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Abstract

Modern cloud orchestrators like Kubernetes provide a versatile and robust way to host
applications at scale. One of their key features is autoscaling, that automatically adjusts
cloud resources (compute, memory, storage) in order to dynamically adapt to the demands
of the application. However, the scope of cloud autoscaling is limited to the datacenter
hosting the cloud and it doesn’t apply uniformly to the allocation of network resources.
In I/O-constrained or data-in-motion use cases this can lead to severe performance degra-
dation for the application. For example, when the load on a cloud service increases and
the Wide Area Network (WAN) connecting the datacenter to the Internet becomes sat-
urated, the application experiences an increase in delay and loss. In many cases this is
dealt by overprovisioning network capacity, which introduces significant additional costs
and inefficiencies.

On the other hand, thanks to the concept of ”Network as Code”, the WAN today exposes
a programmable set of APIs that can be used to dynamically allocate and de-allocate
capacity on-demand. In this thesis we propose extending the concept of cloud autoscaling
into the network to address this limitation. This way, applications running in the cloud
can communicate their networking requirements, like bandwidth or traffic profile, to an
SDN controller or Network as a Service (NaaS) platform. Moreover, we aim to define the
concepts of vertical and horizontal autoscaling applied to networking. We present a pro-
totype that automatically allocates bandwidth in the underlay of an SD-WAN, according
to the requirements of the applications hosted in Kubernetes. Finally, we discuss open
research challenges.
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1 Introduction

During the last decade, Software-Defined Networking (SDN) has enabled programma-
bility to network operation and management. By exposing expressive northbound APIs,
the underlying physical network infrastructure can be controlled dynamically, offering
unprecedented dynamic and quasi real time network control. Recently, several commer-
cial networking scenarios have embraced the SDN paradigm, resulting in a new breed of
networking solutions, such as SD-Wide Area Network [12, 13], or SD-Access Networks
[11, 14].

Starting even earlier and driving the as-a-Service revolution, the compute environment has
been following its own path of rapid innovation. Compute resources have become more
granular, from physical hardware to VMs, then to containers [1, 2] and more recently
towards Lambda functions [15, 16]. This makes it possible to consume compute resources
more efficiently, as well as achieving the unprecedented scalability that has made Cloud
Computing possible.

In this context, orchestration software to manage large pools of compute resources, such
as OpenStack for virtual machines [17], or Kubernetes for containers [1] has become com-
monplace. These orchestration infrastructures have been naturally extended into the net-
working domain, especially in the case of service meshes, such as Envoy proxies controlled
by Istio [23, 27]. However, the capability of the network to keep up with the scalability
offered by the cloud infrastructure is limited mostly to datacenter networks (within the
cluster). Inter-cluster connectivity, as well as the connection with the users, is typically
provided via Wide-Area Networks (WAN), a relatively expensive resource with limited
capacity.

In addition to the limited capacity of the WAN, the lack of communication between the
cloud and the WAN hinders some of the advantages of the cloud. A key limitation emerges
in the context of cloud autoscaling events. Autoscaling is a cloud feature to dynamically
adapt the amount of compute and memory resources to the current application load, as
a way to improve efficiency and optimize cost.

In current cloud deployments that span across datacenters and WANs, autoscaling events
detected by the cloud orchestrator only propagate within the compute domain (i.,e, dat-
acenter). Although an application can scale up to support higher loads, the connection
towards the users or between clusters remains unchanged, which might cause congestion or
reduce QoE. It may also require overprovisioning of network capacity, introducing signifi-
cant additional costs and inefficiencies. Conversely, when applications scale down, network
resources become idle and underutilized. Taking this into account, we argue that there is
a need to develop the necessary abstractions and protocols to interface the compute and
the networking domains, with a strong focus on the network autoscaling properties.

1.1 Objectives

In this thesis we explore how application-driven cloud autoscaling events can be proac-
tively propagated to the network. Common approaches to network autoscaling are reac-
tive, i.e. they monitor network traffic, compute an average, and trigger autoscaling events
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if the average exceeds a threshold [26]. However, in our case the objective was to make use
of application context extracted from the cloud to proactively autoscale the network. This
approach doesn’t wait for surges in network load to increase capacity, but rather proac-
tively increases network capacity shortly before surges in demand become observable in
the network. With WAN autoscaling, the network dynamically matches the requirements
of applications with the resources available in the network, achieving higher efficiency in
resource utilization. Moreover, we intend to translate the cloud autoscaling concept to the
network autoscaling environment. Also, another key objective was the developement of a
proof of concept (PoC), its analisys and the identification of the future challenges that
WAN autoscaling brings to the table.

