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Processor design is an exercise in
trading off performance, power, and energy.
Techniques that don’t require making this
tradeoff, that is, that win in all three metrics,
can give your design an advantage over com-
peting designs. Better branch prediction is
such a technique. It  

• increases performance by reducing the
time spent speculating on mispredicted
paths,

• reduces power by allowing the processor
to run at a lower frequency (hence, lower
voltage) and still meet its performance
target, and 

• reduces energy consumption by
reducing the work wasted on
misspeculation.

Despite abundant research on branch pre-
diction, researchers have not solved the branch
prediction problem—reducing branch mispre-
dicts to the point where they no longer signifi-
cantly negatively impact processor performance,
power, and energy consumption. Leading
microarchitects and researchers have said branch
prediction will be even more important as
pipelines deepen and issue widths increase.

Here, we describe a technique for better
branch prediction, which we call prophet/critic
hybrid branch prediction.1 We initially describe
this technique and the intuition behind why it
works by drawing an analogy between running
a program and taking a ride in a taxicab. The
taxi is the processor, the driver is the branch
predictor, and the passenger is the pipeline. The
system of roads represents the possible control
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flow paths through the program. The intersec-
tions are branches; that is, points at which the
driver must select a particular path to follow. It
is the driver’s job to navigate the taxi through
the system of roads, making the correct turns at
intersections, to reach the destination; that is,
the end of the program. Wrong turns waste the
passenger’s time.

A conventional predictor is similar to a taxi
with just one driver. The driver takes the pas-
senger to the destination using the knowledge
of the roads he acquired from previous trips;
that is, using history information stored in the
predictor’s memory structures. When the dri-
ver reaches an intersection, he uses this knowl-
edge to decide which way to turn. The driver
accesses this knowledge in the context of the
current location. Modern branch predictors2

access knowledge in the context of the current
location (the program counter) plus a history
of the most recent decisions that led to the
current location.

A prophet/critic hybrid is similar to a taxi
with two drivers: one in the front seat and one
in the back seat. The front-seat driver has the
same role as the driver in the single-driver taxi.
This is the prophet role. The back-seat driver is
the critic. The critic watches the turns the
prophet makes at intersections. The critic
doesn’t say anything unless he thinks the
prophet has made a wrong turn. When the
critic thinks the prophet has made a wrong
turn, he waits until the prophet has made a few
more turns to be certain they are lost. (Some-
times the prophet makes turns that initially
look questionable, but, after a few more turns,
in hindsight appear correct.) Only when the
critic is certain does he point out the mistake.
To recover, they backtrack to the intersection
where the critic believes they made a wrong
turn, and they try a different direction.

Using prophet/critic hybrids greatly
reduces the number of mispredicts. And, as
the critic uses more future bits (that is, waits
for the prophet to make more turns before
reporting they are lost), the reduction in mis-
predicts grows. Our experiments use some of
the best predictors proposed in literature to
play the roles of prophet and critic. Depend-
ing on the types of prophet and critic we use,
a critic using 1 future bit reduces mispredicts
by 10 to 20 percent over a prophet scaled up
to the same size as the prophet/critic hybrid.

For 12 future bits, this reduction grows to 15
to 30 percent.

Related work
Evers and Yeh give a general introduction to

dynamic branch prediction.3 McFarling first
proposed hybrid branch predictors.4 His hybrid
has two component predictors and a selection
mechanism that decides which to use to pre-
dict each branch. Jiménez et al.5 explain how
to arrange two predictors—a small low-laten-
cy predictor with poor accuracy and a large
high-latency predictor with good accuracy—
to provide fast, accurate predictions. In their
scheme, the processor initiates a prediction
from each predictor in parallel, each prediction
being derived from the same stock of branch
history information. The small predictor’s pre-
diction completes first, and the processor uses
it while the other predictor continues its com-
putation. Once computed, this more accurate
prediction from the large predictor overrides
the earlier prediction if they differ, flushing all
work done based on the earlier prediction. Last-
ly, Grunwald et al.6 show that using the current
branch’s prediction in the JRS (Jacobsen,
Rotenberg, and Smith) confidence estimator’s7

history register improves speculation control.
In our terminology, they use one future bit to
obtain a more accurate confidence estimation.

