175 research outputs found

    Robust sampled-data control of structures subject to parameter uncertainties and actuator saturation

    Get PDF
    This paper presents a robust sampled-data controller design approach for vibration attenuation of civil structures considering parameter uncertainties and actuator saturation. The parameter uncertainties belong to polytopic form and are assumed to be the variations of the structural stiffness and damping. Regarding the uncertain sampling problem encountered in real world applications, the sampling period designed for the controller is allowed to be variable within a given bound. In order to obtain reduced peak response quantities, the energy-to-peak performance used to describe the peak values of the control output under all possible energy-bounded disturbances is optimised. The robust sampled-data state feedback controller is obtained in terms of the solvability of certain linear matrix inequalities (LMIs). The applicability of the proposed approach is demonstrated by a numerical example on vibration control of a building structure subject to seismic excitation. It is validated by the simulation results confirming that the designed controllers can effectively attenuate the structural vibration and keep the system stability while there are parameter uncertainties and actuator saturation constraints. (C) 2011 Elsevier Ltd. All rights reserved

    Nonlinear constrained and saturated control of power electronics and electromechanical systems

    Get PDF
    Power electronic converters are extensively adopted for the solution of timely issues, such as power quality improvement in industrial plants, energy management in hybrid electrical systems, and control of electrical generators for renewables. Beside nonlinearity, this systems are typically characterized by hard constraints on the control inputs, and sometimes the state variables. In this respect, control laws able to handle input saturation are crucial to formally characterize the systems stability and performance properties. From a practical viewpoint, a proper saturation management allows to extend the systems transient and steady-state operating ranges, improving their reliability and availability. The main topic of this thesis concern saturated control methodologies, based on modern approaches, applied to power electronics and electromechanical systems. The pursued objective is to provide formal results under any saturation scenario, overcoming the drawbacks of the classic solution commonly applied to cope with saturation of power converters, and enhancing performance. For this purpose two main approaches are exploited and extended to deal with power electronic applications: modern anti-windup strategies, providing formal results and systematic design rules for the anti-windup compensator, devoted to handle control saturation, and “one step” saturated feedback design techniques, relying on a suitable characterization of the saturation nonlinearity and less conservative extensions of standard absolute stability theory results. The first part of the thesis is devoted to present and develop a novel general anti-windup scheme, which is then specifically applied to a class of power converters adopted for power quality enhancement in industrial plants. In the second part a polytopic differential inclusion representation of saturation nonlinearity is presented and extended to deal with a class of multiple input power converters, used to manage hybrid electrical energy sources. The third part regards adaptive observers design for robust estimation of the parameters required for high performance control of power systems

    Robust H∞ filtering for discrete nonlinear stochastic systems with time-varying delay

    Get PDF
    This is the postprint version of the article. The official published version can be accessed from the link below - © 2007 Elsevier IncIn this paper, we are concerned with the robust H∞ filtering problem for a class of nonlinear discrete time-delay stochastic systems. The system under study involves parameter uncertainties, stochastic disturbances, time-varying delays and sector-like nonlinearities. The problem addressed is the design of a full-order filter such that, for all admissible uncertainties, nonlinearities and time delays, the dynamics of the filtering error is constrained to be robustly asymptotically stable in the mean square, and a prescribed H∞ disturbance rejection attenuation level is also guaranteed. By using the Lyapunov stability theory and some new techniques, sufficient conditions are first established to ensure the existence of the desired filtering parameters. These conditions are dependent on the lower and upper bounds of the time-varying delays. Then, the explicit expression of the desired filter gains is described in terms of the solution to a linear matrix inequality (LMI). Finally, a numerical example is exploited to show the usefulness of the results derived.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, the Alexander von Humboldt Foundation of Germany, the National Natural Science Foundation of China (60774073 and 10471119), the NSF of Jiangsu Province of China (BK2007075 and BK2006064), the Natural Science Foundation of Jiangsu Education Committee of China under Grant 06KJD110206, and the Scientific Innovation Fund of Yangzhou University of China under Grant 2006CXJ002

