∈[B∗] 4(�B) = 4(�̂). Then (�B)B∈[B∗] packs into �̂.

Before sketching the proof of Theorem 4.8.14.8.1, we show that it, together with
Theorem 4.1.24.1.2, implies Theorem 4.1.44.1.4.

Proof of Theorem 4.1.44.1.4. Without loss of generality, wemay assume ` is sufficiently
small for Theorem 4.8.14.8.1 for input � and A. Given �, A, `, let W′ be small enough
to play the rôle of b in Theorem 4.8.14.8.1 for input �, `. Suppose that =0 is also large
enough, and b, 2 > 0 are small enough, for this application of Theorem 4.8.14.8.1 and
also for Theorem 4.1.24.1.2 for input A , � and W = min(W′, 1

2`
2).

Let = and the hypergraphs �̂ and (�8)8∈[<] be given. Without loss of generality,
wemay assume

∑
8∈[<] 4(�8) = 4(�̂), since otherwise we can add new hypergraphs

consisting of single edges to our family until this condition is satisfied. We can
further assume that the b`=A−1c special hypergraphs come last in the sequence.

We apply Theorem 4.1.24.1.2, with input as above, to pack the hypergraphs �8 with
1 ≤ 8 ≤ B∗ − b`=A−1c into �̂, and let �̃ be the hypergraph of leftover edges. By
Theorem 4.1.24.1.2 such a packing exists and �̃ is (W, 4� (A + 1)A + 3)-quasirandom.
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We now create a sequence �′1, . . . , �
′
B′ of hypergraphs with B

′ := b`=A−1c by
taking the special hypergraphs �B∗−b`=A−1c+1, . . . , �B∗ and adding to each isol-
ated vertices until they have = − b`=c vertices. By Theorem 4.8.14.8.1 we can pack
(�′

8
)8∈[B′] into �̃. Ignoring the extra isolated vertices, this gives us a packing of

�B∗−b`=A−1c+1, . . . , �B∗ into �̃ and therefore a packing of �1, . . . , �B∗ into �̂ as
desired.

We now sketch the proof of Theorem 4.8.14.8.1. For this, we need to define various
constants, which we will take as fixed throughout this section. We do not provide
explicit dependencies for all constants (mainly because Lemma 4.2.94.2.9, which we
used to prove Lemma 4.2.64.2.6, does not provide explicit dependencies), but explain
now how to choose them.

Definition 4.8.2 (Choice of constants). The constants �, A and ` are provided
as input to Theorem 4.8.14.8.1, with the assumption that ` is sufficiently small for
Lemma 4.2.64.2.6. We let r be returned by Lemma 4.2.64.2.6 for input `. We choose
a ≤ 10−3A−2r` sufficiently small to play the rôle of Y in Lemma 4.2.64.2.6.
We choose W ≤ 1

100 (A!)
−2A`3Aa2A2−3AA−3A sufficiently small for Lemma 4.8.54.8.5

below, and given W we let b and 2 be sufficiently small for Lemma 4.8.54.8.5 with input
�, A, `, a and W, and in addition we let 2 be sufficiently small for various explicit
calculations in this section. Finally, we suppose =0 is large enough for Lemma 4.8.54.8.5
below for the given inputs, and also large enough such that 1

8A!A `a=0 is large enough
to play the rôle of < in Lemma 4.2.64.2.6 with inputs as above, and sufficiently large
for various explicit calculations in this section.

Given = ≥ =0, the density ? is determined by

? = b`=A−1c ba=c
(
=

A

)−1
=

(
1 ± 1

2
) `a
A! . (4.8.1)

In what follows, we will assume B∗ := b`=A−1c.

We start by creating an almost perfect packing, which omits ℓ leaves (i.e. vertices
of degree 1) in each hypergraph.

Definition 4.8.3 (corresponding subgraph sequence). Given a sequence (�B)B∈[B∗]
of hypergraphs, we say that (�′B)B∈[B∗] is a corresponding subgraph sequence
omitting ℓ leaves if for each B ∈ [B∗] we have �′B = �B − +B + �B for a strongly
independent set +B of leaves in �B with |+B | = ℓ, and a set �B of new and isolated
vertices with |�B | = ℓ.
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The addition of the isolated set �B is purely for technical reasons: it guarantees
that the �′B have exactly = − `= vertices, which allows for easier formulae than the
= − `= − ℓ we would otherwise have. The restriction that the set +B is strongly
independent means that there is a bĳection between the set +B and the set of edges
of �B which are not in �′B; we do not pick two leaves which lie in the same edge of
�B.

We first find a packing (i′B)B∈[B∗] of the corresponding subgraph sequence
(�′B)B∈[B∗] with the additional properties guaranteed by Lemma 4.8.54.8.5 below. We
will apply Lemma 4.8.54.8.5 (which is a corollary of Theorem 4.7.14.7.1) with the weight
function on �′B defined as follows.

Definition 4.8.4 (weights). Let (�B)B∈[B∗] be a sequence of =-vertex hypergraphs
each with a strongly independent set+B of ℓ leaves, and (�′B)B∈[B∗] be a correspond-
ing subgraph sequence, � be an =-vertex hypergraph, and i′B : + (�′B) → + (�)
be an injection for each B ∈ [B∗]. For B∗ − b`=A−1c < B ≤ B∗ we define for each
G ∈ ((�B) the weight

FB (G) =
��{H ∈ N�B (G) : H is a leaf of �B in +B}

�� ,
and for each H ∈ ((�) the weight

FB (H) = FB
(
i′−1
B (E)

)
.

Further, for each H ∈ ((�) we define

F(E) =
∑
B∈[B∗]

FB (H) .

Since each set+B of omitted leaves is a strongly independent set in�B, the weight
of any semi-edge containing an omitted leaf is 0. Thus the entire weight of �B,
which is ℓ, the number of omitted leaves, is supported on the semi-edges on the
vertices of �′B. The packing of the �′B is then guaranteed by the following lemma.

