34 research outputs found

    Dynamic modeling and control of a Quadrotor using linear and nonlinear approaches

    Get PDF
    With the huge advancements in miniature sensors, actuators and processors depending mainly on the Micro and Nano-Electro-Mechanical-Systems (MEMS/NEMS), many researches are now focusing on developing miniature flying vehicles to be used in both research and commercial applications. This thesis work presents a detailed mathematical model for a Vertical Takeo ff and Landing (VTOL) type Unmanned Aerial Vehicle(UAV) known as the quadrotor. The nonlinear dynamic model of the quadrotor is formulated using the Newton-Euler method, the formulated model is detailed including aerodynamic effects and rotor dynamics that are omitted in many literature. The motion of the quadrotor can be divided into two subsystems; a rotational subsystem (attitude and heading) and a translational subsystem (altitude and x and y motion). Although the quadrotor is a 6 DOF underactuated system, the derived rotational subsystem is fully actuated, while the translational subsystem is underactuated. The derivation of the mathematical model is followed by the development of four control approaches to control the altitude, attitude, heading and position of the quadrotor in space. The fi rst approach is based on the linear Proportional-Derivative-Integral (PID) controller. The second control approach is based on the nonlinear Sliding Mode Controller (SMC). The third developed controller is a nonlinear Backstepping controller while the fourth is a Gain Scheduling based PID controller. The parameters and gains of the forementioned controllers were tuned using Genetic Algorithm (GA) technique to improve the systems dynamic response. Simulation based experiments were conducted to evaluate and compare the performance of the four developed control techniques in terms of dynamic performance, stability and the effect of possible disturbances

    Fault Tolerant Flight Control of Unmanned Aerial Vehicles

    Get PDF
    Safety, reliability and acceptable level of performance of dynamic control systems are the major keys in all control systems especially in safety-critical control systems. A controller should be capable of handling noises and uncertainties imposed to the controlled process. A fault-tolerant controller should be able to control a system with guaranteed stability and good or acceptable performance not only in normal operation conditions but also in the presence of partial faults or total failures that can be occurred in the components of the system. When a fault occurs in a system, it suddenly starts to behave in an unanticipated manner. Thereby, a fault-tolerant controller should be designed for being able to handle the fault and guarantee system stability and acceptable performance in the presence of faults/damages. This shows the importance and necessity of Fault-Tolerant Control (FTC) to safety-critical and even nowadays for some new and non-safety-critical systems. During recent years, Unmanned Aerial Vehicles (UAVs) have proved to play a significant role in military and civil applications. The success of UAVs in different missions guarantees the growing number of UAVs to be considerable in future. Reliability of UAVs and their components against faults and failures is one of the most important objectives for safety-critical systems including manned airplanes and UAVs. The reliability importance of UAVs is implied in the acknowledgement of the Office of the Secretary of Defense in the UAV Roadmap 2005-2030 by stating that, ”Improving UA [unmanned aircraft] reliability is the single most immediate and long-reaching need to ensure their success”. This statement gives a wide future scenery of safety, reliability and Fault-Tolerant Flight Control (FTFC) systems of UAVs. The main objective of this thesis is to investigate and compare some aspects of fault tolerant flight control techniques such as performance, robustness and capability of handling the faults and failures during the flight of UAVs. Several control techniques have been developed and tested on two main platforms at Concordia University for fault-tolerant control techniques development, implementation and flight test purposes: quadrotor and fixedwing UAVs. The FTC techniques developed are: Gain-Scheduled Proportional-Integral-Derivative (GS-PID), Control Allocation and Re-allocation (CA/RA), Model Reference Adaptive Control (MRAC), and finally the Linear Parameter Varying (LPV) control as an alternative and theoretically more comprehensive gain scheduling based control technique. The LPV technique is used to control the quadrotor helicopter for fault-free conditions. Also a GS-PID controller is used as a fault-tolerant controller and implemented on a fixedwing UAV in the presence of a stuck rudder failure case

    Trajectory Tracking and Payload Dropping of an Unmanned Quadrotor Helicopter Based on GS-PID and Backstepping Control