The prophet/critic hybrid combines and
builds upon this work; it is a hybrid and uses
overriding and future bits. Its key distinction is
that, rather than initiating all component pre-
dictions at the same time, our method initiates
them at different times. This allows the prophet’s
output to serve as the input to the critic, elimi-
nating the need for a selection mechanism. It
also allows the critic to gather multiple (more
than one) future bits for a branch. When the
branch is on the correct path but mispredicted
by the prophet, the critic uses these future bits—
of which at least one is wrong because of the mis-
predict—to train its prediction structures. When
the processor encounters the branch again, the
critic uses the future bits as context to identify
whether the prophet is likely to be wrong and
should be overridden. This greatly increases the
prediction accuracy for the branch.

Prophet/critic hybrid branch prediction
Current branch predictors make predictions

using history information. Once it predicts a
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branch, the predictor cannot use information
from subsequent predictions to repredict the
branch. Our prophet/critic hybrid effectively
uses these subsequent predictions. Later, we
will describe how to implement our
prophet/critic hybrid in a real fetch microar-
chitecture, and how the prophet and critic can
interact without affecting the rest of the
processor pipeline. But first, we must describe
prophet/critic hybrid branch prediction.

Figure 1 shows the structure of a
prophet/critic hybrid. The hybrid consists of
two conventional predictors that play the role
of either prophet or critic. The prophet pro-
vides predictions based on the past behavior of
previous dynamic branches (branches Q
through Y in the figure). Once it makes a pre-
diction for a branch, the prophet goes on
along the predicted path generating new pre-
dictions. This prediction (branch P) and the
new predictions (branches A through D) form
the branch future. As in current history-based
predictors, the history helps determine the
prediction for the current branch, and that
prediction determines the branch’s future.

While the prophet generates the branch’s
future, the critic collects this future informa-
tion, inserting the prophet predictions into its
branch outcome register (BOR). When the
critic makes a prediction, its BOR contains
two types of branch outcomes:

• outcomes of branches before the one
being predicted (branches U through Y),

which are branch history, and allow the
predictor to correlate on the past, and

• outcomes of the branch being predicted
(branch P) and those after it (branches A
through D), which are branch future,
and allow the predictor to correlate on
the future. 

Using a combination of past and future cor-
relation, the critic provides a critique of each
prophet prediction. This critique either agrees
or disagrees with the prophet prediction and
determines the final prediction for the branch.
We use the term critique as a synonym for crit-
ic prediction, but we tend to use it when we
want to stress agreement or disagreement with
the prophet. For the remainder of this article,
the critic’s prediction is the final prediction
for the branch.

The prophet/critic hybrid takes advantage
of the prophet and critic operating
autonomously, predicting the same branch at
different times. In a conventional hybrid pre-
dictor, both components are accessed in par-
allel, making predictions for the same branch.
A selection mechanism then picks the predic-
tion that is most suitable for the branch. The
same situation occurs for overriding predic-
tors. Two predictions begin in parallel on two
different predictors. The branch’s initial pre-
diction is generated by one predictor in an
early pipeline stage, while the final prediction
is generated by the other predictor some cycles
later. The final prediction overrides the initial
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prediction if they differ. In both a conven-
tional hybrid and an overriding predictor, the
predictors predict the same branch with the
same available information.

However, in the prophet/critic hybrid,
although both prophet and critic predict the
same branch, they do not initiate their predic-
tions at the same time. Because the critic initiates
its prediction some cycles later, it can incorporate
information about future code behavior (that is,
the branch future provided by the prophet) into
its prediction. This future information greatly
increases prediction accuracy.

To prevent the delay between the prophet
and critic from affecting processor perfor-
mance, we implement the prophet/critic
hybrid on the decoupled front-end architec-
ture8 shown in Figure 2. A fetch target queue
(FTQ) decouples the hybrid from the instruc-
tion cache. The hybrid produces predictions
and inserts them in the FTQ, and the cache
later consumes them. Our prophet/critic
hybrid requires that the FTQ be full (or most-
ly full) most of the time. To accomplish this,
the hybrid must produce predictions faster
than the cache consumes them, so that the
FTQ fills to capacity. 