Lemma 4.8.5 (almost perfect packing lemma). Given � ≥ 1, A ≥ 2 and ` > 0,
provided we have

0 < 2 � b � W � a, `,
1
�
,

1
A

the following holds. Let �̂ be a (b, (A + 1)� + 3)-quasirandom hypergraph with
= vertices. Let (�B)B∈[B∗] be a �-degenerate hypergraph sequence with maximum
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degree 2=
log = in which each graph contains at least `= leaves and

∑
B∈[B∗] 4(�B) =

4(�̂), and let (�′B)B∈[B∗] be a corresponding subgraph sequence omitting ba=c
leaves. Then there exists a packing (i′B)B∈[B∗] of (�′B)B∈[B∗] into �̂ with leftover �
which is (W3, 2)-quasirandom such that for ? = b`=A−1c ba=c

(=
A

)−1 and for all
H ∈ ((�) and B, B′ ∈ [B∗] we have
(P 1) F(H) = (1 ± W3) ?=

A
,

(P 2)
��N� (H) \ im i′B

�� = (1 ± W3)`?=,
(P 3)

��N� (H) \ (im i′B ∪ im i′
B′)

�� = (1 ± W3)`2?= if B ≠ B′,

for all D ∈ + (�) and H ∈ ((�) with D ∉ H we have,
(P 4)

∑
B FB (H)1D∉im i′B = (1 ± W3)` ?=

A
,

and for all D ∈ + (�) we have
(P 5) If D ∉ im i′B then

∑
H : HD∈� (�) FB (H) <

10A!?2=
`

.

This lemma is deduced from Theorem 4.7.14.7.1 in Section 4.8.34.8.3. Given this packing
of the�′B, what remains is to extend each i′B by packing the remaining leaves of�B.
At each semi-edge H ∈ ((�), we have a collection of F(H) leaves to pack coming
from the various hypergraphs �B; we say these are the leaves dangling at H. We
next choose an orientation ®� of � such that #+®� (H) = F(H) for each semi-edge H
in �. The idea here is that we will then embed the leaves dangling at H to the out-
neighbours of H. The following lemma, which we prove in Section 4.8.24.8.2, tells us
that a random orientation can be slightly modified to obtain the desired orientation:
this will allow us to show that ®� inherits the quasirandomness properties of �
guaranteed by Lemma 4.8.54.8.5.

Lemma4.8.6 (orientation lemma). Given ? > 0, A ≥ 2 and 0 < W < 2−2A−3?2AA−3A ,
let � be an =-vertex A-uniform (W3, 2)-quasirandom hypergraph of density ? with
semi-edge weights F : + (�) → N0 such that F(H) = (1 ± W3) ?=

A
for all H ∈ ((�)

and such that we have
∑
H∈+ F(H) = 4(�). If ®�0 is a uniform random orientation

of �, then with probability tending to 1 as = → ∞ there is an orientation ®� of �
such that for all H ∈ ((�) we have
(O 1) deg+®� (H) = F(H), and
(O 2)

��{D ∈ + ( ®�) : HD ∈ � (�) and HD is oriented differently in ®� and ®�0}
�� ≤

W2=.

To help with packing the leaves dangling at each semi-edge H, we define the
following auxiliary bipartite graphs.

141



4 Packing Degenerate Hypergraphs

Definition 4.8.7 (leaf matching graphs). Given H ∈ (( ®�), we define the leaves at
H to be the set

!H :=
{
G : ∃B such that G ∈ + (�B) \+ (�′B) and Gi′

−1
B (H) ∈ � (�B)

}
Let the leaf matching graph �H be the bipartite graph with parts !H and #+®� (H),
and edges GD with G ∈ !H and D ∈ #+®� (H) whenever D ∉ im i′B for the B such that
G ∈ + (�′B).

Observe that a perfect matching in �H defines an assignment of the leaves at (all
preimages of) H to #+®� (H) which extends the packing of (�

′
B)B∈[B∗] . In what follows,

we will be able to choose ®� such that for each H, the graph �H has equal parts of
size roughly 1

A
?= and every vertex has degree roughly 1

A
`?=. We will further see

that each �H satisfies a codegree condition which by Lemma 4.2.64.2.6 implies that �H
has a perfect matching.

If we simply chose a perfect matching in each �H to embed all the leaves
⋃
H !H,

then we would almost have a perfect packing—each edge of �̂ would be used
exactly once—but it could be the case that multiple leaves of some �B (not in
the same !H) are embedded to a single D ∈ + (�̂). To avoid this, we find perfect
matchings in each �H one at a time and update the leaf matching graphs by removing
edges which are no longer useable. We choose these perfect matchings uniformly
at random at each step, and we will argue (using Lemma 4.2.64.2.6) that our updated
leaf matching graphs lose only very few (at most r?=/A) edges at any given vertex,
and thus continue to satisfy the conditions of Lemma 4.2.64.2.6.

Making this precise, assume + ( ®�) = {1, . . . , =}, and set � (0)H := �H for each
H ∈ (( ®�). We use the following algorithm MatchLeaves.
AssumingMatchLeaves succeeds, we then, for each B ∈ [B∗] and each G ∈ + (�B),

set

iB (G) =

i′B (G) if G ∈ dom(i′B)

fH (G) if G ∈ !H .
(4.8.2)

This is a perfect packing of (�B)B∈[B∗] into �̂ by construction. Thus to prove
Theorem 4.8.14.8.1, what we need to do is prove Lemmas 4.8.54.8.5 and 4.8.64.8.6 above, and
argue thatMatchLeaves succeeds with positive probability. We do the last of these
steps first, in the following subsection.
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Algorithm 4: MatchLeaves
Input : a hypergraph sequence (�B)B∈[B∗] , a corresponding subgraph

sequence (�′B)B∈[B∗] omitting ℓ leaves, and associated leaf
matching graphs (� (0)H )H∈(( [=])

