
Acta Cybernetica 19 (2009) 275–293.

Weighted Tree-Walking Automata∗

Zoltán Fülöp† and Loránd Muzamel†

Abstract

We define weighted tree-walking automata. We show that the class of tree

series recognizable by weighted tree-walking automata over a commutative

semiring K is a subclass of the class of regular tree series over K. If K is not

a ring, then the inclusion is strict.

Keywords: semirings, regular tree series, weighted tree-walking automata

1 Introduction

The concept of a tree-walking automaton (for short: twa) was introduced in [1]
for modelling syntax-directed translations from strings to strings. Recently its
importance grew in XML theory, see, e.g. [23, 25, 26]. A twa A is a sequential
finite-state tree acceptor with finitely many transition rules. Obeying its state-
behaviour, A walks along the edges of an input tree s ∈ TΣ, where Σ is the input
ranked alphabet of A. Then A accepts s if there is an accepting run on s, i.e.,
a finite walk on s from the initial state to the accepting state. Tree languages
recognized by twa are effectively regular. Unfortunately there is no straight proof
of this fact in the literature, but it can be obtained, e.g., as the special case of the
main result of [14]. However, there exists a regular tree language that cannot be
recognized by any twa [4]. There are several extensions of twa which still recognize
regular tree languages, such as twa with weak pebbles [13], strong pebbles [14],
invisible pebbles [15], and also the alternating pebble twa of [24].

Another kind of automata in which we are interested is the weighted tree au-
tomaton (for short: wta). It is a natural generalization of the classical tree au-
tomaton [10, 19, 20]. The generalization lies in that input trees are supplied with
weights taken from an underlying semiring K. In fact, each transition rule of the
wta has a weight represented by an element of K. The weight of a run over an
input tree s ∈ TΣ is just the (semiring) product of the transitions which take part

∗The full version of a submission presented at Weighted Automata: Theory and Applications

(Dresden University of Technology, Germany, May 13-16, 2008). The research was supported by
the Hungarian Scientific Fund under Grant T 46686 and by the Fund for Teaching and Research
in Informatics.

†Department of Foundations of Computer Science, University of Szeged, Árpád tér 2., H-6720
Szeged, Hungary,E-mail: {fulop,muzamel}@inf.u-szeged.hu



276 Zoltán Fülöp and Loránd Muzamel

in that run. Then, the weight of s is the (semiring) sum of all runs over s. In
this way a wta recognizes a tree series, i.e., a mapping from TΣ to K. Tree series
recognizable by wta are called regular, and the class of regular tree series which are
recognizable by weighted tree automata over Σ and K is denoted by REG(Σ,K).
Note that REG(Σ, B), where B is the Boolean semiring, is the class of recognizable
tree languages [19, 20]. Wta were defined and considered in several works, see e.g.
[3], [2], [8], [5], [16], [11], [22], and the survey paper [18].

In this paper we introduce the weighted version of a twa, following the idea that
led from classical tree automata to wta. In a weighted tree-walking automaton A

(over Σ and K) (for short: wtwa), every transition rule has a weight taken from
the semiring K. We assume that A is non-looping, i.e., it cannot enter into an
infinite cycle from the initial configuration. The weight of a run of A on an input
tree s ∈ TΣ is the product of the weights of the applied transition rules, then the
weight of s computed by A is the sum of the weights of all the accepting runs of A

on s. Since A is non-looping, it has only finitely many such accepting runs. The
tree series recognized by A is SA : TΣ → K, where SA(s) is the weight of s for
every input tree s ∈ TΣ. We denote the class of tree series which are recognizable by
non-looping wtwa over Σ and K by TWA(Σ,K). Hence, wtwa with their sequential
processing are alternative tools besides the classical weighted tree automata, which
process trees parallelly. We note that arbitrary (i.e., maybe looping) wtwa over B

are exactly the twa of [1].

As the main result, we show that if K is commutative, then TWA(Σ,K) ⊆
REG(Σ,K) (Theorem 17). The proof of that the tree series recognized by a non-
looping wtwa A is regular is performed according to the following steps. We encode
an accepting run of A by annotating the nodes of the input tree by the rules applied
in that run. Thus we obtain the concept of a run tree of A. Then we construct
two twa such that a Boolean combination of the tree languages recognized by them
turns out to be the set of run trees of A. Hence, the run trees of A form a regular
tree language (Corollary 15). This implies that the tree series S that associates
a run tree with the weight of the run it encodes is regular. Finally, we define an
appropriate relabeling τ from the set of run trees of A to the set of input trees
such that the extension of τ to tree series takes S to SA. Since such an extension
preserves regularity of tree series, we obtain that SA is regular (Theorem 16).

Then we show that if, in addition, the semiring K is proper, i.e., is not a ring,
then the inclusion is strict, i.e., REG(Σ,K)−TWA(Σ,K) 6= ∅. Hereby we generalize
the main result of [4]. We prove this by taking a surjective homomorphism h : K →
B. Now, if TWA(Σ,K) = REG(Σ,K), then also h(TWA(Σ,K)) = TWA(Σ, B) =
h(REG(Σ,K)) = REG(Σ, B) which contradicts the celebrated result TWA(Σ, B) ⊂
REG(Σ, B) of [4].

The paper is organized as follows. In Section 2 we introduce the necessary
notions and notation. In Section 3 we define weighted tree-walking automata, then
we prove our main results in Section 4. In Section 5 we summarize our results and
show an open problem.



Weighted Tree-Walking Automata 277

2 Definitions and notation

2.1 Sets, relations, and strings

We denote the set of nonnegative integers by N. For every n ∈ N, we let [n] =
{1, . . . , n}. The empty set is denoted by ∅.

For a set A, we denote by 2A the power set of A and by A∗ the set of strings
over A. We denote empty string by ε. Sometimes we write a for a singleton {a}.

Let ρ ⊆ A×A be a binary relation. The fact that (a, b) ∈ ρ for some a, b ∈ A is
also denoted by a ρ b. Moreover, the transitive closure and the reflexive, transitive
closure are denoted by ρ+ and ρ∗, respectively.

2.2 Trees and tree languages

A ranked alphabet is an ordered pair (Σ, rank), where Σ is a finite, nonempty set
and rank is a mapping of type Σ → N. For every k ≥ 0, we define Σ(k) = {σ ∈ Σ |
rank(σ) = k}. We define maxrank(Σ) = max{rank(σ) | σ ∈ Σ}. In the sequel we
drop rank and write a ranked alphabet as Σ. Moreover, in the rest of the paper Σ
and ∆ will denote arbitrary ranked alphabets.