    Get PDF
    Two useful control techniques, the Gain-Scheduled Proportional-Integral-Derivative (GS-PID) control and backstepping control, have been applied by using quadrotor Unmanned Aerial Vehicle (UAV) in the applications of trajectory tracking and payload dropping operations in this thesis. These control algorithms are analyzed and verified through software simulations and experimental tests. The dynamic model of the quadrotor UAV is firstly established using Newton-Euler laws. The quadrotor comes with a symmetric, nonlinear and multiple-input-multiple output (MIMO) dynamic model. The GS-PID control algorithm is implemented firstly in take-off, trajectory tracking, payload dropping, and landing periods of flight in trajectory tracking and payload dropping scenarios. Unlike other control algorithms that tend to linearize nonlinear systems, backstepping works without cancelling the nonlinearities in the system. This leads to more flexible designs of the control model. The backstepping control is implemented in this thesis for better performance of the quadrotor UAV for the two scenarios as well. Both control algorithms are implemented on the parameters of an unmanned quadrotor helicopter platform known as Qball-X4 available at the Networked Autonomous Vehicles Lab (NAVL) of Concordia University. Using MATLAB/Simulink to build the simulation control model, the flight simulation of the Qball-X4 is carried out for the trajectory tracking and the payload dropping. In order to further investigate these two control approaches, the Qball-X4 is used for experimental verification on payload dropping performance. The results indicate that both algorithms can obtain acceptable performance, but the backstepping controller proves to be a better performed one

    Model Predictive Control of an Unmanned Quadrotor Helicopter: Theory and Flight Tests

    Get PDF
    Model Predictive Control (MPC) has been well established and widely used in the process control industry since years. However, due to dependability of its success on availability of high computational power to handle burden of online repetitive calculations, and existence of a precise mathematical model of the controlled plant, it has found less application in other areas of systems and control, specifically speaking when it comes to fast dynamics control systems featuring a highly elaborate plant. Preceded by previous successful efforts made in the application of MPC to other areas of systems and control rather than process control, this thesis initiates employment of MPC in the unmanned aerial systems industry. To this end, the system of the quadrotor UAV testbed in the Networked Autonomous Vehicles Laboratory of Concordia University is chosen. A three dimensional autopilot control system within the framework of MPC is developed and tested through numerous flight experiments. The overall performance of the quadrotor helicopter is evaluated under autonomous fight for three flight scenarios of trajectory tracking, payload drop, robustness to voltage/current drop, and fault-tolerant control in the presence of faults induced by reduced actuator effectiveness. This has been achieved by the proper use of a model reduction technique as well as a fast optimization algorithm to address the issues with high computation, and incorporation of the integral action control in the MPC formulation to meet the offset-free tracking requirement. Both simulation and experimental results are presented to demonstrate success of the design

    Intelligent Controller Design for Quad-Rotor Stabilization in Presence of Parameter Variations

    Get PDF

    Intelligent Controller Design for Quad-Rotor Stabilization in Presence of Parameter Variations

    Get PDF
    The paper presents the mathematical model of a quadrotor unmanned aerial vehicle (UAV) and the design of robust Self-Tuning PID controller based on fuzzy logic, which offers several advantages over certain types of conventional control methods, specifically in dealing with highly nonlinear systems and parameter uncertainty. The proposed controller is applied to the inner and outer loop for heading and position trajectory tracking control to handle the external disturbances caused by the variation in the payload weight during the flight period. The results of the numerical simulation using gazebo physics engine simulator and real-time experiment using AR drone 2.0 test bed demonstrate the effectiveness of this intelligent control strategy which can improve the robustness of the whole system and achieve accurate trajectory tracking control, comparing it with the conventional proportional integral derivative (PID). Document type: Articl

    A Hybrid Control Approach for the Swing Free Transportation of a Double Pendulum with a Quadrotor

    Get PDF
    In this article, a control strategy approach is proposed for a system consisting of a quadrotor transporting a double pendulum. In our case, we attempt to achieve a swing free transportation of the pendulum, while the quadrotor closely follows a specific trajectory. This dynamic system is highly nonlinear, therefore, the fulfillment of this complex task represents a demanding challenge. Moreover, achieving dampening of the double pendulum oscillations while following a precise trajectory are conflicting goals. We apply a proportional derivative (PD) and a model predictive control (MPC) controllers for this task. Transportation of a multiple pendulum with an aerial robot is a step forward in the state of art towards the study of the transportation of loads with complex dynamics. We provide the modeling of the quadrotor and the double pendulum. For MPC we define the cost function that has to be minimized to achieve optimal control. We report encouraging positive results on a simulated environmentcomparing the performance of our MPC-PD control circuit against a PD-PD configuration, achieving a three fold reduction of the double pendulum maximum swinging angle.This work has been partially supported by FEDER funds through MINECO project TIN2017-85827-P, and project KK-202000044 of the Elkartek 2020 funding program of the Basque Government. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 777720