Output : matchings (fH)H∈(( [=]) of the omitted leaves to feasible image
vertices as given by the leaf matching graphs

pick an arbitrary order (( [=]) = {H1, . . . , H( =A−1) } ;
for 8 = 1 to

( =
A−1

)
do

let H = H8 ;
let fH be a uniform random perfect matching in � (8−1)

H ;
for 9 = 8 + 1 to

( =
A−1

)
do

let �H 9 :=
{
GD ∈ � (� (8−1)

H 9 ) : ∃B such that G ∈ + (�′B) and f−1
H (D) ∈

+ (�B)
}
;

let � (8)H 9 := � (8−1)
H 9 − �H 9 ;

end
end
return (fH)H∈(( [=]) ;

4.8.1 The proof of Theorem 4.8.14.8.1

We are now in a position to prove (assuming Lemmas 4.8.54.8.5 and 4.8.64.8.6) The-
orem 4.8.14.8.1. As mentioned above, what this boils down to is, given the leftover �
from Lemma 4.8.54.8.5, showing that we can choose ®� to inherit the required quasir-
andomness properties (which imply that the leaf matching graphs �H satisfy the
degree-codegree condition of Lemma 4.2.64.2.6) and arguing that during the running
ofMatchLeaves, it is unlikely that more than r?=/A edges are lost at any vertex of
any �H, which (by Lemma 4.2.64.2.6) implies that MatchLeaves is likely to complete
and therefore the desired packing exists. For the choice of ®�, we use Chernoff’s
inequality and union bounds together with Lemma 4.8.64.8.6. For the analysis of
MatchLeaves, we use Corollary 4.2.24.2.2 together with union bounds.

Proof of Theorem 4.8.14.8.1. Given A , � and ` > 0 as in the statement of The-
orem 4.8.14.8.1, we choose constants as described at the beginning of this subsection.
We set & = � (A + 1) + 3.

Suppose that = ≥ =0. Let �̂ be a (b, &)-quasirandom hypergraph with = vertices,
and let (�B)B∈[B∗] be a sequence of �-degenerate hypergraphs, each on = − b`=c
vertices, with maximum degree at most 2=

log = , and containing at least `= leaves.
Suppose further that

∑
B∈[B∗] 4(�B) = 4(�̂).
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For each B ∈ [B∗], we choose a strongly independent set +B of ba=c leaves of �B,
and let �′B be the corresponding hypergraph with vertices (+ (�B) \+B) ∪ �B, where
�B is a set of |+B | isolated vertices. We define weights FB (H) as in Definition 4.8.44.8.4.
Let for each B the map i′B be the embedding of �′B into �̂ provided by

Lemma 4.8.54.8.5, with � the (W3, 2)-quasirandom hypergraph of leftover edges, and
suppose that the properties (P 1)(P 1)–(P 5)(P 5) hold, with the weight function F as in
Definition 4.8.44.8.4. By construction, � has b`=A−1c ba=c = ?

(=
A

)
edges, so has density

?.
The following claim establishes the existence of the desired orientation of �.

Claim 4.8.8. There exists an orientation ®� of � such that for each semi-edge
H ∈ ((�) we have F(H) = deg+®� (H), and in addition for each B, B

′ ∈ [B∗] we have
(P’ 2)

��#+®� (H) \ im i′B
�� = (1 ± W) `?=

A
, and

(P’ 3)
��#+®� (H) \ (im i′B ∪ im i′

B′)
�� = (1 ± W) `2?=

A
if B ≠ B′.

Proof. � is (W3, 2)-quasirandom and of density ?, and by (P 1)(P 1) we have F(H) =
(1 ± W3) ?=

A
for all H ∈ ((�). This, together with our choice of W, verifies that �

satisfies the conditions of the orientation lemma (Lemma 4.8.64.8.6).
Let ®�0 be a uniform random orientation of �. Given H ∈ ((�) and B ∈ [B∗],

by (P 2)(P 2) and Theorem 4.2.14.2.1, with probability at least 1 − exp
(
− W6`?=

12
)
we have��#+®�0

(H) \ im i′B
�� = (1 ± 3W3) `?=

A
.

Similarly, given H ∈ ((�) and B, B′ ∈ [B∗] with B ≠ B′, by (P 3)(P 3) and Theorem 4.2.14.2.1,
with probability at least 1 − exp

(
− W6`2?=

12
)
we have��#+®�0

(H) \ (im i′B ∪ im i′B′)
�� = (1 ± 3W3) `

2?=
A
.

Taking the union bound, and by Lemma 4.8.64.8.6, with probability at least 1 −
2=3A+6 exp

(
− W

6`2?=
12

)
−>(1) each of the above good events holds for each H ∈ ((�)

and each B, B′ ∈ [B∗] with B ≠ B′, and in addition there is an orientation ®� of �
satisfying conclusions (O 1)(O 1) and (O 2)(O 2) of Lemma 4.8.64.8.6.

For sufficiently large = we have 1 − 2=3A+6 exp
(
− W6`2?=

12
)
− >(1) > 0, so we

fix ®�0 and ®� satisfying all these properties. By (O 1)(O 1) the orientation ®� satisfies
deg+®� (H) = F(H) for each H ∈ ((�), as desired. Given H ∈ ((�) and B, B

′ ∈ [B∗]
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with B ≠ B′, by (O 2)(O 2) we have��#+®� (H) \ im i′B
�� = ��#+®�0

(H) \ im i′B
�� ± W2= = (1 ± 3W3) `?=

A
± W2= = (1 ± W) `?=

A
,

where the final inequality is by choice of W. This verifies (P’ 2)(P’ 2). Similarly, we have��#+®� (H) \ (im i′B ∪ im i′B′)
�� = ��#+®�0

(H) \ (im i′B ∪ im i′B′)
�� ± W2=

= (1 ± 3W3) `
2?=
A
± W2= = (1 ± W) `

2?=
A
,

giving (P’ 3)(P’ 3). �

From now on, we assume ®� satisfies the properties of the above claim, which
we use instead of (P 2)(P 2) and (P 3)(P 3). What remains is to analyse MatchLeaves,
which means showing that the leaf matching graphs � (C−1)

