69 research outputs found

    Wide area network autoscaling for cloud applications

    Get PDF
    Modern cloud orchestrators like Kubernetes provide a versatile and robust way to host applications at scale. One of their key features is autoscaling, that automatically adjusts cloud resources (compute, memory, storage) in order to dynamically adapt to the demands of the application. However, the scope of cloud autoscaling is limited to the datacenter hosting the cloud and it doesn't apply uniformly to the allocation of network resources. In I/O-constrained or data-in-motion use cases this can lead to severe performance degradation for the application. For example, when the load on a cloud service increases and the Wide Area Network (WAN) connecting the datacenter to the Internet becomes saturated, the application experiences an increase in delay and loss. In many cases this is dealt by overprovisioning network capacity, which introduces significant additional costs and inefficiencies. On the other hand, thanks to the concept of "Network as Code", the WAN today exposes a programmable set ofAPIs that can be used to dynamically allocate and deallocate capacity on-demand. In this paper we propose extending the concept of cloud autoscaling into the network to address this limitation. This way, applications running in the cloud can communicate their networking requirements, like bandwidth or traffic profile, to an SDN controller or Network as a Service (NaaS) platform. Moreover, we aim to define the concepts of vertical and horizontal autoscaling applied to networking. We present a prototype that automatically allocates bandwidth in the underlay of an SD-WAN, according to the requirements of the applications hosted in Kubernetes. Finally, we discuss open research challenges

    Smart Decision-Making via Edge Intelligence for Smart Cities

    Get PDF
    Smart cities are an ambitious vision for future urban environments. The ultimate aim of smart cities is to use modern technology to optimize city resources and operations while improving overall quality-of-life of its citizens. Realizing this ambitious vision will require embracing advancements in information communication technology, data analysis, and other technologies. Because smart cities naturally produce vast amounts of data, recent artificial intelligence (AI) techniques are of interest due to their ability to transform raw data into insightful knowledge to inform decisions (e.g., using live road traffic data to control traffic lights based on current traffic conditions). However, training and providing these AI applications is non-trivial and will require sufficient computing resources. Traditionally, cloud computing infrastructure have been used to process computationally intensive tasks; however, due to the time-sensitivity of many of these smart city applications, novel computing hardware/technologies are required. The recent advent of edge computing provides a promising computing infrastructure to support the needs of the smart cities of tomorrow. Edge computing pushes compute resources close to end users to provide reduced latency and improved scalability — making it a viable candidate to support smart cities. However, it comes with hardware limitations that are necessary to consider. This thesis explores the use of the edge computing paradigm for smart city applications and how to make efficient, smart decisions related to their available resources. This is done while considering the quality-of-service provided to end users. This work can be seen as four parts. First, this work touches on how to optimally place and serve AI-based applications on edge computing infrastructure to maximize quality-of-service to end users. This is cast as an optimization problem and solved with efficient algorithms that approximate the optimal solution. Second, this work investigates the applicability of compression techniques to reduce offloading costs for AI-based applications in edge computing systems. Finally, this thesis then demonstrate how edge computing can support AI-based solutions for smart city applications, namely, smart energy and smart traffic. These applications are approached using the recent paradigm of federated learning. The contributions of this thesis include the design of novel algorithms and system design strategies for placement and scheduling of AI-based services on edge computing systems, formal formulation for trade-offs between delivered AI model performance and latency, compression for offloading decisions for communication reductions, and evaluation of federated learning-based approaches for smart city applications

    Next-generation networks: Necessity of edge sharing

    Get PDF
    Resource sharing is fundamental to the design of telecommunication networks. The technology, economic and policy forces shaping the transition to next-generation digital networking infrastructure—characterized here as “5G+” (for 5G and beyond)—make new and evolved forms of edge sharing a necessity. Despite this necessity, most of the economic and policy research on Network Sharing Agreements (NSAs) has focused on sharing among service providers offering retail services via networks owned and operated by legacy fixed and mobile network operators (MNOs). In this essay, we make the case for why increased and more dynamic options for sharing, in particular of end-user owned network infrastructure, should be embraced for the future of NSAs. Furthermore, we explain how such a novel sharing paradigm must be matched by appropriate regulatory policies

