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ABSTRACT

Model Predictive Control (MPC) has been well established and widely used in the
process control industry since years. However, due to dependability of its success on avail-
ability of high computational power to handle burden of online repetitive calculations, and
existence of a precise mathematical model of the controlled plant, it has found less appli-
cation in other areas of systems and control, specifically speaking when it comes to fast
dynamics control systems featuring a highly elaborate plant.

Preceded by previous successful efforts made in the application of MPC to other
areas of systems and control rather than process control, this thesis initiates employment
of MPC in the unmanned aerial systems industry. To this end, the system of the quadrotor
UAV testbed in the Networked Autonomous Vehicles Laboratory of Concordia University
is chosen. A three dimensional autopilot control system within the framework of MPC
is developed and tested through numerous flight experiments. The overall performance
of the quadrotor helicopter is evaluated under autonomous fight for three flight scenarios
of trajectory tracking, payload drop, robustness to voltage/current drop, and fault-tolerant
control in the presence of faults induced by reduced actuator effectiveness. This has been
achieved by the proper use of a model reduction technique as well as a fast optimization
algorithm to address the issues with high computation, and incorporation of the integral
action control in the MPC formulation to meet the offset-free tracking requirement. Both
simulation and experimental results are presented to demonstrate success of the design.
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Chapter 1

Introduction

1.1 Unmanned Aerial Vehicles (UAVs)

Unmanned quadrotor helicopters have become increasingly popular platforms for the study

of Unmanned Aerial Vehicles (UAVs) from the control viewpoints. With the abilities such

as hovering or vertical take-off and landing, quadrotor helicopters substantially extend the

scope of potential civilian as well as military applications such as aerial reconnaissance,

border patrol, life saving, and forest surveillance or fire fighting where it is highly risky

for human pilots to intervene. Successful fulfilment of such missions is closely tied with

existence of autopilot control systems. For the control of a quadrotor helicopter, various

control techniques have been proposed. Initially starting with linear control algorithms

such as LQR control [1] or PID control [2], linear methods are proved not to have a good

performance for the nonlinear quadrotor system. The problem of nonlinear control de-

sign has been addressed using several methods such as feedback linearisation [3], sliding

mode control [4] and back-stepping control [5]; nevertheless, among those nonlinear con-

trol methods, capability of explicitly dealing with operational constraints prevalent in a

control system is yet hardly achievable. Fig. 1.1 depicts one of the quadrotor helicopters

available at the Networked Autonomous Vehicles Laboratory of Concordia University. This
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quadrotor helicopter is known as Draganflyer.

Figure 1.1: Draganflyer - Networked Autonomous Vehicles Laboratory of Concordia Uni-
versity

1.2 Model Predictive Control (MPC)

“Model Predictive Control, or Model-Based Predictive Control (MPC or MBPC as it is

sometimes known), is the only advanced control technique–that is, more advanced than

standard PID control–to have had a significant widespread impact on industrial process

control” [6]. The capability of routinely dealing with equipment, performance and safety

constraints allows for closer operation to a control system’s limits, thus achieving the most

profitable operation. In addition, expandability of the basic formulation to multi-variable

plants without any major modification, simplicity of tuning, and the straightforwardness

of its underlying idea, are certainly some of the main reasons that render this controller

advanced.

Model predictive control was developed and used in the industry for nearly 20 years
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before attracting much serious attention from the academic control community. An exten-

sive study of the literature reveals that the era of model predictive control can be broken

down into three decades of developments and achievements. The first decade is charac-

terized by the fast-growing industrial adoption of the technology, primarily in the refining

and petrochemical sectors. The second decade saw a number of significant advances in

understanding the MPC from a control theoretician’s viewpoint, while the third decade’s

main focus has been on the development of “fast MPC algorithms” [7].

Due to the specific structure of MPC which will be explained in the following sec-

tions, its successful implementation is highly dependent on availability of sufficient compu-

tational power. However, the constant increase in computational speed and power alongside

the recent improvements in optimization algorithms which are the centrepiece of MPC, the

use of this control technique is no longer bound to process control applications for which

it was initially, almost exclusively envisioned [6]. In addition, recent advances in the MPC

have led to its implementation onto faster dynamic systems and unstable plants, providing

solutions to bring orders of magnitude improvement in the efficiency of the online computa-

tion so that the technology can be applied to systems and plants requiring very fast sampling

rates, typical examples of which are frequently appeared in the field of aerospace design

and innovation [8]. There has also been research into various model reduction techniques

to minimize computational demands in order to render the MPC applicable to lightweight

airborne platforms [9]. Furthermore, MPC strongly relies on a precise internal mathemati-

cal model of the plant under control. Since the real plant is invariably nonlinear, there exists

always some degree of discrepancy between the mathematical model and the plant itself;

therefore implementation of offset-free tracking control system with the MPC is hardly at-

tainable unless measures are taken to address the issue of discrepancy.

By introduction of a new and sound model predictive control design framework, this

study aims to partially address two main drawbacks of the MPC design, namely reliance
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on:

• Availability of high computational power to handle burden of online repetitive calcu-

lations, and

• Existence of a precise mathematical model of the plant under control,

such that during the autonomous flight, an unmanned quadrotor helicopter with its fast

elaborate dynamics can benefit from the numerous advantages that come along the proper

use of this control technique.

To this end, firstly, a closed-loop prediction scheme will be offered for calculation of

the predicted output yp. This scheme will essentially reduce the computational load due to

its structure. A new model reduction technique will be adopted based on some simplifying

assumptions so that this closed-loop linear prediction scheme can be made use of. Also, as

suggested by [9], in order to further reduce computational complexity thus execution time,

it will be benefited from reduced number of prediction points that are not evenly placed

along the prediction horizon–as required by the standard MPC variants. Secondly, as prac-

tised in some literature, it will be tried to meet the requirement of offset-free tracking by

incorporating an integral-action controller in the outermost control loop so as to compen-

sate for model uncertainties. Basically this control structure is a decentralized design which

simply adds control inputs from the MPC and the integral algorithms. Although the steady

state error can be eliminated by the integral controller’s gain tuning, this control structure

is incapable of constraint handling since the integrator dynamics is not included in the QP

formulation [10]. Eventually, effort will be made to reformulate controller’s structure to

construct a centralized design. In contrast to the decentralized design, the new formulation

does not simply add control inputs from the MPC and the integral algorithms but instead,

the integral action is incorporated in the MPC formulation. This way, the steady state error

is eliminated and the controller will be capable of constraint handling since dynamics of

the integrator is included in the QP formulation.
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The outline of the thesis is as follows. Chapter 1 presents an introduction to what

an unmanned quadrotor helicopters is and how model predictive control can contribute to

its applications. Chapter 2 deals with the idea of model predictive control and details two

various formulations of the controller. Chapter 3 explains system software versus system

hardware of Qball-X4, an unmanned quadrotor helicopter available at the Networked Au-

tonomous Vehicles Laboratory of Concordia University. The overall performance of the

quadrotor helicopter is evaluated under autonomous flight for three scenarios of trajectory

tracking, payload drop, and robustness to voltage and current drop in Chapter 4. Finally,

Chapter 5 draws the conclusion and outlines the future extensions of this study.
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Chapter 2

Model Predictive Control

2.1 The Idea of “Predictive Control”

In what follows, the basic idea of model predictive control will be presented. For the sake

of simplicity, discussion is confined to the control of a single-input single-output system.

The idea and formulation set out herein will be applied to multi-input multi-output systems

without loss of generality. Though a continuous version of this MPC design approach exists

as well, a discrete-time setting will be discussed and applied.

As mentioned, a discrete-time setting is assumed, and the current time step is repre-

sented by k. A set-point trajectory which is the ideal or expected behavior of the control

system is denoted by s(t). Distinct from the set-point trajectory is the reference trajectory

r(t) that starts at the current output y(k), and defines a second trajectory along which the

plant should return to the set-point trajectory. Therefore, the reference trajectory determines

an important behavioral aspect of the closed-loop control system. Although alternative def-

initions of the reference trajectory are possible, here an exponential reference trajectory is

assumed with a time constant denoted by Tre f specifying the speed of the two trajectories’

convergence or error reduction as in:

ε(k+ i) = e−iTs/Tre f ε(k) (2.1)
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where

ε(k) = s(k)− y(k) (2.2)

and Ts is the update rate of prediction. That is, the reference trajectory is defined to be:

r(k+ i|k) = s(k+ i)− ε(k+ i) (2.3)

= s(k+ i)− e−iTs/Tre f ε(k) (2.4)

There also exists an internal model which is employed to predict the behavior of the

plant ahead of time over a prediction horizon starting at the current time. This predicted

behavior is based on the assumed input trajectory û(k+ i|k), i= 0,1, . . . ,Hp−1, that is to be

applied over the prediction horizon, and the concept behind is to chose an input trajectory

that results in the best predicted performance. It is assumed that the internal model is linear.

In order to calculate the input trajectory, current output measurement y(k) is required.

The elements of the input trajectory are selected in a way to bring the plant out-

put ŷ(k+ i) to the corresponding value of the reference trajectory r(k+ i) at specific time

intervals which may or may not be evenly distributed. In its simplest form, the input tra-

jectory is chosen so that the plant output coincides with the reference trajectory at the end

of the prediction horizon, namely (k+Hp). In its most complex form, the input trajectory

may be determined such that the plant output comes to the required reference trajectory

at all sampling intervals k+ 1,k+ 2, . . . ,k+Hp along the prediction horizon, introducing

Hp coincidence points. For the case of a single coincidence point there are several input

trajectories which achieve this. However, based on the criteria at hand one is chosen; for

instance the input trajectory that minimizes the control effort may be preferred. In addi-

tion, with this wide possible range of selections, it is in fact recommended to impose some

simple structure on the input trajectory. For example, the elements of the input trajectory

may be allowed to vary over the first five steps of the prediction horizon, but to remain

constant thereafter: û(k+4|k) = û(k+5|k) = · · ·= û(k+Hp−1|k). In this case there exist
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five parameters to choose, namely û(k|k), û(k+ 1|k), û(k+ 2|k), û(k+ 3|k),andû(k+ 4|k).
The idea of predictive control is illustrated in Fig. 2.1, schematically.

 

 

 

 

Time 

Time 

Input 

Figure 2.1: the Idea of Model Predictive Control

In practice, however, it is quite commonplace that there are more coincidence points

than parameters to choose; that is to say, more equations to be satisfied than the number

of available variables, and consequently impossible to find an exact solution. This im-

plies lack of an exact future input trajectory capable of bringing the plant output to the

reference trajectory at all coincidence points. That is the reason why some sort of ap-

proximate solution is sought, looking into a specific cost function. This can be a least-

squared optimization problem, namely one that minimizes the sum of the squares of the er-

ror ∑i [r(k+ i|k)− ŷ(k+ i|k)]2, where i corresponds to the set of coincidence points [6, 11].
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2.2 An Efficient Model Predictive Control

Formulation

2.2.1 State Space Model Formulation

As the name implies, the centerpiece of a model predictive controller is a mathematical

model of the real plant. This model should well represent behavioral characteristics of the

control system under study, and is used to predict the free response of the plant; that is the

response that would be obtained at the ith coincidence point if the future input trajectory

stays at the latest value having already been applied to the plant u(k − 1). To this end,

for a state-space representation of the internal model, the current values of states or their

estimations are needed. Assuming S(i) to be the response of the internal model at some

ith coincidence point to a unit step function, as long as a linear time-invariant system is

considered, the predicted output at the ith coincidence point is:

ŷ(k+ i|k) = ŷ f (k+ i|k)+S(i)Δû(k|k) (2.5)

where

Δû(k|k) = û(k|k)−u(k−1) (2.6)

It is intended to achieve:

ŷ(k+ i|k) = r(k+ i|k) (2.7)

Therefore, the optimal change of input is given by:

Δû(k|k) = r(k+ i|k)− ŷ f (k+ i|k)
S(i)

(2.8)

In a slightly complicated pattern for the input trajectory, the input is allowed to

change over the first Hu steps of the prediction horizon, û(k|k), û(k+ 1|k), . . . , û(k+Hu −
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1|k); and remains constant thereafter, û(k+Hu − 1|k) = û(k+Hu|k) = û(k+Hu + 1|k) =
· · · = û(k+Hp − 1|k). This yields analogues results as obtained for the previous simpler

input trajectory structure at the time step k+Pi over the prediction horizon:

ŷ(k+Pi|k) = ŷ f (k+Pi|k)+H(Pi)û(k|k)+H(Pi −1)û(k+1|k)+ . . .

+H(Pi −Hu +2)û(k+Hu −2|k)

+S(Pi −Hu +1)û(k+Hu −1|k) (2.9)

where H( j)= S( j)−S( j−1) is the unit pulse response coefficient of the system after j time

steps. The reason why pulse response coefficients appear in this expression rather than step

response coefficients is that each of the input values û(k|k), û(k+1|k), . . . , û(k+Hu −2|k)
is to be applied for only one sampling interval. Only the last one, û(k+Hu −1|k), remains

unchanged until step Pi, and its effect is therefore obtained by multiplying it by the step

response coefficient S(Pi−Hu+1). Since H( j)= S( j)−S( j−1), Eq. (2.9) can be rewritten

as:

ŷ(k+Pi|k) = ŷ f (k+Pi|k)+S(Pi)Δû(k|k)+S(Pi −1)Δû(k+1|k)

+ · · ·+S(Pi −Hu +1)Δû(k+Hu −1|k) (2.10)

replacing equation (2.5).

Taking one step further by increasing the number of coincidence point, writing the

same relation of a single coincidence point for each of the coincidence points and regroup-

ing terms on both sides of the equation, the predicted output at the coincidence points in

the matrix-vector form is:

Ŷ = Ŷf +ΘΔÛ (2.11)
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where

Ŷ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ŷ(k+P1|k)
ŷ(k+P2|k)

...

ŷ(k+Pc|k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

; ΔÛ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Δû(k|k)
Δû(k+1|k)

...

Δû(k+Hu −1|k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

S(P1) S(P1 −1) . . . S(1) 0 . . . . . . 0

S(P2) S(P2 −1) . . . . . . . . . S(1) . . . 0
...

