62 research outputs found

    Pebble Weighted Automata and Weighted Logics

    Get PDF
    34 pagesInternational audienceWe introduce new classes of weighted automata on words. Equipped with pebbles, they go beyond the class of recognizable formal power series: they capture weighted first-order logic enriched with a quantitative version of transitive closure. In contrast to previous work, this calculus allows for unrestricted use of existential and universal quantifications over positions of the input word. We actually consider both two-way and one-way pebble weighted automata. The latter class constrains the head of the automaton to walk left-to-right, resetting it each time a pebble is dropped. Such automata have already been considered in the Boolean setting, in the context of data words. Our main result states that two-way pebble weighted automata, one- way pebble weighted automata, and our weighted logic are expressively equivalent. We also give new logical characterizations of standard recognizable series

    Advances and applications of automata on words and trees : abstracts collection

    Get PDF
    From 12.12.2010 to 17.12.2010, the Dagstuhl Seminar 10501 "Advances and Applications of Automata on Words and Trees" was held in Schloss Dagstuhl - Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Logical Characterization of Weighted Pebble Walking Automata

    Get PDF
    International audienceWeighted automata are a conservative quantitative extension of finite automata that enjoys applications, e.g., in language processing and speech recognition. Their expressive power, however, appears to be limited, especially when they are applied to more general structures than words, such as graphs. To address this drawback, weighted automata have recently been generalized to weighted pebble walking automata, which proved useful as a tool for the specification and evaluation of quantitative properties over words and nested words. In this paper, we establish the expressive power of weighted pebble walking automata in terms of transitive closure logic, lifting a similar result by Engelfriet and Hoogeboom from the Boolean case to a quantitative setting. This result applies to a general class of graphs that subsumes all the aforementioned classes

    Aperiodic Weighted Automata and Weighted First-Order Logic

    Get PDF
    By fundamental results of Sch\"utzenberger, McNaughton and Papert from the 1970s, the classes of first-order definable and aperiodic languages coincide. Here, we extend this equivalence to a quantitative setting. For this, weighted automata form a general and widely studied model. We define a suitable notion of a weighted first-order logic. Then we show that this weighted first-order logic and aperiodic polynomially ambiguous weighted automata have the same expressive power. Moreover, we obtain such equivalence results for suitable weighted sublogics and finitely ambiguous or unambiguous aperiodic weighted automata. Our results hold for general weight structures, including all semirings, average computations of costs, bounded lattices, and others.Comment: An extended abstract of the paper appeared at MFCS'1

    Weighted tree-walking automata

    Get PDF
    We define weighted tree-walking automata. We show that the class of tree series recognizable by weighted tree-walking automata over a commutative semiring K is a subclass of the class of regular tree series over K. If K is not a ring, then the inclusion is strict

    Weighted Automata and Monadic Second Order Logic

    Full text link
    Let S be a commutative semiring. M. Droste and P. Gastin have introduced in 2005 weighted monadic second order logic WMSOL with weights in S. They use a syntactic fragment RMSOL of WMSOL to characterize word functions (power series) recognizable by weighted automata, where the semantics of quantifiers is used both as arithmetical operations and, in the boolean case, as quantification. Already in 2001, B. Courcelle, J.Makowsky and U. Rotics have introduced a formalism for graph parameters definable in Monadic Second order Logic, here called MSOLEVAL with values in a ring R. Their framework can be easily adapted to semirings S. This formalism clearly separates the logical part from the arithmetical part and also applies to word functions. In this paper we give two proofs that RMSOL and MSOLEVAL with values in S have the same expressive power over words. One proof shows directly that MSOLEVAL captures the functions recognizable by weighted automata. The other proof shows how to translate the formalisms from one into the other.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    10501 Abstracts Collection -- Advances and Applications of Automata on Words and Trees

    Get PDF
    From 12.12.2010 to 17.12.2010, the Dagstuhl Seminar 10501 ``Advances and Applications of Automata on Words and Trees\u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    A Probabilistic Kleene Theorem

    Get PDF
    International audienceWe provide a Kleene Theorem for (Rabin) probabilistic automata over finite words. Probabilistic automata generalize deterministic finite automata and assign to a word an acceptance probability. We provide probabilistic expressions with probabilistic choice, guarded choice, concatenation, and a star operator. We prove that probabilistic expressions and probabilistic automata are expressively equivalent. Our result actually extends to two-way probabilistic automata with pebbles and corresponding expressions

    Acta Cybernetica : Volume 19. Number 2.

    Get PDF
    • …
    corecore