The set of trees over Σ indexed by A, denoted by TΣ(A), is the smallest set
T ⊆ (Σ ∪ {(, )} ∪ {, })∗ such that Σ(0) ∪ A ⊆ T and whenever k ≥ 1, σ ∈ Σ(k),
and t1, . . . , tk ∈ T , then σ(t1, . . . , tk) ∈ T . In case A = ∅, we write TΣ for TΣ(A).
Certainly, TΣ 6= ∅ if and only if Σ(0) 6= ∅. Every subset L ⊆ TΣ is called a tree
language.

For every tree s ∈ TΣ, we define the set pos(s) ⊆ N
∗ of the nodes of s as follows.

We let pos(s) = {ε} if s ∈ Σ(0), and pos(s) = {ε} ∪ {iu | 1 ≤ i ≤ k, u ∈ pos(si)} if
s = σ(s1, . . . , sk) for some k ≥ 1, σ ∈ Σ(k) and s1, . . . , sk ∈ TΣ.

Now, for a tree s ∈ TΣ and a node u ∈ pos(s), the label of s at node u, denoted
by s(u), is defined in a standard way. By the root of s we mean the node ε. A
node u of s is a leaf if u1 6∈ pos(s). Moreover, we define the parent of u, denoted
by parent(u), and the child number of u, denoted by childno(u), as follows:
(i) if u = ε, then childno(u) = 0 and parent(u) is undefined,
(ii) if u = u′j, where u′ ∈ pos(s) and j ∈ N, then childno(u) = j and parent(u) = u′.

We will freely use the concepts of a regular tree language and a (finite) tree
automaton. The unfamiliar reader can consult the works [19, 20], and [9] for these
concepts. Moreover, we will need the following known closure properties for regular
tree languages, see, e.g., Theorem 4.2 of [19].

Proposition 1. Regular tree languages are closed under Boolean operations.

2.3 Semirings and tree series

A semiring is an algebraic structure (K,+, ·, 0, 1) with binary operations addition
+, multiplication ·, and constants 0 and 1 (with 0 6= 1) such that (K,+, 0) is a
commutative monoid, (K, ·, 1) is a monoid, multiplication distributes over addition
(both from left and right), and a · 0 = 0 · a = 0 for every a ∈ K. Frequently we



278 Zoltán Fülöp and Loránd Muzamel

will write just K for (K,+, ·, 0, 1). We say that K is commutative if a · b = b · a for
each a, b ∈ K. The semiring K is proper if it is not a ring, i.e., there is no additive
inverse of 1.

Examples of commutative semirings are the Boolean semiring B =
({0, 1},∨,∧, 0, 1) and the arctic semiring Arct = (N∪{−∞},max,+,−∞, 0), where
the operations max and + are extended to N ∪ {−∞} in the obvious way. Note
that both B and Arct are proper.

A tree series (over Σ and K) is a mapping S : TΣ → K where (S, s) is usually
written rather than S(s) for s ∈ TΣ. We denote by K〈〈TΣ〉〉 the set of tree series
over Σ and K. Now we give an example of a tree series over Arct.

Example 2. Let Σ be such that Σ(0) = {α, β}. The tree series heightα ∈ Arct〈〈TΣ〉〉
delivers, for s ∈ TΣ, the length of the longest path from the root of s to an α-node.
More exactly,

(i) (heightα, s) =

{

0 if s = α

−∞ if s = β,

(ii) (heightα, s) = 1 + max{(heightα, si) | 1 ≤ i ≤ k} if s = σ(s1, . . . , sk) for some
k ≥ 1, σ ∈ Σ(k), and s1, . . . , sk ∈ TΣ.

In an analogous way, we can define heightβ ∈ Arct〈〈TΣ〉〉. Now by an α-β-path in
s we mean a path from an α-node to a β-node of s along the edges of s such that
the α-node precedes the β-node in the usual lexicographical order of the nodes and
that every edge is taken at most once in the path. Finally, we define the tree series
widthαβ ∈ Arct〈〈TΣ〉〉 which delivers, for s ∈ TΣ, the length of the longest α-β-path
in s. More exactly,

(i) (widthαβ , s) = −∞ if s = α or s = β,

(ii) (widthαβ , s) = max{ max{(heightα, si) + (heightβ , sj) + 2 | 1 ≤ i < j ≤ k},
max{(widthαβ , si) | 1 ≤ i ≤ k}}

if s = σ(s1, . . . , sk) for some k ≥ 1, σ ∈ Σ(k), and s1, . . . , sk ∈ TΣ.

In particular, let Σ = {σ(2), γ(1), α(0), β(0)}. Then, for the tree s =
σ(σ(σ(σ(β, α), β), γ(σ(β, α))), β), we have heightα(s) = 4, heightβ(s) = 4, and
widthαβ(s) = 6. The longest α-β-path in s is visualized in Fig. 1.

Weighted tree automata were defined in several works in several ways, see e.g.
[3], [2], [8], [5], [16], [11], [22], and the survey paper [18]. Here we give a definition
which is equivalent with the standard one and, at the same time, is easy to handle.

A weighted tree automaton (wta) over K is a system M = (Q,Σ, R, ν), where
Q is a finite set of states, Σ is the input ranked alphabet, ν is a mapping of type
Q → K, and R is a finite set of (weighted) rules of the form σ(q1, . . . , qk)

a
→ q,

where k ≥ 0, σ ∈ Σ(k), q1, . . . , qk, q ∈ Q, and a ∈ K. In case k = 0 we write σ
a
→ q

rather than σ()
a
→ q.



Weighted Tree-Walking Automata 279

σ

σ β

σ γ

σ β σ

β α β α

Figure 1: The longest α-β-path in the tree s = σ(σ(σ(σ(β, α), β), γ(σ(β, α))), β).

The tree series SM,q ∈ K〈〈TΣ〉〉 recognized by M in a state q ∈ Q is defined as
follows. For every input tree s = σ(s1, . . . , sk) ∈ TΣ with k ≥ 0, σ ∈ Σ(k), and
s1, . . . , sk ∈ TΣ, we have

(SM,q, s) =
∑

q1,...,qk∈Q, a∈K

σ(q1,...,qk)
a
→q∈R

(SM,q1
, s1) · . . . · (SM,qk

, sk) · a.