1.2 Methods and procedures

This work is a continuation of the Cloud Native SD-WAN (CN-WAN) open source project
developed by Cisco. This thesis is also leverages the cooperation between Cisco and Pack-
etFabric, an underlay service provider by using the functionalities of their programmable
API. Finally, this project also includes the work performed by Jordi Paillisse (UPC) on
horizontal network autoscaling.

1.3 Work Plan

This thesis development has had a duration of a little over 6 months and the work plan
followed for its elaboration has been structured in mainly four different work packages:

Research: this section is based on collecting information and related work on the tech-
nologies and topics related to this project. More specifically, four different topics have
been studied. The first one was Software Defined Networking (SDN) applied to Wide
Area Networks (WAN). The second one was studying the cloud computing world and its
related technologies such as Kubernetes and Docker. The third one was centred around
the CN-WAN project in order to get familiar with the source code as well as its concepts
and components. Finally, the last section to study was the API provided by PacketFabric,
which would be used for communicating the autoscaling events to the underlay.

Implementation: during this months a new version of the CN-WAN Adaptor component
has been developed to allow the propagation of cloud autoscaling events to the WAN. Since
developing a proof of concept is never linear, this section has been divided into the first
complete prototype and the iterations that were necessary to develop the final one.

Testing: the next work package after completing the prototype consisted in data collec-
tion through different measures in order to analyse its performance. It also includes the
discussion of this results and reaching the appropriate conclusions.

Documentation: the last work package consisted in documenting the code developed, a
technical paper and this thesis.

8



1
.4

D
e
v
ia

ti
o
n

s
a
n

d
e
v
e
n
tu

a
li

ti
e
s

T
h
e

on
ly

m
a
jo

r
d
ev

ia
ti

on
of

th
is

p
ro

je
ct

h
as

b
ee

n
th

e
re

sc
h
ed

u
le

of
th

e
te

ch
n
ic

al
p
ap

er
d
ea

d
li
n
e

fr
om

th
e

21
st

of
M

ay
20

21
to

th
e

31
st

of
M

ay
20

21
.

1
.4

.1
G

a
n
tt

D
ia

g
ra

m

N
ow

P
h
as
es

of
th
e
P
ro
je
ct

20
20

20
21

D
ec

J
an

F
eb

M
ar

A
p
ri
l

M
ay

J
u
n

In
v
e
st

ig
a
ti

o
n

S
D

-W
A

N
C

lo
u
d

co
m

p
u
ti

n
g

C
N

-W
A

N
P

ac
ke

tF
ab

ri
c

Im
p
le

m
e
n
ta

ti
o
n

1s
t

p
ro

to
ty

p
e

2n
d

p
ro

to
ty

p
e

T
e
st

in
g

D
at

a
co

ll
ec

ti
on

A
n
al

y
si

s
D

o
cu

m
e
n
ta

ti
o
n

P
ap

er
T

h
es

is

F
ig

u
re

1:
G
a
n
tt

d
ia
g
ra
m

o
f
th
e
p
ro
je
ct

9



2 State of the art

In this section we explore the background necessary for the project development, in partic-
ular the software defined networking and the hardware virtualisation. Moreover, a list of
relevant literature is detailed, along with the similarities and differences with this project.

2.1 Software Defined Networks

Software Defined Networks (SDN) appeared around 2008 as a response to traditional
networks limitations. Its static hardware and complex architecture led to scalability and
troubleshooting issues in a cloud-centered world. With a strong focus on this, SDNs intro-
duce network virtualization and the concept of abstracting the underlying network from
the applications and services. SDNs are based on the dissociation of the control plane and
the data plane, separating the routing and the forwarding processes on different devices.
This decoupling enables features such as:

• The agility to dynamically adjust traffic flows to match its needs.

• The application of policies from a centralized management.

• The programmability of the network control, allowing to quickly configure, manage,
optimize and automate the network resources.

• The simplification of the network design due to open standards.

