271 research outputs found

    Position / force control of systems subjected to communicaton delays and interruptions in bilateral teleoperation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 65-68)Text in English; Abstract: Turkish and Englishix, 76 leavesTeleoperation technology allows to remotely operate robotic (slave) systems located in hazardous, risky and distant environments. The human operator sends commands through the controller (master) system to execute the tasks from a distance. The operator is provided with necessary (visual, audio or haptic) feedback to accomplish the mission remotely. In bilateral teleoperation, continuous feedback from the remote environment is generated. Thus, the operator can handle the task as if the operator is in the remote environment relying on the relevant feedback. Since teleoperation deals with systems controlled from a distance, time delays and package losses in transmission of information are present. These communication failures affect the human perception and system stability, and thus, the ability of operator to handle the task successfully. The objective of this thesis is to investigate and develop a control algorithm, which utilizes model mediated teleoperation integrating parallel position/force controllers, to compensate for the instability issues and excessive forcing applied to the environment arising from communication failures. Model mediation technique is extended for three-degrees-of-freedom teleoperation and a parallel position/force controller, impedance controller, is integrated in the control algorithm. The proposed control method is experimentally tested by using Matlab Simulink blocksets for real-time experimentation in which haptic desktop devices, Novint Falcon and Phantom Desktop are configured as master and slave subsystems of the bilateral teleoperation. The results of these tests indicate that the stability and passivity of proposed bilateral teleoperation systems are preserved during constant and variable time delays and data losses while the position and force tracking test results provide acceptable performance with bounded errors

    VIDEO PREPROCESSING BASED ON HUMAN PERCEPTION FOR TELESURGERY

    Get PDF
    Video transmission plays a critical role in robotic telesurgery because of the high bandwidth and high quality requirement. The goal of this dissertation is to find a preprocessing method based on human visual perception for telesurgical video, so that when preprocessed image sequences are passed to the video encoder, the bandwidth can be reallocated from non-essential surrounding regions to the region of interest, ensuring excellent image quality of critical regions (e.g. surgical region). It can also be considered as a quality control scheme that will gracefully degrade the video quality in the presence of network congestion. The proposed preprocessing method can be separated into two major parts. First, we propose a time-varying attention map whose value is highest at the gazing point and falls off progressively towards the periphery. Second, we propose adaptive spatial filtering and the parameters of which are adjusted according to the attention map. By adding visual adaptation to the spatial filtering, telesurgical video data can be compressed efficiently because of the high degree of visual redundancy removal by our algorithm. Our experimental results have shown that with the proposed preprocessing method, over half of the bandwidth can be reduced while there is no significant visual effect for the observer. We have also developed an optimal parameter selecting algorithm, so that when the network bandwidth is limited, the overall visual distortion after preprocessing is minimized

    Software Design of an Experimental Management Suite for Evaluating Time-Delayed Teleoperative Simulations

    Get PDF
    A means of assessing human performance as it relates to telesurgery is critical in an age where computer-assisted surgery is becoming more commonplace in operating rooms around the world. This is particularly true when a human is controlling the robotic instruments over a considerable geographic distance; unpredictable delays in data transmission over a network can degrade the human-computer system performance. As the delay is increased, so too will the overall time to complete a given task along with its associated error rate. However, objective measures on the effect on performance are needed. The methodology developed here is based on Fitts’ paradigm; a framework that can be used to quantify human performance under simulated latency conditions. Data gathered from the software developed in this thesis shows a strong, positive, linear correlation between a subject’s performance and the imposed task latency. This coincides with similar studies performed using the same paradigm, demonstrating the usefulness of such a methodology with respect to systems for telesurgery and training

    Recent Advancements in Augmented Reality for Robotic Applications: A Survey

    Get PDF
    Robots are expanding from industrial applications to daily life, in areas such as medical robotics, rehabilitative robotics, social robotics, and mobile/aerial robotics systems. In recent years, augmented reality (AR) has been integrated into many robotic applications, including medical, industrial, human–robot interactions, and collaboration scenarios. In this work, AR for both medical and industrial robot applications is reviewed and summarized. For medical robot applications, we investigated the integration of AR in (1) preoperative and surgical task planning; (2) image-guided robotic surgery; (3) surgical training and simulation; and (4) telesurgery. AR for industrial scenarios is reviewed in (1) human–robot interactions and collaborations; (2) path planning and task allocation; (3) training and simulation; and (4) teleoperation control/assistance. In addition, the limitations and challenges are discussed. Overall, this article serves as a valuable resource for working in the field of AR and robotic research, offering insights into the recent state of the art and prospects for improvement

    Taking Fitts' Slow: The Effects of Delayed Visual Feedback on Human Motor Performance and User Experience

    Get PDF
    abstract: ABSTRACT The present studies investigated the separate effects of two types of visual feedback delay – increased latency and decreased updating rate – on performance – both actual (e.g. response time) and subjective (i.e. rating of perceived input device performance) – in 2-dimensional pointing tasks using a mouse as an input device. The first sub-study examined the effects of increased latency on performance using two separate experiments. In the first experiment the effects of constant latency on performance were tested, wherein participants completed blocks of trials with a constant level of latency. Additionally, after each block, participants rated their subjective experience of the input device performance at each level of latency. The second experiment examined the effects of variable latency on performance, where latency was randomized within blocks of trials. The second sub-study investigated the effects of decreased updating rates on performance in the same manner as the first study, wherein experiment one tested the effect of constant updating rate on performance as well as subjective rating, and experiment two tested the effect of variable updating rate on performance. The findings suggest that latency is negative correlated with actual performance as well as subjective ratings of performance, and updating rate is positively correlated with actual performance as well as subjective ratings of performance.Dissertation/ThesisMasters Thesis Applied Psychology 201

    Teleoperation of a service robot using a mobile device

    Get PDF
    Teleoperation is a concept born with the rapid evolution of technology, with an intuitive meaning "operate at a distance." The first teleoperation system was created in the mid 1950s, which were handled chemicals. Remote controlled systems are present nowadays in various types of applications. This dissertation presents the development of a mobile application to perform the teleoperation of a mobile service robot. The application integrates a distributed surveillance (the result of a research project QREN) and led to the development of a communication interface between the robot (the result of another QREN project) and the vigilance system. It was necessary to specify a communication protocol between the two systems, which was implemented over a communication framework 0MQ (Zero Message Queue). For the testing, three prototype applications were developed before to perform the test on the robot

    Telemedicine, virtual reality, and surgery

    Get PDF
    Two types of synthetic experience are covered: virtual reality (VR) and surgery, and telemedicine. The topics are presented in viewgraph form and include the following: geometric models; physiological sensors; surgical applications; virtual cadaver; VR surgical simulation; telesurgery; VR Surgical Trainer; abdominal surgery pilot study; advanced abdominal simulator; examples of telemedicine; and telemedicine spacebridge
    • …
    corecore