Moreover, the tree series recognized by M is defined by

(SM , s) =
∑

q∈Q

(SM,q, s) · ν(q)

for every input tree s ∈ TΣ.
A tree series is regular if it can be recognized by a weighted tree automaton.

We denote the class of regular tree series over Σ and K by REG(Σ,K).
Next we define the concept of a characteristic tree series and some operations

on tree series which we need in the sequel. For a tree language L ⊆ TΣ the
characteristic tree series of L is XL ∈ K〈〈TΣ〉〉, defined by (XL, s) = 1 if s ∈ L and
(XL, s) = 0 otherwise for every s ∈ TΣ.

Let S1, S2 ∈ K〈〈TΣ〉〉 be tree series and a ∈ K. We define the tree series
aS1 ∈ K〈〈TΣ〉〉 by (aS1, s) = a·(S1, s) for every s ∈ TΣ. The sum and the Hadamard
product of S1 and S2 are denoted by S1 + S2 and S1 ⊙ S2 in K〈〈TΣ〉〉, respectively,
and are defined as (S1 + S2, s) = (S1, s) + (S2, s) and (S1 ⊙ S2, s) = (S1, s) · (S2, s)
for each s ∈ TΣ.

Regular tree series have the following closure properties.

Proposition 3. Let K be commutative.

(a) If L ⊆ TΣ is a regular tree language, then XL ∈ REG(Σ,K).

(b) If S1, S2 ∈ REG(Σ,K) and a ∈ K, then aS1, S1 + S2, and S1 ⊙ S2 are also
in REG(Σ,K).

For the proof of (a) we refer the reader to Lemma 3.3 of [12]. The closure
under the multiplication with a, the sum, and the Hadamard product were proved
in Lemmata 6.3 and 6.4 of [11] (cf. also Lemma 3.3 of [12]), and in Corollary 3.9



280 Zoltán Fülöp and Loránd Muzamel

of [6]. Let us note that the proof of (a) and of the closure under sum do not need
commutativity of K.

Now we define the concept of relabeling. A (deterministic) relabeling is a map-
ping τ : Σ → ∆ such that for each k ≥ 0 and σ ∈ Σ(k) we have τ(σ) ∈ ∆(k). Then
τ extends to the mapping τ ′ : TΣ → T∆, where τ ′(s) = τ(σ)(τ ′(s1), . . . , τ

′(sk)) for
every s = σ(s1, . . . , sk) with k ≥ 0, σ ∈ Σ(k), and s1, . . . , sk ∈ TΣ. For each tree
t ∈ T∆, the set {s ∈ TΣ | t = τ ′(s)} is finite. Finally, τ ′ (and hence τ) extends to
the mapping τ̂ : K〈〈TΣ〉〉 → K〈〈T∆〉〉, where

(τ̂(S), t) =
∑

s∈TΣ, τ ′(s)=t

(S, s).

for each S ∈ K〈〈TΣ〉〉 and t ∈ T∆.

We will need the following result which was proved in Lemma 3.4 of [12].

Proposition 4. Let K be commutative. If S ∈ REG(Σ,K) and τ : Σ → ∆ is a
relabeling, then τ̂(S) ∈ REG(∆,K).

Now let K ′ be another semiring and h : K → K ′ a semiring homomorphism.
Then h extends to the mapping h : K〈〈TΣ〉〉 → K ′〈〈TΣ〉〉 by defining h(S) = h ◦ S

for every S ∈ K〈〈TΣ〉〉. We will need the following result, cf. Lemma 3 of [7] and
Theorem 3.9 of [18].

Proposition 5. (a) For every S ∈ REG(Σ,K) and semiring homomorphism h :
K → K ′, we have h(S) ∈ REG(Σ,K ′), i.e., h(REG(Σ,K)) ⊆ REG(Σ,K ′). (b) If,
in addition, h is surjective, then h(REG(Σ,K)) = REG(Σ,K ′).

3 Weighted tree-walking automata

In this section we define weighted tree-walking automata. For the definition of the
classical (unweighted) case, see [1] and [13].

Informally, a weighted tree-walking automaton A over a semiring K works as
follows on input tree s. It is equipped with a pointer that walks on the edges of
s, obeying its state behaviour. In a given moment of the computation, the current
node is the node of s pointed by the pointer. Each computation step is determined
by the state of the given moment, the label, and the child number of the current
node. Besides, each computation step has a weight over K. An accepting run of
A on s is a walk starting at the root of s in the initial state and finishing at an
arbitrary node of s in the (only) accepting state. The weight of an accepting run
is the product of the weights of the corresponding computation steps. Finally, the
weight of s, computed by A, is the sum of the weights of the accepting runs of A

on s. Now we give the exact definition.



Weighted Tree-Walking Automata 281

Syntax

For each σ ∈ Σ, the set of instructions determined by σ is the set

Iσ,j =

{

{stay , up, downi | 1 ≤ i ≤ rank(σ)} if j > 0,

{stay , downi | 1 ≤ i ≤ rank(σ)} if j = 0.

Let K be a semiring. A weighted tree-walking automaton (shortly: wtwa) over K

is a system A = (Q,Σ, q0, qa , P ), where

• Q is a finite set, the set of states,

• Σ is the input ranked alphabet,

• q0, qa ∈ Q are the initial and accepting state, respectively, such that q0 6= qa ,
and

• P is a finite set of rules of the form 〈q, σ, j〉
a
→ 〈q′, ϕ〉, where q ∈ Q − {qa},

σ ∈ Σ, j ∈ {0, . . . ,maxrank(Σ)}, a ∈ K such that a 6= 0, q′ ∈ Q − {q0} and
ϕ ∈ Iσ,j .

A rule π = 〈q, σ, j〉
a
→ 〈q′, ϕ〉 is called both a q-rule and a σ-rule. The left-state,

right-state, and the weight of π are defined by lstate(π) = q, rstate(π) = q′, and
wt(π) = a, respectively. Moreover, we let test(π) = (σ, j). Rules with left-state q0

(right-state qa) are called initial rules (accepting rules).

Computation relation

Let s ∈ TΣ be an input tree. For a node u ∈ pos(s), we define tests(u) = (σ, j),
where σ = s(u) and j = childno(u). If s is clear from the context, then we will
write test(u) for tests(u). Now assume that test(u) = (σ, j) and let ϕ ∈ Iσ,j be an
instruction. Then we define the effect of ϕ on u by

ϕ(u) =







u if ϕ = stay ,
parent(u) if ϕ = up,
ui if ϕ = downi.

