734 research outputs found

    Compiling and securing cryptographic protocols

    Get PDF
    Protocol narrations are widely used in security as semi-formal notations to specify conversations between roles. We define a translation from a protocol narration to the sequences of operations to be performed by each role. Unlike previous works, we reduce this compilation process to well-known decision problems in formal protocol analysis. This allows one to define a natural notion of prudent translation and to reuse many known results from the literature in order to cover more crypto-primitives. In particular this work is the first one to show how to compile protocols parameterised by the properties of the available operations.Comment: A short version was submitted to IP

    Some decidable congruences of free monoids

    Get PDF
    summary:Let WW be the free monoid over a finite alphabet AA. We prove that a congruence of WW generated by a finite number of pairs au,u\langle au,u\rangle , where aAa\in A and uWu\in W, is always decidable

    Quantum Picturalism

    Full text link
    The quantum mechanical formalism doesn't support our intuition, nor does it elucidate the key concepts that govern the behaviour of the entities that are subject to the laws of quantum physics. The arrays of complex numbers are kin to the arrays of 0s and 1s of the early days of computer programming practice. In this review we present steps towards a diagrammatic `high-level' alternative for the Hilbert space formalism, one which appeals to our intuition. It allows for intuitive reasoning about interacting quantum systems, and trivialises many otherwise involved and tedious computations. It clearly exposes limitations such as the no-cloning theorem, and phenomena such as quantum teleportation. As a logic, it supports `automation'. It allows for a wider variety of underlying theories, and can be easily modified, having the potential to provide the required step-stone towards a deeper conceptual understanding of quantum theory, as well as its unification with other physical theories. Specific applications discussed here are purely diagrammatic proofs of several quantum computational schemes, as well as an analysis of the structural origin of quantum non-locality. The underlying mathematical foundation of this high-level diagrammatic formalism relies on so-called monoidal categories, a product of a fairly recent development in mathematics. These monoidal categories do not only provide a natural foundation for physical theories, but also for proof theory, logic, programming languages, biology, cooking, ... The challenge is to discover the necessary additional pieces of structure that allow us to predict genuine quantum phenomena.Comment: Commissioned paper for Contemporary Physics, 31 pages, 84 pictures, some colo

    Strongly nonfinitely based monoids

    Full text link
    We show that the 42-element monoid of all partial order preserving and extensive injections on the 4-element chain is not contained in any variety generated by a finitely based finite semigroup.Comment: 12 pages. In version 2: the proofs of two key lemmas are expanded; two remarks are added; references are updated; a few typos and language errors are fixe

    Hierarchical combination of intruder theories

    Get PDF
    International audienceRecently automated deduction tools have proved to be very effective for detecting attacks on cryptographic protocols. These analysis can be improved, for finding more subtle weaknesses, by a more accurate modelling of operators employed by protocols. Several works have shown how to handle a single algebraic operator (associated with a fixed intruder theory) or how to combine several operators satisfying disjoint theories. However several interesting equational theories, such as exponentiation with an abelian group law for exponents remain out of the scope of these techniques. This has motivated us to introduce a new notion of hierarchical combination for non-disjoint intruder theories and to show decidability results for the deduction problem in these theories. We have also shown that under natural hypotheses hierarchical intruder constraints can be decided. This result applies to an exponentiation theory that appears to be more general than the one considered before

    Boundary Algebra: A Simpler Approach to Boolean Algebra and the Sentential Connectives

    Get PDF
    Boundary algebra [BA] is a algebra of type , and a simplified notation for Spencer-Brown’s (1969) primary algebra. The syntax of the primary arithmetic [PA] consists of two atoms, () and the blank page, concatenation, and enclosure between ‘(‘ and ‘)’, denoting the primitive notion of distinction. Inserting letters denoting, indifferently, the presence or absence of () into a PA formula yields a BA formula. The BA axioms are A1: ()()= (), and A2: “(()) [abbreviated ‘⊥’] may be written or erased at will,” implying (⊥)=(). The repeated application of A1 and A2 simplifies any PA formula to either () or ⊥. The basis for BA is B1: abc=bca (concatenation commutes & associates); B2, ⊥a=a (BA has a lower bound, ⊥); B3, (a)a=() (BA is a complemented lattice); and B4, (ba)a=(b)a (implies that BA is a distributive lattice). BA has two intended models: (1) the Boolean algebra 2 with base set B={(),⊥}, such that () ⇔ 1 [dually 0], (a) ⇔ a′, and ab ⇔ a∪b [a∩b]; and (2) sentential logic, such that () ⇔ true [false], (a) ⇔ ~a, and ab ⇔ a∨b [a∧b]. BA is a self-dual notation, facilitates a calculational style of proof, and simplifies clausal reasoning and Quine’s truth value analysis. BA resembles C.S. Peirce’s graphical logic, the symbolic logics of Leibniz and W.E. Johnson, the 2 notation of Byrne (1946), and the Boolean term schemata of Quine (1982).Boundary algebra; boundary logic; primary algebra; primary arithmetic; Boolean algebra; calculation proof; G. Spencer-Brown; C.S. Peirce; existential graphs

    Framework for binding operators

    Get PDF

    Perspectives for proof unwinding by programming languages techniques

    Get PDF
    In this chapter, we propose some future directions of work, potentially beneficial to Mathematics and its foundations, based on the recent import of methodology from the theory of programming languages into proof theory. This scientific essay, written for the audience of proof theorists as well as the working mathematician, is not a survey of the field, but rather a personal view of the author who hopes that it may inspire future and fellow researchers
    corecore