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Robust Sampled-data Control of Structures Subject to

Parameter Uncertainties and Actuator Saturation

Haiping Du � Nong Zhang † Bijan Samali ‡ Fazel Naghdy §

October 26, 2011

Abstract

This paper presents a robust sampled-data controller design approach for vibration attenuation of

civil structures considering parameter uncertainties and actuator saturation. The parameter uncertainties

belong to polytopic form and are assumed to be the variations of the structural sti�ness and damping.

Regarding the uncertain sampling problem encountered in real world applications, the sampling period

designed for the controller is allowed to be variable within a given bound. In order to obtain reduced

peak response quantities, the energy-to-peak performance used to describe the peak values of the control

output under all possible energy-bounded disturbances is optimised. The robust sampled-data state

feedback controller is obtained in terms of the solvability of certain linear matrix inequalities (LMIs). The

applicability of the proposed approach is demonstrated by a numerical example on vibration control of a

building structure subject to seismic excitation. It is validated by the simulation results con�rming that

the designed controllers can e�ectively attenuate the structural vibration and keep the system stability

while there are parameter uncertainties and actuator saturation constraints.
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Keywords: Structural vibration control; Sampling rate; Parameter uncertainties; Actuator satura-

tion.

1 Introduction

With the rapid development of computer technology, digital controllers are becoming a reality in many

engineering applications, in which a digital computer is used to sample and quantify a continuous-time

measurement signal and produce a discrete-time control input signal which is further converted back into

a continuous-time control input signal using a zero-order hold. Since physical plants are continuous-time

systems in real world, the control systems that use digital controllers involve both continuous-time and

discrete-time signals in the continuous-time frame and are referred to as sampled-data systems.

Analysis and synthesis of sampled-data systems have been investigated in a number of papers (see for

example [1, 2, 3, 4, 5]). In civil engineering, the control of building structures subject to earthquakes or strong

winds has received considerable attention over the past three decades and much e�ort has been devoted to

the development of control devices and algorithms [6, 7, 8]. With recent focus on wireless monitoring and

control of structural systems [9, 10, 11, 12] based on networked control technique [13], studying sampled-

data control problem for structures is becoming signi�cant. Classical solutions to this type of feedback

control problem as well as their applications in civil engineering can be found in the literature [14, 15, 16],

where optimal discrete-time and sampled-data control algorithms taking into account external excitations

were developed for structural engineering applications. Some practical issues such as the e�ect of sampling

frequency, time delay and actuator dynamics were addressed. The methods were numerically validated on

the building examples. However, although the e�ect of sampling frequency was studied in those research

and it was shown that the control e�ciency were improved signi�cantly with higher sampling frequency, it

is noted that the controller design given in those studies is fully dependent on a given sampling rate. That

means the controller design is fully based on the assumption that the sampling is made periodic and the

controller should be re-designed once the sampling frequency is changed anyway. In practice, the sampling
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frequency can be varied in terms of the digital realisation requirement and the uncertain sampling may

happen when the sampler contains uncertainties or the mathematical model used is not ideally consistent

with the sampling equipment. Therefore, designing a sampled-data controller that is robust to the variable

sampling rate is necessary.

The parameter uncertainties are one of the most critical issues to a control system as they can a�ect both

the performance and the stability of the control system. Parameter uncertainties may come from modelling

errors, variations in material properties, and changing load environments which make the system description

for the structural models inevitably containing uncertainties of di�erent nature and level [6, 17, 18]. On

the other hand, any actuation mechanisms are subject to inherent physical limitations. The saturation

on actuator capacity takes on added importance in structural applications, and in earthquake design in

particular [19]. For structures, robust continuous-time controller design considering practical issues like

parameter uncertainties, actuator saturation, actuator failure, time delay, etc., was recently studied by, for

example, [20, 21, 22, 23, 24]. As indicated in the concluding remarks of [16], considering actuator saturation

and model uncertainties in the sampled-data controller design process should be a logical next step. This

motivates the present study.