    Leveraging Cloud-based NFV and SDN Platform Towards Quality-Driven Next-Generation Mobile Networks

    Get PDF
    Network virtualization has become a key approach for Network Service Providers (NSPs) to mitigate the challenge of the continually increasing demands for network services. Tightly coupled with their software components, legacy network devices are difficult to upgrade or modify to meet the dynamically changing end-user needs. To virtualize their infrastructure and mitigate those challenges, NSPs have started to adopt Software Defined Networking (SDN) and Network Function Virtualization (NFV). To this end, this thesis addresses the challenges faced on the road of transforming the legacy networking infrastructure to a more dynamic and agile virtualized environment to meet the rapidly increasing demand for network services and serve as an enabler for key emerging technologies such as the Internet of Things (IoT) and 5G networking. The thesis considers different approaches and platforms to serve as an NFV/SDN based cloud applications while closely considering how such an environment deploys its virtualized services to optimize the network and reducing their costs. The thesis starts first by defining the standards of adopting microservices as architecture for NFV. Then, it focuses on the latency-aware deployment approach of virtual network functions (VNFs) forming service function chains (SFC) in a cloud environment. This approach ensures that NSPs still meet their strict quality of service and service level agreements while considering both functional and non-functional constraints of the NFV-based applications such as, delay, resource allocation, and intercorrelation between VNF instances. In addition, the thesis proposes a detailed approach on recovering and handling of those instances by optimizing the decision of migrating or re-instantiating the virtualized services upon a sudden event (failure/overload…). All the proposed approaches contribute to the orchestration of NFV applications to meet the requirements of the IoT and NGNs era

    User-Centric Traffic Engineering in Software Defined Networks

    Get PDF
    Software defined networking (SDN) is a relatively new paradigm that decouples individual network elements from the control logic, offering real-time network programmability, translating high level policy abstractions into low level device configurations. The framework comprises of the data (forwarding) plane incorporating network devices, while the control logic and network services reside in the control and application planes respectively. Operators can optimize the network fabric to yield performance gains for individual applications and services utilizing flow metering and application-awareness, the default traffic management method in SDN. Existing approaches to traffic optimization, however, do not explicitly consider user application trends. Recent SDN traffic engineering designs either offer improvements for typical time-critical applications or focus on devising monitoring solutions aimed at measuring performance metrics of the respective services. The performance caveats of isolated service differentiation on the end users may be substantial considering the growth in Internet and network applications on offer and the resulting diversity in user activities. Application-level flow metering schemes therefore, fall short of fully exploiting the real-time network provisioning capability offered by SDN instead relying on rather static traffic control primitives frequent in legacy networking. For individual users, SDN may lead to substantial improvements if the framework allows operators to allocate resources while accounting for a user-centric mix of applications. This thesis explores the user traffic application trends in different network environments and proposes a novel user traffic profiling framework to aid the SDN control plane (controller) in accurately configuring network elements for a broad spectrum of users without impeding specific application requirements. This thesis starts with a critical review of existing traffic engineering solutions in SDN and highlights recent and ongoing work in network optimization studies. Predominant existing segregated application policy based controls in SDN do not consider the cost of isolated application gains on parallel SDN services and resulting consequence for users having varying application usage. Therefore, attention is given to investigating techniques which may capture the user behaviour for possible integration in SDN traffic controls. To this end, profiling of user application traffic trends is identified as a technique which may offer insight into the inherent diversity in user activities and offer possible incorporation in SDN based traffic engineering. A series of subsequent user traffic profiling studies are carried out in this regard employing network flow statistics collected from residential and enterprise network environments. Utilizing machine learning techniques including the prominent unsupervised k-means cluster analysis, user generated traffic flows are cluster analysed and the derived profiles in each networking environment are benchmarked for stability before integration in SDN control solutions. In parallel, a novel flow-based traffic classifier is designed to yield high accuracy in identifying user application flows and the traffic profiling mechanism is automated. The core functions of the novel user-centric traffic engineering solution are validated by the implementation of traffic profiling based SDN network control applications in residential, data center and campus based SDN environments. A series of simulations highlighting varying traffic conditions and profile based policy controls are designed and evaluated in each network setting using the traffic profiles derived from realistic environments to demonstrate the effectiveness of the traffic management solution. The overall network performance metrics per profile show substantive gains, proportional to operator defined user profile prioritization policies despite high traffic load conditions. The proposed user-centric SDN traffic engineering framework therefore, dynamically provisions data plane resources among different user traffic classes (profiles), capturing user behaviour to define and implement network policy controls, going beyond isolated application management