    Networked and event-triggered control systems

    Get PDF
    In this thesis, control algorithms are studied that are tailored for platforms with limited computation and communication resources. The interest in such control algorithms is motivated by the fact that nowadays control algorithms are implemented on small and inexpensive embedded microprocessors and that the sensors, actuators and controllers are connected through multipurpose communication networks. To handle the fact that computation power is no longer abundant and that communication networks do not have in finite bandwidth, the control algorithms need to be either robust for the deficiencies induced by these constraints, or they need to optimally utilise the available computation and communication resources. In this thesis, methodologies for the design and analysis of control algorithms with such properties are developed. Networked Control Systems: In the first part of the thesis, so-called networked control systems (NCSs) are studied. The control algorithms studied in this part of the thesis can be seen as conventional sampled-data controllers that need to be robust against the artefacts introduced by using a finite bandwidth communication channel. The network-induced phenomena that are considered in this thesis are time-varying transmission intervals, time-varying delays, packet dropouts and communication constraints. The latter phenomenon causes that not all sensor and actuator data can be transmitted simultaneously and, therefore, a scheduling protocol is needed to orchestrate when to transmit what data over the network. To analyse the stability of the NCSs, a discrete-time modelling framework is presented and, in particular, two cases are considered: in the first case, the transmission intervals and delays are assumed to be upper and lower bounded, and in the second case, they are described by a random process, satisfying a continuous joint probability distribution. Both cases are relevant. The former case requires a less detailed description of the network behaviour than the latter case, while the latter results in a less conservative stability analysis than the former. This allows to make a tradeoff between modelling accuracy (of network-induced effects) and conservatism in the stability analysis. In both cases, linear plants and controllers are considered and the NCS is modelled as a discrete-time switched linear parameter-varying system. To assess the stability of this system, novel polytopic overapproximations are developed, which allows the stability of the NCS to be studied using a finite number of linear matrix inequalities. It will be shown that this approach reduces conservatism significantly with respect to existing results in the literature and allows for studying larger classes of controllers, including discrete-time dynamical output-based controllers. Hence, the main contribution of this part of the thesis is the development of a new and general framework to analyse the stability of NCSs subject to four network-induced phenomena in a hardly conservative manner. Event-Triggered Control Systems: In the second part of the thesis, socalled event-triggered control (ETC) systems are studied. ETC is a control strategy in which the control task is executed after the occurrence of an external event, rather than the elapse of a certain period of time as in conventional periodic control. In this way, ETC can be designed to only provide control updates when needed and, thereby, to optimally utilise the available computation and communication resources. This part of the thesis consists of three main contributions in this appealing area of research. The first contribution is the extension of the existing results on ETC towards dynamical output-based feedback controllers, instead of state-feedback control, as is common in the majority of the literature on ETC. Furthermore, extensions towards decentralised event triggering are presented. These extensions are important for practical implementations of ETC, as in many control applications the full state is hardly ever available for feedback, and sensors and actuators are often physically distributed, which prohibits the use of centralised event-triggering conditions. To study the stability and the L1-performance of this ETC system, a modelling framework based on impulsive systems is developed. Furthermore, for the novel output-based decentralised event-triggering conditions that are proposed, it is shown how nonzero lower bounds on the minimum inter-event times can be guaranteed and how they can be computed. The second contribution is the proposition of the new class of periodic event-triggered control (PETC) algorithms, where the objective is to combine the benefits that, on the one hand, periodic control and, on the other hand, ETC offer. In PETC, the event-triggering condition is monitored periodically and at each sampling instant it is decided whether or not to transmit the data and to use computation resources for the control task. Such an event-triggering condition has several benefits, including the inherent existence of a minimum inter-event time, which can be tuned directly. Furthermore, the fact that the event-triggering condition is only verified at the periodic sampling times, instead of continuously, makes it possible to implement this strategy in standard time-sliced embedded software architectures. To analyse the stability and the L2-performance for these PETC systems, methodologies based on piecewiselinear systems models and impulsive system models will be provided, leading to an effective analysis framework for PETC. Finally, a novel approach to solving the codesign problem of both the feedback control algorithm and the event-triggering condition is presented. In particular, a novel way to solve the minimum attention and anytime attention control problems is proposed. In minimum attention control, the `attention' that a control task requires is minimised, and in anytime attention control, the performance under the `attention' given by a scheduler is maximised. In this context, `attention' is interpreted as the inverse of the time elapsed between two consecutive executions of a control task. The two control problems are solved by formulating them as linear programs, which can be solved efficiently in an online fashion. This offers a new and elegant way to solve both the minimum attention control problem and the anytime attention control problem in one unifying framework. The contributions presented in this thesis can form a basis for future research explorations that can eventually lead to a mature system theory for both NCSs and ETC systems, which are indispensable for the deployment of NCSs and ETC systems in a large variety of practical control applications