SDNs have many applications, among them software-defined mobile networking, software-
defined Local Area Networks. This particular thesis leverages the SDN concept applied to
Wide Area Networks (SD-WAN). It is focused the optimization of resources cost reduction
by leveraging different connection times on the underlay such as MPLS or 5G.

2.2 Hardware Virtualisation

In the past few decades dedicated hardware has transitioned into virtual machines, virtual
environments that run isolated in a host machine with each own dedicated resources
such as CPU, operating system and memory. More recently, containers have appeared as
the next step of the transition. Based on operating system level virtualization, multiple
isolated and secure virtualied containers can run on one physical device. Every container
has all the necessary resources to run a specific application and in turn, the application
perceives the container as a whole physical device.

With this paradigm appeared container orchestration, which consists in the automation
in configuration, management, and coordination of containers. Kubernetes has become
the de-facto orchestration tool. Besides of offering services as automate deployment or
management, Kubernetes also provides autoscaling features. In particular, autoscaling
can be divided into:

• Vertical Autoscaling: the controller automatically scales the resources, such as CPU
or memory, on already deployed replicas
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• Horizontal Autoscaling [4]: the controller automatically scales the number of replicas
deployed based on configurable metric thresholds such as CPU utilisation.

2.3 Related work

We can find several works discussing network autoscaling, but they are usually limited
to a specific domain, such as the data center [5], virtual network functions [6], or video
streaming [3]. However, in our case: (i) we focus on the WAN, and (ii) take an architectural
approach instead of an algorithmic one, because we make use of existing knowledge from
the cloud to integrate it in the network policies.

Regarding networks that are aware of the application, a classical approach has been
extending the socket API [21]. Contrarily, we do not modify the host stack but use API-
driven interfaces to make the network aware of application requirements. Other works
in a similar direction to ours focus on the connections between end users and ISPs [19],
or inter-datacenter connections [20], while our proposal is centered on cloud applications
and WANs. A more recent proposal suggests merging the L3 stack with the L7 stack
(i.e. service meshes), in order to increase performance and application awareness in the
network [22].

Other proposals in this field include Dawn [30], that annotates each application flow
with direct network control, giving network control in the context of end hosts instead of
the network controller. Our work also provides a good use case for ALTO protocol [31]
implementations and future protocol extension work. ALTO is a protocol which with the
intent to allow hosts to benefit from the network infrastructure by having access to a pair
of maps: a topology map and a cost map.

Finally, this project lists further research challenges, some of which have already existing
research lines such as the multiconnection optimization [32] or the study of the network
resource allocation for each application [33].
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3 Network Autoscaling

In this section we attempt to translate the term of autoscaling, vertical and horizontal,
in the cloud into the network world.

Autoscaling is a cloud feature to make efficient use of compute and memory resources by
automatically adapting their allocation to the current application load. This is done either
by adding/removing more resources to an application instance (vertical autoscaling) or
by adding/removing new application instances (horizontal autoscaling).

Therefore, we propose extending these two concepts to the networking domain in the
following way (fig. 2): first, we make use of the API exposed by cloud orchestrators (eg.
Kubernetes) to determine the network needs of the applications running in the cloud,
as determined by application-level context available in the cloud. For example, we can
detect cloud autoscaling events that indicate that the demand for a given application is
increasing and may require more network capacity.

Figure 2: Vertical and Horizontal Network Autoscaling

Then, we send this information to an SD-WAN controller so it can be programmed by
NetOps to act upon the network. For example, we can request more bandwidth over a
specific connection to an underlay provider (1), or change some paths according to the
requested traffic profile (2).

Note that we aim to clearly separate the jobs of DevOps and NetOps with a simple
interface. On one hand, DevOps make use of cloud tools to add context information about
the application. In our case, they add annotations to define the traffic profile needed
by a given application (annotations are typically fairly abstract indications about the
application network behavior using labels such as “file transfer”, “video streaming”, or
”database analytics”). On the other hand, NetOps can automate the optimal allocation
of network resources to applications thanks to their in-depth knowledge of the WAN
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infrastructure. In the next sections, we describe in detail the concepts of vertical and
horizontal network autoscaling.