This paper concerns with the robust sampled-data controller design for buildings with parameter un-

certainties and actuator saturation constraint. The objective is to design a state feedback controller such

that the closed-loop system is asymptotically stable with an optimal disturbance attenuation subject to

parameter uncertainties and actuator saturation. The parameter uncertainties dealt with are of a polytopic

type, the sampling rate is designed to be variable, and the energy-to-peak performance [25] is used to ob-

tain good peak response quantities. Based on the recently developed input delay approach [4, 5], su�cient

conditions for designing such a controller are derived in terms of linear matrix inequalities (LMIs) which

can be resolved e�ciently using the available software Matlab LMI Toolbox. To validate the e�ectiveness

of the approach, the designed controllers are applied to reduce the vibration of a seismic-excited building

structure. Simulation results show good vibration attenuation performance and system robust stability in

spite of parameter uncertainties, actuator saturation, and variable sampling rate.
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The rest of this paper is organised as follows. Section 2 presents the problem description for sampled-

data control of uncertain structures. Section 3 derives the conditions for designing the robust controller.

Section 4 provides an application example to validate the e�ectiveness of the approach developed. Finally,

we conclude our �ndings in Section 5.

Notation: Rn denotes the n-dimensional Euclidean space and Rn×m the set of all n ×m real matrices.

For a real symmetric matrix W, the notation of W Â 0 (W � 0) is used to denote its positive- (negative-)

de�niteness. I is used to denote the identity matrix of appropriate dimension. When a matrix is equal to 0,

in such case, 0 is used to denote the zero matrix of appropriate dimension. To simplify notation, � is used

to represent a block matrix which is readily inferred by symmetry.

2 Sampled-data Control of Uncertain Structure

Consider an n degree-of-freedom (DOF) actively controlled building structure subject to external excitations,

the governing equation is written as

Mẍ(t) + C �x(t) +Kx(t) = Ew(t) +Hu(t), (1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T , and xn(t) is the nth �oor relative displacement with respect to ground;

�x(t) and ẍ(t) are the �rst and second time derivatives of x(t), respectively; u(t) = [u1(t), u2(t), . . . , ur(t)]
T ,

ur(t) is the rth control force; H � Rn×r gives the location of the r controllers; w(t) is the external excitation;

E is a vector denoting the in�uence of external excitation; M, C, K � Rn×n are the mass, damping, and

sti�ness matrices of the structure, respectively.

De�ne the state vector as q(t) =

�
xT (t) �xT (t)

¸T
, the state space representation of the structure in

(1) can be expressed as

�q(t) = Aq(t) +Bww(t) +Bu(t), (2)

where

A =

�
��� 0 I

�M�1K �M�1C

�
��� , Bw =

�
��� 0

M�1E

�
��� , B =

�
��� 0

M�1H

�
��� .
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Consider system (2) has parameter uncertainties, and in particular, the parameter uncertainties are

induced by the variations of sti�nesses and damping coe�cients, the parameter uncertainties in matrices of

system (2) can belong to a polytopic set described by � vertices, then, the system matrix A can be expressed

as

A(�) � � ,
(
A(�)|A(�) =

�X
i=1

�iAi; �i > 0;
�X
i=1

�i = 1

)
(3)

where � is used to characterise the parameter uncertainty and is assumed to be varied in a polytope of

vertices �1, �2, ..., ��, i.e., � � � , Co{�1, �2, ..., ��}, where the symbol Co denotes the convex hull and �

denotes a given convex bounded polyhedral domain.

With further consideration on the actuator saturation, system (2) is expressed as

�q(t) = A(�)q(t) +Bww(t) +B · sat(u(t)), (4)

where the actuator saturation expression sat(u) is in the decentralised saturation form, that is, [sat(u)]i =sat(ui),

where i = 1, 2, . . . , r, and sat(ui) is the standard saturation function with the limit of ulimi for the ith actu-

ator, that is,

sat (ui) =

	

�


�
ui,

sign (ui)ulimi ,

|ui| 6 ulimi ,

|ui| > ulimi .
(5)

Using the following transform [26, 27, 28]

sat(u) = �(�)u, (6)

where �(�) = diag {�1, . . . , �i, . . . , �r} , �i , sat(ui)
ui

with �i = 1 if ui = 0, equation (4) can now be written as

�q(t) = A(�)q(t) +Bww(t) +B�(�)u(t). (7)

To obtain a high gain controller as that in [26], the command to the ith actuator is allowed to be �iulimi

for an arbitrary scalar �i > 1. Therefore, the resulting �i will be bounded by 1 and 1/�i, that is,

� � P ,
½
� :

1

�i
6 �i 6 1, i = 1, 2, . . . , r

¾
. (8)
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Accordingly, the vertex set associated with (8) is denoted as

Pvex ,
½
� : �i =

1

�i
or �i = 1, i = 1, 2, . . . , r

¾
, (9)

and �(�) can be expressed as �(�) =
2rP
i=1

�i�(�i) =
2rP
i=1

�i�i, where �i > 0 and
2rP
i=1

�i = 1.

