42,766 research outputs found

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Visual Learning In The Perception Of Texture: Simple And Contingent Aftereffects Of Texture Density

    Get PDF
    Novel results elucidating the magnitude, binocularity and retinotopicity of aftereffects of visual texture density adaptation are reported as is a new contingent aftereffect of texture density which suggests that the perception of visual texture density is quite malleable. Texture aftereffects contingent upon orientation, color and temporal sequence are discussed. A fourth effect is demonstrated in which auditory contingencies are shown to produce a different kind of visual distortion. The merits and limitations of error-correction and classical conditioning theories of contingent adaptation are reviewed. It is argued that a third kind of theory which emphasizes coding efficiency and informational considerations merits close attention. It is proposed that malleability in the registration of texture information can be understood as part of the functional adaptability of perception

    Video streaming

    Get PDF
    B

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Neural Dynamics of Motion Grouping: From Aperture Ambiguity to Object Speed and Direction

    Full text link
    A neural network model of visual motion perception and speed discrimination is developed to simulate data concerning the conditions under which components of moving stimuli cohere or not into a global direction of motion, as in barberpole and plaid patterns (both Type 1 and Type 2). The model also simulates how the perceived speed of lines moving in a prescribed direction depends upon their orientation, length, duration, and contrast. Motion direction and speed both emerge as part of an interactive motion grouping or segmentation process. The model proposes a solution to the global aperture problem by showing how information from feature tracking points, namely locations from which unambiguous motion directions can be computed, can propagate to ambiguous motion direction points, and capture the motion signals there. The model does this without computing intersections of constraints or parallel Fourier and non-Fourier pathways. Instead, the model uses orientationally-unselective cell responses to activate directionally-tuned transient cells. These transient cells, in turn, activate spatially short-range filters and competitive mechanisms over multiple spatial scales to generate speed-tuned and directionally-tuned cells. Spatially long-range filters and top-down feedback from grouping cells are then used to track motion of featural points and to select and propagate correct motion directions to ambiguous motion points. Top-down grouping can also prime the system to attend a particular motion direction. The model hereby links low-level automatic motion processing with attention-based motion processing. Homologs of model mechanisms have been used in models of other brain systems to simulate data about visual grouping, figure-ground separation, and speech perception. Earlier versions of the model have simulated data about short-range and long-range apparent motion, second-order motion, and the effects of parvocellular and magnocellular LGN lesions on motion perception.Office of Naval Research (N00014-920J-4015, N00014-91-J-4100, N00014-95-1-0657, N00014-95-1-0409, N00014-91-J-0597); Air Force Office of Scientific Research (F4620-92-J-0225, F49620-92-J-0499); National Science Foundation (IRI-90-00530

    Objective assessment of region of interest-aware adaptive multimedia streaming quality

    Get PDF
    Adaptive multimedia streaming relies on controlled adjustment of content bitrate and consequent video quality variation in order to meet the bandwidth constraints of the communication link used for content delivery to the end-user. The values of the easy to measure network-related Quality of Service metrics have no direct relationship with the way moving images are perceived by the human viewer. Consequently variations in the video stream bitrate are not clearly linked to similar variation in the user perceived quality. This is especially true if some human visual system-based adaptation techniques are employed. As research has shown, there are certain image regions in each frame of a video sequence on which the users are more interested than in the others. This paper presents the Region of Interest-based Adaptive Scheme (ROIAS) which adjusts differently the regions within each frame of the streamed multimedia content based on the user interest in them. ROIAS is presented and discussed in terms of the adjustment algorithms employed and their impact on the human perceived video quality. Comparisons with existing approaches, including a constant quality adaptation scheme across the whole frame area, are performed employing two objective metrics which estimate user perceived video quality
    corecore