3.1 Vertical Network Autoscaling

In the cloud, vertical autoscaling modifies the properties of an existing compute instance.
Similarly, we define Vertical Network Autoscaling as changing the properties of an existing
connection (e.g, L2 pseudo-wires, MPLS tunnel, VXLAN [24] or LISP tunnels [25], etc).
For example, if the number of instances of a specific application increases, we will increase
accordingly the bandwidth of the connection serving these applications.

We are assuming that: (i) the resource limiting application performance is the amount of
WAN bandwidth, and (ii) the SD-WAN controller has access to an API-driven underlay
provider that can dynamically provision the capacity of the connections, as it is becoming
common with NaaS providers [27].

3.2 Horizontal Network Autoscaling

Taking into account that cloud horizontal autoscaling means adding more instances to
handle growing demand, we define Horizontal Network Autoscaling as changing the path
inside the network that a specific application is currently following, due to changes in
its requirements. For instance, consider that a video streaming application can tolerate
latency up to a certain maximum, and that DevOps have labeled such application in
the cloud orchestrator. We can use these labels to pull information from the orchestrator
to identify this application in the network, e.g. via IP and port. Since most SD-WAN
controllers monitor path properties like delay, jitter or bandwidth, we can use this infor-
mation to steer application flows through the appropriate paths in the SDN network via
traffic engineering or Segment Routing (SR).

However, note that when we change the path inside the network we do not necessarily
mean inside the same network. In other words, we can dynamically choose from different
providers to adapt better to sudden increases in load, using resources more efficiently. This
is especially relevant from a business perspective, because increasing efficiency translates
to reductions in cost through price arbitrage. For example, consider a virtual circuit of
1 Gbps that can be extended up to 2 Gbps, but the price of this additional Gbps is sig-
nificantly higher than the first. Upon a surge in application traffic, instead of contracting
this additional Gbps that is more expensive, we can request it to to a different provider
that offers a less expensive alternative. More details about this can be found in section 6.
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4 Implementation

In this section we detail the procedure of implementing the studied scenarios, its devel-
opment and we analyse the obtained results. First, in the vertical network autoscaling
scenario and finally in the horizontal network autoscaling case.

4.1 Vertical Network Autoscaling

4.1.1 Scenario

The experimental setup consisted of three main parts: cloud, network, and cloud-network
API (fig. 3).

Figure 3: Vertical scenario overview

Cloud: We used a public cloud for our experiments [8] controlled by Kubernetes (Version
1.18.16-gke.502), and an ad-hoc HTTP Echo server [9] as a cloud application.
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We leveraged the functionalities of the Kubernetes Horizontal Pod Autoscaler (HPA) to
generate autoscaling events. The HPA is based on a simple algorithm that operates be-
tween a target metric and the current value of the metric, adding or deleting replicas if the
current state does not match the desired state. In our implementation, the target metric
was the average CPU utilization across all monitored pods. We set the HPA threshold to
40%, meaning that when CPU utilization is greater than 40%, Kubernetes deploys new
containers, scaling from 1 up to 150 replicas.

We used a custom HTTP Loader to increase the load on the HTTP Echo server in the
Kubernetes containers. The HTTP Loader artificially generated 700 HTTP echo requests,
and we increased this number to 1900, 2900, 3500, and 4500 connections, at 30, 90, 150,
210 seconds since the start of the test, respectively.

Network: we used a commercial underlay network connecting Washington D.C. and
Seattle based on a Segment Routing tunnel [10], with a baseline of 50 Mbps and a maxi-
mum capacity of 100 Gbps. This network is programmatically controlled by a proprietary
API [27]. Fundamentally, the API allows to create, upgrade and delete virtual circuits
between the two established locations. This network connected the client (HTTP Loader
in Washington D.C.) with the cloud application (HTTP Echo server in Seattle).

Cloud-Network API: we developed an open-source API that allows the network and the
cloud to talk, the Cloud-Native SD-WAN project (CN-WAN [7]). The main role of CN-
WAN is to provide an interface between cloud applications and networks that connect
to end-users, or applications running across multiple clusters. This interface allows us
to: (i) identify which cloud applications require network autoscaling, (ii) communicate
autoscaling events from the cloud to the network, and (iii) quantify the scaling factor
required on the underlay. CN-WAN consists of three main blocks: the Operator, the
Reader and the Adaptor (fig. 6). When Kubernetes detects a variation in the number
of replicas of the application being monitored, the Operator publishes this change on an
external service registry. From there, the Reader polls the service registry and announces
the events to the Adaptor, which in turn contacts the programmable underlay to adjust
the network to the upcoming bandwidth requirements.

