4,572 research outputs found

    Statistical Learning Theory for Location Fingerprinting in Wireless LANs

    Get PDF
    In this paper, techniques and algorithms developed in the framework of statistical learning theory are analyzed and applied to the problem of determining the location of a wireless device by measuring the signal strengths from a set of access points (location fingerprinting). Statistical Learning Theory provides a rich theoretical basis for the development of models starting from a set of examples. Signal strength measurement is part of the normal operating mode of wireless equipment, in particular Wi-Fi, so that no custom hardware is required. The proposed techniques, based on the Support Vector Machine paradigm, have been implemented and compared, on the same data set, with other approaches considered in the literature. Tests performed in a real-world environment show that results are comparable, with the advantage of a low algorithmic complexity in the normal operating phase. Moreover, the algorithm is particularly suitable for classification, where it outperforms the other techniques

    An original framework for understanding human actions and body language by using deep neural networks

    Get PDF
    The evolution of both fields of Computer Vision (CV) and Artificial Neural Networks (ANNs) has allowed the development of efficient automatic systems for the analysis of people's behaviour. By studying hand movements it is possible to recognize gestures, often used by people to communicate information in a non-verbal way. These gestures can also be used to control or interact with devices without physically touching them. In particular, sign language and semaphoric hand gestures are the two foremost areas of interest due to their importance in Human-Human Communication (HHC) and Human-Computer Interaction (HCI), respectively. While the processing of body movements play a key role in the action recognition and affective computing fields. The former is essential to understand how people act in an environment, while the latter tries to interpret people's emotions based on their poses and movements; both are essential tasks in many computer vision applications, including event recognition, and video surveillance. In this Ph.D. thesis, an original framework for understanding Actions and body language is presented. The framework is composed of three main modules: in the first one, a Long Short Term Memory Recurrent Neural Networks (LSTM-RNNs) based method for the Recognition of Sign Language and Semaphoric Hand Gestures is proposed; the second module presents a solution based on 2D skeleton and two-branch stacked LSTM-RNNs for action recognition in video sequences; finally, in the last module, a solution for basic non-acted emotion recognition by using 3D skeleton and Deep Neural Networks (DNNs) is provided. The performances of RNN-LSTMs are explored in depth, due to their ability to model the long term contextual information of temporal sequences, making them suitable for analysing body movements. All the modules were tested by using challenging datasets, well known in the state of the art, showing remarkable results compared to the current literature methods

    Better branch prediction through prophet/critic hybrids

    Get PDF
    The prophet/critic hybrid conditional branch predictor has two component predictors. The prophet uses a branch's history to predict its direction. We call this prediction and the ones for branches following it the branch future. The critic uses the branch's history and future to critique the prophet's prediction. The hybrid combines the prophet's prediction with the critique, either agrees or disagree, forming the branch's overall prediction. Results shows these hybrids can reduce mispredicts by 39 percent and improve processor performance by 7.8 percent.Peer ReviewedPostprint (published version

    Learning to See the Wood for the Trees: Deep Laser Localization in Urban and Natural Environments on a CPU

    Full text link
    Localization in challenging, natural environments such as forests or woodlands is an important capability for many applications from guiding a robot navigating along a forest trail to monitoring vegetation growth with handheld sensors. In this work we explore laser-based localization in both urban and natural environments, which is suitable for online applications. We propose a deep learning approach capable of learning meaningful descriptors directly from 3D point clouds by comparing triplets (anchor, positive and negative examples). The approach learns a feature space representation for a set of segmented point clouds that are matched between a current and previous observations. Our learning method is tailored towards loop closure detection resulting in a small model which can be deployed using only a CPU. The proposed learning method would allow the full pipeline to run on robots with limited computational payload such as drones, quadrupeds or UGVs.Comment: Accepted for publication at RA-L/ICRA 2019. More info: https://ori.ox.ac.uk/esm-localizatio

    Deep Generative Models for Reject Inference in Credit Scoring

    Get PDF
    Credit scoring models based on accepted applications may be biased and their consequences can have a statistical and economic impact. Reject inference is the process of attempting to infer the creditworthiness status of the rejected applications. In this research, we use deep generative models to develop two new semi-supervised Bayesian models for reject inference in credit scoring, in which we model the data generating process to be dependent on a Gaussian mixture. The goal is to improve the classification accuracy in credit scoring models by adding reject applications. Our proposed models infer the unknown creditworthiness of the rejected applications by exact enumeration of the two possible outcomes of the loan (default or non-default). The efficient stochastic gradient optimization technique used in deep generative models makes our models suitable for large data sets. Finally, the experiments in this research show that our proposed models perform better than classical and alternative machine learning models for reject inference in credit scoring
    • …
    corecore