...
...

...
...

...
...

...

S(Pc) S(Pc −1) . . . . . . . . . . . . . . . S(Pc −Hu +1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

replacing equation (2.5).

As stated earlier, it is intended to achieve (2.7). In the case of having more equa-

tions to be satisfied–corresponding to the number of coincidence points–than the number

of available variables to be calculated, the solution of a least-squared optimization problem

is sought to solve (2.8) for ΔÛ .

Having decided on the reference trajectory, a future input trajectory is easily calcu-

lated via (2.8). However, only the first element of that trajectory is to be applied as the

input signal to the plant and the rest are neglected. Then the whole sequence of events be-

ing repeated one sampling interval later; that is, output measurement, prediction, and input

trajectory determination. In the whole cycle of calculation, the prediction equations are

used to determine the input trajectory, whereas output measurement is required to obtain

the reference trajectory as well as the free response of the plant.

2.2.2 Realization of Constraints: Constrained

Optimization

Predictive control is to be readily employed to respect constraints. Considering constraints

on the inputs or outputs, the simple “linear least-squared” solution has to be replaced by a
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“constrained least-squared” solution. Most formulations of predictive control assume linear

inequality constraints; that is because even nonlinear constraints can be approximated by

one or more linear constraints. For the case of constraints in the form of linear equalities,

a quadratic programing problem evolves. This can be solved very reliably and relatively

quickly by means of a number of efficient, computationally inexpensive optimization soft-

ware available to date.

In practice, there are usually three types of constraints existent in a control system.

Limitations that should be considered for actuator ranges available for the control effort,

those of possible actuator slew rates, and constraints on the controlled variables. That is

equivalent to:

a1 < ΔU(k)< a2

b1 <U(k)< b2

c1 < Y (k)< c2

The following formulation represents the three types of constraints, respectively;

E

⎡
⎢⎣ΔU(k)

1

⎤
⎥⎦≤ 0; F

⎡
⎢⎣U(k)

1

⎤
⎥⎦≤ 0; G

⎡
⎢⎣Y (k)

1

⎤
⎥⎦≤ 0 (2.12)

where

U(k) =
[

û(k|k)T û(k+1|k)T . . . û(k+Hu −1|k)T

]
(2.13)

Assuming

Gc =
1
2

ΔUT ΦΔU +ϕT ΔU (2.14)

as the cost function of a quadratic programing optimization problem with ΔU being its

optimized solution, it is required to express all of the three types of constraints in terms of

ΔU(k).
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Suppose F has the form

F =

[
F1 F2 . . . FHu f

]
(2.15)

therefore, the second inequality of (2.12) can be written as:

Hu

∑
i=1

Fiû(k+ i−1|k)+ f ≤ 0 (2.16)

since

û(k+ i−1|k) = u(k−1)+
i−1

∑
j=0

Δû(k+ j|k) (2.17)

the second inequality of (2.12) can be written as:

Hu

∑
j=1

FjΔû(k|k)+
Hu

∑
j=2

FjΔû(k+1|k)+ . . .

+FHuΔû(k+Hu −1|k)+
Hu

∑
j=1

Fju(k−1)+ f ≤ 0 (2.18)

By defining F̃i = ∑Hu
j=i Fj and F̃ = [F̃1, F̃2, . . . , F̃Hu ], then the second inequality of (2.12) can

be written as:

F̃ΔU(k)≤−F̃1u(k−1)− f (2.19)

where the right-hand side of the inequality is a vector which is known at time k. The same

methodology as discussed, can be applied to the third inequality of (2.12) so as to convert

it into a linear inequality constraint on ΔU(k) [12].

Suppose G has the form

G =

[
G1 G2 . . . GPc g

]
(2.20)
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therefore, the third inequality of (2.12) can be written as:

G1Yf (k+1|k)
Hu−1

∑
i=0

S(P1 − i)Δû(k+ i|k)

+G2Yf (k+2|k)
Hu−1

∑
i=0

S(P2 − i)Δû(k+ i|k)+ . . .

+GPcYf (k+Pc|k)
Hu−1

∑
i=0

S(Pc − i)Δû(k+ i|k)+g ≤ 0

By defining G̃ j = ∑Hu−1
i=0 S(Pj − i) and G̃ = [G̃1, G̃2, . . . , G̃Pc ], then the third inequality of

(2.12) can be written as:

G̃ΔU(k)≤−
Pc

∑
j=1

G jYf (k+ j|k)−g (2.21)

where the right-hand side of the inequality is a vector which is known at time k. By trans-

forming the first inequality of relations (2.12) into WΔU(k) ≤ w and assembling this with

(2.19) and (2.21), the problem becomes that of

min Gc =
1
2

ΔUT ΦΔU +ϕT ΔU (2.22)

subject to ⎡
⎢⎢⎢⎢⎣

W

F̃

G̃

⎤
⎥⎥⎥⎥⎦ΔU ≤

⎡
⎢⎢⎢⎢⎣

w

−F̃1u(k−1)− f

−∑Pc
j=1 G jYf (k+ j|k)−g

⎤
⎥⎥⎥⎥⎦ (2.23)
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2.3 An Integral-Action Model Predictive Control

Formulation

There are three general approaches to predictive control design, each featuring a unique

model structure. In the earlier formulation of model predictive control, finite impulse re-

sponse and step response models received major attention. Soon after, they were found to

be limited to stable plants and often required large model orders, typically ranging from 30

to 60 impulse response coefficients depending on the specific plant dynamics and choice

of sampling Intervals. Transfer function models proved to offer a better representation of

a plant comparably however, the transfer function model-based predictive control is often

considered to be less effective in handling multi-variable plants. Recent years have seen

the growing popularity of predictive control design using state-space methods, both in con-

tinuous time and discrete time. This is mainly due to simplicity of the design framework.

In this section the structure of discrete-time Model Predictive Control with Integral action

is discussed using the state-space formulation.

2.3.1 State Space Model Formulation with Embedded Integrators

As mentioned previously, model predictive control systems are designed based on a math-

ematical model of the plant. In this approach, the model to be used in the control system

design is taken to be a state-space model. By using a state-space model, the current infor-

mation required for predicting plant behaviour ahead of time is obtained through the state

variable at the current time.

It is assumed that the underlying plant is described by:

xm(k+1) = Amxm(k)+Bmu(k) (2.24)

y(k) =Cmxm(k) (2.25)
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where u is the control signal or input variable, y is the process output, and xm is the state

variable vector with assumed dimension (n1 ×1).

To meet the offset-free tracking requirement, it is desired to slightly modify the model

by embedding an Integral action in order to achieve the design purpose of offset-free track-

ing. In the general formulation of a state-space model there exists a direct term from the

input signal u(k) to the output y(k) as in:

y(k) =Cmxm(k)+Dmu(k)

However, due to the principle of receding horizon control, where a current information of

the plant is required for prediction and control it has been implicitly assumed that the input

u(k) cannot affect the output y(k) at the same time. Thus, Dm = 0 in the plant model.

Taking a difference operation on both sides of (2.24) yields:

xm(k+1)− xm(k) = Am(xm(k)− xm(k−1))+Bm(u(k)−u(k−1))

Also by denoting the difference of the state and control variables by:

Δxm(k) = xm(k)− xm(k−1)

Δu(k) = u(k)−u(k−1)

respectively, as the increments of the variables xm(k) and u(k), the finite difference repre-

sentation of the state-space equation is:

Δxm(k+1) = AmΔxm(k)+BmΔu(k) (2.26)

where the input to the state-space model is Δu(k). The next step is to connect Δxm(k) to the
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output y(k). To this end, a new state variable vector is chosen to be:

x(k) = [Δxm(k)
T y(k)]

T

where superscript T indicates matrix transpose. Following the same procedure as before

yields:

y(k+1)− y(k) =Cm(xm(k+1)− xm(k))

=CmΔxm(k+1)

=CmAmΔxm(k)+CmBmΔu(k) (2.27)

Putting together (2.26) with (2.27) leads to the following state-space model:

⎡
⎢⎣Δxm(k+1)

y(k+1)

⎤
⎥⎦=

⎡
⎢⎣ Am oT

m

CmAm 1

⎤
⎥⎦
⎡
⎢⎣Δxm(k)

y(k)

⎤
⎥⎦+

⎡
⎢⎣ Bm

CmBm

⎤
⎥⎦Δu(k)

y(k) =
[

om 1

]⎡⎢⎣Δxm(k)

y(k)

⎤
⎥⎦ (2.28)

where om = [0 0 . . . 0] contains n1 zero entries. The triplet (A,B,C) is called the augmented

model, which will be used in the design of predictive control.

Eigenvalues of the Augmented Model Considering a system of p inputs and q outputs,

the characteristic polynomial equation of the augmented model is:

ρ(λ ) = det

⎡
⎢⎣λ I −Am om

T

−CmAm (λ −1)Iq×q

⎤
⎥⎦= (λ −1)qdet(λ I −Am) = 0 (2.29)

where the property that the determinant of a block lower triangular matrix equals the prod-

uct of the determinants of the matrices on the diagonal has been used. Equation (2.29)
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illustrates how the eigenvalues of the augmented model are the union of the eigenvalues

of the plant model and the q eigenvalues, λ = 1. This means that there are q integrators

embedded into the augmented design model. This is the means by which the integral action

is incorporated into an MPC system.

Prediction of State and Output Variables Upon formulation of the mathematical model,

the next step is to calculate the predicted plant output with the future control signal as the

adjustable variables. Here, it is assumed that the current time is ki and the length of the

optimization window is Np samples. It has been assumed that at the sampling instant ki,

the state variable vector x(ki) is available through measurement; this provides the current

plant information. The future control trajectory is denoted by:

Δu(ki), Δu(ki +1), Δu(ki +2), . . . ,Δu(ki +Nc −1)

where Nc is called the control horizon dictating the number of parameters used to build

the future control trajectory. With given information x(ki), the future state variables are

predicted for Np number of samples, where Np is called the prediction horizon. The control

horizon Nc is chosen to be less than (or equal to) the prediction horizon Np.

Having denoted the future state variables by x(ki +m|ki) as the predicted state vari-

able at ki+m with the given current plant information x(ki), based on the augmented state-

space model (A,B,C), the future state variables are calculated sequentially using the set of
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future control parameters as in:

x(ki +1|ki) = Ax(ki)+BΔu(ki)

x(ki +2|ki) = Ax(ki +1|ki)+BΔu(ki +1)

= A2x(ki)+ABΔu(ki)+BΔu(ki +1)

...

x(ki +Np|ki) = ANpx(ki)+ANp−1BΔu(ki)+ANp−2BΔu(ki +1)

+ · · ·+ANp−NcBΔu(ki +Nc −1)

From the predicted state variables, the predicted output variables are, by substitution:

y(ki +1|ki) =CAx(ki)+CBΔu(ki)

y(ki +2|ki) =CA2x(ki)+CABΔu(ki)+CBΔu(ki +1)

y(ki +3|ki) =CA3x(ki)+CA2BΔu(ki)+CABΔu(ki +1)+CBΔu(ki +2)

...

y(ki +Np|ki) =CANpx(ki)+CANp−1BΔu(ki)+CANp−2BΔu(ki +1)

+ · · ·+CANp−NcBΔu(ki +Nc −1) (2.30)

As it can be seen, all predicted variables are formulated in terms of current state variable

information x(ki) and the future control movement Δu(ki + j), where j = 0, 1, . . . , Nc −1.

Also by defining vectors Y and ΔU as:

Y = [y(ki +1|ki) y(ki +2|ki) y(ki +3|ki) . . . y(ki +Np|ki)]
T

ΔU = [Δu(ki) Δu(ki +1) Δu(ki +2) . . . Δu(ki +Nc −1)]T
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equations (2.30) can be rewritten in a compact matrix form as:

Y = Fx(ki)+ΦΔU (2.31)

where

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CA

CA2

CA3

...

CANp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; Φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CB 0 0 . . . 0

CAB CB 0 . . . 0

CA2B CAB CB . . . 0
...

CANp−1B CANp−2B CANp−3B . . . CANp−NcB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.3.2 Seeking an Optimized Solution

Having defined a set-point signal r(ki) or a desired output, the objective of the model pre-

dictive controller at sample time ki is to bring the predicted output as close as possible

to the set-point signal, where it is assumed that the set-point signal remains constant over

the prediction horizon, also referred to as the optimization window. This objective is then

mathematically translated into finding a control signal vector ΔU such that a cost function

containing an error function reflecting the discrepancy between the set-point signal and the

predicted output is minimized. That is to say:

min J = (Rs −Y )T (Rs −Y )+ΔUT R̄ΔU (2.32)

where J denotes the cost function in which the first term is linked to the objective of min-

imizing the discrepancy just mentioned whereas, the second term refers to reducing the

control effort while still achieving this objective, and:

RT
s = [1 1 . . . 1]1×Np · r(ki)
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is the data vector that contains information regarding the set-point signal. Also, in this ex-

pression R̄ is a diagonal matrix in the form of R̄ = rwINc×Nc (rw ≥ 0) where rw acting on

the control effort, is used as a tuning parameter for the desired closed-loop performance.

For the cases of rw being assigned relatively small values, the cost function (2.32) is inter-

preted as the situation where no matter how large the ΔU might be, the goal would be solely

to make the error (Rs −Y )T (Rs −Y ) as small as possible whereas, assignment of relatively

large values is associated with situations where the controller would carefully consider how

large the calculated control signal might be while cautiously reducing the error, keeping the

control effort as low as possible and rendering the control system sluggish.

By substitution of the predicted output expressed by (2.31) the cost function J is

expanded to:

J = (Rs −Fx(ki))
T (Rs −Fx(ki))−2ΔUT ΦT (Rs −Fx(ki))+ΔUT (ΦT Φ+ R̄)ΔU (2.33)

The first term, though is a constant in the cost function, explains how the optimal solution

of the control signal is tightly linked to the set-point signal r(ki) as well as the state variable

x(ki) which is the most recent measurement taken and fed back, leading to a closed loop

optimal control system.

