3,750 research outputs found

    Optical versus video see-through mead-mounted displays in medical visualization

    Get PDF
    We compare two technological approaches to augmented reality for 3-D medical visualization: optical and video see-through devices. We provide a context to discuss the technology by reviewing several medical applications of augmented-reality research efforts driven by real needs in the medical field, both in the United States and in Europe. We then discuss the issues for each approach, optical versus video, from both a technology and human-factor point of view. Finally, we point to potentially promising future developments of such devices including eye tracking and multifocus planes capabilities, as well as hybrid optical/video technology

    Enhanced Digital Breast Tomosynthesis diagnosis using 3D visualization and automatic classification of lesions

    Get PDF
    Breast cancer represents the main cause of cancer-related deaths in women. Nonetheless, the mortality rate of this disease has been decreasing over the last three decades, largely due to the screening programs for early detection. For many years, both screening and clinical diagnosis were mostly done through Digital Mammography (DM). Approved in 2011, Digital Breast Tomosynthesis (DBT) is similar to DM but it allows a 3D reconstruction of the breast tissue, which helps the diagnosis by reducing the tissue overlap. Currently, DBT is firmly established and is approved as a stand-alone modality to replace DM. The main objective of this thesis is to develop computational tools to improve the visualization and interpretation of DBT data. Several methods for an enhanced visualization of DBT data through volume rendering were studied and developed. Firstly, important rendering parameters were considered. A new approach for automatic generation of transfer functions was implemented and two other parameters that highly affect the quality of volume rendered images were explored: voxel size in Z direction and sampling distance. Next, new image processing methods that improve the rendering quality by considering the noise regularization and the reduction of out-of-plane artifacts were developed. The interpretation of DBT data with automatic detection of lesions was approached through artificial intelligence methods. Several deep learning Convolutional Neural Networks (CNNs) were implemented and trained to classify a complete DBT image for the presence or absence of microcalcification clusters (MCs). Then, a faster R-CNN (region-based CNN) was trained to detect and accurately locate the MCs in the DBT images. The detected MCs were rendered with the developed 3D rendering software, which provided an enhanced visualization of the volume of interest. The combination of volume visualization with lesion detection may, in the future, improve both diagnostic accuracy and also reduce analysis time. This thesis promotes the development of new computational imaging methods to increase the diagnostic value of DBT, with the aim of assisting radiologists in their task of analyzing DBT volumes and diagnosing breast cancer

    Confirmation bias in visual search.

    Get PDF
    In a series of experiments, we investigated the ubiquity of confirmation bias in cognition by measuring whether visual selection is prioritized for information that would confirm a proposition about a visual display. We show that attention is preferentially deployed to stimuli matching a target template, even when alternate strategies would reduce the number of searches necessary. We argue that this effect is an involuntary consequence of goal-directed processing, and show that it can be reduced when ample time is provided to prepare for search. These results support the notion that capacity-limited cognitive processes contribute to the biased selection of information that characterizes confirmation bias

    Light field image processing: an overview

    Get PDF
    Light field imaging has emerged as a technology allowing to capture richer visual information from our world. As opposed to traditional photography, which captures a 2D projection of the light in the scene integrating the angular domain, light fields collect radiance from rays in all directions, demultiplexing the angular information lost in conventional photography. On the one hand, this higher dimensional representation of visual data offers powerful capabilities for scene understanding, and substantially improves the performance of traditional computer vision problems such as depth sensing, post-capture refocusing, segmentation, video stabilization, material classification, etc. On the other hand, the high-dimensionality of light fields also brings up new challenges in terms of data capture, data compression, content editing, and display. Taking these two elements together, research in light field image processing has become increasingly popular in the computer vision, computer graphics, and signal processing communities. In this paper, we present a comprehensive overview and discussion of research in this field over the past 20 years. We focus on all aspects of light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data

    Expanding Dimensionality in Cinema Color: Impacting Observer Metamerism through Multiprimary Display

    Get PDF
    Television and cinema display are both trending towards greater ranges and saturation of reproduced colors made possible by near-monochromatic RGB illumination technologies. Through current broadcast and digital cinema standards work, system designs employing laser light sources, narrow-band LED, quantum dots and others are being actively endorsed in promotion of Wide Color Gamut (WCG). Despite artistic benefits brought to creative content producers, spectrally selective excitations of naturally different human color response functions exacerbate variability of observer experience. An exaggerated variation in color-sensing is explicitly counter to the exhaustive controls and calibrations employed in modern motion picture pipelines. Further, singular standard observer summaries of human color vision such as found in the CIE’s 1931 and 1964 color matching functions and used extensively in motion picture color management are deficient in recognizing expected human vision variability. Many researchers have confirmed the magnitude of observer metamerism in color matching in both uniform colors and imagery but few have shown explicit color management with an aim of minimized difference in observer perception variability. This research shows that not only can observer metamerism influences be quantitatively predicted and confirmed psychophysically but that intentionally engineered multiprimary displays employing more than three primaries can offer increased color gamut with drastically improved consistency of experience. To this end, a seven-channel prototype display has been constructed based on observer metamerism models and color difference indices derived from the latest color vision demographic research. This display has been further proven in forced-choice paired comparison tests to deliver superior color matching to reference stimuli versus both contemporary standard RGB cinema projection and recently ratified standard laser projection across a large population of color-normal observers

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use
    • …
    corecore