A configuration (of A over s) is a tuple 〈q, u〉, where q ∈ Q and u ∈ pos(s). We
denote the set of configurations of A over s by CA,s and write just Cs if A is clear
from the context. In particular, 〈q0, ε〉 is the initial configuration and 〈qa , u〉 is an
accepting configuration for every u ∈ pos(s).

Let π ∈ P be a rule. The π-transition relation (of A with respect to s) is
the binary relation ⊢A,s,π over Cs defined as follows. For arbitrary configurations
〈q, u〉, 〈q′, u′〉 ∈ Cs we have 〈q, u〉 ⊢A,s,π 〈q′, u′〉 if and only if

• π has the form 〈q, σ, j〉
a
→ 〈q′, ϕ〉,

• test(u) = (σ, j), and u′ = ϕ(u).

If A is clear from the context, then we write ⊢s,π for ⊢A,s,π. Finally, we define the
transition relation ⊢s (of A with respect to s) as ⊢s=

⋃

π∈P

⊢s,π.



282 Zoltán Fülöp and Loránd Muzamel

Looping property

We define A to be looping if there is an input tree s ∈ TΣ and a configuration
〈q, u〉 ∈ Cs such that 〈q0, ε〉 ⊢

∗

s 〈q, u〉 ⊢+
s 〈q, u〉. Otherwise, A is non-looping. We

call 〈q, u〉 a looping configuration. The looping problem of wtwa is decidable. In
fact, the decidability of the more general circularity problem is proved in a more
general setting for pebble macro tree transducers, cf. Section 4. of [17].

Accepting runs

Let s ∈ TΣ be an input tree. An accepting run (of A on s) is a string

r = 〈q0, u0〉π0〈q1, u1〉π1 . . . πk〈qk+1, uk+1〉

over Cs∪P , where k ≥ 0, 〈q0, u0〉, . . . , 〈qk+1, uk+1〉 ∈ Cs with u0 = ε and qk+1 = qa ,
π0, . . . , πk ∈ P , and 〈qi, ui〉 ⊢s,πi

〈qi+1, ui+1〉 for each 0 ≤ i ≤ k. The weight of r

is wt(r) = wt(π0) · . . . · wt(πk). We denote the set of accepting runs of A on s by
Accruns.

Tree series recognized by non-looping wtwa

Let A be a non-looping wtwa. The tree series SA ∈ K〈〈TΣ〉〉 recognized by A is
defined as

(SA, s) =
∑

r∈Accruns

wt(r).

for each s ∈ TΣ. Note that we need non-looping property to guarantee that the set
Accruns is finite and hereby the above sum has finitely many members. We denote
by TWA(Σ,K) the class of tree series that are recognizable by non-looping wtwa
over Σ and K.

Example

Next we give an example of wtwa which recognizes the tree series widthαβ defined
in Example 2.

Example 6. Let A = ({q0, qa , q1, q2, q
(l)
up , q

(r)
up },Σ, q0, qa , P ) be a wtwa over Arct,

where Σ is the particular alphabet in Example 2 and P is the set of the following
rules.
Initial rules:

π1 : 〈q0, σ, 0〉
0
→ 〈q1, down1〉 π2 : 〈q0, σ, 0〉

0
→ 〈q1, down2〉

π3 : 〈q0, γ, 0〉
0
→ 〈q1, down1〉



Weighted Tree-Walking Automata 283

Intermediate rules:

π4 : 〈q1, σ, 1〉
0
→ 〈q1, down1〉 π15 : 〈q

(l)
up , σ, 1〉

1
→ 〈q

(l)
up , up〉

π5 : 〈q1, σ, 1〉
0
→ 〈q1, down2〉 π16 : 〈q

(l)
up , σ, 2〉

1
→ 〈q

(r)
up , up〉

π6 : 〈q1, σ, 2〉
0
→ 〈q1, down1〉 π17 : 〈q

(r)
up , σ, 1〉

1
→ 〈q

(l)
up , up〉

π7 : 〈q1, σ, 2〉
0
→ 〈q1, down2〉 π18 : 〈q

(r)
up , σ, 2〉

1
→ 〈q

(r)
up , up〉

π8 : 〈q1, γ, 1〉
0
→ 〈q1, down1〉 π19 : 〈q

(l)
up , γ, 1〉

1
→ 〈q

(l)
up , up〉

π9 : 〈q1, γ, 2〉
0
→ 〈q1, down1〉 π20 : 〈q

(l)
up , γ, 2〉

1
→ 〈q

(r)
up , up〉

π10 : 〈q1, α, 1〉
1
→ 〈q

(l)
up , up〉 π21 : 〈q2, σ, 1〉

1
→ 〈q2, down1〉

π11 : 〈q1, α, 2〉
1
→ 〈q

(r)
up , up〉 π22 : 〈q2, σ, 1〉

1
→ 〈q2, down2〉

π12 : 〈q
(l)
up , σ, 0〉

1
→ 〈q2, down2〉 π23 : 〈q2, σ, 2〉

1
→ 〈q2, down1〉

π13 : 〈q
(l)
up , σ, 1〉

1
→ 〈q2, down2〉 π24 : 〈q2, σ, 2〉

1
→ 〈q2, down2〉

π14 : 〈q
(l)
up , σ, 2〉

1
→ 〈q2, down2〉 π25 : 〈q2, γ, 1〉

1
→ 〈q2, down1〉

π26 : 〈q2, γ, 2〉
1
→ 〈q2, down1〉

Accepting rules:

π27 : 〈q2, β, 1〉
0
→ 〈qa , stay〉 π28 : 〈q2, β, 2〉

0
→ 〈qa , stay〉

Note that A is non-looping. Moreover, A works on an input tree s as follows.

1) In the first phase, A moves the pointer nondeterministically to an α-node of
s with its rules π1-π9. The weights of these steps are 0.

2) Then A moves its pointer upwards (using π10 and π11), such that states q
(l)
up

and q
(r)
up store whether the previous step was made from the left child or the right

child, respectively. If A is in state q
(l)
up and the pointed node is labeled by σ, then

A nondeterministically decides whether to continue moving up (using π15 −π20) or
to move down to the second child in state q2 (using π12 − π14). Each of these steps

has weight 1. (We do not need γ-rules with left-state q
(r)
up because going up to a

node labelled by γ leads to state q
(l)
up .)