In this paper, the external excitation signal w(t) is assumed to be bounded and with �nite energy, that

is,

kwk2 ,
sZ �

0
wT (t)w(t)dt <�, (10)

i.e., w(t) � L2 [0,�) . This is one possible speci�cation for a class of design loads that the engineering

structures are designed to resist, for example, a class of design earthquakes whose intensity and associated

total energy is speci�ed on a Richter scale [25].

To design a controller for active vibration attenuation of structures under external excitations, the control

output should be de�ned so that the performance index from the external excitation to the control output

can be realised with the speci�ed requirement. For system (7), we de�ne the control output as

z(t) = Czq(t), (11)

where Cz is a constant matrix which de�nes the interested output variables.

Now, it is assumed that the state variables of the building structure are measured at time instants

0 = t0 < t1 < · · · < tk < tk+1 < · · · , and only q(tk) are available for interval tk 6 t < tk+1. Then, for the

uncertain system (7), we are interested in designing a state feedback controller in the form of

u(t) = u(tk) = Kcq(tk), tk 6 t < tk+1, (12)

where Kc � Rr×n is the state feedback gain matrix to be designed. With the controller (12), the closed-loop

system is becoming

�q(t) = A(�)q(t) +Bww(t) +B�(�)Kcq(tk), tk 6 t < tk+1. (13)
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In order to achieve good peak response qualities, the paper aims to design a controller (12) such that

the closed-loop system (13) is asymptotically stable for all admissible parameter uncertainties in spite of

the saturation constraint, and the closed-loop system (13) guarantees, under zero initial condition, kzk� <

� kwk2 , i.e., energy-to-peak performance, where � > 0 is a prescribed constant, for all non-zero w � L2[0,�).

The block diagram for the sampled-data control of building structure is shown in Figure 1. It is assumed

in this study that the sampling of the measurement is synchronised with the holding of the control signal,

and the interval between any two sampling instants is bounded by

tk+1 � tk 6 h, �k > 0, (14)

where h > 0 is the maximum sampling interval, i.e., the maximum sampling interval is bounded. It does not

require the sampling to be periodic, and the designed controller (12) should be e�ective for any sampling

frequency higher than 1/h.

3 Robust Sampled-data Controller Design

It is noticed that the sampling instant tk can be represented as

tk = t� (t� tk) = t� �(t), (15)

where �(t) = t� tk. Then, we obtain

u(t) = u(tk) = u(t� �(t)), tk 6 t < tk+1, (16)

where u(tk) is a discrete-time control signal and the time-varying delay �(t) = t� tk 6 h is piecewise-linear

with derivative ��(t) = 1 for t 6= tk. Using (16), the closed-loop system (13) is rewritten as

�q(t) = A(�)q(t) +Bww(t) +B�(�)Kcq(t� �(t)), (17)

which is a continuous-time system with an uncertain and bounded delay �(t) in state. Note that the sampled-

data system (13) can be seen as a particular class of the state-delayed system (17). The asymptotic stability

of system (13) is guaranteed if system (17) is asymptotically stable.
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Now, choose a Lyapunov-Krasovskii functional candidate for system (17) as

V (t) = qT (t)Pq(t) +

Z 0

�h

Z t

t+�
�qT (	)Q �q(	)d	d
, (18)

where P = PT , P Â 0, Q = QT , Q Â 0. Then, the time derivative of V (t) along the solution of system (17)

gives

�V (t) = �qT (t)Pq(t) + qT (t)P �q(t) + h �qT (t)Q �q(t)�
Z t

t�h
�qT (	)Q �q(	)d	

6 �qT (t)Pq(t) + qT (t)P �q(t) + h �qT (t)Q �q(t)�
Z t

t��(t)
�qT (	)Q �q(	)d	

=
1

�(t)