4.1.2 Development

The Vertical Network Autoscaling solution developed leverages existing functionalities of
the CN-WAN project and PacketFabric. In order to implement it the CN-WAN Oerator
has been modified to report the changes in the number of replicas of a targetted cloud
application. In the event of new replicas deployed or existing replicas deleted, the Operator
publishes the new amount of pods to the external service registry. The CN-WAN Reader
now pulls the service registry to detect any update and it makes an API call to a new
CN-WAN Adaptor to make the according changes in the underlay.

The CN-WAN adaptor has been developed following these assumptions: (i) there are no
third party modifications on the virtual circuit capacity, (ii) it fits into a point-to-point
scenario and (iii) the virtual circuit is created with a baseline bandwidth that cannot be
removed.
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For the implementation, this component has been developed as a Docker container, for
portability and flexibility. The API that connects the CN-WAN Reader with the Packet-
Fabric underlay has been implemented using the OpenAPI specification [28] using a Flask
server [29] and written in Python programming language.

This new Adaptor has three different main functionalities. The first one is to create a
mapping between each replica and the network load assigned to it, in Mbps (bw per replica
in eq. 1 and 2). The second functionality takes place on the reception of a cloud autoscaling
event from the Reader (old replicas in 1 ). The Adaptor needs to keep the state of the
existing number of pods deployed for each targeted application (old replicas in 2 ) in
order to quantify the variation in the autoscaling event. With the variation of replicas
accounted for, then the computation of the required underlay bandwidth takes place. To
do this computation it is also important to take into account that the virtual circuit
baseline bandwidth and the bandwidth consumed by other applications that autoscale.
With these two values the new required bandwidth can be calculated as:

bw = old bw − old replicas× bw per replica (1)

new bw = bw + new replicas× bw per replica (2)

The total new bandwidth required to fit the demand of all the replicas deployed then
needs to be modified to adjust to the granularity provided by the underlay.

Finally if the final bandwidth computed is different from the one currently allocated on the
virtual circuit, the Adaptor generates an API call to PacketFabric to request an update
on the virtual circuit.

Besides the main functionalities, other features such have been implemented such as the
ones listed below. A picture of all the API endpoints implemented can be found in ap-
pendix C.

• Log in with PacketFabric credentials.

• API endpoints to create/delete/reset new virtual circuits.

• API endpoint to modify the bandwidth per replica assigned to a targeted cloud
application.

• API endpoints to retrieve stored information such as current number of replicas,
bandwidth allocated on the virtual circuit, bandwidth allocated for a specific appli-
cation, between others.

• HTTP mock server that acts as the underlay for testing purposes.

The CN-WAN Adaptor source code will be open sourced when it is no longer under review.

4.1.3 Results

Fig. 4 shows an overview of the operation of vertical network autoscaling. We have mea-
sured the throughput in the cloud router connected to the virtual circuit, the total ca-
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pacity of the connection, and the number of application replicas in Kubernetes. The plot
shows how the bandwidth allocated in the underlay’s virtual circuit starts autoscaling
proactively with the application to support upcoming traffic.

More specifically, we started injecting traffic to a 50 Mbps virtual circuit to generate
autoscaling events. We can see that traffic starts increasing around 50 seconds after the
experiment starts (blue line), that simulates a spike in demand for a particular cloud
application. In parallel, as traffic increases, the CPU utilization of the cloud application
rises, and Kubernetes automatically deploys more replicas (orange line, at the same time
as traffic increases). We can see that shortly after the number of replicas is greater than
50, the underlay capacity is increased from 100 Mbps to 200 Mbps (at around 140 seconds
in the timescale). This is because we trigger autoscaling events when traffic is greater than
the minimum allocated bandwidth in the virtual circuit (50 Mbps). We estimate traffic
assuming that each replica consumes a fixed amount of bandwidth, 1 Mbps in this case.
Since at this moment there are aprox. 75 replicas, this translates to 75 Mbps, so we jump
to the next bandwidth step allowed by the underlay provider (here from 100 to 200 Mbps).