    DYNAMICS AND CONTROL OF MINI AERIAL VEHICLE USING MODEL PREDICTIVE CONTROL

    Get PDF
    Nowadays Mini Aerial Vehicles (MAVs) are popular in many areas such as aerial photography, inspection, surveillance and search and rescue missions in complex and dangerous environments due to their low cost, small size, superior mobility, and hover capability. Multifarious applications of MAVs inspire researchers to concentrate on different types of controllers like linear, nonlinear or learning-based. The attention of this work is to design a robust controller and to develop an accurate mathematical model of Quadrotor, a type of MAV as it behaves roughly in uncertain environments. Quadrotor is an under-actuated and highly nonlinear system with six degrees of freedom (DOF). The mathematical model of quadrotor is derived based on Newton-Euler method that includes aerodynamic drag and moment that are sometimes overlooked in literatures. For higher precision modelling, model uncertainties are also included in the system. In addition, the kinematic model is derived utilizing Euler angles and Quaternion methods. Quaternion approach has the advantage of singularity free orientation while Euler angles are easy to visualize. This work investigates the performance of three different controllers which includes Proportional-Integral-Derivative (PID), Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) based on several performance evaluation factors. PID offers fast response to the system comparing to other controllers although choosing proper gain is challenging for PID. However, it cannot handle directly under-actuated system and due to the fact, some states are required to be decoupled. LQR ensures fast response and can deal with Multiple Input Multiple Output (MIMO) system at the same time. The main drawback of the LQR controller is its incapability of dealing with steady-state error. Conversely, MPC has the functionalities of dealing with MIMO system with constraints and uncertainties while other controllers fail. The performance of the controllers are presented based on tracking accuracy using Root Mean Square Error (RMSE) method and control stability using control input norm method. MATLAB and Simulink environment is considered to carry out the simulations. Based on simulated experiments, it is found that MPC could track the trajectories more accurately with stable control effort comparing to PID controllers and LQR

    Fault Diagnosis and Fault-Tolerant Control of Unmanned Aerial Vehicles

    Get PDF
    With the increasing demand for unmanned aerial vehicles (UAVs) in both military and civilian applications, critical safety issues need to be specially considered in order to make better and wider use of them. UAVs are usually employed to work in hazardous and complex environments, which may seriously threaten the safety and reliability of UAVs. Therefore, the safety and reliability of UAVs are becoming imperative for development of advanced intelligent control systems. The key challenge now is the lack of fully autonomous and reliable control techniques in face of different operation conditions and sophisticated environments. Further development of unmanned aerial vehicle (UAV) control systems is required to be reliable in the presence of system component faults and to be insensitive to model uncertainties and external environmental disturbances. This thesis research aims to design and develop novel control schemes for UAVs with consideration of all the factors that may threaten their safety and reliability. A novel adaptive sliding mode control (SMC) strategy is proposed to accommodate model uncertainties and actuator faults for an unmanned quadrotor helicopter. Compared with the existing adaptive SMC strategies in the literature, the proposed adaptive scheme can tolerate larger actuator faults without stimulating control chattering due to the use of adaptation parameters in both continuous and discontinuous control parts. Furthermore, a fuzzy logic-based boundary layer and a nonlinear disturbance observer are synthesized to further improve the capability of the designed control scheme for tolerating model uncertainties, actuator faults, and unknown external disturbances while preventing overestimation of the adaptive control parameters and suppressing the control chattering effect. Then, a cost-effective fault estimation scheme with a parallel bank of recurrent neural networks (RNNs) is proposed to accurately estimate actuator fault magnitude and an active fault-tolerant control (FTC) framework is established for a closed-loop quadrotor helicopter system. Finally, a reconfigurable control allocation approach is combined with adaptive SMC to achieve the capability of tolerating complete actuator failures with application to a modified octorotor helicopter. The significance of this proposed control scheme is that the stability of the closed-loop system is theoretically guaranteed in the presence of both single and simultaneous actuator faults
    corecore