63,934 research outputs found

    Synergistic Interactions of Dynamic Ridesharing and Battery Electric Vehicles Land Use, Transit, and Auto Pricing Policies

    Get PDF
    It is widely recognized that new vehicle and fuel technology is necessary, but not sufficient, to meet deep greenhouse gas (GHG) reductions goals for both the U.S. and the state of California. Demand management strategies (such as land use, transit, and auto pricing) are also needed to reduce passenger vehicle miles traveled (VMT) and related GHG emissions. In this study, the authors explore how demand management strategies may be combined with new vehicle technology (battery electric vehicles or BEVs) and services (dynamic ridesharing) to enhance VMT and GHG reductions. Owning a BEV or using a dynamic ridesharing service may be more feasible when distances to destinations are made shorter and alternative modes of travel are provided by demand management strategies. To examine potential markets, we use the San Francisco Bay Area activity based travel demand model to simulate business-as-usual, transit oriented development, and auto pricing policies with and without high, medium, and low dynamic ridesharing participation rates and BEV daily driving distance ranges. The results of this study suggest that dynamic ridesharing has the potential to significantly reduce VMT and related GHG emissions, which may be greater than land use and transit policies typically included in Sustainable Community Strategies (under California Senate Bill 375), if travelers are willing pay with both time and money to use the dynamic ridesharing system. However, in general, large synergistic effects between ridesharing and transit oriented development or auto pricing policies were not found in this study. The results of the BEV simulations suggest that TODs may increase the market for BEVs by less than 1% in the Bay Area and that auto pricing policies may increase the market by as much as 7%. However, it is possible that larger changes are possible over time in faster growing regions where development is currently at low density levels (for example, the Central Valley in California). The VMT Fee scenarios show larger increases in the potential market for BEV (as much as 7%). Future research should explore the factors associated with higher dynamic ridesharing and BEV use including individual attributes, characteristics of tours and trips, and time and cost benefits. In addition, the travel effects of dynamic ridesharing systems should be simulated explicitly, including auto ownership, mode choice, destination, and extra VMT to pick up a passenger

    Chapter 13 - Sharing strategies: carsharing, shared micromobility (bikesharing and scooter sharing), transportation network companies, microtransit, and other innovative mobility modes

    Get PDF
    Shared mobility—the shared use of a vehicle, bicycle, or other mode—is an innovative transportation strategy that enables users to gain short-term access to transportation modes on an “as-needed” basis. It includes various forms of carsharing, bikesharing, scooter sharing, ridesharing (carpooling and vanpooling), transportation network companies (TNCs), and microtransit. Included in this ecosystem are smartphone “apps” that aggregate and optimize these mobility options, as well as “courier network services” that provide last mile package and food delivery. This chapter describes different models that have emerged in shared mobility and reviews research that has quantified the environmental, social, and transportation-related impacts of these services

    Analysis and operational challenges of dynamic ride sharing demand responsive transportation models

    Get PDF
    There is a wide body of evidence that suggests sustainable mobility is not only a technological question, but that automotive technology will be a part of the solution in becoming a necessary albeit insufficient condition. Sufficiency is emerging as a paradigm shift from car ownership to vehicle usage, which is a consequence of socio-economic changes. Information and Communication Technologies (ICT) now make it possible for a user to access a mobility service to go anywhere at any time. Among the many emerging mobility services, Multiple Passenger Ridesharing and its variants look the most promising. However, challenges arise in implementing these systems while accounting specifically for time dependencies and time windows that reflect users’ needs, specifically in terms of real-time fleet dispatching and dynamic route calculation. On the other hand, we must consider the feasibility and impact analysis of the many factors influencing the behavior of the system – as, for example, service demand, the size of the service fleet, the capacity of the shared vehicles and whether the time window requirements are soft or tight. This paper analyzes - a Decision Support System that computes solutions with ad hoc heuristics applied to variants of Pick Up and Delivery Problems with Time Windows, as well as to Feasibility and Profitability criteria rooted in Dynamic Insertion Heuristics. To evaluate the applications, a Simulation Framework is proposed. It is based on a microscopic simulation model that emulates real-time traffic conditions and a real traffic information system. It also interacts with the Decision Support System by feeding it with the required data for making decisions in the simulation that emulate the behavior of the shared fleet. The proposed simulation framework has been implemented in a model of Barcelona’s Central Business District. The obtained results prove the potential feasibility of the mobility concept.Postprint (published version