Z t

t��(t)
	(t, 	)d	, (19)

where

	(t, 	) = �qT (t)Pq(t) + qT (t)P �q(t) + h �qT (t)Q �q(t)� �(t) �qT (	)Q �q(	)

= 2qT (t)P (A(�)q(t) +Bww(t) +B�(�)Kcq(t� �(t))

+(A(�)q(t) +Bww(t) +B�(�)Kcq(t� �(t))ThQ(A(�)q(t) +Bww(t) +B�(�)Kcq(t� �(t))

��(t) �qT (	)Q �q(	).

By the Newton-Leibniz formula, we have

Z t

t��(t)
�q(	)d	 = q(t)� q(t� �(t)). (20)

Then, for any appropriately dimensioned matrices

X(�) =
�X
i=1

�iXi, Y (�) =
�X
i=1

�iYi, (21)

and we have


 =
1

�(t)

Z t

t��(t)

�
qT (t) qT (t� �(t))

¸���� X(�)

Y (�)

�
��� [q(t)� q(t� �(t))� �(t) �q(	)] d	 = 0 (22)

Adding 2
 to the right hand of (19), we have

�V (t)� wT (t)w(t) 6 1

�(t)

Z t

t��(t)
�T (t, 	)��(t, 	)d	, (23)
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where �T (t, 	) =

�
qT (t) qT (t� �(t)) �qT (	) wT (t)

¸
and

� =

�
�����������

�11 �12 ��(t)X(�) PBw + hAT (�)QBw

� �22 ��(t)Y (�) hKT
c �T (�)BTQBw

� � ��(t)Q 0

� � � hBTwQBw � I

�
�����������
, (24)

where �11 = PA(�) +AT (�)P + hAT (�)QA(�) +X(�) +XT (�), �12 = PB�(�)Kc + hAT (�)QB�(�)Kc �

X(�) + Y T (�), and �22 = hKT
c �T (�)BTQB�(�)Kc � Y T (�)� Y (�).

When assuming the zero-disturbance input, i.e., w(t) � 0, if � � 0, then from (23), �V (t) < 0 is established

and the asymptotic stability of the closed-loop system (17) and (13) is guaranteed.

Assume zero initial condition, i.e., q(t) = �(t) = 0, �t � [�h, 0], then, we have V (t)|t=0 = 0. And for any

non-zero disturbance w � L2 [0,�) and t > 0, if � � 0, there holds,

V (t)� V (t)|t=0 �
Z t

0
wT (s)w(s)ds < 0, (25)

and V (t) <
R t
0 w

T (s)w(s)ds.

By Schur complement, � � 0 is equivalent to

�
���������������

PA(�) +AT (�)P +X(�) +XT (�) PB�(�)Kc �X(�) + Y T (�) �X(�) PBw AT (�)

� �Y T (�)� Y (�) �Y (�) 0 KT
c �T (�)BT

� � ��(t)�1Q 0 0

� � � �I BTw

� � � � �h�1Q�1

�
���������������

� 0

(26)

De�ne L , P�1, and pre- and post-multiplying (26) by diag

μ
L L L I I

¶T
and its transpose, re-
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spectively, we obtain

�
���������������

� B�(�)KcL� LX(�)L+ LY T (�)L �LX(�)L Bw LAT (�)

� �LY T (�)L� LY (�)L �LY (�)L 0 LKT
c �T (�)BT

� � ���1(t)LQL 0 0

� � � �I BTw

� � � � �h�1Q�1

�
���������������

� 0, (27)

where � = A(�)L+LAT (�)+LX(�)L+LXT (�)L. By de�ning X̄(�) = LX(�)L, Ȳ (�) = LY (�)L, K̄c = KcL,

and R = Q�1 in (27), we obtain

�
���������������

A(�)L+ LAT (�) + X̄(�) + X̄T (�) B�(�)K̄c � X̄(�) + Ȳ T (�) �X̄(�) Bw LAT (�)

� �Ȳ T (�)� Ȳ (�) �Ȳ (�) 0 K̄T
c �T (�)BT

� � ���1(t)LR�1L 0 0

� � � �I BTw

� � � � �h�1R

�
���������������

� 0.