The prophet provides the initial prediction
for a branch, which it inserts into the FTQ.
The cache can immediately consume this pre-
diction, but, since insertions occur at the end
of the FTQ and the FTQ is typically full, the

prediction usually spends many cycles in the
FTQ before the cache consumes it. This and
the subsequent predictions that the prophet
inserts into the FTQ serve as future bits for
the branch, which the critic gathers. When it
has gathered the required number of future
bits (a fixed number) for the branch, the crit-
ic provides a critique of the prophet’s predic-
tion. It typically generates the critique well
before the cache consumes the prediction.

If the critic agrees with the prophet’s pre-
diction, the critic marks the prediction stored
in the FTQ as having been criticized, and the
critic moves on to the next uncriticized pre-
diction. In Figure 2, unshaded FTQ entries
hold uncriticized predictions, and shaded
FTQ entries hold predictions that the critic is
criticizing or has criticized. 

On the other hand, if the critic disagrees
with the prophet, the critic takes several
actions: 

• The critic overrides the prophet’s predic-
tion with its own prediction. 

• The critic flushes the FTQ entries hold-
ing uncriticized predictions.

• The critic redirects the prophet to the
path that the critic predicts.

It is important to note that we can confine
the flush to the FTQ, and since the cache and
the rest of the machine haven’t received any
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of the flushed predictions, they remain unaf-
fected. The criticized predictions are left
alone, so if the FTQ is sufficiently full, the
flush causes no performance penalty.

Filtering the critic
Multiple branches contending for the same

prediction resources—that is, conflicts—can
limit the critic’s accuracy. We can reduce con-
flicts by removing or filtering easy-to-predict
branches from the critic, allowing the critic to
devote all its prediction resources to difficult-
to-predict branches.

We have explored filtering the critic. The
prophet provides a prediction for every branch,
so the processor always has an available pre-
diction regardless of whether the critic pro-
vides one. For good performance, the critic
should only provide a prediction in the cases
where the prophet will likely be wrong. We use
prophets that correctly predict 90 to 95 per-
cent of all branches. The critics should then
only be responsible for predicting the 5 to 10
percent of branches that the prophets mispre-
dict.

Figure 3 shows a filtered critic, which uses
a table of tags to filter branches. When a
branch needs a critique, two actions occur in
parallel: First, the processor queries the critic
for its prediction; and second, the processor
accesses the tag table to determine if there is
a tag hit. If there is a hit, the critic’s predic-

tion serves as the critique. If there is a miss,
the critic implicitly agrees with the prophet’s
prediction, and the processor simply ignores
the critic’s prediction. The critic is only
trained for branches that have hits.

The predictor only inserts new entries into
the table when a branch has a tag miss and is
mispredicted. The table stores the tag for the
particular branch address and BOR value com-
bination so that the next time the predictor
encounters that context, it uses the critic’s pre-
diction for the branch. The critic’s prediction
structures are also initialized according to the
branch’s outcome. We use 8-bit (partial) tags
to filter our critics; full tags are unnecessary.
The table manages the tags using a least-recent-
ly-used (LRU) replacement algorithm.

Simulation methodology
We evaluate our prophet/critic hybrid on a

superscalar out-of-order micro-op based
microarchitecture derived from the Intel Pen-
tium 4 processor. To reflect where we believe
future microarchitectures are headed, this
microarchitecture runs at the same frequency
as that processor, is twice as wide, has caches
that are about twice as big and associative, and
has an instruction window (and associated
buffers, the scheduling window and load/store
buffers) whose size is 16 times that of an Intel
Pentium 4 processor.9,10 In addition, we eval-
uate our hybrid on a decoupled front-end
architecture that uses a decoded instruction
cache (storing micro-ops) and so have
replaced the original trace-cache-based front-
end with the decoupled front-end.

We use an execution-driven IA-32 simula-
tor and 108 benchmarks from a variety of
suites: SPECint2000, SPECfp2000, Internet,
multimedia, productivity, server, and worksta-
tion. In previous work,1 we fully describe our
simulation methodology and benchmarks, and
provide expanded simulation results.

Predictors simulated
Any predictor can play the role of prophet

or critic. The only restriction is that the crit-
ic must be able to use the prophet-generated
predictions. We have implemented some of
the best predictors proposed in literature and
used them as prophet and critic:

• Gshare.4 McFarling found that using
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global history causes interference in the
pattern tables of two-level predictors
because branches tend to use a limited
number of the possible table entries. His
solution is to increase the usefulness of
branch history by XORing it together
with the branch address. The new index-
ing mechanism allows branches to share
the pattern table in a more efficient way,
reducing the aliasing among them.