3) In the third phase, A searches nondeterministically for a β-node of s by
descending with its rules π21-π26. Each of these steps has weight 1. If it finds a
β-node, then the run terminates in the accepting state qa with the 0-weighted rules
π27 or π28.

Now it is easy to see that an accepting run r of A on s contains an α-β path
in s and that the weight of r is the length of that α-β path. Hence we conclude
that, for each input tree s ∈ TΣ, the wtwa A computes (widthαβ , s) and thus it
recognizes the tree series widthαβ .

An accepting run of A on the input tree s of Example 2 is

r = 〈q0, ε〉π1〈q1, 1〉π4〈q1, 11〉π4〈q1, 111〉π5〈q1, 1112〉π11〈q
(r)
up , 111〉π17

〈q(l)
up , 11〉π15〈q

(l)
up , 1〉π13〈q2, 12〉π26〈q2, 121〉π21〈q2, 1211〉π27〈qa , 1211〉. (3.1)

In fact, r contains the longest α-β-path in s, which can be seen in Fig. 1.



284 Zoltán Fülöp and Loránd Muzamel

Tree-walking automata as the Boolean case of wtwa

Later in the paper we will consider wtwa over B. For such a wtwa A, the weight
of each rule and hence of each accepting run is 1. Moreover, since 1+1=1 in B,
we do not need the restriction that A is non-looping to define the semantics of A.
Hence, we define SA for an (arbitrary) wtwa A over B by the formula used for a
non-loping one. It is easily seen that (SA, s) = 1, i.e., A accepts s, if and only if
there is an accepting run of A on the input tree s (even in the case that A has
infinitely many accepting runs on s, i.e., that Accruns is infinite). In this way A

can also be considered as a tree recognizer and we obtain the tree-walking automata
(twa) of [1], cf. also [13]. In fact, we call a wtwa A over B a twa, we drop the
weight 1 from the specification of its rules, and we denote by L(A) the set of trees
accepted by A and call it the tree language recognized by A.

Twa with one pebble

We will also need a more general tree recognizer, the so called one pebble tree-
walking automata (1-ptwa), see e.g. [13].

A 1-ptwa A works as follows on input tree s. Similarly to a twa, A is equipped
with a pointer that walks on the edges of s. Moreover, A has one pebble that is
able to mark a node of s, i.e., that can be dropped at and lifted from the current
node. After marking a node by the pebble, A can walk away from the marked node.
When accessing a node, A is able to test whether the current node is marked by
the pebble or not and the further computation of A may depend on the result of
this test. This gives an extra computation power for A. Like a twa, A will accept
s if and only if it has at least one accepting run on s, and the set of trees accepted
by A is denoted by L(A). Again, we call L(A) the tree series recognized by A. For
a formal definition of a 1-ptwa, the reader is advised to consult [13] or [14].

The tree languages recognized by 1-ptwa (and hence by twa) are effectively
regular, which is proved in [13] for ptwa and also in [24] for the more general pebble
alternating tree-walking automata. This yields the following proposition.

Proposition 7. The tree languages recognized by 1-ptwa (and hence by twa) are
effectively regular.

4 The recognizing power of non-looping wtwa

We can prove our main results for non-looping wtwa over commutative semirings.

Therefore in the rest of this paper K denotes a commutative semiring
and A = (Q,Σ, q0, qa, P ) denotes a non-looping wtwa over K.

We will prove that the tree series recognized by A is effectively regular. For this,
we will consider annotated input trees. These are trees the σ-nodes of which are
annotated by sets of σ-rules in P , where σ ∈ Σ. The annotation of a node by a set
of rules intuitively means that those rules may be applied at that node. Since A is



Weighted Tree-Walking Automata 285

non-looping, it will be sufficient to consider consistent annotations. More exactly,
let P (σ) be the set of all σ-rules in P and define a pair 〈σ, J〉 ∈ Σ × P (σ) with
J = {π1, . . . , πm} to be consistent if the following conditions hold:

a) test(π1) = . . . = test(πm) and

b) the states lstate(π1), . . . , lstate(πm) are pairwise different.

Then, we introduce the ranked alphabet Σ(P ) ⊆ Σ × P (σ) such that

Σ(P )(k) = {〈σ, J〉 ∈ Σ(k) × P (σ) | 〈σ, J〉 is consistent}

for every k ≥ 0. Finally we define rules(〈σ, J〉) = J .
It is useful to introduce the tree series weight ∈ K〈〈TΣ(P )〉〉 which associates an

annotated tree t ∈ TΣ(P ) with the product of the weights of the rules appearing in
t. More exactly, for every t ∈ TΣ(P ), we have

(weight , t) =
∏

u ∈ pos(t)
π ∈ rules(t(u))

wt(π),

where the empty product yields weight 1. We will need the following result.

Lemma 8. The tree series weight is regular.

Proof. Let M = ({q},Σ(P ), R, ν) be a wta such that ν(q) = 1 and R the smallest set

containing all rules 〈σ, J〉(q, . . . , q)
a
→ q with 〈σ, J〉 ∈ Σ(P ) such that a =

∏

π∈J

wt(π).

It is easy to see that SM = weight .

In particular, we will be interested in those annotated trees which encode an
accepting run. We call such trees run trees and define them in the following way.

Let s ∈ TΣ be an input tree and

r = 〈q0, u0〉π0〈q1, u1〉π1 . . . 〈qk, uk〉πk〈qa , uk+1〉

an accepting run on s. The run tree of s and r is the tree rtree(s, r) ∈ TΣ×2P

defined by the following conditions:

• pos(rtree(s, r)) = pos(s) and

• for each u ∈ pos(rtree(s, r)) we have

rtree(s, r)(u) = 〈s(u), {πi ∈ P | 0 ≤ i ≤ k, ui = u}〉.

We say that rtree(s, r) encodes r. Moreover, the set of run trees of s is Rtrees =
{rtree(s, r) | r ∈ Accruns}. In Fig. 2 we visualize the run tree rtree(s, r), where s

is the input tree of Example 2 and r is the run of A on s appearing in Example 6.
We can prove easily that run trees are in fact trees over Σ(P ).



286 Zoltán Fülöp and Loránd Muzamel

〈σ, {π1}〉

〈σ, {π4, π13}〉 〈β, ∅〉

〈σ, {π4, π15}〉 〈γ, {π26}〉

〈σ, {π5, π17}〉 〈β, ∅〉 〈σ, {π21}〉

〈β, ∅〉 〈α, {π11}〉 〈β, {π27}〉 〈α, ∅〉

Figure 2: A run tree.