    5G Outlook – Innovations and Applications

    Get PDF
    5G Outlook - Innovations and Applications is a collection of the recent research and development in the area of the Fifth Generation Mobile Technology (5G), the future of wireless communications. Plenty of novel ideas and knowledge of the 5G are presented in this book as well as divers applications from health science to business modeling. The authors of different chapters contributed from various countries and organizations. The chapters have also been presented at the 5th IEEE 5G Summit held in Aalborg on July 1, 2016. The book starts with a comprehensive introduction on 5G and its need and requirement. Then millimeter waves as a promising spectrum to 5G technology is discussed. The book continues with the novel and inspiring ideas for the future wireless communication usage and network. Further, some technical issues in signal processing and network design for 5G are presented. Finally, the book ends up with different applications of 5G in distinct areas. Topics widely covered in this book are: • 5G technology from past to present to the future• Millimeter- waves and their characteristics• Signal processing and network design issues for 5G• Applications, business modeling and several novel ideas for the future of 5

    Edge intelligence in smart grids : a survey on architectures, offloading models, cyber security measures, and challenges

    Get PDF
    The rapid development of new information and communication technologies (ICTs) and the deployment of advanced Internet of Things (IoT)-based devices has led to the study and implementation of edge computing technologies in smart grid (SG) systems. In addition, substantial work has been expended in the literature to incorporate artificial intelligence (AI) techniques into edge computing, resulting in the promising concept of edge intelligence (EI). Consequently, in this article, we provide an overview of the current state-of-the-art in terms of EI-based SG adoption from a range of angles, including architectures, computation offloading, and cybersecurity c oncerns. The basic objectives of this article are fourfold. To begin, we discuss EI and SGs separately. Then we highlight contemporary concepts closely related to edge computing, fundamental characteristics, and essential enabling technologies from an EI perspective. Additionally, we discuss how the use of AI has aided in optimizing the performance of edge computing. We have emphasized the important enabling technologies and applications of SGs from the perspective of EI-based SGs. Second, we explore both general edge computing and architectures based on EI from the perspective of SGs. Thirdly, two basic questions about computation offloading are discussed: what is computation offloading and why do we need it? Additionally, we divided the primary articles into two categories based on the number of users included in the model, either a single user or a multiple user instance. Finally, we review the cybersecurity threats with edge computing and the methods used to mitigate them in SGs. Therefore, this survey comes to the conclusion that most of the viable architectures for EI in smart grids often consist of three layers: device, edge, and cloud. In addition, it is crucial that computation offloading techniques must be framed as optimization problems and addressed effectively in order to increase system performance. This article typically intends to serve as a primer for emerging and interested scholars concerned with the study of EI in SGs.The Council for Scientific and Industrial Research (CSIR).https://www.mdpi.com/journal/jsanElectrical, Electronic and Computer Engineerin

    5G Outlook – Innovations and Applications

    Get PDF
    5G Outlook - Innovations and Applications is a collection of the recent research and development in the area of the Fifth Generation Mobile Technology (5G), the future of wireless communications. Plenty of novel ideas and knowledge of the 5G are presented in this book as well as divers applications from health science to business modeling. The authors of different chapters contributed from various countries and organizations. The chapters have also been presented at the 5th IEEE 5G Summit held in Aalborg on July 1, 2016. The book starts with a comprehensive introduction on 5G and its need and requirement. Then millimeter waves as a promising spectrum to 5G technology is discussed. The book continues with the novel and inspiring ideas for the future wireless communication usage and network. Further, some technical issues in signal processing and network design for 5G are presented. Finally, the book ends up with different applications of 5G in distinct areas. Topics widely covered in this book are: • 5G technology from past to present to the future• Millimeter- waves and their characteristics• Signal processing and network design issues for 5G• Applications, business modeling and several novel ideas for the future of 5
    corecore