H satisfy the conditions
of Lemma 4.2.64.2.6 at every step C. We first show that the leaf matching graphs � (0)H
satisfy the conditions (M 1)(M 1) and (M 2)(M 2) required to play the rôle of � in Lemma 4.2.64.2.6,
with < := ?=/A. The main work is then to argue that sufficiently few edges are
deleted from �

(0)
H to form �

(C−1)
H that it can play the rôle of �′, i.e. that (M 3)(M 3) is

satisfied. For this last part, we actually need only to show specifically that the
condition holds for � (C−1)

HC , where HC is the Cth semi-edge in our arbitrary order on
((�).
Property (M 1)(M 1): Given any H ∈ ((�) and any G ∈ +

(
�
(0)
H

)
, we separate two

cases. If G ∈ !H is in the hypergraph �B, then by (P’ 2)(P’ 2) we have deg
�
(0)
H
(G) =��N+®� (H) \ im i′B

�� = (1 ± W) `?=
A
. If G ∈ #+®� (H), then by (P 4)(P 4) we have deg

�
(0)
H
(G) =∑

B FB (H)1G∉im i′B = (1 ± W3) `?=
A
. In either case, since ? > W this verifies (M 1)(M 1).

Property (M 2)(M 2): Given any H ∈ ((�) and any D, D′ ∈ !H, if D ∈ + (�B) and
D′ ∈ + (�B′), where B ≠ B′, then by (P’ 3)(P’ 3) we have deg

�
(0)
H
(D, D′) =

��N+®� (H) \
(im i′B∪ im i′

B′)
�� = (1±W) `2?=

A
. Again since W < ? this is as required by (M 2)(M 2), and

we only need to show that the number of D, D′ ∈ !H which are both in �B for some
B ∈ [B∗] is at most ?2=2

4 log(?=/2) . But any given�B has at most FB (H) ≤ 2=
log = vertices in

!H, so that for a given D there are at most 2=
log = choices of D

′ with D, D′ ∈ + (�B) for
some B ∈ [B∗]. Since |!H | ≤ = we conclude that there are at most 2=2

log = <
?2=2

4 log(?=/2)
pairs D, D′ ∈ !H such that D, D′ ∈ + (�B) for some B ∈ [B∗]. This completes the
verification of (M 2)(M 2).
Property (M 3)(M 3): This property does not hold deterministically, but we shall show

that it holds for all C with high probability. For this purpose we define the following
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events. For each C ∈
( =
A−1

)
, let EC be the event that for each G ∈ + (� (0)HC ) we have

deg
�
(0)
HC

(G) − deg
�
(C−1)
HC

(G) ≤ 1
2A r?= , (4.8.3)

that is, EC implies the event that (M 3)(M 3) holds for � = � (0)C and �′ = � (C−1)
C . We shall

prove the following claim below, but first show how it implies the theorem.

Claim 4.8.9. With probability at least 1 − =−1, for every C ∈
[ ( =
A−1

) ]
the event EC

holds.

If EC holds then all conditions of Lemma 4.2.64.2.6 are satisfied for � = �
(0)
C ,

�′ = � (C−1)
C . In particular, the perfect matching in � (C−1)

C required byMatchLeaves
exists, and so MatchLeaves does not fail at time C. Thus Claim 4.8.94.8.9 states that
with high probability,MatchLeaves does not fail at any time, and thus the maps iB
defined in (4.8.24.8.2) form (as explained there) the required perfect packing, proving
Theorem 4.8.14.8.1.

To prove Claim 4.8.94.8.9, let for each C ∈
( =
A−1

)
the history HC−1 consist of the

collection of matchings f1, . . . , fC−1 obtained by running MatchLeaves up to and
including step C − 1. Note that giving HC−1 determines whether EC holds or not.

Claim 4.8.10. For each C ∈
[ ( =
A−1

) ]
, each D ∈ #+®� (HC) and each B ∈ [B∗] the

following holds. Either EC does not occur or a random perfect matching fC in
�
(C−1)
C satisfies

P
[
f−1
C (D) ∈ + (�B) |HC−1

]
≤ 2AFB (HC )

`?=
.

Proof. If EC occurs, then all properties (M 1)(M 1)–(M 3)(M 3) from Lemma 4.2.64.2.6 are satisfied
with � = � (0)C and �′ = � (C−1)

C , and thus, a random matching fC in �′ satisfies for
any given edge GD ∈ �

(
�
(C−1)
C

)
P
[
GD ∈ fC

��HC−1
]
≤ 2

`<
= 2A

`?=
.

Taking the union bound over the FB (HC) choices of G ∈ !HC in�B, the claim follows.
�

We now verify Claim 4.8.94.8.9. We shall first argue that the claimed probability
bound follows from a probability bound, given in (4.8.44.8.4), which is of the right form
to use Corollary 4.2.24.2.2. Indeed, let AC be the event that E8 holds for each 1 ≤ 8 < C
but EC does not hold. Observe that if for each C the event AC does not hold, then
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EC holds for each C ∈
[ ( =
A−1

) ]
. In particular, by the union bound over C ∈

[ ( =
A−1

) ]
it

suffices to show that for each fixed C ∈
[ ( =
A−1

) ]
we have P[AC] ≤ =−A−1. Further, by

another union bound over the at most E(� (0)HC ) = 2F(HC) ≤ 2= different G ∈ + (� (0)HC )
and since AC ⊆

⋂
1≤8≤C−1 E8 it is enough to show that for a fixed C and G ∈ + (� (0)HC )

P
[ ⋂

1≤8≤C−1
E8 and deg

�
(0)
HC

(G) − deg
�
(C−1)
HC

(G) > 1
2A r?=

]
≤ =−A−3 . (4.8.4)

The remainder of this proof is devoted to establishing this bound. We will use
Corollary 4.2.24.2.2 for this purpose, with the good event

⋂
1≤8≤C−1 E8. To that end,

define for each 1 ≤ 8 ≤ C − 1 the random variable

.8 := deg
�
(8−1)
HC

(G) − deg
�
(8)
HC

(G)

and observe that

deg
�
(0)
HC

(G) − deg
�
(C−1)
HC

(G) =
C−1∑
8=1
.8 .