    Take me on a ride: The role of environmentalist identity for carpooling

    Get PDF
    Sharing does not need to involve corporate providers but can also happen on a peer-to‐ peer (P2P) basis. P2P sharing platforms who match private providers and users are thus dealing with two different customer segments. An example of this is carpooling, the sharing of a car journey. Recent years have seen considerable research on why people use sharing services. In contrast, there is little knowledge of why people may offer a good for sharing purposes. Drawing on identity theory, this paper suggests that users and providers of carpooling need to be addressed differently. A pilot study and two studies, including both actual car owners and nonowners confirm that the extent to which one identifies as an environmentalist predicts car owners' willingness to offer carpooling, but does not affect nonowners' willingness to use carpooling services. These findings remain robust when controlling for various potential confounds. Furthermore, Study 2 suggests that an environmentalist identity plays an important role for car owners' actual decision to offer a ride via an online platform. These results suggest that marketers of P2P platforms need to pursue different strategies when addressing potential users and providers on the same platform

    Synergies between app-based car-related shared mobility services for the development of more profitable business models

    Get PDF
    Purpose: Emerging shared mobility services are an opportunity for cities to reduce the number of car single trips to both improve traffic congestion and the environment. Users of shared mobility services, such as carsharing, ridesharing and singular and shared ride-hailing services, often need to be customers of more than one service to cover all their transport needs, since few mobility providers offer more than one of these services from a single platform. On the other hand, providers offering these services separately do not optimize costly resources and activities, such as the vehicles or the technology. Hence, the aim of this paper is to find synergies between the different app-based car-related shared mobility services that foster the development of new business models, to increase the profitability of these services. Design/methodology/approach: The research approach is built on the literature of car-related shared mobility services business models, supported by the review of certain outstanding services websites, and face-to-face interviews with users and drivers of these transport services. The analysis is presented by means of the Business Model Canvas methodology. Findings: Based on the synergies found, this paper suggests a few different approaches for services to share some resources and activities. Originality/value: This study identifies the common features of carsharing, ridesharing and singular and shared ride-hailing services to develop more profitable business models, based on providing the services in aggregated form, or outsourcing activities and resources. In addition, the implications of these proposals are discussed as advantages and drawbacks from a business perspectivePeer ReviewedPostprint (published version

    Support of the collaborative inquiry learning process: influence of support on task and team regulation

    Get PDF
    Regulation of the learning process is an important condition for efficient and effective learning. In collaborative learning, students have to regulate their collaborative activities (team regulation) next to the regulation of their own learning process focused on the task at hand (task regulation). In this study, we investigate how support of collaborative inquiry learning can influence the use of regulative activities of students. Furthermore, we explore the possible relations between task regulation, team regulation and learning results. This study involves tenth-grade students who worked in pairs in a collaborative inquiry learning environment that was based on a computer simulation, Collisions, developed in the program SimQuest. Students of the same team worked on two different computers and communicated through chat. Chat logs of students from three different conditions are compared. Students in the first condition did not receive any support at all (Control condition). In the second condition, students received an instruction in effective communication, the RIDE rules (RIDE condition). In the third condition, students were, in addition to receiving the RIDE rules instruction, supported by the Collaborative Hypothesis Tool (CHT), which helped the students with formulating hypotheses together (CHT condition). The results show that students overall used more team regulation than task regulation. In the RIDE condition and the CHT condition, students regulated their team activities most often. Moreover, in the CHT condition the regulation of team activities was positively related to the learning results. We can conclude that different measures of support can enhance the use of team regulative activities, which in turn can lead to better learning results
    • 

    corecore