    Hybrid modeling and control of mechatronic systems using a piecewise affine dynamics approach

    Get PDF
    This thesis investigates the topic of modeling and control of PWA systems based on two experimental cases of an electrical and hydraulic nature with varying complexity that were also built, instrumented and evaluated. A full-order model has been created for both systems, including all dominant system dynamics and non-linearities. The unknown parameters and characteristics have been identi ed via an extensive parameter identi cation. In the following, the non-linear characteristics are linearized at several points, resulting in PWA models for each respective setup. Regarding the closed loop control of the generated models and corresponding experimental setups, a linear control structure comprised of integral error, feed-forward and state-feedback control has been used. Additionally, the hydraulic setup has been controlled in an autonomous hybrid position/force control mode, resulting in a switched system with each mode's dynamics being de ned by the previously derived PWA-based model in combination with the control structure and respective mode-dependent controller gains. The autonomous switch between control modes has been de ned by a switching event capable of consistently switching between modes in a deterministic manner despite the noise-a icted measurements. Several methods were used to obtain suitable controller gains, including optimization routines and pole placement. Validation of the system's fast and accurate response was obtained through simulations and experimental evaluation. The controlled system's local stability was proven for regions in state-space associated with operational points by using pole-zero analysis. The stability of the hybrid control approach was proven by using multiple Lyapunov functions for the investigated test scenarios.publishedVersio

    Controlled mechanical systems with friction

    Get PDF

    Advances in Control of Power Electronic Converters

    Get PDF
    This book proposes a list of contributions in the field of control of power electronics converters for different topologies: DC-DC, DC-AC and AC-DC. It particularly focuses on the use of different advanced control techniques with the aim of improving the performances, flexibility and efficiency in the context of several operation conditions. Sliding mode control, fuzzy logic based control, dead time compensation and optimal linear control are among the techniques developed in the special issue. Simulation and experimental results are provided by the authors to validate the proposed control strategies

    Observer-based fault detection of technical systems over networks

    Get PDF
    The introduction of networks into technical systems for facilitating remote data transmission, low complexity in wiring and easy diagnosis and maintenance, raises new challenges in fault detection (FD), such as how to handle network-induced time-varying transmission delays, packet dropouts, quantization errors and bit errors. These factors lead to increasing interest in developing new structures and design schemes for FD of technical systems over networks. In this thesis all network-induced effects are analyzed and modeled systematically at first. By observing the stochastic inheritance of networks, an FD framework of Markov jumping linear systems is presented as a basis for the later developments. Then two observer-based schemes for the purpose of FD over networks with guaranteed false alarm rate (FAR) are proposed: a remote FD system and an FD system of networked control systems (NCSs). The remote FD scheme is for detecting faults in technical systems at a remote site, where system measurements are transmitted via networks. In this scheme, the coding mechanism of communication channels is investigated from the view point of control engineering and new methods are developed for optimal residual generation and evaluation by considering network-induced data loss and corruption. A novel design scheme of FD system is also developed for NCSs, where the technical system is networked, i.e. controllers, actuators and sensors are connected with communication channels. In this scheme, network-induced transmission delays, packet dropouts, quantization errors are taken into account for the design of the optimal FD system. The linear matrix inequalities (LMIs) and convex optimization techniques are applied for assisting the design procedures. The developed schemes are tested with numerical examples and implemented in a three-tank system benchmark, and their superiority to existing solutions is demonstrated. Existing restrictions are overcome and new observer-based FD schemes over networks are introduced having the following characteristics: (1) the residual generators in both schemes are optimal in the sense of achieving the best trade-off between sensitivity to system faults and robustness against system disturbances and network-induced effects; (2) the proposed schemes can provide reliability information of rising fault alarms by analyzing the mean and variance of residual signals. Such information is very useful for practical applications in industries; (3) the design of residual generators and computation of thresholds can be efficiently solved by means of existing LMI-solvers
    corecore