To apply Corollary 4.2.24.2.2 we need to find the range of each.8 and the expectation
of each .8, conditioned on the history H8−1. This is encapsulated in Claim 4.8.114.8.11.

Claim 4.8.11. For each 1 ≤ 8 ≤ C − 1, we have 0 ≤ .8 ≤ 2=
log = . Furthermore,

either some E8 with 1 ≤ 8 ≤ C − 1 does not occur, or we have
∑C−1
8=1 E[.8 |H8−1] ≤

40?2A!A`−2=.

Proof. We first show 0 ≤ .8 ≤ 2=
log = . There are two cases to consider. First, if

G ∈ !HC , then G is in �B for some B ∈ [B∗]. An edge GD of � (8−1)
HA is removed to form

�
(8)
HA only if D is assigned a leaf of �B in f8. Since there are at most FB (H8) ≤ 2=

log =
such leaves, we have .8 ≤ 2=

log = in this case. Second, if G ∈ #+®� (HC), and G is

assigned a leaf of �B in f8, then we remove all edges of � (8−1)
C from G to leaves

of �B to form �
(8)
C . Since f8 is a matching, this happens for at most one B ∈ [B∗].

There are at most FB (HC) ≤ 2=
log = such leaves of �B, so also in this case we have

.8 ≤ 2=
log = .

We now bound above the sum of conditional expectations. Again, there are two
cases to consider. First, if G ∈ !HC , then let B be such that G ∈ + (�B). Suppose
that H8−1 is a history up to and including f8−1 such that E8 holds. Recall that
f−1
8
(D) ∈ + (�B) means that some leaf of �B is matched to D in f8, and that we

write {DH8, D} ∈ � ( ®�) to mean that the edge DH8, directed towards D, is in ®�. By
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linearity of expectation, we have

E
[
.8

��H8−1
]
=

∑
D∈N

�
(8−1)
HC

(G) : {DH8 ,D}∈� ( ®�)

P
[
f−1
8 (D) ∈ + (�B)

��H8−1
]

≤
∑

D∈N
�
(8−1)
HC

(G) : {DH8 ,D}∈� ( ®�)

FB (H8) 2A
`?=
≤ 2?2= · FB (H8) · 2A

`?=
,

where the first inequality is by Claim 4.8.104.8.10 and the second holds since if
D ∈ N

�
(8−1)
HC

(G) and {DH8, D} ∈ � ( ®�) then in particular D ∈ N� (H8, HC), and since��N� (H8, HC)�� ≤ 2?2= by (W3, 2)-quasirandomness of �. Summing over 8, either
some E8 with 8 ∈ [C − 1] does not hold, or we have

C−1∑
8=1
E
[
.8

��H8−1
]
≤

C−1∑
8=1

2?2= · FB (H8) · 2A
`?=

=
4A ?
`

C−1∑
8=1

FB (H8) ≤ 4A ?
`

( =A−1)∑
8=1

FB (H8) .

Since
∑( =A−1)
8=1 FB (8) = ba=c counts the number of leaves removed from �B to form

�′B, we obtain that either some E8 with 8 ∈ [C − 1] does not hold, or

C−1∑
8=1
E
[
.8

��H8−1
]
≤ 40?2

`2 = ,

as desired.
Finally, we consider the case G ∈ #+®� (HC). Suppose that a leaf of �B is assigned

to G by f8, and that G is adjacent to FB (HC) leaves of�B in � (8−1)
HC . Then the edges to

these leaves are exactly the edges at G removed from �
(8−1)
HC to form �

(8)
HC . Suppose

that H8−1 is a history up to and including f8−1 such that E8 holds. Recall that a
leaf of �B can only be assigned to G by f8 if {GH8, G} ∈ � ( ®�) and G ∉ im i′B. By
linearity of expectation, we have

E
[
.8

��H8−1
]
=

∑
B∈[B∗]

1G∈#+®� (H8)
P
[
f−1
8 (G) ∈ + (�B)

��H8−1
]
· FB (HC)

≤
∑
B∈[B∗]

1G∈#+®� (H8)
1G∉im i′BFB (HC)FB (H8) 2A

`?=
,

where the second line follows by Claim 4.8.104.8.10. Summing over 8, either some E8
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with 8 ∈ [A − 1] does not hold, or we have

C−1∑
8=1
E
[
.8

��H8−1
]
≤

C−1∑
8=1

∑
B∈[B∗]

1G∈#+®� (H8)
1G∉im i′BFB (HC)FB (H8) 2A

`?=

≤
∑
B∈[B∗]

( =A−1)∑
8=1

1G∈#+®� (H8)
1G∉im i′BFB (HC)FB (H8) 2A

`?=

=
∑
B∈[B∗]

∑
8:{GH8 ,G}∈� ( ®�)

1G∉im i′BFB (HC)FB (H8) 2A
`?=

≤
∑
B∈[B∗]

2AFB (HC )
`?=

1G∉im i′B

∑
8:GH8∈� (�)

FB (H8)

≤
∑
B∈[B∗]

2AFB (HC )
`?=

· 10A!?2=
`

=
20?A!A
`2

∑
B∈[B∗]

FB (HC) ,

where the last inequality is by (P 5)(P 5). By definition of F(HC), by (P 1)(P 1) and by choice
of W we have

∑
B∈[B∗] FB (HC) = F(HC) ≤ 2

A
?=, so we conclude that either some E8

with 8 ∈ [C − 1] does not hold, or we have

C−1∑
8=1
E
[
.8

��H8−1
]
≤ 20?A!A

`2 · 2
A
?= ,

as desired. �

Recall that ? ≤ 2`a/A! by (4.8.14.8.1). Thus 40?A!A`−2 ≤ 160a`−1 ≤ 1
4A r, where

the final inequality is by choice of a. It follows that 40?2A!A`−2 ≤ 1
4A r?. Thus

using Claim 4.8.114.8.11 and Corollary 4.2.24.2.2, with ' = 2=
log = , with ˜̀ = 1

4A r?=, and with
the event E = ⋂A−1

8=1 E8, we get

P
[ ⋂

1≤8≤A−1
E8 and

A−1∑
8=1
.8 >

1
2A r?=

]
≤ exp

(
− ˜̀

4'
)
≤ =−A−3 ,

where the final inequality is by choice of 2. This establishes (4.8.44.8.4), so completes
the proof.