Lemma 9. For every s ∈ TΣ, we have Rtrees ⊆ TΣ(P ).

Proof. Let t ∈ Rtrees be a run tree and u ∈ pos(t) (= pos(s)) a node. Assume
that t(u) = 〈σ, {π1, . . . , πm}〉, where π1, . . . , πm ∈ P . We show that both a) and
b) of the definition of consistency hold. Since t ∈ Rtrees, there is an accepting run
r ∈ Accruns such that t = rtree(s, r).

Condition a) obviously holds because a rule π can be applied at a node u of s

only if test(π) = test(u).
We prove b) by contradiction. Assume that there are q ∈ Q, µ, and ν such

that 1 ≤ µ 6= ν ≤ m and q = lstate(πµ) = lstate(πν). Then it directly follows that
configuration 〈q, u〉 occurs twice in the accepting run r, i.e., 〈q0, ε〉 ⊢

∗

A,s 〈q, u〉 ⊢+
A,s

〈q, u〉. This contradicts the fact that A is non-looping.

We will also need the following straightforward result.

Lemma 10. Let s ∈ TΣ be an input tree. For each accepting run r ∈ Accruns we
have wt(r) = (weight , rtree(s, r)).

Next we show that Accruns and Rtrees have the same number of elements. For
this, we define the mapping θs : Accruns → Rtrees such that θs(r) = rtree(s, r) for
each r ∈ Accruns and show that it is a bijection.

Lemma 11. The mapping θs is a bijection.

Proof. It should be clear that θs is surjective. To show that it is injective, we
consider r1, r2 ∈ Accruns with rtree(s, r1) = rtree(s, r2) and show that r1 = r2.
Let

r1 = 〈q0, u0〉π0〈q1, u1〉π1 . . . 〈qk, uk〉πk〈qa , uk+1〉

and
r2 = 〈q0, u

′

0〉π
′

0〈q
′

1, u
′

1〉π
′

1 . . . 〈q′l, u
′

l〉π
′

l〈qa , u′

l+1〉,

where u0 = u′

0 = ε.



Weighted Tree-Walking Automata 287

First we prove by contradiction that πi = π′

i for every 0 ≤ i ≤ min{k, l}. Assume
that there is an i such that πi 6= π′

i and πj = π′

j for every 0 ≤ j < i. The latter
implies qj = q′j and uj = u′

j for every 0 ≤ j ≤ i. Since πi ∈ rules(rtree(s, r2)(ui))
and, in particular, rtree(s, r1)(ui) = rtree(s, r2)(ui), there is an i < m ≤ l such
that u′

m = ui and π′

m = πi. If i = 0, this is a contradiction because the left-state
of π′

m cannot be q0. If 0 < i, then we get

〈qi, ui〉 = 〈q′i, u
′

i〉 ⊢
+
s 〈q′m, u′

m〉 = 〈qi, ui〉,

which is a contradiction again because A is non-looping. Hence the statement
follows.

This statement and the fact that there are no rules with left-state qa imply that
k = l. From the latter uk+1 = u′

k+1 follows, hence r1 = r2.

Thus we obtain the following, which we need later.

Corollary 12. For each input tree s ∈ TΣ we have (SA, s) =
∑

t∈Rtrees

(weight , t).

Proof.

(SA, s) =
∑

r∈Accruns

wt(r)

=
∑

r∈Accruns

(weight , rtree(s, r)) (by Lemma 10)

=
∑

t∈Rtrees

(weight , t) (by Lemma 11).

The set of run trees of A is RtreeA =
⋃

s∈TΣ
Rtrees.

We will show that RtreeA is a regular tree language. In fact, we will construct
a twa A′ and a 1-ptwa A′′ and then show that RtreeA is the Boolean combination
L(A′) ∩ L(A′′) of the tree languages recognized by them.

The twa A′ works on trees over Σ(P ) and accepts all the run trees of A, i.e.,
RtreeA ⊆ L(A′). Let A′ = (Q,Σ(P ), q0, qa, P ′), where, for every 〈σ, J〉 ∈ Σ(P ), the
set P ′ contains the rule

〈q, 〈σ, J〉, j〉 → 〈q′, ϕ〉

if and only if the rule 〈q, σ, j〉 → 〈q′, ϕ〉 is in J . Note that A′ is deterministic in the
sense that, due to condition b) of the definition of consistency, it has no different
rules with the same left-hand side.

Let us consider an input tree t ∈ TΣ(P ) to A′ and let s ∈ TΣ be the tree obtained
from t by dropping the rule sets from its labels. It should be clear that A′ simulates
on t the steps of A on s which apply the rules in the nodes of t in a state-to-state
and node-to-node manner. Hence A′ accepts t if and only if A accepts s applying
the rules in the nodes of t. In particular, for every s ∈ TΣ, the twa A′ accepts each
t ∈ Rtrees because such a t encodes an accepting run of s. (Here we use Lemma 9.)



288 Zoltán Fülöp and Loránd Muzamel

〈σ, {π1}〉

〈σ, {π4, π13}〉 〈β, { π28 }〉

〈σ, {π4, π15}〉 〈γ, {π26, π9 }〉

〈σ, {π5, π17}〉 〈β, ∅〉 〈σ, {π21, π5 , π17 }〉

〈β, ∅〉 〈α, {π11}〉 〈β, {π27}〉 〈α, ∅〉

Figure 3: A tree accepted by A′. The circled rules are superfluous.

Hence RtreeA ⊆ L(A′). Note that A′ may also accept trees which do not encode
accepting runs because they contain some “superfluous rules” in their labels.

In Fig. 3 we show a tree which is accepted by A′ but is not a run tree of A,
where A is now the wtwa of Example 6. At the same time, the tree contains the
accepting run shown in Fig. 2.

In order to clarify the relation between RtreeA and L(A′), we define the concept
of the superfluous rule in an exact way.

Let t ∈ L(A′) be a tree and u ∈ pos(t). A rule π ∈ rules(t(u)) is superfluous at
node u (in t) if the tree t′ is also in L(A′), where t′ is obtained from t by dropping π

from the set rules(t(u)). If this is the case, then we say that t contains a superfluous
rule.

Lemma 13. RtreeA = {t ∈ L(A′) | t contains no superfluous rules}.