2.3.3 Realization of Constraints: Constrained Optimization

Next is consideration of operational constraints that are frequently encountered in the de-

sign of control systems. This is where Model Predictive Control lends itself to; the system-

atic handling of operational constraints. Such constraints are usually presented as linear

equalities and inequalities of the control and plant variables. In practice, there are three

major types of constraints frequently encountered:

• Constraints on the Control Variable Incremental Variation

• Constraints on the Amplitude of the Control Variable
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• Constraints on the Outputs or State Variables

From which the first two deal with the constraints imposed on the control variables u(k),

and the third deals with those on the outputs y(k) or state variables x(k). In the corre-

sponding literature [12] it has been investigated how performance of a control system can

deteriorate when a control signal produced by the controller reaches saturation limits of one

or more of the actuators. On the other hand, with a small modification which accounts for

incorporation of constraints, and acceptance of a small degree of performance degradation

introduced to the control system, the previously talked about performance deterioration

can be significantly eliminated. This is the motivation for consideration of constraints is a

control system.

Having expressed operational constraints prevalent in a control system in terms of

linear inequalities, it is required to relate them to the original Model Predictive Control

problem. To this end, the set of equalities and inequalities reflecting constraints should be

parameterized using the same parameter vector ΔU appeared within the cost function in the

design of Model Predictive Control.

Constraints on the Rate of Change of a Control Signal There are constraints on the

rate of change of the control variables Δu(k), that is to say, on how big or small the control

signal movements can be. A servomotor with the specification 0.1s/60◦ provided by the

manufacturer, will not travel 60◦ of its sweeping range in less than 0.1s, whatever the the

pulse width of the receiving PWM signal is. A control surface like an elevator in an airplane

cannot sweep its whole deflecting range instantaneously; for instance, once receiving the

command from an autopilot it takes some fraction of a second so that the surface returns

to its neutral position from maximum upward deflection, then travels further aft to its max-

imum downward position, probably taking some other fraction of a second. Likewise, a

telescopic hydraulic linear actuator cannot travel its effective range at an instant. No matter

how fast or slow this actuator is, its time response is a certain value ts (κmin ≤ ts ≤ κmax),
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and may never extend beyond the specified range. This elapsed time is inevitable and

should be considered and respected when designing a controller for a plant. For the case

of constraints on the Control Variable Incremental Variation, this will be expressed by two

inequalities:

−ΔU ≤−ΔUmin

ΔU ≤ ΔUmax

In the matrix form, this becomes:

⎡
⎢⎣−I

I

⎤
⎥⎦ΔU ≤

⎡
⎢⎣−ΔUmin

ΔUmax

⎤
⎥⎦ (2.34)

where ΔUmin and ΔUmax are column vectors with Nc elements of Δumin and Δumax, respec-

tively. This type of constraint can be equally used to implement one directional movement

constraints on the control variable. As an example, if u(k) can only increase and never

decrease, the only way to impose this on a controller is by selecting 0 ≤ Δu(k) ≤ Δumax,

provided that there exists a MPC based controller capable of dealing with constraints.

Constraints on the Amplitude of a Control Signal This is the most common type of

constraint frequently faced with in practice. A valve cannot open more than 100% of its

capacity; a control surface in an aircraft will not deflect more than a specific angle; a

robotic arm does not reach a point out of its work space defined due to restrictions on its

joints. These are some physical hard constraints and have to be respected. For the case of

constraints on the Amplitude of the Control Variable, since:

Δu(k) = u(k)−u(k−1)
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the control trajectory u(ki) i = 1,2, . . . ,Nc −1 can be expressed in terms of Δu as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(ki)

u(ki +1)

u(ki +2)
...

u(ki +Nc −1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I

I

I
...

I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u(ki −1)+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 . . . 0

I I 0 . . . 0

I I I . . . 0
...

I I . . . I I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δu(ki)

Δu(ki +1)

Δu(ki +2)
...

Δu(ki +Nc −1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

or in a compact matrix form, with C1 and C2 corresponding to the appropriate matrices,

then constraints on the Amplitude of the Control Variable are imposed as

−(C1u(ki −1)+C2ΔU)≤−Umin

(C1u(ki −1)+C2ΔU)≤Umax

where Umin and Umax are column vectors with Nc elements of umin and umax, respectively.

Constraints on an Output or a State Variable There exists also an operating range for

a pant output. The temperature of a combustion chamber must not be less than a certain

degrees Celsius if a combustion should happen, nor it should go beyond the melting point

of materials used in its construction; the altitude of an airplane should be bound within a

minimum and a maximum if the airplane intends to fly in a specified airway staying clear

of other traffics flying around; the blood pressure of a human body should be maintained

within a certain range if the blood is to circulate properly across the whole body. The

same procedure applies in order to parameterrize the Outputs constraints using the same

parameter vector ΔU as appeared within the cost function in the design of MPC, yielding:

−(Fx(ki)+ΦΔU ≤−Y min

(Fx(ki)+ΦΔU)≤ Y max
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It is a common practice that output constraints be implemented as ’soft’ constraints. This is

achieved through introduction of a slack variable vs into the upper and lower limits which

define the operating range for the plant output. That is to say:

ymin − vs ≤ y(k)≤ ymax + vs (2.35)

There is am important reason behind why slack variables are introduced to the output con-

straints to render them soft constraints; output constrains, once being active, cause signif-

icant changes in both the control u(k) and the incremental control Δu(k) variables. This

happens because the controller is trying to do its best not to violate output constraints. At

the consequence of this the control and the incremental control variables violate their own

constraints and this gives rise to a serious problem, saturations. In such circumstances,

where the constraints on the control and the incremental control variables are more essen-

tial than that of the output, a big slack variable is introduced to the output constraints to

avoid saturated actuators. As mentioned earlier, the third class of constraints which has

been on plant outputs may equally be imposed on state variables–if they are measurable–or

on the observer state variables. In this case, slack variables are employed in the same man-

ner to transpose state variable constraints into soft constraints, hence preventing the same

situation.

As the optimal solution will be obtained using a quadratic programming procedure,

the constraints needed to be decomposed into two parts to reflect the lower limits, and the

upper limits with opposite signs.Finally, the Model Predictive Control in the presence of

hard constraints is proposed as finding the parameter vector ΔU that minimizes:

J = (Rs −Fx(ki))
T (Rs −Fx(ki))−2ΔUT ΦT (Rs −Fx(ki))+ΔUT (ΦT Φ+ R̄)ΔU (2.36)
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subject to the inequality constraints:

⎡
⎢⎢⎢⎢⎣

M1

M2

M3

⎤
⎥⎥⎥⎥⎦ΔU ≤

⎡
⎢⎢⎢⎢⎣

N1

N2

N3

⎤
⎥⎥⎥⎥⎦ (2.37)

where the data matrices are:

M1 =

⎡
⎢⎣−C2

C2

⎤
⎥⎦ ; N1 =

⎡
⎢⎣−Umin +C1u(ki −1)

Umax −C1u(ki −1)

⎤
⎥⎦

M2 =

⎡
⎢⎣−I

I

⎤
⎥⎦ ; N2 =

⎡
⎢⎣−ΔUmin

ΔUmax

⎤
⎥⎦

M3 =

⎡
⎢⎣−Φ

Φ

⎤
⎥⎦ ; N3 =

⎡
⎢⎣−Y min +Fx(ki)

Y min −Fx(ki)

⎤
⎥⎦

In principle, all the constraints are defined within the prediction horizon. This allows for

their modification at the beginning of each optimization window. However, in order to

reduce the computational load it is sometimes preferred to keep the constraints invariant

with time and chose a smaller set of sampling instants–instead of all the future samples–at

which the constraints are to be imposed [12].

The standard quadratic programming problem has been extensively studied in the

literature [17], and this is a field of extensive investigation in its own right. The required

numerical optimization solution for the Model Predictive Control is often regarded as an

obstacle in the application of MPC due to limited computational power available, Neverthe-

less, Hildreth’s Quadratic Programming Procedure proves to be computationally effective.

This procedure was proposed for solving a group of problems collectively referred to as

Primal-Dual to which the family of active set methods belongs. The idea of active set

method is to define at each step of the algorithm a set of constraints, termed the working
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set, which is to be treated as the active set. The working set is chosen to be a subset of

the constraints that are actually active at the current point. The algorithm then proceeds to

move on the surface defined by the working set of constraints to an improved point. In the

active set methods, the active constraints need to be identified along with the optimization

variable; therefore, an iterative procedure is required to solve the optimization problem with

inequality constraints [18]. If the active set could be identified in advance, then the iterative

procedure would be shortened; hence in the specific structure of the Hildreths QP proce-

dure deployed in this work, it has been tries to address this pre-identification requirement.

This will be further investigated in Appendix B.

2.3.4 State Estimation in Model Predictive Control

As mentioned earlier, in the design of model predictive control, it has been assumed that

the information x(ki) is available at the time ki. In other words, it is assumed that all the

state variables are measurable. However, in reality and with most applications it happens

quite often that not all state variables are measured or not all are available for measurement.

One possible solution to address this problem is the use of a soft instrument to estimate the

values of unknown state variables x(k) based on the plant output measurement. This is

commonly referred to as an observer. Observers are not necessarily to be employed for

estimation of unknown state variables. In a noisy environment, a state observer can also

act like a noise filter to reduce the effects of noise on the measurement of measurable state

variables.

An observer is constructed based on the mathematical model of a plant. Here, con-

struction of one will be detailed as explained in [12]. Assuming the plant model in the form

of state space difference equations:

xm(k+1) = Amxm(k)+Bmu(k) (2.38)
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This model can be used to calculate the state variable x̂m(k), k = 1,2, . . . with an initial

state condition x̂m(0) and the input signal u(k) as:

x̂m(k+1) = Amx̂m(k)+Bmu(k) (2.39)

Provided that the plant model is stable and the initial condition just substituted is nearly

correct, this approach in fact would work after some transient time. However, this is an

open-loop prediction and the prediction x̂m(k) may not necessarily converge to xm(k). This

will be further investigated. The error x̃m(k) = xm(k)− x̂m(k) satisfies the difference equa-

tion:

x̃m(k+1) = Am(xm(k)− x̂m(k))

= Amx̃m(k) (2.40)

For a give initial error state x̃m(k) �= 0:

x̃(k) = Am
kx̃m(0) (2.41)

Therefore,

• If Am has all the eigenvalues inside the unit circle, then the error system 2.41 is

stable and |x̃m(k)| → 0 as k → ∞, which means that the estimated state variable x̂m(k)

converges to xm(k). On the contrary, if Am has one or more eigenvalues outside

the unit circle, the error system 2.41 is unstable and |x̃m(k)| → ∞ as k → ∞, which

means that the prediction x̂m(k) does not converges to xm(k). If Am has one or more

eigenvalues on the unit circle, the error state |x̃m(k)| will not converge to zero.

• In addition, for the case of a stable plant model Am, there is no control on the conver-

gence rate of the error |x̃m(k)| → 0, which is dependent on the location of the plant

poles. If the plant poles are close to the origin of the complex plane, then the error
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converges at a fast rate to zero; otherwise, the convergence rate could be slow.

To improve the estimation of xm(k), the use of a feedback principle where an error

signal is deployed to improve the estimation is recommended, thus the observer is con-

structed using the equation:

x̂m(k+1) = Amx̂m(k)+Bmu(k)+Kob(y(k)−Cmx̂m(k)) (2.42)

where Kob is the observer gain matrix. In this formulation, the state variable estimate

x̂m(k+1) consists of two terms. The first term is the original model, and the second therm

is the correction term based on the error between the measured output and the predicted

output using the estimate x̂m(k).

To choose the observer gain Kob, the closed-loop error equation is examined. By

substituting y(k) =Cmxm(k) into 2.42, with the definition of error state x̃m = xm(k)− x̂m(k):

x̃m(k+1) = Amx̃m(k)−KobCmx̃m(k)

= (Am −KobCm)x̃m(k) (2.43)

This, with the given initial error x̃m(0) yields:

x̃m(k) = (Am −KobCm)
kx̃m(0) (2.44)

Comparing the observer error response given by 2.44 with the open-loop prediction

2.41, it is apparent that the observer gain Kob can be used to manipulate the convergence

rate of the error. If there is only a single output, a commonly used approach is to place the

closed-loop eigenvalues of the error system matrix (Am −KobCm) at a desired location of

the complex plane. This method is also referred to as Pole Placement.
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Definition of Observability Assuming an unforced system described by:

ẋ = An×nx

y =Cm×nx (2.45)

the system is said to be completely observable if every state x(t0) can be determined from

the observation of y(t) over a finit time interval t0 ≤ t ≤ t1. The system is, therefore,

completely observable if every transition of the state eventually affects every element of

the output vector. In other words, if the system is completely observable, then given the

output y(t) over a time interval 0 ≤ t ≤ t1, x(0) is uniquely determined. It has been shown

that this requires the rank of the nm× n observability matrix to be n. The obserability

matrix is: ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C

CA
...

CAn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.46)

The concept of observability is useful in solving the problem of reconstructing unmea-

surable state variables from measurable variables in the minimum possible length of time

[25].

Kalman Filter If the pair (Am,Cm) is observable, then for the single-output system, as

discussed, a pole assignment strategy can be used to determine Kob such that the eigenval-

ues of the observer–i.e. that of the matrix Am−KobCm–are at the desired location. However,

for a multi-output system, Kob can be calculated recursively using a Kalman filter. To this

end, it is assumed that:

xm(k+1) = Amxm(k)+Bmu(k)+d(k)

y(k) =Cmxm(k)+ξ (k) (2.47)
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with the covariance matrices of d and ξ , respectively, defined by:

E{d(k)d(τ)T}= Θδ (k− τ)

E{ξ (k)ξ (τ)T}= Γδ (k− τ)

where δ (k− τ) = 1 if k = τ , and δ (k− τ) = 0 if k �= τ .