4.8.2 Proof of the orientation lemma

In this subsection we prove Lemma 4.8.64.8.6. For this we need the following two
definitions. The directed neighbourhood of a semi-edge H ∈ (( ®�) to vertex E ∈ H
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in a directed hypergraph ®� is

NE®� (H) =
{
D : {HD, E} ∈ � ( ®�)

}
,

i.e. all vertices that form an edge with H, which is directed towards E. Also, if
H1, . . . , H: ∈ + (�) is a sequence of vertices, and 1 ≤ 8 ≤ 9 ≤ : are integers, then
we write H8.. 9 for the set {H8, . . . , H 9 }.
The idea of the proof is the following. We first argue that a uniform random

orientation ®�0 of � is likely to have N ®�0
(H) very close to F(H) for every semi-edge

H, and in addition it is likely to inherit the quasirandomness of �. Assuming both
these likely events hold, we then iteratively modify ®�0 as follows. If there is no
H ∈ ((�) whose out-degree is currently larger than F(H), we are done. If there is
such a H, there exists also H′ ∈ ((�) whose out-degree is smaller than F(H′). We
identify (using the quasirandomness) a short chain of edges whose orientations we
can change in order that overall the out-degree of H is decreased by one, that of H′ is
increased by one, and all other semi-edges remain unchanged. We repeat this until
we obtain the desired ®�. It remains to argue that we do not alter the orientation of
too many edges at any given semi-edge: to that end, we choose the chain of edges
at each step randomly and argue that it is unlikely any given semi-edge appears too
often in the chosen chains.

Proof of Lemma 4.8.64.8.6. By the given quasirandomness of � we know that
deg� (H) = (1±W3)?= and |N� (H) ∩N� (I) | = (1±W3)?2= for every H ≠ I ∈ ((�).
Using Theorem 4.2.14.2.1, we see that a.a.s. for every H ≠ I ∈ ((�) and E ∈ I we have

deg+®�0
(H) = (1 ± 2W3) ?=

A
and

��N+®�0
(H) ∩ NE®�0

(I)
�� = (1 ± 2W3) ?

2=

A2 .

From now on, we fix an arbitrary orientation ®�0 satisfying these two properties,
and wewill show that for any such ®�0 there is an orientation ®� of� satisfying (O 1)(O 1)
and (O 2)(O 2).

Starting with ®�0, we successively switch the orientations of sets of 2A − 2 edges,
thus producing a sequence of oriented hypergraphs ( ®�8)0≤8≤C , with ®�C being the
desired ®�. For any such oriented hypergraph ®�8 and every semi-edge H ∈ ((�)
we define the potential i8 (H) := deg+®�8 (H) − F(H) and

i( ®�8) :=
∑

H∈((�)
|i8 (H) | .
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Observe that i( ®�8) is always nonnegative and even, and it is equal to zero exactly
when (O 1)(O 1) is satisfied. To begin with, we have |i0(H) | ≤ 3W3?= for every semi-
edge H, so that i( ®�0) ≤ 3W3?=

( =
A−1

)
.

The algorithm PathSwitch, with input two semi-edges H and I, finds a way of
changing the orientations of some 2A − 2 edges such that the out-degree of H is
increased by 1 and that of I is decreased by 1, with all other semi-edges keeping
their out-degree the same.

Algorithm 5: PathSwitch
Input : A directed hypergraph ®�′ and two disjoint semi-edges H, I ∈ (( ®�′).
let H1, . . . , HA−1 be a uniform random order of the vertices in H ;
let I1, . . . , IA−1 be a uniform random order of the vertices in I ;
let ®�′0 := ®�′ ;
for 8 = 1 to A − 1 do

let 0 := H8..8+A−2 ;
let 1 := I8..8+A−2 ;
let - := NH8

®� ′
8−1
(0) ∩ N+®� ′

8−1
(1) \

(
H1..8+A−2 ∪ I1..8+A−2

)
;

halt with failure if - = ∅ ;
let E be a uniform random vertex from - ;
let H8+A−1 := E ;
let I8+A−1 := E ;
let ®�′

8
be ®�′

8−1 − {0E, H8} − {1E, E} + {0E, E} + {1E, I8} ;
end
return ®�′

A−1 ;

Observe that PathSwitch either halts with failure, or performs as described: that
is, in the returned hypergraph the out-degree of H is increased by one, that of I is
decreased by one, and all other semi-edges have the same out-degree as before,
with the orientation of in total 2A − 2 edges changed. To see this, observe first
that the definition of - ensures that all the edges whose orientations we choose
are distinct, so that we indeed change the orientation of 2A − 2 edges. Consider
now the set of vertices H1..2A−2. In step 8, we change the orientation of the edge
H8..8+A−1 from being directed towards H8, to being directed towards H8+A−1. Thus
this change increases the out-degree of H8..8+A−2, and decreases that of H8+1..8+A−1,
by one, and affects no other semi-edge. Overall, the result of these changes among
the vertices H1..2A−2 is to increase the out-degree of H in ®�′A−1, and decrease that of
HA..2A−2, by one. Similarly, the changes among the vertices I1..2A−2 have the effect
of decreasing the out-degree of I in ®�′

A−1, and increasing that of IA..2A−2, by one.
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But HA..2A−2 = IA..2A−2 by construction, so that this semi-edge overall has unchanged
out-degree in ®�′

A−1 as required.