Proof. If t ∈ RtreeA, then t ∈ L(A′). We show that t contains no superfluous rules
by contradiction. For this, let s ∈ TΣ and r ∈ Rtrees be such that t = rtree(s, r).
Consider an accepting run

r′ = 〈q0, u0〉Π0〈q1, u1〉Π1 . . . 〈qk, uk〉Πk〈qa , uk+1〉

of A′ on t and let πi be the rule of A corresponding to Πi, 1 ≤ i ≤ n, see the
definition of A′ above. It should be clear that the sequence obtained from r′ by
replacing Πi with πi for every 1 ≤ i ≤ n is the accepting run r of A on s. Assume
that t contains a superfluous rule. Since r contains all rules in the nodes of t there
is an index i such that πi is superfluous at ui. Assume that i is minimal. Since π0

is the only initial rule in r, we have i > 0. Let t′ be the tree obtained from t by
dropping πi (whose left-state is qi) from rules(t(ui)). Note that, by definition, A′

accepts t′ with an accepting run r. Since i is minimal and the run r′ simulates r,
the first i−1 rules applied in r are Π1, . . . ,Πi−1. Then, the left-state of the ith rule



Weighted Tree-Walking Automata 289

of A′ in r is also qi. This means, by the definition of A′, that there is a rule of A

in rules(t′(ui)) with left state qi, i.e, there are more than one rules in rules(t(ui))
with left-state qi. This contradicts the definition of Σ(P ), hence t does not contain
any superfluous rule.

To prove the other inclusion, assume that t ∈ L(A′) contains no superfluous
rules. Let s ∈ TΣ be the tree obtained from t by dropping the rule sets from its
labels. By the above discussion concerning A′, we get that A accepts the tree s

applying the rules in the nodes of t. Let r be the so obtained accepting run on
s. Since all rules in the nodes of t are applied, t encodes r, hence t ∈ Rtrees ⊆
RtreeA.

Next we informally introduce a 1-pebble twa A′′ that accepts those trees in
L(A′) which contain superfluous rules. Intuitively, the 1-ptwa A′′ works as follows
on an input tree t ∈ TΣ(P ).

Phase 1: A′′ nondeterministically chooses a node u of t and places the pebble
at u. Assume that t(u) = 〈σ, J〉. If J = ∅ then, there is no next step and the
computation terminates without acceptance.

Phase 2: If J 6= ∅, then A′′ nondeterministically picks a rule π = 〈q, σ, j〉 →
〈q′, ϕ〉 ∈ J . Let Π = 〈q, 〈σ, J〉, j〉 → 〈q′, ϕ〉 be the rule of A′ corresponding to π.
Our A′′ stores Π in its state.

Phase 3: In the rest, A′′ computes deterministically. First A′′ moves back to
the root node and then it simulates A′ on t. However, during the simulation of A′,
our A′′ is not allowed to use the rule Π (stored in its memory) at node u (being
marked by the pebble).

It is clear that A′′ has an accepting computation on t if and only if A′ has an
accepting computation on t which does not apply at least one rule in a label of t.
Hence, we obtain the following result.

Lemma 14. L(A′′) = {t ∈ TΣ(P ) | t ∈ L(A′) and t contains a superfluous rule}.

Now we can prove the following statement easily.

Corollary 15. The tree language RtreeA is effectively regular.

Proof. It follows from Lemmata 13 and 14 that RtreeA = L(A′) ∩ L(A′′). Finally,
by Propositions 1 and 7, we obtain that RtreeA is effectively regular.

Now we are ready to prove our main result. For this we will need the relabeling
τ : Σ(P ) → Σ which drops the rule component from each symbol, i.e., which
is defined by τ(〈σ, J〉) = σ for every 〈σ, J〉 ∈ Σ(P ). Note, for later use, that
Rtrees = {t ∈ RtreeA | τ ′(t) = s}.



290 Zoltán Fülöp and Loránd Muzamel

Theorem 16. The tree series SA is effectively regular.

Proof. By Corollary 15 and Proposition 3(a), the characteristic tree series XRtreeA
:

TΣ(P ) → K is effectively regular. Moreover, since the tree series weight is effectively
regular (see Lemma 8), we obtain by Proposition 3(b) that the Hadamard product
S = XRtreeA

⊙ weight is an effectively regular tree series.
Let us note that for each tree t ∈ TΣ(P ) we have

(S, t) =

{

(weight , t) if t ∈ RtreeA,

0 otherwise.

Moreover, τ̂(S) is a tree series in K〈〈TΣ〉〉, were τ : Σ(P ) → Σ is the relabeling
introduced above, and it follows from Proposition 4 and the fact that S is regular
that τ̂(S) is effectively regular. Finally, for every tree s ∈ TΣ,

(τ̂(S), s) =
∑

t∈TΣ(P ), τ ′(t)=s

(S, t) =
∑

t∈TΣ(P ), τ ′(t)=s

(XRtreeA
⊙ weight , t)

=
∑

t∈RtreeA, τ ′(t)=s

(weight , t) =
∑

t∈Rtrees

(weight , t)

= (SA, s),

where the last equality is justified by Corollary 12. Hence SA = τ̂(S), which proves
that SA is also effectively regular.

Since A is an arbitrary non-looping wtwa over K, we also proved the following
result.

Theorem 17. TWA(Σ,K) ⊆ REG(Σ,K).

In the remainder of the paper we show that the inclusion is strict provided K

is proper. For this, let K ′ be another commutative semiring and h : K → K ′ a
semiring homomorphism. Then we can prove easily the analogy of Proposition 5
for wtwa, i.e., that h preserves recognizability by wtwa.

Proposition 18. (a) For every S ∈ TWA(Σ,K) and semiring homomorphism
h : K → K ′, we have h(S) ∈ TWA(Σ,K ′), i.e., h(TWA(Σ,K)) ⊆ TWA(Σ,K ′).
(b) If, in addition, h is surjective, then h(TWA(Σ,K)) = TWA(Σ,K ′).

Proof. Let A = (Q,Σ, q0, qa , P ) be a wtwa over K. Construct the wtwa A =

(Q,Σ, q0, qa , P ′) such that P ′ = {〈q, σ, j〉
h(a)
→ 〈q′, ϕ〉 | 〈q, σ, j〉

a
→ 〈q′, ϕ〉 ∈ P}. It is

easy to see that SA′ = h(SA). Moreover, if h is surjective, then every wtwa over
K ′ appears as the “image” of a wtwa over K.