The optimal observer gain Kob is solved recursively for i = 0,1, . . . , using:

Kob(i) = AmP(i)Cm
T (Γ+CmP(i)Cm

T )
−1

(2.48)

where

P(i+1) = Am{P(i)−P(i)Cm
T (Γ+CmP(i)Cm

T )
−1

CmP(i)}Am
T +Θ

and

P(0) = E{[x(0)− x̂(0)][x(0)− x̂(0)]T}

Then, as k → ∞, the steady-state solution of 2.48 guarantees that the eigenvalues of Am −
Kob(∞)Cm are inside the unit circle, thus stable. It is emphasized that the iterative solution

of 2.48 is not required in real time. The observer gain is calculated off-line for predictive

control applications.

It is often the case that the covariance matrices Θ and Γ, corresponding to the char-

acteristics of the disturbances, are unknown. Thus, in practice, Θ, Γ, and an initial P(0)

are chosen to calculate an observer gain Kob by solving 2.48 iteratively until the solution

converges to a constant matrix. Then, the closed-loop system obtained is analyzed with

respect to the location of eigenvalues contained in Am −KobCm i.e., the transient response

of the observer, robustness, and effect of noise on the response are all investigated. Then,

the elements of the covariance matrices are modified until a desired result is obtained. Such

a trial-and-error procedure can be time consuming, and is one of the challenges faced with
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when using Kalman-filter-based multivariable system design.

However, sometimes it is possible to specify a region in which the closed-loop ob-

server error system poles should be and then enforce this in the solution. As proposed in

[12] it is possible to design an observer whose closed-loop poles are bound to be inside a

circle with a pre-specified radius α (0 < α < 1). Having defined x̃(k) = x(k)− x̂(k) as the

error of the estimated state, then the observer error system is:

x̃(k+1) = (Am −KobCm)x̃(k) (2.49)

Also, by performing the transformation Âm = Am
α and Ĉm = Cm

α where 0 < α < 1, the trans-

formed observer error system is:

x̃t(k+1) = (Âm − K̂obĈm)x̃t(k)

=
1
α
(Am − K̂obCm)x̃t(k) (2.50)

Solving the iterative equation 2.48 by using Âmand Ĉm to replace Am and Cm matrices, then

the eigenvalues of Âm−K̂ob(∞)Ĉm are guaranteed to be inside the unit circle, yet stable. The

calculated observer gain K̂ob is then applied to the original observer system 2.49, leading

to the closed-loop characteristic equation:

det(zI − (Am − K̂obCm) = det(zI − (Âm − K̂obĈm)×α) = 0 (2.51)

Therefore, it concludes the study that the eigenvalues of (Am − K̂obCm) are the same as

the eigenvalues of (Âm − K̂obĈm) multiplied by the factor α , which guarantees that the

eigenvalues of the observer error system with K̂ob be inside the circle of radius α . This

procedure makes a direct connection to the dynamics of the observer through the choice of

α; thus the trial-and-error procedure can be reduced to choose a suitable α along with Θ

and Γ to achieve the desired closed-loop performance.
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State Estimation and Model Predictive Control In the implementation of model pre-

dictive control state estimation is employed whenever one or more of the state variables

x(ki) are not measured or available for measurement at time ki. As mentioned in the previ-

ous section the state variable x(ki) is estimated via the observer structured as:

x̂(ki +1) = Ax̂(ki)+BΔu(ki)+Kob(y(ki)−Cx̂(ki)) (2.52)

It should be noted that in the structure of a model predictive controller, the control signal

is Δu; that is the reason why in this formulation of an observer u(ki) is replaced with

Δu(ki). Also, the matrices (A,B,C) are associated with the augmented model used in model

predictive design. With the introduction of the estimated state(s) x̂(ki) replacing x(ki), the

predictive control law is slightly modified so that once again, it will be iterative calculation

of ΔU while minimizing the cost function:

J = (Rs −Fx̂(ki))
T (R̄sr(ki)−Fx̂(ki))−2ΔUT ΦT (Rs −Fx̂(ki))+ΔUT (ΦT Φ+ R̄)ΔU

(2.53)

in which R̄s, F , Φ, R̄, and ΔU are the same as before. Anonymously, the optimal solution

is solved for as:

ΔU = (ΦT Φ+ R̄)
−1ΦT (Rs −Fx̂(ki)) (2.54)

Summary In this section, the basic idea of MPC was discussed and two different for-

mulations of the control technique were presented in a discrete-time setting, namely the

efficient and the integral-action-incorporated formulations. The efficient formulation, ex-

ecutes essentially faster than the integral-action-incorporated type however, it is highly

reliant on availability of a concise mathematical model of the plant. This issue has been

addressed in the integral-action-incorporated formulation. Next section elaborates on the

hardware and software structure of Qball-X4, an unmanned quadrotor helicopter on which

flight experiments will be conducted throughout this research and development.
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Chapter 3

Description of the Testbed

3.1 Dynamics of a Quadrotor Helicopter

A quadrotor helicopter consists of four rotors in a cross configuration. All the rotors axes

of rotation are fixed and parallel and their propellers have fixed-pitch blades. These con-

siderations imply that the structure is quite rigid and the only things that can vary are the

propeller rotational speeds. The front and the rear propellers rotate clockwise, while the left

and the right ones spin counter-clockwise. This configuration of pairs rotating in opposite

directions eliminates the need for a tail rotor which is employed in the conventional heli-

copter configuration to counteract the reaction torque applied to the fuselage of a helicopter

produced by the main rotor’s rotation.

Even though a quadrotor has six degrees of freedom, there exists just four electrical

motors to control motion of the vehicle, rendering the system under-actuated. Therefore, it

is not possible to reach a desired setpoint for all the degrees of freedom, but a maximum

of four. However, due to its structure, it is quite easy to chose the four best controllable

variables and then decouple them to make its control easier. The four control variables are

thus related to the four basic control movements which allow the helicopter reach a certain

height and attitude.
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In hovering condition, all the propellers have the same rotational speed to counter-

balance the downward force due to gravity. Thus, the quadrotor performs stationary flight

and no forces or torques push it away from its position.

Lift U1 Lift is generated by increasing (or decreasing) all the propellers’ rotational speed

collectively by the same amount. This leads to a vertical force with respect to the body-

fixed frame and raises or lowers the quadrotor. In this case, the speed of each propeller

equals ΩH +Δω1 with Δω1 being a positive variable which represents an incremental lift to

induce vertical motion. In what follows, by the proper use of circular arrows representing

direction and magnitude of rotational speed of each propeller, it will be tried to illustrate

three elements of the rotational motion of a quadrotor helicopter schematically, and explain

how each of the three are induced.

Roll U2 This command is provided by increasing (or decreasing) the left propeller’s ro-

tational speed and by decreasing (or increasing) that of the right one. It leads to a torque

along the xB axis which makes the quadrotor turn. The overall vertical thrust is the same as

in hovering, hence this command leads only to a roll angle acceleration. Fig. 3.1 shows the

roll command on a quadrotor sketch.

Left Right 

Top 

Bottom 

Hovering >> Rotation along Positive x >> Rotation along Negative x

y 

x 

y 

x 

Figure 3.1: Transition from Hovering (on the Left) to Rolling Motion
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Pitch U3 This command is very similar to that of the roll and is provided by increasing

(or decreasing) the rear propeller’s rotational speed and by decreasing (or increasing) that

of the front one. It leads to a torque along the yB axis which makes the quadrotor turn. The

overall vertical thrust is the same as in hovering, hence this command leads only to a pitch

angle acceleration. Fig. 3.2 shows the pitch command on a quadrotor sketch.

Left Right 

Top 

Bottom 

Hovering >> Rotation along Positive y >> Rotation along Negative y

y 

x 

y 

x 

Figure 3.2: Transition from Hovering (on the Left) to Pitching Motion

Yaw U4 This command is provided by increasing (or decreasing) the front and rear pro-

pellers’ rotational speeds simultaneously and by decreasing (or increasing) that of the left

and right propellers at the same time. It leads to a torque along the zB axis which makes

the quadrotor turn. The yaw movement is generated due to the fact that the left-right pro-

pellers rotate counter-clockwise while the front-rear ones rotate clockwise. Hence, when

the overall torque is unbalanced, the helicopter spins around zB in the opposite direction as

that of the net torque induced by the unbalanced torques acting on the four rotors. The total

vertical thrust is the same as in hovering, hence this command leads only to a yaw angle

acceleration. Fig. 3.3 shows the yaw command on a quadrotor sketch.
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Left Right 

Top 

Bottom 

Hovering >> Counter Clockwise Rotation >> Clockwise Rotation

Figure 3.3: Transition from Hovering (on the Left) to Yawing Motion

3.1.1 Nonlinear Model of a Quadrotor Helicopter

Based on the balance of forces and moments as detailed in [14], equations of motion gov-

erning dynamics of a quadrotor helicopter with respect to an earth-fixed coordinate system

are:

ẍ =
(sinψ sinφ + cosψ sinθ cosφ)u1 −K1ẋ

m
(3.1)

ÿ =
(sinψ sinθ cosφ − cosψ sinφ)u1 −K2ẏ

m
(3.2)

z̈ =
(cosφ cosθ)u1 −K3ż

m
−g (3.3)

φ̈ =
u3l −K4φ̇

Iz
(3.4)

θ̈ =
u2l −K5θ̇

Iy
(3.5)

ψ̈ =
u4c−K6ψ̇

Iz
(3.6)

where Ki, i = 1, 2, . . . , 6 are drag coefficients associated with the aerodynamic drag

force, l is the distance between the center of gravity of the quadrotor and the center of

each propeller, and c is the thrust-to-moment scaling factor. Note that the drag coefficients

are negligible at low speeds. Also, Ix, Iy, and Iz represent the moments of inertia along
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x, y, and z, respectively. The linear position XE = [x y z]T of the body is determined by

the coordinates of the vector connecting the origin of the earth fixed frame to that of the

body fixed frame with respect to the earth fixed frame. The angular position (or attitude)

ΘE = [φ θ ψ ]T of the body is defined as the orientation of the body fixed frame with respect

to the earth fixed frame. This is given by three consecutive rotations about the main axes

to take the earth fixed frame into the body fixed frame. For this purpose, Euler angles are

introduced: roll φ , pitch θ , and yaw ψ . As defined by convention:

• The earth fixed frame (OE xE yE zE) is chosen as the inertial right-hand reference

frame. xE points toward the North, yE points toward the West, zE points upwards

with respect to the earth and OE is the center of this coordinate system. This frame

is used to define the linear position XE and the angular position ΘE of the rigid body.

• The body fixed frame (OB xB yB zB) is attached to the body being studied where OB

is generally chosen to coincide with its center of mass. This reference is right-hand

too and it is used to define the linear velocity VB, the angular velocity ΩB, the forces

FB, and the torques τB.

The actuators of the quadrotor helicopter are brushless DC motors. The relation

between the PWM input applied and the thrust produced by each is:

Fi = Kmotor
wmotor

s+wmotor
uPWM (3.7)

where Kmotor is a positive gain and wmotor represents the actuator bandwidth. For compu-

tational convenience the inputs to the system ui, i = 1, 2, 3, 4 are defined as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

0 −1 0 1

−1 0 1 0

1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F1

F2

F3

F4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.8)
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Table 3.1 contains the nominal values of the quadrotor helicopter’s system parameters.

Table 3.1: System Specifications
Parameter m Ix Iy Iz l c Kmotor wmotor

Value 1.4 0.03 0.04 0.03 0.2 1 120 15
Unit kg kg.m2 kg.m2 kg.m2 m — N rad/s

3.1.2 Model Reduction to Minimize Computations

As stated earlier, due to the relatively high rate of update required for fast dynamic systems,

success of predictive control in aerospace applications is highly dependent on the real-time

computational power of the airborne computer. Since in almost all such applications the

available onboard computational capacity is limited, partially due to weight considerations,

any effort to reduce the burden of calculations is crucial to render application of the MPC

to aerial systems–specifically unmanned vehicles–feasible.

To this end, it has been tried to decouple the six-degree-of-freedom equations of

motion governing dynamics of the quadrotor so that the system is described by three plus

one second-order differential equations, in which:

• The translational longitudinal displacement x is coupled with the rotational pitching

motion θ ,

• The translational lateral displacement y is coupled with the rotational rolling motion

φ , and

• The translational vertical displacement along the normal axis z is treated separately

and independently of the other two.

That is to say:

ẍ =
u1 sinθ

m
; θ̈ =

u2l
Iy

(3.9)
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ÿ =
u1 sinφ

m
; φ̈ =

u3l
Ix

(3.10)

z̈ =
u1

m
−g; ψ̈ =

u4c
Iz

(3.11)

This way, dimensions of the system matrices involved in the iterative calculations of predic-

tive control including that of the optimization over a single time step–lasting for a fraction

of a second–will be of the order of one-third or less; otherwise, direct consideration of a

six-DOF motion corresponding to a quadrotor helicopter includes matrices of the order of

fourteen (two corresponding to each degree of freedom plus those of DC motors). This in-

dividual treatment of the modes of motion greatly affects the execution time of onboard cal-

culation. Also, regarding the yawing motion ψ , it has been assumed that a zero yaw angle

is maintained at all times; this can be achieved by integration of a separate reaction-wheel

mechanism–apart from the four DC motors–to take over control of the yawing motion.

With this new subset of equations, sinθ , sinφ , and u1
m g will be taken as manipulated

variables or inputs of their corresponding equations (3.9–3.11). That is to say, u1 is initially

calculated by means of the third equation of (3.11) written for steady and level flight. Then

this value is substituted in both the first equations of (3.9 and 3.10) as constant (over the

prediction horizon), remaining sinθ and sinφ as the only manipulated variables. Next, the

new versions of equations are discretized with a proper discretization time step, preserv-

ing dynamics of the quadrotor system. This rate can vary from one equation to the other

depending on how agile the system acts along that axis.

3.1.3 Validation of the Simplified Decoupled Model vs. the Elaborate

Coupled Model

In the previous section, based on some simplifying assumptions, a model reduction tech-

nique was used. However, the obtained decoupled model holds as long as those underlying

simplifying assumptions are met; that is to say, the pitch angle as well as the roll angle are

maintained within the vicinity of zero or thereabouts at all times. In other words, there is
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a flight envelope inside which the quadrotor is bound to stay over the course of a flight, if

the simplified decoupled model is to be used.