Next, using the algorithm PathSwitch as a subroutine, the algorithm Orient-
ationSwitch describes how orientations are switched. In every iteration of this
algorithm, we change the potential of two semi-edges H, I ∈ ((�) with i8 (H) < 0
and i8 (I) > 0 by applying PathSwitch. In case that��{DB ∈ � (�) : DB is oriented differently in ®�8 and ®�0}

��
gets too large in some round 8 and for some semi-edge B, we let the algorithm
halt with failure. However, we will see in the following that this happens with
probability tending to 0.

Algorithm 6: OrientationSwitch
let C := i( ®�0)/2 ;
for 8 = 0 to C − 1 do

if ∃ B ∈ (( ®�0) with��{DB ∈ � (�) : DB is oriented differently in ®�8 and ®�0}
�� > W2=

then halt with failure;
choose semi-edges H, I ∈ (( ®�8) with i8 (H) < 0 and i8 (I) > 0 ;
let ®�8+1 be the result of PathSwitch on ®�8, H, I ;

end
return ®� := ®�C ;

Observe that by our assumption on W, provided = is sufficiently large PathSwitch
does not halt with failure when called by OrientationSwitch, because the relevant
directed (common) neighbourhoods can only be of size less than 4A if the failure
condition of OrientationSwitch is satisfied for some semi-edge. Furthermore, by
construction if OrientationSwitch does not halt with failure, then at each step 8 we
have i( ®�8+1) = i( ®�8) −2, so the returned ®� has i( ®�) = 0 and thus satisfies (O 1)(O 1).
Finally, by definition, not failing implies that ®� also satisfies (O 2)(O 2). Thus what
remains to prove is that OrientationSwitch succeeds with positive probability.
Note that when PathSwitch is run, it changes the orientation of an edge contained

in a semi-edge G only if G is contained in either H1..2A−2 or I1..2A−2 (as constructed
by PathSwitch), and the number of edges containing G whose orientation changes
is at most four (for the semi-edge HA..2A−2 = IA..2A−2). Thus in order to prove that
OrientationSwitch succeeds with positive probability, it is enough to upper bound
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the number of times any given G ∈ (( ®�0) is a subset of H1..2A−2 or I1..2A−2. This is
given by the following claim.

Claim 4.8.12. Given G ∈ (( ®�0), with probability at least 1 − 2A exp(−
√
=), the

number of times G is a subset of H1..2A−2 or I1..2A−2 is at most 22A+3?−2AA3AW3=.

Proof. We fix G ∈ (( ®�0). To begin with, we upper bound the probability that G is
a subset of H1..2A−2 for call 8 to PathSwitch with semi-edges H and I, working in the
graph ®�8−1. This probability depends on |G ∩ H |, but not on I or on the graph ®�8−1.
If OrientationSwitch fails, the probability is zero, so we will from now assume that
OrientationSwitch has not failed.

When we run PathSwitch, we choose HA , . . . , H2A−2 in order, at each step (we
claim) choosing from a set of size at least 1

2 ?
2=/A2. To see that the claimed set size

is valid, observe that the set - of PathSwitch is obtained from a set of the form
N+®�0
(H′) ∩ NE®�0

(I′) by removing vertices in edges at H′ or I′ whose orientation is

changed in ®�8−1 from that in ®�0, and a further at most 3A − 3 vertices previously
used in PathSwitch. Since OrientationSwitch has not failed, the number of vertices
removed due to orientation changes is at most 2W2=, so we obtain the claimed set
size by choice of W.
For each A ≤ 8 ≤ 2A − 2, when we choose H8 the probability of choosing a vertex

of G is by the above claim at most (A − 1) · 2A2

?2=
, and the probability that we end up

choosing all of G is thus at most(
(A − 1) · 2A2

?2=

) (A−1)−|G∩H |
≤

(
2A3

?2=

) (A−1)−|G∩H |
.

We now use this bound to estimate how often G is a subset of H1..2A−2 over all
calls to PathSwitch by OrientationSwitch. For each 0 ≤ 9 ≤ A − 1, the number of
choices of a semi-edge H such that |G ∩ H | = 9 is at most

(A−1
9

)
· =(A−1)− 9 ≤ 2A=A−1− 9 .

The number of times that any given H is input to PathSwitch by OrientationSwitch
is at most |i0(H) | ≤ 3W3?=. Thus the total number of calls to PathSwitch with
some semi-edge H which intersects G in 9 vertices is at most 3W3?= · 2A=A−1− 9 =

3W32A ?=A− 9 . We see that the number of times that G is a subset of H1..2A−2 from
calls to PathSwitch with input H where |G ∩ H | = 9 , is stochastically dominated
by a binomial random variable with 3W32A ?=A− 9 tries and success probability( 2A3

?2=

) (A−1)− 9 . By the Chernoff bound, Theorem 4.2.14.2.1, the probability that the
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number of successes exceeds

2 ·3W32A ?=A− 9 ·
(

2A3

?2=

) (A−1)− 9
= 3 ·22A− 9W3?−2A+3+2 9A3A−3−3 9= ≤ 22A+2?−2AA3A−1W3= .

is at most exp(−
√
=). Taking the union bound over choices of 9 , we see that the total

number of times that we have G ⊆ H1..2A−2 is with probability at least 1−A exp(−
√
=)

bounded above by 22A+2?−2AA3AW3=

We obtain the same estimate for the number of times that G ⊆ I1..2A−2 by the
same argument replacing H with I throughout, and the claim follows. �

We can now complete the proof that OrientationSwitch succeeds with positive
probability. Indeed, if it fails there is some G ∈ (( ®�0) which witnesses the
failure. Since by choice of W we have 22A+3?−2AA3AW3= ≤ W2=, by Claim 4.8.124.8.12
the probability that a given G is such a witness is at most 2A exp(−

√
=). Taking

the union bound, the probability of a witness existing is at most 2A
( =
A−1

)
exp(−

√
=),

which tends to zero as =→∞, as desired.