(28)

It is noticed that (R� L)R�1(R� L) º 0 since R Â 0, which is equivalent to

LR�1L ¹ R� 2L. (29)

Therefore, from (29) and �(t) 6 h, if

�
���������������

A(�)L+ LAT (�) + X̄(�) + X̄T (�) B�(�)K̄c � X̄(�) + Ȳ T (�) �X̄(�) Bw LAT (�)

� �Ȳ T (�)� Ȳ (�) �Ȳ (�) 0 K̄T
c �T (�)BT

� � �h�1(R� 2L) 0 0

� � � �I BTw

� � � � �h�1R

�
���������������

� 0,

(30)

then, the inequality (28) can be established. Substituting A(�) =
�P
i=1

�iAi, X̄(�) =
�P
i=1

�iX̄i, Ȳ (�) =
�P
i=1

�iȲi,
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and �(�) =
2rP
j=1

�j�j into (30), we readily obtain the equivalent condition as

�
���������������

AiL+ LATi + X̄i + X̄T
i B�jK̄c � X̄i + Ȳ Ti �X̄i Bw LATi

� �Ȳ Ti � Ȳi �Ȳi 0 K̄T
c �T

j B
T

� � �h�1(R� 2L) 0 0

� � � �I BTw

� � � � �h�1R

�
���������������

� 0, i � [1, �], j � [1, 2r].

(31)

Furthermore, using Schur complement, the feasibility of the following inequality�
��� P CTz

Cz �2I

�
��� Â 0 (32)

guarantees CTz Cz � �2P . At the same time, it can be derived from (25) that qT (t)Pq(t) < �2
R t
0 w

T (s)w(s)ds

if � � 0 is guaranteed. Then, it can easily be established from (11) that for all t > 0,

zT (t)z(t) = qT (t)CTz Czq(t) < �
2qT (t)Pq(t) < �2

Z t

0
wT (s)w(s)ds 6 �2

Z �

0
wT (s)w(s)ds. (33)

Taking the supremum over t > 0 yields kzk� < �2 kwk2 for all w � L2 [0,�) , that is, the energy-to-peak

performance is established. Similarly, condition (32) is transformed to�
��� L LCTz

CzL �2I

�
��� Â 0. (34)

On the other hand, from (12), the constraint |ui| 6 �iulim i can be expressed as

|Kciq(t)| 6 �iulim i, (35)

where Kci is the ith row of Kc. Let (Kc) =
n
q(t)| ¯̄qT (t)KT

ciKciq(t)
¯̄
6 (�iulim i)

2
o
, the equivalent condition

for an ellipsoid (P, ) =
©
q(t)|qT (t)Pq(t) 6 

ª
being a subset of (Kc) is [29]

Kci

μ
P



¶�1
KT
ci 6 (�iulim i)

2 . (36)

By Schur complement, inequality (36) can be written as�
��� (�iulim i)

2 I Kci

KT
ci

P
�

�
��� º 0. (37)
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Using the de�nitions L = P�1 and K̄c = KcP
�1, inequality (37) is equivalent to

�
��� (�iulim i)

2 I K̄ci

K̄T
ci

L
�

�
��� º 0. (38)

We now summarise the controller design procedure in the following theorem. The proof of this theorem

is evident from the above presented analysis, and will be omitted for brevity.

Theorem 1 Consider the building system (1), there exists a state feedback controller in the form of (12)

such that the closed-loop system in (17) is asymptotically stable with guaranteed kz2k� < � kwk2 under

parameter uncertainties and actuator saturation constraint de�ned in (3) and (5), if for given scalars  > 0,

� > 0, � > 0, and h > 0, there exist matrices L Â 0, R Â 0, X̄i, Ȳi, and K̄c satisfying LMIs (31), (34), and

(38). Furthermore, the controller gain matrix can be obtained as Kc = K̄cL
�1. If the performance index �

is minimised subject to the LMIs (31), (34), and (38), the controller with the optimal performance can be

obtained.

4 Application to Seismic-Excited Building

In this section, an example is presented to illustrate the applicability and e�ectiveness of the proposed

approach to a seismic-excited building with parameter uncertainties and actuator saturation.