As stated, in order to arrive at the simplified decoupled equations of motion it is re-

quired to keep the rotational angles–roll, pitch, and yaw–as small as possible. But this is

a qualitative image of the requirement. However, for the purpose of controller design this

requirement should be precisely specified quantitatively as well. The controller that is de-

signed based on the simplified model will not be functioning properly once the plant passes

across or violates the boundaries of the pitch and roll angles determined to be respected for

the validity of the employed model reduction technique. This is also referred to as flight

envelope.

In this section, instead of conducting a set of simulations to determine the flight en-

velope, a single simulation is set up to reveal the validity range of the decoupled model

throughout a flight. In this flight test the quadrotor is guided through a series of consecu-

tive square trajectories of increasing sides. By increasing the sides of square trajectories,

setpoint changes will be gradually increased as the dimensions of the square trajectories

become bigger and bigger. In order to accommodate such abrupt changes of setpoint, the

controllers output input signals of increasing amplitude as well. Since the controllers’ out-

puts/the input signals to the plant are sinθ and sinφ , soon their values will reach a point

beyond which the decoupled model does not conform to the coupled full order model. This

point should be marked as the bottom-line of design.

As suggested in Fig. 3.4, if the quadrotor receives a setpoint variation of 2 meters

or more along the longitudinal axis, the longitudinal controller will output a pitch angle

greater than 0.2618 rad (15 degrees) to accommodate such a setpoint change and makes

the quadrotor tilt 15◦ either forwards or backwards, accordingly. This is the maximum

acceptable change of pitch angle, if the decoupled simplified equations are to be used for

the purpose of design. The lateral dynamics exhibits less sensitivity to variations in the roll

angle. This is illustrated in Fig. 3.5. As the yaw angle does not contribute much to the cross
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coupling of equations of motion, its variations will be neglected in the process of controller

design. In addition, it has been assumed that a separate controller is employed to maintain

a zero yaw angle essentially at all times; this is pretty manageable in practice.
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Figure 3.4: Validation of the Simplified Decoupled Model Along x
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Figure 3.5: Validation of the Simplified Decoupled Model Along y

Therefore, a maximum of 2-meter setpoint change of translational longitudinal or

lateral motion corresponding to the 0.2618 rad (15 degrees) change of either pitch or roll

angle specifies boundaries of the pertinent flight envelope. However, this should not be
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interpreted as an operational restriction for the developed MPC control system, yet a short-

coming of all other controllers, but not MPC. As mentioned previously, MPC is one of the

rarest control techniques that can explicitly deal with operational constraints. Therefore,

once the boundaries of sinθ and sinφ (yet θ and φ ) are given to the controller as constraints

on the manipulated variable or U , setpoint variations of whatever magnitude may be ap-

plied to the quadrotor helicopter. That is possible because the constrained MPC controller

will never output a control signal less than -0.2618 rad (-15 dgrees) or greater than +0.2618

rad (+15 dgrees), maintaining −15◦ < θ <+15◦ and −15◦ < φ <+15◦ at all times. This

is what distinguishes MPC from other controllers. That is illustrated in Fig. 3.6. In spite

of abrupt setpoint variations of significant amplitude the developed controller keeps the

quadrotor on the trajectory.
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Figure 3.6: Abrupt Setpoint Variations of Great Amplitude - Constrained MPC
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3.2 Qball-X4: Hardware vs. Software

The quadrotor UAV available at the Network Autonomous Vehicle (NAV) Lab in the De-

partment of Mechanical and Industrial Engineering of Concordia University is the Quanser’s

Qball-X4 as shown in Fig. 3.7.

Figure 3.7: The Qball-X4 quadrotor UAV (Quanser, 2010)

The quadrotor UAV is enclosed within a ball-shaped protective carbon fiber cage to

ensure safe operation. Generally speaking, this quadrotor helicopter platform is suitable for

a wide variety of UAV research and development applications. This innovative rotary-wing

vehicle is propelled by four DC motors fitted with 10 inch propellers. The entire system is

enclosed within a spherical protective carbon fiber cage of 68 cm.

The Qball-X4’s proprietary design ensures safe operation and opens the possibilities

for a variety of novel applications. For instance, the protective cage is a crucial feature

since this unmanned aerial vehicle is designed mainly for use in an indoor environment

of a laboratory where there are typically many close-range hazards (including other ve-

hicles) and personnel doing flight tests with the system. The cage gives the Qball-X4

a decisive advantage over other vehicles that would suffer significant damage if contact

occurs between the vehicle and an obstacle. To have onboard sensor measurements and

drive the motors, the Qball-X4 utilizes Quanser’s onboard avionics data acquisition card
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(DAQ), the HiQ, and the embedded single-board computer, Gumstix. The HiQ DAQ in-

tegrates a high-resolution Inertial Measurement Unit (IMU) and an avionics Input/Output

(I/O) card designed to accommodate a wide variety of research applications. In addition,

the onboard flight computer’s open-architecture hardware and extensive Simulink blocksets

provide users with powerful controls development tools.

QuaRC, Quanser’s real-time control software, the interface to the Qball-X4 in MAT-

LAB/Simulink environment, allows researchers and developers to rapidly develop and test

controllers on actual hardware through the MATLAB/Simulink interface. QuaRC can tar-

get the Gumstix embedded computer automatically, generating the code and executing the

designed controllers onboard the vehicle. In other words, the controllers are developed in

Simulink with QuaRC on the host computer. Next, these models are coded, compiled into

executable codes, and eventually uploaded on the target (Gumstix) seamlessly [15]. The

open-architecture QuaRC and extensive Simulink blocksets provide users with powerful

control development tools. The communication diagram as well as the Qball-X4 system

configuration are shown in Fig. 3.8.

Figure 3.8: Qball-X4 communication hierarchy and communication diagram

During flights, while the controller is executing on the Gumstix, users can tune pa-

rameters in real time and observe sensor measurements from a host ground station computer

(PC or laptop). System’s main components include:
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• Qball-X4: as explained previously;

• HiQ: QuaRC aerial vehicle data acquisition card (DAQ);

• Gumstix: The QuaRC target computer. An embedded, Linux-based system with the

QuaRC runtime software installed;

• Batteries: Two 3-cell, 2500 mAh Lithium-Polymer batteries; and

• Real-Time Control Software: The QuaRC-Simulink control system development

software.

OptiTrack Motion Tracking System for Localization As for any other moving robot

demonstrating autonomous motion, decision making on where to go, in which direction

to head, and with what speed to move is strongly dependent on the information regarding

current position of the vehicle as well as its orientation.

Based on the environment in which a quadrotor helicopter is supposed to work,

whether indoor or outdoor, the area to be covered during a flight, and the precision called

for, different motion tracking systems can be appropriately competent to be used for naviga-

tion purposes. Even though such a quadrotor helicopter, once being developed, is supposed

to fulfill an outdoor mission, for the time being, i.e. during the process of control algorithm

development and performance evaluation, much of a testbed characteristics are required

other than an industrial solution; in other words, flight in the environment of a laboratory

for the purpose of research and development needs extensive accuracy rather than large

coverage which is of concern for the finished unmanned quadrotor helicopter. That is the

reason why criteria have been narrowed down to a system of indoor positioning cameras

rather than other solutions like the Global Positioning System (GPS).

A set of three or more V100:R2 cameras which offers integrated image capture, pro-

cessing, and motion tracking in a compact package constitute the OptiTrack’s optical mo-

tion tracking system. The capability of customizing cameras with user-changeable M12
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lenses, and OptiTrack’s exclusive Filter Switcher technology has let V100 cameras deliver

one of the world’s premier optical tracking value propositions. Each V100:R2 camera is

capable of capturing fast moving objects with its global shutter imager at 100 FPS capture

speed. By maximizing its 640×480 VGA resolution through advanced image processing

algorithms, the V100:R2 can also track markers down to sub-millimeter movements with

maintainable accuracy [16].

A variety of V100:R2 settings are customized with any of OptiTrack’s software ap-

plications such as the one employed in this study, i.e. Tracking Tool, for greater control

over what cameras capture and what information they report to the personal computer set

up as the ground station. Available settings include: image processing type, frame rate, ex-

posure, threshold, illumination, filter switching, and status LED control. Some OptiTrack’s

software applications like the Tracking Tool interface with MATLAB, under manipulation

of specific blocks inside MATLAB/Simulink within the library of QUARC. QUARC is

a built-in blockset that integrates with Simulink, provided by the Mathworks Company.

This has been explained in the previous section. Fig. 3.9 illustrates one of the six cameras

employed constituting the system of OptiTrack.

Figure 3.9: The OptiTrack System – Camera #2
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Summary In this section, equations of motion governing key dynamics of a quadrotor

helicopter were presented. Based on the underlying assumption that MPC can keep both

pitch and roll angles bounded by a tight limit maintaining smooth flight at all times, a

model reduction technique was practiced. Validity analysis of the reduced model versus

the real plant governed by the highly coupled original equations of motion were done to il-

lustrate effectiveness of simplifications made. Eventually, the basic structure of the specific

quadrotor helicopter under study, Qball-X4, was explained both in terms of hardware and

software. In the following section, various stages of the autopilot control system design,

simulation and flight test experiments, will be detailed.
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Chapter 4

Development of the Autopilot

4.1 Phase 0: Efficient MPC Design

In this section, simulation and experimental results corresponding to the efficient MPC de-

sign introduced primarily due to its highly reduced computational demand are presented. In

Chapter Two, Section Two, a fast prediction scheme was introduced within the framework

of efficient model predictive control in order to present a fast MPC in which the burden

of calculation has been highly reduced. However, this has been achieved at the expense of

lost robustness against model uncertainties. Even small amounts of uncertainties added to

system model, adversely effects offset-free tacking capability of the overall control system.

This is illustrated in Fig. 4.1, schematically. Therefore, here it is intended to demonstrate

the advantage as well as the disadvantage of the prediction scheme just proposed.
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Plant Model 

Real Plant Controller 

Controller 
- 

- 
- 
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≠ ≠ 0 

Figure 4.1: the Effect of Model Uncertainties on the Efficient Formulation
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4.1.1 Simulation Results

As mentioned, this is a flaw in the prediction scheme set forward within the framework of

efficient MPC formulated in Chapter Two, Section One. This deficiency should be fully

recognised so that the boundaries of the efficient PMC design applications are set behind

this deficiency that introduces some limitation to its use.

To this end, Qball-X4 simulation model has been given a rectangular trajectory to

follow. A set of two experiments are set up. In one scenario, the designed controller is

connected to a plant which is mathematically identical to the internal model of the MPC

controller, whereas in the second one, the mass of the quadrotor helicopter is increased by

10%, such that some degree of discrepancy between the internal model and plant is added

to the plant, rendering the plant different from the internal model. Fig. 4.2 refers to the first

scenario in which the designed controller is connected to a plant identical to the internal

model of the MPC controller, whereas Fig. 4.3 shows vulnerability of the design to a small

10% value of discrepancy introduced to the control system in terms of mass.

The time response of the efficient MPC algorithm is satisfactory, explained by time

domain performance indices such as rise time, settling time, and overshoot. The run time of

the non-real-time simulation running on a desktop computer featuring an Intel Core(TM)

2Duo CPU, 2.20GHz processor shows that it executes as fast as a PID controller does;

and this is promising. However, its reliance on existence of a detailed precise mathemat-

ical model of the plant under control, restricts its use to control system applications for

which such an elaborate model is derived, available for design. This does not account for

the majority of applications. That is why a means is desperately sought to eliminate the

need for an accurate model of the plant; that is incorporation of an integral action control

into the design. Depending on how an integral action is incorporated into the structure

of an MPC controller, two designs are imaginable, centralised design versus decentralized

design. Fig. 4.4 compares the two structures, schematically.
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4.1.2 Experimental Testing Results

Next is implementation of the decentralized controller on the Qball-X4 to assess perfor-

mance of the approach. This is done by putting in parallel the developed controller with

the baseline controller of the Qball-X4 which is a PID controller for height control. Having

designed the control system in the environment of QuaRC for a single degree of freedom

(height), the altitude-hold controller is built and uploaded to the onboard flight computer to

take control of the vehicle. The proposed efficient MPC successfully controls the vehicle

along a rectangular trajectory, as shown in Fig. 4.5. In this flight test, designed controller’s

parameters are as specified in Table 4.1.
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Figure 4.4: Centralized Design vs. Decentralized Design

Table 4.1: Controller’s Design Parameters
Parameter Value

Tre f 5
Ts 0.01Tre f
Prediction Horizon 80
Discretization Rate 0.05

Comparing with the simulation result presented in Fig. 4.2, there are some small

differences due to the effects of measurement noises and disturbances added on the Qball-

X4 during flights in the experimental testing environment. Basically this control structure

is a decentralized design which simply adds control inputs from MPC and Integral control

algorithms. Although the steady state error can be eliminated by Integral gain tuning, this

control structure is incapable of constraint handling since the integrator dynamics is not

included in the QP formulation [10]. As explained in Chapter Two, Section Three, effort

has been made to reformulate controller’s structure to construct a centralized design. In
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Figure 4.6: A Snapshot of the Overall MPC Control System Design – Altitude-hold Con-
troller

contrast to the decentralized design, the new formulation does not simply add control inputs

from MPC and Integral control algorithms but instead, the Integral action is incorporated

in the formulation. This way, the steady state error is eliminated and the controller will
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be capable of constraint handling since dynamics of the integrator is included in the QP

formulation. From Phase I onwards, focus is on the centralized design.
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4.2 Phase I: Trajectory Tracking: Autonomous Flight

Hard Constraints on the Inputs - Altitude-hold Controller As mentioned previously,

there are four effectors in the form of four brushless DC motors that provide the helicopter

with lift as well as directional thrust. These DC motors each, receive a PWM signal chang-

ing with time within the range of 0 to 0.1 for nominal operation. However, the lowest PWM

signal corresponding to zero rotational speed of motors is shifted by 0.06. This leaves a

rage of 0.06 to 0.1 to vary the angular velocity of propellers spinning from zero to a max-

imum of 2500 rpm or so, corresponding to the specific DC motor mounted. With such a

tight operating range consideration of system’s hardware constraints plays a crucial role in

successful conduction of autonomous flight.