4.8.3 Proof of the almost perfect packing lemma

In this section we prove Lemma 4.8.54.8.5, which is an easy corollary of Theorem 4.7.14.7.1.

Proof of Lemma 4.8.54.8.5. Given �, A, `, a, set W, we choose W > 0 such that W3 ≤
1
2`a. We let X, 2, b > 0 be returned by Theorem 4.7.14.7.1 with input A, 1

2W
3, �,  = 1,

and suppose = is sufficiently large for this theorem. Recall Theorem 4.7.14.7.1 provides
that X ≤ W, and we without loss of generality also suppose b ≤ 1

100W
3.

Given �̂ and (�′B)B∈[B∗] as in Lemma 4.8.54.8.5, let ?̂ be the density of �̂, i.e.
�̂ has ?̂

(=
A

)
edges. We have ?

(=
A

)
= ?̂

(=
A

)
− ∑

B∈[B∗] 4(�′B) = b`=A−1c ba=c as in
Definition 4.8.24.8.2.
For each B ∈ [B∗] we create an = − X=-vertex hypergraph �′′B by adding = − X= −

E(�′B) isolated vertices to �′B, which we put at the end of the degeneracy order.
We apply Theorem 4.7.14.7.1 to pack the hypergraphs (�′′B )B∈[B∗] into �̂, with input
as above, with - = -1 = · · · = -A−1 = + (�̂), and with lB the (A − 1)-weight
function obtained from FB of Lemma 4.8.54.8.5 for each B ∈ [B∗] as follows: we give
each ordered (A − 1)-set the weight FB of the underlying unordered set. Note that
the required diet conditions reduce to (b, &)-quasirandomness of �̂. Suppose that
the likely outcome of Theorem 4.7.14.7.1 occurs, with i′′B being the packing of �′′B for
each B ∈ [B∗]. Then the hypergraph � of leftover edges is ( 12W

3, &)-quasirandom.
In addition, setting X̃ = `, we have (QUASI 1)(QUASI 1)–(QUASI 3)(QUASI 3).
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4 Packing Degenerate Hypergraphs

Observe that for each B ∈ [B∗] we have sum(lB) = (A − 1)!ba=c, because each
omitted leaf is counted exactly (A − 1)! times, once for each ordering of its parent
semi-edge. We set i′B to be the restriction of i′′B to the first = − `= vertices of �′′B ,
so that the i′B form a packing of the �′B into �̂, also with leftover edges �. Note
that im i′B = i

′′
B ( [= − `=]) for each B.

We now verify (P 1)(P 1). Given any semi-edge H ∈ ((�̂), we let e be an arbitrary
ordering of H. By (QUASI 2)(QUASI 2) with* = ∅, we have

B∗∑
B=1

lB (e) = (1 ± 1
2W

3)=−(A−1)
B∗∑
B=1

sum(lB)

= (1 ± 1
2W

3)=−(A−1) b`=A−1c (A − 1)!ba=c

= (1 ± 1
2W

3)=−(A−1) (A − 1)!?
(
=

A

)
= (1 ± W3) ?=

A
,

where the final equality uses the approximation
(=
A

)
= (1 ± =−0.5) =A

A! , valid for all
sufficiently large =. This verifies (P 1)(P 1) since FB (H) = lB (e).

For (P 2)(P 2) and (P 3)(P 3), which we need to verify for each semi-edge H and each
B ≠ B′ ∈ [B∗], we use (QUASI 1)(QUASI 1), with ℓ = 1 and )1 = H, with respectively ( = {B}
and ( = {B, B′}. By (b, &)-quasirandomness of �̂, we have

��N
�̂
(H)

�� = (1 ± b) ?̂=,
and so ��N� (H) \ im i′B

�� = (1 ± 1
2W

3)` ?
?̂
· (1 ± b) ?̂= = (1 ± W3)`?= ,

as required for (P 2)(P 2). Essentially the same calculation gives (P 3)(P 3) and we omit the
details.

For (P 4)(P 4), with a given D ∈ + (�̂) and semi-edge H ∈ ((�̂) that does not contain
D, we apply (QUASI 2)(QUASI 2), this time with* = {D}, and with an arbitrary ordering e of
H. We obtain

B∗∑
B=1

lB (e)1*∩im i′B=∅ = (1 ± 1
2W

3)`=−(A−1)
B∗∑
B=1

sum(lB) = (1 ± W3)` ?=
A

by the same calculation as for (P 1)(P 1), which as with (P 1)(P 1) gives (P 4)(P 4).
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4 Packing Degenerate Hypergraphs

Finally we verify (P 5)(P 5). Given E ∈ + (�̂), note that��N
�̂
(E; -1, . . . , -A−1)

�� = (A − 1)!
��N
�̂
(E)

�� = (1 ± b) (A − 1)!?̂= ·
(
= − 1
A − 2

)
1
A−1 ,

where the final inequality is by (b, &)-quasirandomness of �̂ and the observation
that each semi-edge in N

�̂
(E) contains

(A−1
A−2

)
= A − 1 sets of size A − 2 which make

a semi-edge with E. From (QUASI 3)(QUASI 3), we have that either E ∈ imk′B or∑
e∈N� (E;-1,...,-A−1)

lB (e) = (1 ± 1
2W

3) ?
?̂
· (1 ± b) (A − 1)!?̂=

(
= − 1
A − 2

)
1
A−1 · =

1−Asum(lB)

= (1 ± W3)?(A − 1)! =A−1

(A−1)!=
1−A (A − 1)!ba=c

= (1 ± W3)?(A − 1)! · (1 ± 3
4 )

?A!=
`
≤ 2(A − 1)!A!?

2=

`
,

where the final line uses (4.8.14.8.1). Observe that each semi-edge contributing to (P 5)(P 5)
contributes (A − 1)! times in the above sum (once for each ordering) and so this
gives (P 5)(P 5).
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