In this example, a three-storey shear building model is considered [30], where the active bracing system

(ABS) is installed at the �rst �oor to control the vibration of the structure as shown in Figure 2. It

is assumed that all the masses, sti�nesses, and damping coe�cients for each �oor are identical, and the

nominal structural parameters are given as mi = 1, 000 kg, ci = 1.407 kN s/m, and ki = 980 kN/m, where

i = 1, 2, 3, respectively. The equation of motion of the three-storey shear building model is obtained similar

12



to equation (2), in which

A =

�
��������������������

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

�(k1 + k2)/m1 k2/m1 0 �(c1 + c2)/m1 c2/m1 0

k2/m2 �(k2 + k3)/m2 k3/m2 c2/m2 �(c2 + c3)/m2 c3/m2

0 k3/m3 �k3/m3 0 c3/m3 �c3/m3

�
��������������������

,

B =

�
0 0 0 1/m1 0 0

¸T
,

and

Bw =

�
0 0 0 �1 �1 �1

¸T
.

The controlled output, z(t), is chosen to be the relative displacement of the �rst �oor, that is,

z(t) =

�
1 0 0 0 0 0

¸
q(t).

Consider the structural parameter uncertainties are applied to the sti�nesses and damping coe�cients of

all �oors and, assume that the uncertainties of sti�nesses and damping coe�cients are 40% of their nominal

values, respectively, i.e., the sti�nesses can be varied between 0.6×980 and 1.4×980 kN/m, and the damping

coe�cients can be varied between 0.6×1.407 and 1.4×1.407 kN s/m. The earthquake excitation considered

is the El Centro 1940 earthquake of which peak ground acceleration is scaled to 0.112 g. Assume that the

relative displacements and the relative velocities of the three �oors are all the measurements available for

feedback, that is, state feedback control can be realised. Consider the maximum actuator output force limit

ulim as 1500 N (about 5% of building weight), and de�ne � = 10,  = 0.1 and h = 25 ms. Then, using

the approach presented in Section 4.2 and considering parameter uncertainties and saturation limit de�ned

above, we obtain the full state feedback controller gain as

Kc = 105 ×
�
�2.2156 �1.8261 2.3587 �0.4203 �0.2205 �0.1022

¸
.
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Now, we �rstly check the e�ect of sampling frequency on the closed-loop (controlled) system performance.

As de�ned above, the controller is designed for h = 25 ms, which means that the sampled controller is able

to stabilise the system for any sampling interval less than 25 ms, i.e., sampling frequency larger than 40 Hz.

To evaluate the system performance, six evaluation criteria in relation to building responses are used [31].

The �rst three criteria are based on peak responses of the building and the last three criteria are based on

root mean square (RMS) responses of the building. In general, small values of these evaluation criteria are

more desirable. The �rst evaluation criterion is a measure of the normalised maximum �oor displacement

relative to the ground, given as

J1 =max
t,i

μ |xi(t)|
xmax

¶
, (39)

where xi(t) is the relative displacement of the ith �oor over the entire response, xmax denotes the uncontrolled

maximum displacement. The second evaluation criterion is a measure of the reduction in the interstorey

drift. The maximum of the normalised interstorey drift is

J2 =max
t,i

μ |di(t)|
dmax

¶
, (40)

where di(t) is the interstorey drift of the above ground �oors over the response history, and dmax denotes

the peak interstorey drift in the uncontrolled response. The third evaluation criterion is a measure of the

peak �oor accelerations, given by

J3 =max
t,i

μ |ẍai(t)|
ẍamax

¶
, (41)

where ẍai(t) is the absolute acceleration of the ith �oor, and ẍamax is the peak uncontrolled absolute

acceleration. The next three criteria are de�ned for �oor displacement (J4), interstorey drift (J5), and �oor

acceleration (J6) in their normed-based forms as

J4 =max
i

μkxi(t)k
kxmaxk

¶
, (42)

J5 =max
i

μkdi(t)k
kdmaxk

¶
, (43)

J6 =max
i

μ kẍai(t)k
kẍamaxk

¶
, (44)

where k·k denotes norm computation, and kxmaxk , kdmaxk , and kẍamaxk denote the maximum normed �oor

displacement, interstorey drift, and �oor acceleration corresponding to the uncontrolled structure.

