154,247 research outputs found

    Peer-to-Peer Healthcare

    Get PDF
    Analyzes how patients and caregivers use the Internet to obtain information about health concerns, care, and support, with a focus on online peer networks of those with chronic or rare conditions. Examines sources relied on by type of information sought

    Dynamic Peer-to-Peer Competition

    Full text link
    The dynamic behavior of a multiagent system in which the agent size sis_{i} is variable it is studied along a Lotka-Volterra approach. The agent size has hereby for meaning the fraction of a given market that an agent is able to capture (market share). A Lotka-Volterra system of equations for prey-predator problems is considered, the competition factor being related to the difference in size between the agents in a one-on-one competition. This mechanism introduces a natural self-organized dynamic competition among agents. In the competition factor, a parameter σ\sigma is introduced for scaling the intensity of agent size similarity, which varies in each iteration cycle. The fixed points of this system are analytically found and their stability analyzed for small systems (with n=5n=5 agents). We have found that different scenarios are possible, from chaotic to non-chaotic motion with cluster formation as function of the σ\sigma parameter and depending on the initial conditions imposed to the system. The present contribution aim is to show how a realistic though minimalist nonlinear dynamics model can be used to describe market competition (companies, brokers, decision makers) among other opinion maker communities.Comment: 17 pages, 50 references, 6 figures, 1 tabl

    Collusion in Peer-to-Peer Systems

    Get PDF
    Peer-to-peer systems have reached a widespread use, ranging from academic and industrial applications to home entertainment. The key advantage of this paradigm lies in its scalability and flexibility, consequences of the participants sharing their resources for the common welfare. Security in such systems is a desirable goal. For example, when mission-critical operations or bank transactions are involved, their effectiveness strongly depends on the perception that users have about the system dependability and trustworthiness. A major threat to the security of these systems is the phenomenon of collusion. Peers can be selfish colluders, when they try to fool the system to gain unfair advantages over other peers, or malicious, when their purpose is to subvert the system or disturb other users. The problem, however, has received so far only a marginal attention by the research community. While several solutions exist to counter attacks in peer-to-peer systems, very few of them are meant to directly counter colluders and their attacks. Reputation, micro-payments, and concepts of game theory are currently used as the main means to obtain fairness in the usage of the resources. Our goal is to provide an overview of the topic by examining the key issues involved. We measure the relevance of the problem in the current literature and the effectiveness of existing philosophies against it, to suggest fruitful directions in the further development of the field

    TrusNet: Peer-to-Peer Cryptographic Authentication

    Get PDF
    Originally, the Internet was meant as a general purpose communication protocol, transferring primarily text documents between interested parties. Over time, documents expanded to include pictures, videos and even web pages. Increasingly, the Internet is being used to transfer a new kind of data which it was never designed for. In most ways, this new data type fits in naturally to the Internet, taking advantage of the near limit-less expanse of the protocol. Hardware protocols, unlike previous data types, provide a unique set security problem. Much like financial data, hardware protocols extended across the Internet must be protected with authentication. Currently, systems which do authenticate do so through a central server, utilizing a similar authentication model to the HTTPS protocol. This hierarchical model is often at odds with the needs of hardware protocols, particularly in ad-hoc networks where peer-to-peer communication is prioritized over a hierarchical model. Our project attempts to implement a peer-to-peer cryptographic authentication protocol to be used to protect hardware protocols extending over the Internet. The TrusNet project uses public-key cryptography to authenticate nodes on a distributed network, with each node locally managing a record of the public keys of nodes which it has encountered. These keys are used to secure data transmission between nodes and to authenticate the identities of nodes. TrusNet is designed to be used on multiple different types of network interfaces, but currently only has explicit hooks for Internet Protocol connections. As of June 2016, TrusNet has successfully achieved a basic authentication and communication protocol on Windows 7, OSX, Linux 14 and the Intel Edison. TrusNet uses RC-4 as its stream cipher and RSA as its public-key algorithm, although both of these are easily configurable. Along with the library, TrusNet also enables the building of a unit testing suite, a simple UI application designed to visualize the basics of the system and a build with hooks into the I/O pins of the Intel Edison allowing for a basic demonstration of the system

    Position Estimating in Peer-to-Peer Networks

    Get PDF
    We present two algorithms for indoor positioning estimation in peer-to-peer networks. The setup is a network of two types of devices: reference devices with a known location and blindfolded devices that can determine distances to reference devices and each other. From this information the blindfolded devices try to estimate their positions. A typical scenario is navigation inside a shopping mall where devices in the parking lot can make contact with GPS satellites, whereas devices inside the building make contact with each other, devices on the parking lot, and devices fixed to the building. The devices can measure their in-between distances, with some measurement error, and exchange positioning information. However, other devices might only know their position with some error
    • …
    corecore