Figure 4: Vertical autoscaling performance

We must remark that the increase in virtual circuit capacity is triggered proactively, as
soon as the cloud application starts autoscaling (the sudden increase of 50 to 75 replicas
is very close in time to the increase of virtual circuit bandwidth). This means that the
underlay virtual circuit capacity is increased before the actual network traffic hits the 100
Mbps initial capacity of the underlay, i.e, the blue line never crosses the green one.

Furthermore, as soon as the cloud application scales down because of diminished de-
mand, the network will scale down the underlay capacity accordingly (not shown in the
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graph), resulting in a highly efficient and cost effective usage of the underlay resources.
This example shows the benefits of autoscaling the WAN, compared with today’s typical
approach of overprovisioning underlay capacity to address peaks of demand, or common
autoscaling techniques that leverage traffic prediction models based on autoregression or
moving average to decide when to scale up or down [26].
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Figure 5: Kubernetes controller (a) and overlay controller (b) response time

Next, we focus on the response time of Kubernetes and the overlay controller when reacting
to autoscaling events. The plot in fig. 5a shows the Cumulative Distribution Function
(CDF) of the Kubernetes Horizontal Pod Autoscaler (HPA) latency in two situations.
Time to pull corresponds to the delay to pull the container image when we receive a new
autoscaling event.

Time to run is the delay between the trigger of an autoscaling event by the HPA until
Kubernetes indicates that the new container is running. Note that this measurement
includes the time to pull the image, and that each CDF contains 170 measurements. In
both cases, we can see that Kubernetes can autoscale in the order of seconds.

Finally, the plot in fig. 5b shows the CDF of the delay of the SD-WAN overlay controller,
i.e., the time between receiving an autoscaling event in the overlay until the capacity of
the virtual circuit is updated. We can see that this time is in the order of tens of seconds,
one order of magnitude more than the Kubernetes controller response time.

Other results, such as a submission to the Network-Application Integration SIGCOMM
Workshop (2021) and the presentation during KubeConEU ScaleX event (2021) can be
found in appendices A and B, respectively.
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4.2 Horizontal Network Autoscaling

4.2.1 Scenario

We modified the setup of section 4.1 in order to steer a traffic flow between two different
underlay tunnels. More specifically: (i) instead of the HTTP echo server, we deployed a
container that streamed video from the Kubernetes cluster, (ii) we connected a VM to
receive the video stream on the other end of the WAN, (iii) we annotated the Kubernetes
container with a label to identify it as a video stream, and (iv) we configured the SD-WAN
controller with two tunnels: one with a limited bandwidth of 3 Mbps, an another with 1
Gbps.

Figure 6: Horizontal scenario overview

This way, the CN-WAN operator reads the IP and port of the video stream container from
Kubernetes and stores it in a service registry. Then, the reader collects this information
and sends it to the SD-WAN controller via the adaptor, indicating the IP address and
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port of the Kubernetes application, and which tunnel it should take.

In order to change the path of the video stream, we modified several times the annotation
in Kubernetes, so the flow alternated between the two tunnels.

4.2.2 Results

We can see an example of the video stream switching paths operation in fig. 7, that shows
the bandwidth in both tunnels. We can appreciate that while one tunnel has traffic, the
other doesn’t, and that the throughput never exceeds 3 Mbps in the rate-limited tunnel.
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Figure 7: Throughput in the rate-limited tunnel and the 1 Gbps tunnel

Finally, we measured the delay between changing the application annotation in Kuber-
netes until traffic appeared in the other tunnel. We considered that traffic appeared in the
other tunnel when it received more than 1 Mbps. We repeated the experiment 200 times,
and the delay was below 23 seconds 80% of the times, with a maximum of 31 seconds.
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5 Budget

This section details the budget dedicated to the development of this project. Since it is a
software-based project, the more significant part of the budget consists on the resources
dedicated to human resources. To account for them, table 1 and 2 show the amount of
hours dedicated by the personnel. The work of the engineered has been computed at 10
AC/hour and the work of the managers and senior engineers at 20 AC/hour. Spanish social
services taxes have also been considered.