Hard Constraint on the Inputs - Lateral and Longitudinal Controllers The lateral

and longitudinal controllers’ manipulated variables are sinφ and sinθ , respectively. Since

the model reduction technique employed is based on the assumption that these angles stay

within the vicinity of zero in almost all flight maneuvers–except for some really abrupt

changes of direction or orientation which is not the case–it is crucial to keep Euler angles

within the tight presumed ranges, as close as possible to zero. Otherwise, the reduced

model will not precisely represent the non-linear dynamics of the quadrotor helicopter,

thus rendering the control system unstable or stable but with degraded performance. Once

again, this operational constraint need to be mathematically formulated and then modeled

in simulation to be automatically taken care of.

Hard Constraint on the Rate of Change of the Inputs In addition, smooth transition

from one flight condition to the other relies on gradual changes of a control signal. This is

achieved by incorporation of hard constraints on the control variable incremental variations

of manipulated variables sinφ , sinθ , and 4T −mg associated with the lateral, longitudinal,

and altitude-hold controllers, respectively.
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4.2.1 Simulation Results

Prior to implementation of the developed controller onto the hardware, it is desirable

to have a rough image of how the control system would perform in flight. For highly

agile unmanned vehicles as is the case for an unmanned quadrotor helicopter, this pre-

implementation simulation prevents possible hazards which may rise from unanticipated

performance of the controller engaged. To this end, it has been tried to mathematically

model the quadrotor helicopter and then formulate all the operational hardware constraints

existing in the system under study.

Integrated Design Having fully modeled the helicopter including all the previously men-

tioned operational limitations in terms of constraints on the Control Variable Incremental

Variation and those on the Amplitude of the Control Variable, simulation may start by

putting together the controller with the plant, such that a single control system is formed.

As suggested in the graph, the quadrotor helicopter starts taking-off the ground at 5 sec-

onds following commencement of simulation. It takes another 5 seconds for the system to

reach 0.8 meters off the ground. Once having established in this flight level at 20 seconds,

the vehicle departs on a square trajectory, staying 10 seconds on each corner. In this flight

test which lasts for 60 seconds, altitude has been maintained at all times, plus a smooth but

not sluggish transitions among different flight conditions are observed. Fig. 4.7 illustrates

systems performance.
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Figure 4.7: Simulation Results - 3D Tracking Performance of the MPC Autopilot Control
System
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4.2.2 Experimental Results

In this section, except for some fine tuning parameters such as the length of the prediction

horizon Np and that of the control horizon Nu or the penalizing parameter appearing in

the cost function rw, the simulated controller is implemented onto the Qball-X4 unmanned

quadrotor helicopter available at the Networked Autonomous Vehicles Laboratory (NAVL)

of Concordia University for three dimensional autonomous flight of the system. The same

square trajectory has been fed into the autopilot control system as a predefined track to

follow.

Generally speaking, implementation of hard constraints on the control variable incre-

mental variation Δu is considered if there is limitation on how fast an actuator can respond

to a change of the setpoint signal; which is the case in almost all practical applications.

Taking one step further, this type of constraint may be implemented exclusively tighter

than what the actuators manufacturer has just mentioned for their designed product. The

tight treatment of constraints on rate of change of control, as long as not jeopardizing sta-

bility of the control system, makes a plant respond smoothly to the setpoint signal changes.

That has been practiced in the design of this autopilot. As stated earlier and illustrated in

Fig. 4.8, sinφ 	 φ and sinθ 	 θ are the manipulated variables of the lateral and longitudi-

nal controllers, respectively. In order to guarantee smooth flight, they are confined to stay

within a range of (-0.06, +0.06) rad as shown in Fig. 4.10 and Fig. 4.14. In contrast, this

constraint has been removed for the altitude-hold controller so that not to lose agility of the

system in flight level changes, as suggested by Fig. 4.12.

LQR MPC 

Plant Controller 

- L� �
Quadrotor 
Helicopter 

�-
�

Figure 4.8: Architecture of the Longitudinal Controller
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Figure 4.10: Lateral Controller – Constraints on ΔU : δ sinφ ∼ δφ

Also, implementation of hard constraints on the amplitude of control u is a must since

violation of such limits means actuator saturation which is not acceptable in control. For

the lateral as well as longitudinal controllers, sinφ and sinθ as the manipulated variables,

should not deviate much from zero so as to maintain validity of linearizations and the

model reduction technique used. This requirement has been met by implementation of

hard constraints on them to stay within (-2, +2) degree range or (-0.03, +0.03) rad as shown

in Fig. 4.9 and Fig. 4.13. For the altitude-hold controller this has been implemented as

−12 < Li f t <+4 Newton so as not to violate the acceptable rage of (0.06, 0.1) of the DC

motors’ PWM signal. This is suggested by Fig. 4.11.

Eventually, the offset-free tracking capability of the autopilot control system along a

square trajectory for the unmanned quadrotor helicopter is illustrated in Fig. 4.15. Due to

the constrained optimal control framework employed, as presented in Fig. 4.16, all the four

PWM signals have stayed within their acceptable rages throughout the flight test, leaving
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Figure 4.13: Longitudinal Controller – Constraints on U : sinθ ∼ θ
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Figure 4.14: Longitudinal Controller – Constraints on ΔU : δ sinθ ∼ δθ
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a margin of (0.095, 1) for robustness against probable disturbances prevalent in the experi-

mental environment.
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Figure 4.16: Illustration of Four PWM Signals Bounded to (0.06, 0.1)

An Important Notice Since the MPC law implements the first control movement and

ignores the rest of the calculated future movements along a control signal, it is highly

recommended that constraints (if there exists any) be imposed on the first control movement

rather than the whole calculated future signal. Herein, this has been benefited from for the

three types of the aforementioned constraints; meaning that constraints are imposed solely

on the first elements in each of the u(k), Δu(k), and y(k) trajectories rather than being

put on all the elements. This is of great essence because for the case of Qball-X4, if
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otherwise acted, real-time hardware implementation of the MPC is compromised due to

limited onboard computational power.
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4.3 Phase II: Tests of Robustness to Abrupt Mass

Variations

Airdrop is a very useful and common manoeuvre (technique) of flying vehicles for other

different civil and military applications such as: delivery of supplies to ground forces or

flight test of hypersonic and glider-type experimental airplanes which need to be mounted

on another flying vehicle and to be released in the air. During the recent earthquake in

Japan, military helicopters were dumping seawater on a stricken nuclear reactor in north-

eastern Japan to cool overheated fuel rods inside its core. Also the U.S. Joint Forces Com-

mand continues to develop the Joint Precision Airdrop System (JPAS) with new ways of

delivering supplies to ground forces while minimizing risks to soldiers. A joint military

utility assessment team recently observed and rated airdrops of cargos of 6,000 to 10,000

pounds at Yuma Proving Ground, Ariz [19].

As stated previously, the problem of either linear or nonlinear control design has been

addressed using several methods such as feedback linearisation [3], sliding mode control

[4], and back-stepping control [5]. Nevertheless, among these studies, maximum take-off

weight has always been assumed to be constant with flight time and the effects of either

gradual or abrupt mass variation over the period of flight have not been well investigated.

The issue of maximum take-off weight variation is of much concern since for some specific

applications such as search and rescue, firefighting, and aerial spray of pesticides, to name

but a few, either abrupt or gradual mass variation is inevitable.

4.3.1 Simulation Results

In this section, in order to evaluate performance of the autopilot under the effects of abrupt

mass variations, the quadrotor helicopter is sent up to 70 cm off the ground and locked in

place on the altitude-hold mode. A payload of 300 g is attached under the quadrotor, and

will be released at some predetermined time once the system is well established at the 70 cm
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flight level. In this simulation drop happens to be at 30 seconds following commencement

of flight. In the first scenario, the controller allows the plant output to jump as much as it

needs until it becomes stable. This is illustrated in Fig. 4.18. In the second scenario, by

implementation of hard constraints on the plant output, it has been tried to reduce the jump

at the instant of release. This is illustrated in Fig. 4.19.
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Figure 4.18: Payload Dropping under Model Predictive Control – Scenario 1
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Figure 4.19: Payload Dropping under Model Predictive Control – Scenario 2

4.3.2 Experimental Results

The Payload Releasing Mechanism For the purpose of dropping a payload, a servo

motor is used in a simple configuration and is installed under the quadrotor battery bay.

The PWM signal generated by the Gumstix onboard computer controls position of the

servo motor and emits proper commands to push/pull the metallic rod attached to the servo
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horn. The payload is hooked to the metallic rod and is released upon transmission of a

command at the desired time. This mechanism is shown in Fig. 4.20.

Figure 4.20: Servo based payload releasing mechanism

Generally speaking, it is intended to demonstrate how robust the control system is

against probable changes of mass that might happen during the course of flight either in-

tentionally, as is the case of a quadrotor helicopter commissioned to supply food to the

victims of an earthquake or unintentionally, like fuel mass reduction that happens over the

course of a long flight as fuel it consumed by the quadrotor helicopter. Autopilot’s perfor-

mance is depicted in Fig. 4.21.
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Figure 4.21: Payload Dropping under Model Predictive Control

Comparison with the Baseline Controller: Two other control techniques are stud-

ied in real time and implemented on the quadrotor UAV for performance comparison. To-

wards this end, two series of experiment are conducted. In the first set of experiments,
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focus is on a single PID controller to take over control of the quadrotor over the phases

of taking-off, hovering with payload, payload dropping, and landing. This is the baseline

altitude-hold controller of the Qball-X4 with which the system comes, as a testbed for

educational/research purposes. Performance of the controller is illustrated in Fig. 4.22.
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Figure 4.22: Payload Drop under a Single PID Control

Although the single PID controller is capable of keeping the desired height, it is

not able to eliminate undesired overshoot at the moment of payload drop. Hence, in the

second set of experiments, the single PID controller is replaced by a Gain-Scheduled PID

controller to improve performance of the system at that specific moment, i.e. payload drop.

This is illustrated in Fig. 4.23.
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Figure 4.23: Payload Drop under a Gain-Scheduled PID Controller

For the case of a single PID controller the quadrotor does maintain the desired height

but it is not satisfactory in the sense that a 73% of overshoot happens at the instant of drop.

On the other hand, the GS-PID controller noticeably improves system’s reaction to payload
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drop, reducing vertical jerk to 13.6% of overshoot at the moment of release.

To sum it up, the MPC control technique proves to perform best, even though com-

pared to the GS-PID controller the control system overshoots 3.4% more at the instant of

payload drop. This can be decreased by proper tuning of the controller using the con-

troller’s design parameters such as the prediction horizon Np, the control horizon Nc, and

control change penalizing parameter rw in the cost function. Under MPC, both take-off and

payload carrying flight phases are better than either a single PID or a GS-PID controllers

in terms of offset-free tracking and takeoff overshoot.

In terms of overshoot, GS-PID performs a better however, issues such as the tedious

task of fine tuning–that may take upto a day of consecutive experiments–to find a set of

proper gains, as well as dependability of successful tuning on availability of healthy and

fully charged Li-Po batteries on which performance of the control system highly relies,

are two essential factors that should be drawn into consideration. For instance, not fully

charged battery packs can have an adverse effect on the performance of fine-tuned con-

troller gains and deviate them from the previously found values. Furthermore, a set of

finely tuned gains are effective as long as the payload’s weight remains the same; meaning

each a new payload is used, the whole process of finding tuned gains should be repeated.

And then this question arises: How many times can a control system be exposed to such a

number of repetitive experiment just for the purpose of tuning? or then is this design cost-

wise or time-wise justifiable? However, theses issues are not of concern when it comes to

Model Predictive Control.

As mentioned previously, in this experiment treatment of the setpoint as a constraint

on the state variable or output is not practised because of limited computational power

onboard the Qball-X4 quadrotor helicopter.
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4.4 Phase III: Fault-tolerant Control in the Presence of

Faults Induced by Reduced Actuator Effectiveness

Fault-tolerant Control “Fault-tolerant control does not yet comprise a unique theoretic

framework but employs specific ideas to treat the different problems.” [21] Due to the dis-

tinguishing feature of the MPC that is constraint handling, it is potentially a promising tool

for fault tolerant control applications [22]–[23]. Since the MPC controller recalculates the

control signal at every sampling time, in case the post-fault model is available, any change

in the process model can be reflected easily into control signal computation. The constraint

handling capability of MPC allows close operation to the boundaries of the tight post-fault

operation envelope. The occurrence of a fault does not change a control system’s objective

that is expected by the prospective user. In fact, the nature of a fault-tolerant control system

is to make sure that the objective(s) are met in spite of fault(s). Though there is a reach

literature on fault-tolerant MPC, yet there exists little if any, on fault-tolerant MPC applied

to unmanned aerial systems. This is mainly because of the mentioned strong reliance of

successful-MPC-implementation on availability of high computational power onboard the

unmanned airborne system. That is the main motivation for this study.

Crucial to fault-tolerant control design is providing information about the fault im-

pact. This is the aim of the fault diagnosis unit. Development of the corresponding algo-

rithms is out of the scope of this study; and it is assumed that the results of diagnosis are

available to be used for the purpose of controller redesign or fault accommodation.

Fault Accommodation vs. Control Reconfiguration Minor faults are typically dealt

with by fault accommodation where the controller’s parameters are slightly modified to

adapt to the system parameters of the faulty plant. In all other cases in which fault ac-

commodation cannot be the solution, like in the case of losing a critical actuator or sensor,
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control system reconfiguration is intended in which the control loop has to be reconfigured

and new controller parameters are sought. Fault accommodation is distinguished from con-

trol reconfiguration according to whether the I/O signal structure between the controller and

the plant is modified or not. Reconfiguration is associated with the use of a different I/O

relation between the controller and the system. Switch of the system to a different internal

model so as to change its mode of operation is an instance of such I/O switching. Accom-

modation does not employ such a means.