Now we recall an important result from [4], namely, that there is a regular tree
language which cannot be recognized by any twa. It is well known that regular tree
languages and regular tree series over B can be identified, cf. e.g. [18], and it is
easy to see that the same holds for tree languages recognizable by twa as well as



Weighted Tree-Walking Automata 291

for tree series recognizable by wtwa over B. Thus, the above mentioned result of [4]
can be written in the form REG(Σ, B) − TWA(Σ, B) 6= ∅. Then we can prove the
following result and thus generalize the main result of [4] for tree series recognizable
by wtwa over proper commutative semirings.

Theorem 19. If K is proper, then REG(Σ,K) − TWA(Σ,K) 6= ∅.

Proof. Assume, on the contrary, that REG(Σ,K) ⊆ TWA(Σ,K). Since K is
proper, by Theorem 2.1 of [27], there is a surjective homomorphism h : K → B.
Then obviously we have h(REG(Σ,K)) ⊆ h(TWA(Σ,K)). On the other hand, by
Propositions 5 and 18, we have h(REG(Σ,K)) = REG(Σ, B) and h(TWA(Σ,K)) =
TWA(Σ, B), which is a contradiction.

5 Conclusion and an open problem

We generalized tree-walking automata of [1] by equipping each transition rule with
a weight taken from a semiring K. For two reasons, we considered the non-looping
model, i.e., which cannot fall into infinite computation from the initial configura-
tion. The first reason is that the weight of an input tree s is defined as the sum
of the weights of the accepting runs on s. The second one is that the proofs of
Corollaries 12 and 15, and hence of Theorem 16 work only for non-looping wtwa.

If a wtwa is looping, then there may be infinitely many accepting runs on s,
hence computing the weight of s leads to an infinite sum in the semiring. This
problem can be handled by considering underlying semirings which are complete,
i.e., in which the sum of infinitely many elements exists [21, 22]. Therefore, it is an
open problem whether our main result can be generalized to arbitrary (including
looping) wtwa over complete semirings.

Acknowledgment

We are grateful to the anonymous referees for their effort and valuable comments.

References

[1] A. V. Aho and J. D. Ullman. Translations on a context–free grammar. Inform.
Control, 19:439–475, 1971.

[2] A. Alexandrakis and S. Bozapalidis. Weighted grammars and Kleene’s theo-
rem. Information Processing Letters, 24(1):1–4, January 1987.

[3] J. Berstel and C. Reutenauer. Recognizable power series on trees. Theoret.
Comput. Sci., 18:115–148, 1982.

[4] M. Bojańczyk and T. Colcombet. Tree-walking automata do not recognize all
regular languages. SIAM J. Comput., 38(3):658–701, 2008.



292 Zoltán Fülöp and Loránd Muzamel

[5] B. Borchardt. The Myhill-Nerode Theorem for Recognizable Tree Series. In
7th International Conference on Developments in Language Theory, DLT’03,
Szeged, Hungary, July 7-11, 2003, Proceedings, volume 2710 of LNCS, pages
146–158. Springer-Verlag, July 2003.

[6] B. Borchardt. A Pumping Lemma and Decidability Problems for Recognizable
Tree Series. Acta Cybernet., 16(4):509–544, 2004.

[7] B. Borchardt, A. Maletti, B. Šešelja, A. Tepavčevic, and H. Vogler. Cut sets
as recognizable tree languages. Fuzzy Sets and Systems, 157:1560–1571, 2006.

[8] B. Borchardt and H. Vogler. Determinization of Finite State Weighted Tree
Automata. Journal of Automata, Languages and Combinatorics, 8(3):417–463,
2003.

[9] H. Comon, M. Dauchet, R. Gilleron, F. Jacquema, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997.

[10] J. Doner. Tree acceptors and some of their applications. J. Comput. System
Sci., 4:406–451, 1970.

[11] M. Droste, C. Pech, and H. Vogler. A Kleene theorem for weighted tree au-
tomata. Theory of Computing Systems, 38:1–38, 2005.

[12] M. Droste and H. Vogler. Weighted tree automata and weighted logics. The-
oret. Comput. Sci., 366:228–247, 2006.

[13] J. Engelfriet and H. J. Hoogeboom. Tree-walking pebble automata. In Jewels
are Forever, Contributions on Theoretical Computer Science in Honor of Arto
Salomaa, pages 72–83, London, UK, 1999. Springer-Verlag.

[14] J. Engelfriet and H. J. Hoogeboom. Automata with nested pebbles capture
first-order logic with transitive closure. Logical Methods in Computer Science
3(2007), Issue 2, Paper 3.

[15] J. Engelfriet, H. J. Hoogeboom, and B. Samwel. XML transformation by
tree-walking transducers with invisible pebbles. In Proceedings of the twenty-
sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems (PODS ’07), pages 63–72, New York, NY, USA, 2007. ACM Press.

[16] Z. Ésik and W. Kuich. Formal Tree Series. Journal of Automata, Languages
and Combinatorics, 8:219–285, 2003.

[17] Z. Fülöp and L. Muzamel. Circularity and Decomposition Results for Pebble
Macro Tree Transducers. Journal of Automata, Languages and Combinatorics,
13(1):3–44, 2008.



Weighted Tree-Walking Automata 293

[18] Z. Fülöp and H. Vogler. Weighted tree automata and tree transducers. In
M. Droste, W. Kuich, and H. Vogler, editors, Handbook of Weighted Automata,
Chapter 9. Springer-Verlag, 2009.

[19] F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiadó, Budapest, 1984.

[20] F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 3, pages 1–68. Springer-Verlag,
1997.

[21] U. Hebisch and H. J. Weinert. Semirings - Algebraic Theory and Applications
in Computer Science. World Scientific, Singapore, 1998.

[22] W. Kuich. Formal power series over trees. In S. Bozapalidis, editor, 3rd
International Conference on Developments in Language Th eory, DLT 1997,
Thessaloniki, Greece, Proceedings, pages 61–101. Aristotle University of Thes-
saloniki, 1998.

[23] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. J. of
Comput. Syst. Sci., 66:66–97, 2003.

[24] L. Muzamel. Pebble Alternating Tree-Walking Automata and Their Recog-
nizing Power. Acta Cybernetica, 18(3):427–450, 2008.

[25] F. Neven. Automata theory for XML researchers. SIGMOD Rec., 31(3):39–46,
2002.

[26] T. Schwentick. Automata for XML – A survey. J. Comput. Syst. Sci.,
73(3):289–315, 2007.

[27] H. Wang. On characters of semirings. Houston J. Math., 23:391–405, 1997.

Received 11th July 2008