Table 1: Budget dedicated to the engineer in charge of the project

Task Hours Retribution/h Social Services (30%) Total (AC)
Research 200 10 600 2600

Implementation 120 10 200 5200
Documentation 400 10 360 1560

Total: 9360AC

Table 2: Budget dedicated to the manager in charge of the project supervision

Task Hours Retribution/h Social Services (30%) Total (AC)
Support 50 20 300 1300
Meetings 48 20 288 1248

Total: 1548AC

In table 3, the budged dedicated to equipment has been computed. For that we have
considered the use of a 13-inch MacBook Pro with a 2,4 GHz Quad-Core Intel Core i5
processor and 16 GB 2133 MHz LPDDR3 memory. To compute the amortisable value of
the computer, a 10% residual value has been taken into account. Virtual machines used for
the deployment of the testbed have also been accounted for. A total of 6 Linux e2-medium
(2 vCPUs, 4 GB memory) VMs have been deployed in Google Cloud Platform.

Table 3: Budget dedicated to the equipment used during the project time spant

Units Cost Amortisation Useful life Total (AC)
Computer 1 2500 2250 4 281,25

Linux Machines 6 450/month - - 2700
Total: 2981.25AC

Finally, the last resources that need accounting are the software licenses. For program-
ming, the free UI Visual Studio Code has been used. For code sharing and control version
we have used Github since it has a free license. For testing and developing the APIs,
Postman provided all the tools needed without fees. Finally, the Viptela SDN software
has been considered free for the development of this project since it has been developed
in cooperation with Cisco, the vendor.
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Table 4: Budget dedicated to the licenses required for the project development

License Cost (AC)
Visual Studio Code Free

Postman Free
Github Free

Viptela SDN Free
Total: Free

After adding all the expenses the final project budget adds up to a total of 13889,25AC.

22



6 Conclusions and open research challenges

In this last section we detail the conclusions extracted during the development of the
project and we finish by presenting future research challenges that we have identified.

6.1 Conclusions

The softwarization of the WAN and the advent of connectivity service providers that are
exposing APIs to dynamically provision underlay capacity [27], together with the devel-
opment of an application-to-network API makes proactive autoscaling of WAN resources
as easy as autoscaling compute and memory. This is a very significant improvement, com-
pared with the status quo of overprovisioning WAN capacity to address peaks of demand,
as well as from solutions that monitor network utilization reacting to congestion and sat-
uration. The basic prototype of WAN autoscaling that we implemented shows that it is
possible to extend the scope of autoscaling to the WAN.

6.2 Open research challenges

To conclude this thesis we list a number of future research challenges that are worth
further researching.

Bandwidth Estimation: regarding vertical network autoscaling, it is crucial to perform
an accurate estimation of the bandwidth required by each compute replica, in order to
maximize efficiency, prevent congestion or avoid overprovisioning bandwidth, and its asso-
ciated cost. While in our prototype we let the developers configure this parameter, a more
accurate approach is to automatically estimate it using sophisticated techniques. There
is extensive research on bandwidth estimation [18], with monitoring tools or prediction
algorithms, either linear or non-linear prediction models. Additional research is needed to
understand how such existing techniques can benefit from having information from the
cloud orchestrator.

Bandwidth Granularity: the bandwidth allocation granularity offered by the overlay
controller is key to avoid overprovisioning. That is, the overlay controller can increase
or decrease the allocated bandwidth in certain steps (e.g, 10, 50, 100 Mbps). Larger
granularities that can match the required bandwidth of the compute replicas will lead
to very efficient use of the resources. However, offering large granularities (e.g., steps
of 1 Mbps) complicates the SDN overlay controller management. In addition, very large
granularities (e.g, 1 kbps) can lead to issues handling traffic bursts. As a result, additional
research is required in this field.

Provisioning Time: in the context of underlay providers, the maximum capacity of a
tunnel is typically a management plane configuration parameter. In many network sce-
narios, the provisioning time (i.e., the time until the setting takes effect) is not considered
relevant and has been often done manually. In recent years programmability has allowed
this time to be significantly faster, changing from manual (e.g, through phone calls) to
tenths of seconds [27]. Despite this huge improvement, in our scenario this provisioning
delay would need to commensurate with the reaction time of the cloud autoscaling en-
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gine (currently few seconds), in order to avoid under-utilization or service disruption.
Additional research efforts are required to address this challenge.