Active vs. Passive Fault Tolerant Control In the passive fault-tolerant control system,

the control system is designed in a way that design objective is met in healthy as well as

in faulty situations without any modification made to the original controller or plant. In

other words, passive fault tolerant control systems could be considered as robust control

systems in which the ability of achieving control system’s objective is preserved, whatever

the system situation, i.e. healthy or faulty. Indeed, faults can be considered as uncertainties

which affect the system parameters. In contrast to passive, active fault-tolerant control is

based on modification of the control law employed, so that the new law adapts to the faulty

situation. Therefore, active fault-tolerant controllers implement the solution of problems

solved, corresponding to either healthy or faulty situations. [24]

Generally speaking, battery-based electrical systems are prone to voltage as well as

current drop after some time following commencement of current draw. Depending on the

capacity of the battery pack onboard an unmanned system and energy consumption of the

vehicle, the period of time for which effective use of a battery is defined before a recharge

becomes required, though short or long, is limited. As time passes and the unmanned

system approaches the end of its battery capacity, voltage and current drop become in-

creasingly significant with time. This, along with other factors such as the number of loads

drawing current at the same time, time-varying operation of actuators due to unpredictable
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environmental effects, and other technical parameters in this regard, make it hard to provide

an uninterruptable constant power supply.

Evidently, any variation in voltage or current of a power supply is reflected on oper-

ation of actuators involved, yet performance of the unmanned system. At the same time,

issues such as safety, reliability, availability, and dependability of unmanned systems are

required properties if such systems are one day to eliminate the need for intervention of

human beings. This holds for unmanned quadrotor helicopters too. Based on a number

of conducted experiments, voltage or current variation of whatever magnitude influences

performance of an unmanned quadrotor helicopter; and unless the associated controller is

designed with some degree of robustness to this phenomenon, the unmanned vehicle can

be considered neither reliable nor available.

4.4.1 Simulation Results

In this simulation it will be tried to expose the unmanned quadrotor helicopter to the effects

of voltage/current drop in order to evaluate performance of the designed autopilot in terms

of being fault-tolerant to variations in voltage/current drop. This has been implemented by

10% collective reduction in actuator effectiveness. As for the case of the healthy system,

a square trajectory is defined to be tracked. In addition, it is assumed that there is no

diagnosis unit providing information regarding fault detection, isolation, and identification,

even though this information is manually fed into the control system by an operator. In the

first scenario, the controller allows the plant output to jump as much as it needs until it

becomes stable. This is illustrated in Fig. 4.24. In the second scenario, by implementation

of hard constraints on the plant output, it has been tried to reduce the jump at the instant of

release. This is illustrated in Fig. 4.25.
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Figure 4.24: 10% Collective Reduction in Actuator Effectiveness at t = 25s– Scenario 1

4.4.2 Experimental Results

In this section, except for some finely tuned parameters which will be slightly changed,

the very same simulated controller is implemented onto the ball-X4 unmanned quadrotor

helicopter without any major modification. For three-dimensional autonomous flight of the

unmanned quadrotor, the same square trajectory has been fed into the control system as a

predefined track to follow.

Collective Reduction in Actuator Effectiveness As illustrated in Fig. 4.26–4.29, the

fault is injected artificially at t = 25s following take-off when the quadrotor is on the verge

of departing on a turn at the second corner. This is one of the most critical phases of flight
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Figure 4.25: 10% Collective Reduction in Actuator Effectiveness at t = 25s – Scenario 2

because lateral and longitudinal controllers are actively engaged to make a right-angle turn.

If the controller is fault-tolerant enough against reduction in actuator effectiveness while

the system is about to depart on a turn, then satisfactory performance is guaranteed if the

fault happens at other regions of the flight envelope as well. Regardless of the altitude of

the quadrotor helicopter at which fault occurs, the vehicle retains altitude at the cost of 70

cm temporary loss of height over a couple of seconds; then re-establishes itself at the same

flight level as before. Though 70 cm loss of altitude might be noticed at the flight level of

80 cm–as studied here–it is almost negligible while the unmanned helicopter is in operation

in its nominal mission such as firefighting or surveillance during which the system is flying

at flight levels of 3000 to 6000 ft. As suggested by Fig. 4.26–4.29 the developed MPC
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framework preserves the control system’s ability to meet the trajectory tracking objective

envisioned for that, in healthy conditions as well as faulty situations, rendering the control

system passive fault-tolerant.
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Figure 4.26: Four Faulty DC Motors - Altitude-hold Controller
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Figure 4.27: Four Faulty DC Motors - Lateral Controller
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Figure 4.28: Four Faulty DC Motors - Longitudinal Controller
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Figure 4.29: Four Faulty DC Motors - Trajectory Tracking

Comparison with the Baseline Controller: Compared with that of the Qball-X4’s

baseline controllers in which a combination of LQR and PID techniques are used, employ-

ment of the MPC can essentially improved system’s behaviour in terms of reliability upon

occurrence of collective reduction in actuator effectiveness. As illustrated in Fig. 4.30, the

baseline controller is not capable of handling a 10% collective reduction in all the four DC

motors simultaneously and shows distress by touching the ground for a some seconds. This

is in contrast with the satisfactory results obtained from the experiments conducted for the

same amount of collective reduction, but under the MPC technique. Three dimensional

tracking performance of the baseline controller is depicted in Fig. 4.31.
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Figure 4.30: Four Faulty DC Motors - Baseline Altitude-hold Controller
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Figure 4.31: Four Faulty DC Motors - Trajectory Tracking with the Baseline Controller

Singular Reduction in Actuator Effectiveness Multi-thruster aerial vehicle in which

thrusters operate in parallel to provide the control system with sufficient lift or thrust are

prone to a second fault as well; that is unbalanced/asymmetric loss of actuator or thruster

effectiveness. This is of great concern because malfunction of a single actuator rather than

all, gives rise to development of unbalanced/asymmetric forces and moment which will

consequently lead to instability of the vehicle, preventing the system from mission ful-

filment. Singular loss usually is not a consequent of voltage or current drop but mainly

evolves from faults occurring among onboard electronic boards or burned electronic ele-

ments. In this experiment, the quadrotor helicopter is exposed to 10% single actuator loss

of effectiveness at t = 35s. Herein, even though the reconfiguration mechanism does not

rely on the information regarding fault isolation, it does require processed data returned by

the diagnosis algorithm concerning fault detection and identification. Therefore, it is as-

sumed that there is a diagnosis unit providing precise information regarding fault detection

and identification but not isolation.

Once occurrence of a fault is detected and its magnitude is identified, the recon-

figuration mechanism relaxes operational constraints put on inputs’ rate of change ΔU

accordingly, bringing agility back to the system of quadrotor so that the helicopter can
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compensate for the happened deviations from the predefined trajectory as fast as possible,

avoiding growth of the fault to instability or consequent failure of the whole system. That

is achieved at the expense of minor instability introduced into the system which manifests

itself as lack of smoothness in motion while the trajectory is being tracked by the quadrotor

helicopter. This degraded performance is completely acceptable in order to refrain from

failure. This is illustrated in Fig. 4.32–4.35.
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Figure 4.32: One Faulty DC Motor - Altitude-hold Controller
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Figure 4.33: One Faulty DC Motor - Lateral Controller

0 10 20 30 40 50 60 70
0

0.5

1

1.5

Time (s)

z 
(m

)

Longitudinal Controller − Fault Injection at t = 35 s

Z command
Z measured

Figure 4.34: One Faulty DC Motor - Longitudinal Controller
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Figure 4.35: One Faulty DC Motor - Trajectory Tracking

Comparison with the Baseline Controller: Once again, compared with that of

the Qball-X4’s baseline controllers in which a combination of LQR and PID techniques

are used, employment of the MPC has essentially improved system’s behaviour in terms

of reliability upon occurrence of singular reduction in actuator effectiveness. As illustrated

in Fig. 4.36, even though the baseline controller is capable of handling a 10% singular

reduction in one of the four DC motors, loss of height is significant and cannot be reduced

further. The loss of heigh is obviously less in the experiments conducted for the same

amount of singular reduction, but under the MPC technique. Three dimensional tracking

performance of the baseline controller is depicted in Fig. 4.37.
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Figure 4.36: One Faulty DC Motor - Baseline Altitude-hold Controller
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Figure 4.37: One Faulty DC Motor - Trajectory Tracking with the Baseline Controller

Under theses two most probable faulty scenarios, namely collective reduction of ac-

tuator effectiveness due to voltage or current drop, and singular loss of effectiveness as a

result of fault occurrences on the onboard electronic boards, the controller proved to be ef-

fective in simulation and implementation on the unmanned quadrotor helicopter. Over the

course of this study, existence of a diagnosis unit providing precise information regarding

fault detection, isolation, and identification has been assumed. Even though in both sce-

narios fault accommodation and control reconfiguration introduce a limited extent of lost

smoothness in motion while trajectory tracking, this amount of degradation of performance

is regarded as acceptable since it prevents a bigger event from taking place, that is failure

of the whole system.

Summary In this section, the efficient formulation was implemented in practice for the

sole purpose of tracking a rectangular trajectory to further illustrate reliance of the efficient

formulation on availability of a concise mathematical model of the plant. This was followed

by three stages of study and development towards the end of:

• Three dimensional autonomous tracking within the framework of constrained MPC;

• Proof of robustness against gradual/abrupt mass variations, both in simulation and
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practice; and

• Proof of being fault-tolerant against singular/collective reduction in actuator effec-

tiveness.

The following section concludes the thesis and suggests a direction for the future work of

this study.
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Chapter 5

Conclusion

Since introduction of Model Predictive Control, its use has centred around process control.

As mentioned earlier, this is mainly due to the facet that implementation of MPC strongly

relies on availability of high computational power because of repetitive nature of compu-

tations involved. On the other hand, the requirement of high computational power implies

presence of a fairly large system, like a general purpose personal computer to accommo-

date the MPC controller along with its iterative time-consuming computations. This is not

possible for unmanned aerial system; because essentially there is neither enough space nor

payload capacity onboard the vehicle to take in a huge amount of circuitry and electronic

boards. Therefore, there are two options; either attention should be turned to other control

techniques other than MPC, or effort should be made to reduce the burden of calculations

such that a light weight single-board computer or microcontroller can handle all the calcu-

lations corresponding to MPC. In this work, focus has been on the latter. Model reduction

techniques which basically reduce complexity of a plant model yet still preserving dynam-

ics of the plant, can greatly contribute to reduction in computational loads; this has been

practiced in the development of the designed autopilot control system. In addition, var-

ious fast optimization algorithms have evolved over years. They can be suitably used to

efficiently solve a quadratic programming problem, as is the case for a constrained MPC.
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In this study, a fast QP solver known as Hildreth’s Quadratic Programming Procedure has

been made use of to solve the iterative optimization problem involved in the implementa-

tion of MPC; this has proved to be a success.

In addition to availability of high computational power, success of the MPC imple-

mentation is tightly dependent on existence of a precise mathematical model of the plant.

Even though derivation of such an elaborate model is mathematically doable, in practice

there always exists some degree of discrepancy between the mathematical model and the

real plant, thus the requirement of offset-free tracking is hardly attainable within the frame-

work of MPC, unless measures are taken to resolve this issue. From the classical control

theory proper employment of the integral action control can eliminate the steady state error

rising from such model mismatch and discrepancies prevalent in control systems. As dis-

cussed, this gives rise to two control system design approaches, centralized design versus

decentralized design. In a centralized design, in contrast to the decentralized design, the

control inputs from MPC and Integral algorithms are not simply added up but instead, the

Integral action is incorporated in the MPC formulation. This way, the steady state error can

be eliminated and the control structure preserves its capability of constraint handling since

the integrator dynamics is included in the QP formulation. In this study the two approaches

have been investigated, both in simulation and practice.

Eventually, with the aid of concepts and techniques already stated, a three dimen-

sional autopilot control system within the framework of MPC is developed and tested

through numerous flight tests conducted in the Networked Autonomous Vehicles Labo-

ratory of Concordia University. The overall performance of the quadrotor helicopter is

evaluated under autonomous fight for three scenarios of Trajectory Tracking, Payload Drop

Mission, and Robustness to Voltage and Current Drop. Both simulation and experimental

results just presented demonstrate success of the design.
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Future Work Suggestions for the future extension of this work include:

• Further investigation on availability of possibly more efficient optimization algo-

rithms, specifically those regarding the known quadratic programming problem as

appeared in the MPC;

• Further investigation on better employment of various model reduction techniques in

order to preserve as much dynamics as possible of the plant, yet achieving greater

accuracy;

• Use of less accurate onboard and outboard sensors–instead of the precise Optitrack–

for date measurement and feedback, in order to determine vulnerability of the MPC

design to precision of current state measurements; and

• Use of the same developed autopilot control system for a fixed wing testbed in the

form of a Wing Leveller. Lateral equations of motion of an airplane have their own

approximate modes. One of such modes corresponds to the pure rolling motion. This

approximate mode is effectively used in the design of wing leveller autopilots [26].

Since it is a first order transfer function of a SISO system, it can be a good starting

step in transition from rotary wing to fixed wing aircraft.
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Appendix A

LQR Controller Design

A.1 LQR (Linear Quadratic Regulator)

Optimal Control is an area within the theory of control that deals with control of dynamic

systems in a way that one specific designer-defined function is minimized. This specific,

designer-defined function is also known as Cost Function. Specifically speaking, the case

in which the dynamics of the system is governed by a set of linear differential equations and

the cost function is described by a quadratic function, is called Linear Quadratic problem

(LQ Problem); the answer to this problem is LQR or Linear Quadratic Regulator which is

basically a full state feedback controller.

A.1.1 Design of a Regulator

LQR State Feedback Design Assuming a control system expressed in state space format

as:

ẋ = Ax+Bu (A.1)

where x is the State Vector, A is the State Matrix, B is the Control Matrix, and u is the

Control Vector. Provided that all the states are available for measurement, a State Variable
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Feedback Controller is designed as:

u =−Kx+ v (A.2)

By substituting (A.2) in (A.1), the state space representation of the closed loop system

becomes:

ẋ = (A−BK)x+Bv = ANEW x+Bv (A.3)

This way, the closed loop propertied of the system can be determined by proper assignment

of poles of the system. As can be seen the output matrix does not play a role in state

feedback controller design.