• 2Bc-gskew.11 A derivation of this predic-
tor is in the proposed Compaq Alpha
EV8 processor.12 The original 2Bc-gskew
consists of four tables accessed using
global history information: a bimodal
table (BIM), two gshare-like tables (G0
and G1), and a metapredictor table
(META). Depending on the META
table’s output, the final prediction comes
from either the BIM table or the major-
ity vote of the predictions from the BIM,
G0, and G1 tables.

• Perceptron.13,14 Perceptron prediction is a
two-level scheme using perceptrons
instead of two-bit counters as the pre-
diction unit. A perceptron is a simple
implementation of a neural network that
provides predictive capabilities. A per-
ceptron is implemented with a vector of
weights, each weight being a signed inte-
ger. A branch’s address selects a percep-
tron from a pool of perceptrons. The
predictor computes this perceptron’s out-
put using global history bits as inputs.
The output determines the branch’s pre-
diction. If the output is negative, the pre-
diction is not taken; if it is positive, the
prediction is taken.

Table 1 shows the parameters we used for
simulating the selected predictors. History
lengths for gshare and 2Bc-gskew are the max-
imum usable for their table sizes. For the per-
ceptron predictor, we chose the combination
of perceptron table size and history length that
gives the highest prediction accuracy.14

The table also shows parameters for tagged
gshare, which is the predictor we used as the
critic. It is a filtered version of gshare where
each table entry has a tag in addition to the
two-bit counter. (Figure 3 shows the structure
of a generic filtered critic.) Its structure is like
an N-way associative cache, with each data

item being a two-bit counter. The processor
only uses its prediction when there is a tag hit.
A tag miss implies implicit agreement with
the prophet’s prediction. We tuned the num-
ber of BOR, history, and future bits that
tagged gshare used to achieve the highest pos-
sible accuracy.

Simulation results
Our simulation results show the impor-

tance of future bits for prediction accuracy,
and the impact that the number of future bits
has on the critic’s performance. Our results
also compare the prediction accuracies of
prophet/critic hybrids to conventional pre-
dictors, and the overall performance of proces-
sors with prophet/critic hybrids to those with
conventional predictors.

Importance of future bits
Two questions naturally arise regarding

future bits: How important are they? And,
what is the optimal number needed to pro-
vide the best critiques?

Figure 4 shows the mispredict rate (in mis-
predicts per 1,000 micro-ops) as the number
of future bits increases from 0 to 12. Zero
future bits means that the predictor uses no
future information, which is the same way a
conventional hybrid or overriding predictor
operates, where all components have the same
available history information from which they
can generate predictions. We selected five
benchmarks (out of 108) showing the differ-
ent behaviors that we saw when varying the
number of future bits. The average line repre-
sents the average over all 108 benchmarks.
Increasing the number of future bits from 0 to
12 reduces the average mispredict rate by 35
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Table 1. Prophet and critic configurations.

  Total hardware budget  
Predictor Parameter 8 Kbyte 16 Kbyte
Gshare No. of table entries 32,768 65,536

History length (bits) 15 16
Perceptron No. of perceptrons 282 348

History length (bits) 28 47
2Bc-gskew No. of entries per table 8,192 16,384

History length (bits) 13 14
Tagged gshare No. of table entries 1024 × 6 way NA

BOR size (bits) 18 NA



percent. Adding just one future bit reduces it
by 15 percent. Increasing the number of future
bits from one to 12 reduces it by 24 percent
(relative to the results for one future bit).

Adding the first future bit reduces the aver-
age mispredict rate by 15 percent. The first
future bit is the prophet’s prediction for the
branch. Knowing whether this prediction is
taken or not taken is highly valuable informa-
tion to the critic for determining whether the
prophet mispredicted the branch. Our results
with other combinations of prophets and crit-
ics also show that adding just 1 future bit
decreases the mispredict rate as compared to
conventional hybrids that don’t use future bits.