14



For the nominal system (no parameter uncertainties), the variations of these six criteria with the change

of sampling frequency are shown in Figure 3. It is seen from Figure 3 that the sampling frequency surely

a�ects the system performance as when the sampling frequency is lower than about 40 Hz, six evaluation

criteria are relatively larger. On the contrary, when the sampling frequency is higher than about 40 Hz,

six evaluation criteria are smaller and do not change signi�cantly with the increase of sampling frequency.

Although by the Nyquist sampling theorem, the measured variables need to be sampled at a frequency

at least twice the dominant structural frequency to reconstruct the structural response, to achieve a better

control performance, the system should be sampled at a relatively higher frequency. In practice, the sampling

frequencies of most vibration sensors are in the order of 100-500 Hz, thus the applicability of the designed

controller is su�cient.

Next, we will check the robustness of the designed controller. For doing so, we will evaluate the structural

responses under the earthquake excitation when system parameters are varied. For brevity, we only consider

four-vertex cases where the system sti�nesses and damping coe�cients are given as their vertex values,

respectively. In the following, Case 1 corresponds to ki = 0.6×980 kN/m and ci = 0.6×1.407 kN s/m, Case

2 corresponds to ki = 0.6× 980 kN/m and ci = 1.4× 1.407 kN s/m, Case 3 corresponds to ki = 1.4× 980

kN/m and ci = 0.6× 1.407 kN s/m, and Case 4 corresponds to ki = 1.4× 980 kN/m and ci = 1.4× 1.407

kN s/m. For comparison, the nominal case, Case 0, is also evaluated. The sampling frequency is used as 50

Hz.

The responses of the open-loop (uncontrolled) system (u(t) = 0) and the closed-loop (controlled) system

are compared in Figure 4, where only the structural responses of the �rst �oor for Case 0 are shown for

clarity. The control force is plotted in Figure 5 which clearly shows the di�erence between continuous-time

signal and sampled signal and the actuation e�ect on the control signal. For detailed comparison, the

maximum open- and closed-loop interstorey drifts, dimax, i = 1, 2, 3, �oor absolute accelerations, ẍaimax,

i = 1, 2, 3, and control force umax are summarised in Table 1, where OL means open-loop and CL means

closed-loop. It can be seen from Figure 4 and Table 1 that better responses are obtained for all closed-loop

cases no matter there are parameter uncertainties or not. It is validated that the designed controller is robust
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Case 0 Case 1 Case 2 Case 3 Case 4

Control OL CL OL CL OL CL OL CL OL CL

umax (kN) 0 1.50 0 1.50 0 1.50 0 1.50 0 1.50

d1max (cm) 1.35 0.37 1.67 0.72 1.53 0.69 0.82 0.23 0.71 0.23

d2max (cm) 1.03 0.39 1.36 0.80 1.24 0.76 0.66 0.26 0.57 0.26

d3max (cm) 0.60 0.22 0.80 0.52 0.68 0.49 0.40 0.15 0.34 0.14

ẍa1max (m/s2) 3.14 1.66 2.85 2.41 2.58 2.28 2.63 2.00 2.11 1.63

ẍa2max (m/s2) 4.77 2.17 3.48 2.94 3.30 2.41 4.09 2.43 3.44 2.04

ẍa3max (m/s2) 5.88 2.17 4.69 3.05 4.01 2.87 5.46 2.10 4.67 1.95

Table 1: Peak response of the system for scaled El Centro 1940 earthquake record

to parameter uncertainties.

Finally, we change the actuator saturation limit to ulim = 700 N (about 2.3% of building weight) to

design a new controller and to evaluate its performance. The newly designed controller is given as

Kc = 104 ×
�
�5.0092 �6.8508 7.2399 �1.5720 �0.8165 �0.1314

¸
.

Similarly, the six criteria versus sampling frequency for the nominal system with the newly designed

controller are plotted in Figure 6, from which a similar conclusion can be obtained as when the sampling

frequency is lower than about 40 Hz, six evaluation criteria are relatively large, and when the sampling

frequency is higher than about 40 Hz, six evaluation criteria are smaller. This suggests again that sampling

a control system at a relatively higher frequency will yield better control performance.