Application Diversity: in our experiments, we have inherently assumed that each ap-
plication is assigned to a single tunnel. However, in real-world scenarios, different appli-
cations can share the same connection. In order to address this, the overlay control plane
should take into account that multiple applications share the same physical link, and scale
capacity accordingly.

Network Topology: our solution is designed for scenarios with point-to-point connec-
tions, where all the end-users are connected through a single tunnel to the datacenter
running the application. With this setup, autoscaling events for an application only affect
one tunnel. However, in real-world scenarios, a datacenter servicing end-users can be at-
tached to different access networks and thus, each access network uses a different tunnel
towards the datacenter. In this case, upon a surge in application traffic, and from the per-
spective of the cloud orchestrator, we don’t know which virtual circuit needs additional
bandwidth. Hence, we need more information about the traffic to determine which con-
nections must be scaled. For example, we could use traffic monitoring techniques, or take
a more proactive approach by tracking the incoming connections to the cloud datacenter.

Billing Model: WAN autoscaling affords a new consumption model for WAN capacity
where bandwidth is provisioned (and de-provisioned) on demand in quasi real time, rather
than through overprovisioning. The billing model offered by today’s underlay connectivity
providers reflects the overprovisioning consumption model offering increasing SLAs (such
as 1, 10, 50 Gbps) typically billed on a monthly basis. WAN autoscaling may drive the
introduction of a new billing model where WAN consumption is billed on demand. We
believe this may lead to a more efficient use of network infrastructure resources for the
service provider, that will in turn be reflected to a lower cost for the end user. Future work
in this area should include a detailed analysis of billing models for WAN autoscaling, and
their comparison with current billing models.
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Appendices

A NAI SIGCOMM Workshop submission

SIGCOMM is the flagship annual conference of the ACM Special Interest Group on Data
Communication (SIGCOMM) on the applications, technologies, architectures, and proto-
cols for computer communication.

The Network-Application Integration workshop searches for contributions to the design
principles and real implementations of systems that enable network-application co-design.
It focuses on realistic NAI designs, implementations and experiences, and exploring both
sides of NAI: application-aware networking (AAN) and network-aware application (NAA).

This project has submitted a paper to the NAI SIGCOMM Workshop. If accepted it will
be presented in August 2021.

B KubeCon EU 2021 ScaleX

Modern cloud native development can be complicated with the lack of true pipeline in-
tegration across tools for application platforms, security, and networking for an app-first
world. ScaleX, intends to explore building for scalability and reliability and what that
means for the modern cloud native developer.

This project was presented during this event by David Ward, the CEO of PacketFabric
and Anna Claiborne, founder and VP of engineering.

Figure 8 shows a screenshot of the presentation. For viewer context, on the top right of the
screen, there is Lens, the UI that monitors Kubernetes resources, it is tracking the Hori-
zontal Pod Autoscaler. The autoscaler is set to trigger an autoscale event (which consists
in adding more replicas) once the existing replicas reach 40% of their CPU utilisation.
The replica column shows the number of current active replicas.

The application deployed is a simple echo server that processes HTTP requests. In the
middle right there is the Linux client that generates the requests for the echo server.
During the demonstration, sets of connections are being started periodically to generate
increasing traffic over time.

On the bottom right, the logs of the CN-WAN Adaptor are shown. It displays how the
autoscaling events are received and how these are translated to a call to the PacketFabric
API after computing the amount of bandwidth needed to fit the demand.

On the bottom left, moving clockwise, there is the PacketFabric portal. On the first line
it shows the virtual circuit connecting Seattle with Washington D.C. The browser auto
refreshes to show how this is being updated with the autoscaling events.

Finally, on the top left there is Cisco vManage monitoring the traffic going over the SD-
WAN tunnel over the PacketFabric virtual circuit. It shows the bandwidth consumed and
how it increases over time. Note that the bandwidth actually consumed is much lower
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than the 50Mbps defined per replica, it is just a way of showing WAN autoscaling events
with a simple echo server. This can be configured to match more properly the actual
network load that each replica has.

The full presentation can be found at https://www.youtube.com/watch?v=DEepmB7aWE0.

Figure 8: KubeConEU ScaleX demo presented by PacketFabric

C API endpoints

Figure 9 shows all the endpoints implemented in the CN-WAN Adaptor API.
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Figure 9: CN-WAN Adaptor API endpoints
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