Increasing the number of future bits beyond
one has different effects depending on the
benchmark. Both tpcc and facerec show
little improvement in using more than one
future bit, and for tpcc, there is a small degra-
dation. For msvc7, adding future bits decreas-
es the mispredict rate up to a point, after which
the rate increases. For premiere and unzip
the mispredict rate continues to decrease as the
number of future bits increases.

Thus, adding some future bits always helps,
but more is not always better. Research has
shown that the optimal number of history bits
depends on the static branch15 and the pro-
gram’s execution phase.16 This same research
is applicable to determining the optimal num-
ber of future bits for a prediction.

Prediction accuracy
Figure 5 compares the average mispredict

rate of the prophet/critic hybrid to some of the
best predictors proposed in literature: gshare,
2Bc-gskew, and perceptron. The prophet was
the same as one of those predictors, but used
only half the hardware budget. A tagged gshare
critic used the other half of the hardware bud-
get. Under these conditions, the results show
that a prophet/critic hybrid can reduce the
mispredict rate by 25 to 31 percent.

Processor performance
Figure 6 shows average performance mea-

sured in micro-ops per cycle. We simulated
three prophets (gshare, 2Bc-gskew, and per-
ceptron) combined with a tagged-gshare crit-
ic using four, eight, and 12 future bits. The
first bar in each group is a prophet alone with
the same hardware budget as the prophet/crit-
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ic hybrids. The results show that as the num-
ber of future bits increases, performance also
increases. With four future bits, we obtain
speedups of 2.7 percent for perceptron, 3.4
percent for 2Bc-gskew, and 4.7 percent for
gshare over the performance with a prophet
alone. If we use 12 future bits for the critic,
speedups grow to 5.2, 7, and 8 percent,
respectively.

Why it works—the theory
In 1996, I-Cheng et al.17 linked data com-

pression to branch prediction. 
Compressors typically operate in stream

mode, compressing each symbol as the com-
pressor receives it. A predictor generates a
probability distribution for the next symbol.
When the compressor receives the symbol, it
is encoded according to the distribution. The
compressor then updates the predictor to gen-
erate the distribution for the next symbol. The
better the predictor is, the better the com-
pression rate.

Conventional branch predictors and
prophets in prophet/critic hybrids are similar
to a stream mode compressor’s predictor. The
branches are the symbols, and they have two
possible values: taken and not taken. The pre-
dictor handles each branch as it is encountered.
The prediction is the symbol (branch direction)
with the highest probability. After it makes the
prediction, the predictor is updated. Operat-
ing in stream mode limits the predictor to using
previously encountered branches (branch his-
tory) to generate the probability distribution.
This limits its accuracy.

Critics, on the other hand, are different.
They do not operate in stream mode. When
critics encounter a branch, they wait until they
have a few following branches before they pro-
vide a prediction. Because they wait, they can
use a probability model (such as a Markov
model) that generates a probability distribu-
tion for the branch using the outcomes of the
branches both before and after the branch in
question; that is, they use both a branch’s his-
tory and future. Since critics use a predicted
branch future instead of the actual future, they
actually maintain a probability model for
whether the prophet’s prediction is wrong,
rather than a model for the branch’s outcome.
However, it is easy to generate the predicted
outcome from the prophet’s prediction plus

the critic’s prediction of whether the prophet’s
prediction is wrong. Because critics do not
operate in stream mode, they can delay mak-
ing their predictions, greatly reducing the
number of mispredicts.

Our results show that an 8-Kbyte percep-
tron prophet with an 8-Kbyte tagged

gshare critic has 39 percent fewer mispredicts
than a 16-Kbyte 2Bc-gskew predictor—a pre-
dictor similar to that in the proposed Compaq
Alpha EV8 processor—across a wide range of
applications. For gcc, the percentage of mis-
predicted branches drops from 3.11 to 1.23
percent. The number of micro-ops between
pipeline flushes because of mispredicts limits
the amount of parallelism that we can extract
from the instruction window, and hence
bounds the useful size of the window. The
prophet/critic hybrid increases this number
from 418 for the 2Bc-gskew predictor to 680.
On a machine based on the Intel Pentium 4
processor, this improves micro-ops-per-cycle
performance by 7.8 percent (18 percent for
gcc). In addition, it reduces the number of
micro-ops processed along both correct and
incorrect paths—a measure of the energy
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required to accomplish a task—by 8.6 percent.
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