Under the same earthquake excitation, the structural responses of the �rst �oor and the control force for

the nominal system are plotted in Figures 7-8, which show that the closed-loop is stable and the closed-loop

performance is a little worse than those obtained with high saturation limit case as shown in Figure 4. The

detailed comparisons for four-vertex cases and the nominal case on the maximum interstorey drifts, dimax,

i = 1, 2, 3, �oor absolute accelerations, ẍaimax, i = 1, 2, 3, and control force umax are summarised in Table

2, which con�rms again that the closed-loop systems can always achieve good peak response quantities
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Case 0 Case 1 Case 2 Case 3 Case 4

Control OL CL OL CL OL CL OL CL OL CL

umax (kN) 0 0.70 0 0.70 0 0.70 0 0.70 0 0.70

d1max (cm) 1.35 0.58 1.67 1.17 1.53 1.11 0.82 0.35 0.71 0.33

d2max (cm) 1.03 0.51 1.36 1.03 1.24 0.99 0.66 0.32 0.57 0.30

d3max (cm) 0.60 0.32 0.80 0.63 0.68 0.60 0.40 0.22 0.34 0.19

ẍa1max (m/s2) 3.14 1.73 2.85 2.16 2.58 1.97 2.63 2.03 2.11 1.68

ẍa2max (m/s2) 4.77 2.23 3.48 2.96 3.30 2.56 4.09 2.16 3.44 1.95

ẍa3max (m/s2) 5.88 3.10 4.69 3.74 4.01 3.51 5.46 3.07 4.67 2.67

Table 2: Peak response of the system for scaled El Centro 1940 earthquake record

regardless of the parameter uncertainties.

Time delay is one of the important problems in control systems since it may a�ect the system’s stability

and performance. When the time delay is mainly from the computation of control laws, there are few

cases where the time delay is larger than a sampling interval [32]. In this case, the presented approach can

naturally deal with the time delay e�ect provided that the sum of time delay and sampling interval is less

than the designed maximum sampling interval h. As shown in Figure 9, when the sampling frequency is

100 Hz (i.e., sampling interval is 10 ms), and the time delay is increased from 20% to 80% of the sampling

interval, there are no clear degradation on the control performance for the cases where the actuator limit is

given as 1500 N and 700 N, respectively. When the actuator time delays, which are taken by the actuators

to build up the required control forces and may be longer than the sampling intervals, are considered in

the sampled-data controller design, the methods proposed in [33] to deal with two additive delays could be

used. In addition, when actuator dynamics is considered, if it is a linear actuator model as used in [34], this

actuator model can be included into the controller design process without introducing much di�culties. If

it is a nonlinear actuator model, other techniques such as model-based Takagi-Sugeno fuzzy control strategy

would be helpful. Nevertheless, these issues are beyond the focus of the current paper and will not be

included.
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5 Conclusions

In this paper, a sampled-data controller design approach is presented for structures considering variable

sampling rate, actuator saturation, and robust stability with respect to parameter uncertainties. The sam-

pling rate is allowed to be varied in practice when it satis�es the designed minimum sampling frequency

requirement. Since parameter uncertainties on sti�ness and damping always happen to structures due to

changing environmental conditions, and they are di�cult to be measured in real time, a robust �xed gain

controller is designed in spite of its conservatism compared to the gain-scheduled controller. In addition,

for a given saturation limit, a high gain controller can be designed using the presented method to realise

better control performance. Simulation example shows that the controllers designed using the presented ap-

proach can e�ectively achieve the attenuation objective when there are parameter uncertainties and actuator

saturation constraint.
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Figure 1: Block diagram for sampled-data control of structure.
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Figure 3: Evaluation criteria values for di�erent sampling frequencies with actuator limit of 1500 N.
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Figure 4: Responses of the �rst �oor for nominal system applying the proposed controller (actuator limit

1500 N).
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Figure 5: Control force with actuator limit as 1500 N.
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Figure 6: Evaluation criteria values for di�erent sampling frequencies with actuator limit of 700 N.
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Figure 7: Responses of the �rst �oor for nominal system applying the proposed controller (actuator limit

700 N).
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Figure 8: Control force with actuator limit as 700 N.
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Figure 9: E�ects of time delays on control performance.
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