As control systems grow in terms of complexity, it is no longer possible to make use

of pole placement techniques in order to determine the location of the closed loop system

poles. In other words, for such systems the known Achermann’s formula is inconvenient for

determination of all closed loops of the system. That is the reason why attention is turned

to a method which is capable of addressing this problem, no matter what the order of the

system is. To this end, a cost function is required to be defined as the performance index,

which should be minimized in one way or another. Then, the solution to this minimization

problem is the optimized gain that has been sought as the gain of the intended state feedback

controller. This performance index is defined by:

J =
1
2

∞∫
0

(xT Qx+uT Ru)dt (A.4)

As this equation suggests there are two design parameters Q and R that should be decided

on prior to design. Q should be chosen to be positive semi-definite, while R needs to

be positive definite. They are Weighting Factors with significance. Keeping the value of

Performance Index the same, as the value of Q increases, x will decrease and vice versa.

The same comes true for R. In other words, a big value of Q will keep the error signal small,
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whereas a big value of R will keep the control signal quite small. Based on the criteria and

requirements, it is the job of an experienced control engineer to decide on the relative value

of these two design parameters. Needless to say, different values of weighting matrices

cause the system exhibit different transient and steady state performance.

For the time being, it is assumed that the input v is equal to zero,thus the only concern

is stability of the system rather than following a specific reference input. That is the reason

why it is named “Regulator”. As the name implies it brings all state variables to zero

and stabilizes the control system. In this type of controller the system does not accept

a command signal, contrary to the tracking problems. Compared with other controllers,

one of the traits that set LQR apart is possibly the robustness presented by this control

technique.

Considering MATLAB as the controller design tool, development process of a Regu-

lator simply accounts for expression of the system dynamics in state space format (Matrices

A, B, C, and D) plus determination of weighting matrices Q and R. As the values of these

two design parameters directly affect system performance, decision making in this phase of

design should be with care. Q and R can be both identity matrices. In this case all elements

of the error signal (or the input signal) are treated equally the same, thus none of them

has superiority over others. Next, the solution of the previously talked about optimization

problem is found by entering the command K = lqr(A,B,Q,R). It should be notified that

this optimization problem is guaranteed to produce a feedback gain vector stabilizing the

control system as long as the studied system is observable.

A.1.2 Design of a Setpoint Tracker

LQR State Feedback Design Having assumed a control system expressed in the state

space format:

ẋ = Ax+Bu (A.5)
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The same control signal as that of the Regulator design is constructed via the feedback

control law:

u =−Kx̃ (A.6)

However, contrary to the non-tracker controller, the x̃ vector is not simply the state vector

x of the control system. In fact, it contains both the state vector and integrals of the error

signal. That is to say:

x̃ =
[

x1 x2 . . . xn zd1 zd2 . . . zdm

]
(A.7)

in which x =
[

x1 x2 . . . xn

]
indicates the state vector containing n state variables, and

zd =

[
zd1 zd2 . . . zdm

]
where:

zdi =
∫
(xi − xdi)dt ; i = 1,2, . . . ,m (A.8)

With this definition the new representation of the system becomes:

˙̃x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
[

0

]
n×m⎡

⎢⎢⎢⎢⎣
1 . . . 0
... . . . ...

0 · · · 1

⎤
⎥⎥⎥⎥⎦

m×n

[
0

]
m×m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

x̃+

⎡
⎢⎣ B[

0

]
m×1

⎤
⎥⎦u+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
0

]
n×m⎡

⎢⎢⎢⎢⎣
−1 . . . 0

... . . . ...

0 · · · −1

⎤
⎥⎥⎥⎥⎦

m×m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xd1

xd2

. . .

xdm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(A.9)

Or in a more compact form the augmented control system is:

˙̃x = Ãx̃+ B̃u+ B̃dd (A.10)
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Once the state space representation of the augmented control system is obtained, design of

the tracker LQR controller follows the same procedure as that of the non-tracker (Regula-

tor). Simply, based on the desired system performance (both transient and steady state),

the values are matrices Q and R are selected by the control engineer. Next, the solution

of the previously talked about optimization problem is found by entering the command

K = lqr(Ã, B̃,Q,R). A snapshot of the overall LQR control system design for the unmanned

quadrotor helicopter is presented in Fig. A.1.2.

Figure A.1: A Snapshot of the Overall LQR Control System Design
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Appendix B

Constrained Optimization

B.1 Quadratic Programming

Like linear programming problems, another optimization problem which can be solved in

a finite number of steps is a Quadratic Programming (QP) problem. This is a problem in

which the objective function q(x) is quadratic and the constraint functions ci(x) are linear.

The problem is to find a solution x̆ to minimize:

q(x) =
1
2

xT Gx+gT x (B.1)

subject to:

AT x = b (B.2)

MT x ≥ γ (B.3)

This problem may be infeasible or the solution may be unbounded; however these possibil-

ities are easily detected in the algorithms, so for the most part it is assumed that a solution

x̆ exists. IF the Hessian matrix G is positive semi-definite, x̆ is a global solution, and if G is

positive definite, x̆ is also unique. These results follow from the convexity of q(x). When
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the Hessian G is indefinite then the local solutions which are not global can occur.

B.1.1 Equality Constraints

Elimination of Variables

This section studies how to minimize the objective function subject to equality constraints,

i.e.:

q(x) =
1
2

xT Gx+gT x (B.4)

subject to:

AT x = b

It is assumed that there are m ≤ n equality constraints where A is n×m collecting column

vectors ai, and x is n× 1. Also, it is assumed that A has rank m; if the constraints are

consistent this can always be achieved by removing dependent constraints, though there

may be numerical difficulties in recognizing this situation.

A straightforward way of solving B.4 is to use the set of constraints to eliminate all

variables except for one. By introducing partitions to each of the matrices involved:

x =

⎡
⎢⎣x1

x2

⎤
⎥⎦ , A =

⎡
⎢⎣A1

A2

⎤
⎥⎦ , g =

⎡
⎢⎣g1

g2

⎤
⎥⎦ , G =

⎡
⎢⎣G11 G12

G21 G22

⎤
⎥⎦ (B.5)

where x1 is of the size m × m and x2 of the size (n − m)× (n − m), then B.5 becomes

A1
T x1 +A2

T x2 = b, and is readily solved to give x1 in terms of x2:

x1 = A1
−T (b−A2

T x2) (B.6)

Substituting this into q(x) introduces a new problem: minimize q̃(x2) where q̃(x2) is the
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quadratic function:

q̃(x2) =
1
2

x2
T (G22 −G21A1

−T A2
T −A2A1

−1G12 +A2A1
−1G11A1

−T A2
T )x2

+ x2
T (G21 −A2A1

−1G11)A1
−T b+

1
2

bT A1
−1G11A1

−T b

+ x2
T (g2 −A2A1

−1g1)+g1
T A1

−T b (B.7)

A unique minimizer x̆2 exists if the Hessian ∇2q̃ in the quadratic term is positive definite.

In this case x̆2 is obtained by solving the linear system ∇2q̃(x2) = 0; then x̆1 is found by

substitution of x̆2 in B.6.

Lagrangian Method

In order to minimize the objective function B.4 subject to equality constraints B.5 the

method of Lagrange multipliers introduces an alternative way of deriving the solution x̆

and the associated multipliers λ̆ . To this end, the Lagrangian function is defined as:

L(x,λ ) =
1
2

xT Gx+gT x−λ T (AT x−b) (B.8)

It is evident that the value of B.8 subject to the equality constraints B.5 is the same as the

original objective function. Therefore, now B.8 is considered as the new objective function

in n+m variables x and λ , where n is the dimensions of x and m is the dimensions of

λ . The procedure of minimization is to take the first partial derivative with respect to the

vectors x and λ , and then set these expressions to zero. That is to say:

∇xL = 0 : Gx+g−Aλ = 0

∇λ L = 0 : AT x−b = 0
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which can be arranged to give the linear system:

⎡
⎢⎣ G −A

−AT 0

⎤
⎥⎦
⎡
⎢⎣x

λ

⎤
⎥⎦=−

⎡
⎢⎣g

b

⎤
⎥⎦ (B.9)

The coefficient matrix is referred to as the Lagrangian matrix and is symmetric but not

positive definite. If the inverse exists and is expressed as:

⎡
⎢⎣ G −A

−AT 0

⎤
⎥⎦
−1

=

⎡
⎢⎣ H −T

−T T u

⎤
⎥⎦ (B.10)

then the solution to B.9 is:

x̆ =−Hg+T b (B.11)

λ̆ = T T g−Ub (B.12)

These relationships were used by Fletcher (1971)to solve the equality constraint problem

that evolves in the active set method [17]. This will be explained in the following sections.

Explicit expressions for H, T , and U when G−1 exists are:

H = G−1 −G−1A(AT G−1A)−1AT G−1

T = G−1A(AT G−1A)−1

U =−(AT G−1A)−1
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B.1.2 Inequality Constraints

Active Set Methods

Most QP problems involve inequality constraints and so can be expressed in the form given

in B.3. This section describes how methods for solving equality constraints can be em-

ployed to handle the inequality problem by means of an active set method. Most common

is the primal active set method. This is described in the case that the Hessian matrix G

is positive definite which ensures that any solution is a unique global minimizer, and that

some potential difficulties are avoided. Later in this section the possibility of a dual ac-

tive set method is considered, although this is only applicable to the case that G is positive

Definite.

Primal Active Set Method In the primal active set method certain constraints, indexed

by the active set Ξ, are regarded as equalities whilst the rest are temporarily disregarded,

and the method adjusts this set in order to identify the correct active constraints at the

solution to B.1 subject to B.3. On iteration k a feasible point x(k) is known. This satisfies

the active constraints as equalities. Each iteration attempts to locate the solution to an

equality problem in which only the active constraints occur. This is most conveniently done

by shifting the origin to x(k) and looking for a correction δ (k). Since the newly evolved

problem is an equality problem, any of the methods previously mentioned for optimization

problems with equality constrains can well serve the purpose. If there exists a feasible δ (k),

then the next iterate is taken as x(k+ 1) = x(k)+ δ (k). If not, then a line search is made

in the direction of s(k) and choosing the step α(k) to find the best feasible point, therefore

x(k+1) = x(k)+α(k)s(k). If αk < 1, then a new constraint becomes active and is added

to the active set Ξ. To put it in a nutshell, at each step of the active set method, an equality

optimization problem is solved. If all the Lagrange multipliers are non-negative, then the

point is a local solution to the original problem, if on the other hand there exists a λi < 0,

then the objective function can be further reduced by relaxing the corresponding constraint
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i. This is done by deleting it from the set of active constraints Ξ.

As the process goes on, it is important to monitor the value of other constraints not

involved in the equality problem to make sure that they are not violated. It often happens

that while moving on the working surface, a new constraint boundary is encountered. It

is necessary to add this constraint to the working set, then continue with the redefined

working surface.

Dual Active Set Method The family of active set methods belongs to the group of primal

methods. In this group of problems, it is required that the active constraints be identified

along with the optimal decision variable. However, if there are a number of constraints

involved, the computational load is pretty large. In addition, the programming of this opti-

mization method is not straightforward.

The dual active set method can be used alternatively to systematically identify the

constraints that are not active in the current iteration. In this new formulation the Lagrange

multipliers change names to dual variables.

The dual problem to the original primal problem is derived as follows. Assuming

that there exists an x such that MT x > γ , the primal problem is equivalent to:

maxλ minx[
1
2

xT Gx+gT x+λ T (Mx− γ)]; λ ≥ 0 (B.13)

Therefore, the minimization over x is unconstrained and is calculated by:

x =−G−1(g+MT λ ) (B.14)

By substituting this into B.13, the dual problem is written as:

max[−1
2

λ T Hλ −λ T K − 1
2

gT G−1g]; λ ≥ 0 (B.15)
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where the matrices H and K are defined as:

H = MG−1MT

K = γ +MG−1g

Therefore, the dual problem is also a quadratic programming problem with γ as its decision

variable. Equation B.15 is equivalent to:

min[
1
2

λ T Hλ +λ T K +
1
2

γT G−1γ]; λ ≥ 0 (B.16)

It should be noted that the dual problem may be much easier to solve compared with the

primal problem because the constraints are simpler.

To sum it up, the set of optimal Lagrange multipliers that minimize the dual objective

function J(λ ):

J(λ ) =
1
2

λ T Hλ +λ T K +
1
2

γT G−1γ (B.17)

subject to λ ≥ 0, are denoted as λact , and the corresponding constraints are described by

Mact and γact . It can be easily demonstrated that with the values of Mact and γact , the primal

variable vector x is obtained by:

x =−G−1g−G−1MT
actγact (B.18)

In this group of problems, i.e. dual problems, the solutions are based on auxiliary variables

that are collectively referred to as dual variables λi, whereas in the primal problems the

solutions are based on the decision variables that are collectively referred to as primal

variables x̆i [12].

A simple algorithm, called Hildreth’s quadratic programming procedure was pro-

posed by Luenberger (1969) for solving the dual problem. In this algorithm, the direction
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vectors are selected to be equal to the basis vectors ei =

[
0 0 . . . . . . 0 0

]T

. Then

the λ vector can be varied one component at a time. At a given step in the process, hav-

ing obtained a vector λ ≥ 0, attention is fixed on a single component λi. λi is adjusted to

minimize the objective function. If this requires λi < 0, it is set as λi = 0. In either case,

the objective function is decreased. Then the next component λi+1 is considered. If one

complete cycle through the components is considered to be one iteration taking the vector

λi to λi+1, the method can be expressed explicitly as:

λi
m+1 = max(0,ωi

m+1) (B.19)

with

ωi
m+1 =− 1

hii
[ki +

i−1

∑
j=1

hi jλi
m+1 +

n

∑
j=i+1

hi jλi
m] (B.20)

where the scaler hi j is the i jth element in the matrix H and ki is the ith element in the

vector K. The converged λ̆ vector contains either zero or positive values of the Lagrange

multipliers, therefore the optimal solution to the primal problem is:

x =−G−1(g+MT λ̆ ) (B.21)

It should be noted that the Hildreth’s quadratic programming algorithm is an element-by-

element search, therefore it does not require any matrix inversion, thus it always converges.

This is crucial for a reliable control framework [12].
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