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ABSTRACT OF DISSERTATION

Smart Decision-Making via Edge Intelligence for Smart Cities

Smart cities are an ambitious vision for future urban environments. The ultimate aim of smart

cities is to use modern technology to optimize city resources and operations while improving overall

quality-of-life of its citizens. Realizing this ambitious vision will require embracing advancements

in information communication technology, data analysis, and other technologies. Because smart

cities naturally produce vast amounts of data, recent artificial intelligence (AI) techniques are of

interest due to their ability to transform raw data into insightful knowledge to inform decisions (e.g.,

using live road traffic data to control traffic lights based on current traffic conditions). However,

training and providing these AI applications is non-trivial and will require sufficient computing

resources. Traditionally, cloud computing infrastructure have been used to process computationally

intensive tasks; however, due to the time-sensitivity of many of these smart city applications, novel

computing hardware/technologies are required. The recent advent of edge computing provides a

promising computing infrastructure to support the needs of the smart cities of tomorrow. Edge

computing pushes compute resources close to end users to provide reduced latency and improved

scalability —making it a viable candidate to support smart cities. However, it comes with hardware

limitations that are necessary to consider.

This thesis explores the use of the edge computing paradigm for smart city applications and how

to make efficient, smart decisions related to their available resources. This is done while considering

the quality-of-service provided to end users. This work can be seen as four parts. First, this work

touches on how to optimally place and serve AI-based applications on edge computing infrastructure

to maximize quality-of-service to end users. This is cast as an optimization problem and solved

with efficient algorithms that approximate the optimal solution. Second, this work investigates the

applicability of compression techniques to reduce offloading costs for AI-based applications in edge



computing systems. Finally, this thesis then demonstrate how edge computing can support AI-based

solutions for smart city applications, namely, smart energy and smart traffic. These applications are

approached using the recent paradigm of federated learning.

The contributions of this thesis include the design of novel algorithms and system design strate-

gies for placement and scheduling of AI-based services on edge computing systems, formal formula-

tion for trade-offs between delivered AI model performance and latency, compression for offloading

decisions for communication reductions, and evaluation of federated learning-based approaches for

smart city applications.

KEYWORDS: smart cities, edge computing, artificial intelligence, edge intelligence, information

communication technology
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1

Introduction

One of the most noteworthy arcs of the 21st century has been the explosive growth seen in the

usage and deployment of technology. More specifically, the advancement of information and com-

munications technology (ICT) has been the foundation for many of the innovations seen over this

century thus far. The wide-spanning adoption of the Internet for social media, e-commerce, news

consumption, and more has redefined much of our everyday lives and industries across the world.

Due to the advancements of ICT, there are many exciting opportunities for what is yet to come. One

longstanding opportunity for the future is the vision of the smart city.

There are countless different ideas and definitions for what exactly qualifies as a smart city. A

more general definition, provided by Bakıcı et al. in [1], defines smart cities as being high-tech

cities that serve to connect people, information, and city-wide infrastructure and resources using

advances in technology to improve sustainability, innovation, and overall quality-of-life. The extent

to which how pervasive (or intrusive) technologies are incorporated to accomplish such goals is often

a point of contention in the literature [2]. However, the many different visions for what define smart

cities all generally involve heavy utilization of technology to improve the maintenance of cities to

further improve and/or optimize city-specific operations for different stakeholders (e.g., citizens, the

environment).

Realizing the ambitious vision of smart cities requires seamlessly making decisions for a host of

different applications and domains with minimal sacrifice with respect to performance and resource

costs. Some applications of interest for smart cities include, but are not limited to, smart traffic

light control, smart information spread (or advertisement), smart energy distribution, smart waste

management, etc. Ideally, data generated in urban environments can be collected in smart cities using

1



ICT-powered infrastructure to train and inform models designed for these applications to make real-

time decisions. For instance, insistent collection of traffic congestion data from roadside units (RSU)

and other sources can be sent to ICT infrastructure to train machine learning models how to make

optimal decisions related to traffic lights to reduce congestion. This approach is becoming more

within reach given the advances in vehicular ad hoc networks (VANET) [3, 4, 5] and other Internet-

of-Vehicles (IoV) systems [6, 7, 8].

Making smart decisions in a timely fashion will require a powerful pipeline ready to support

intense amounts of data collection, analytics, and adaptive decision-making. For instance, video

feeds at road intersections— to empower models for smart traffic light control— are large in size (in

terms of bytes) and will require automated processes to make meaningful decisions in real-time.

However, video cameras that provide such video feeds will be unable, on their own, to perform such

analytics and decision-making. Such tasks would require more computational resources than would

be available at video cameras and other similar sensors that can be found in urban environments.

Thus, for such applications, smart cities will need to be able to provide heavy computational power

on-demand, even for devices that do not have such resources locally. Applications (e.g., big data

analytics, video classification) all require large amounts of compute resources in order to adequately

process. Because Internet-of-Things (IoT) devices like smartphones are often ill-equipped to meet

the needs of such processes [9, 10], a standard approach for providing these services on these devices

is to rely on remote resources.

A common solution for this problem of leveraging remote resources is known as cloud com-

puting [11, 12], where large and remote computational resources can be accessed to serve service

requests of virtually any kind of device. The advent of the cloud has seen rapid growth in recent years

alongside the advancements of communication and storage technologies that make up the basis of the

Internet [13]. Despite the promise of cloud computing, there are notable and severe limitations that

need to be considered — particularly when considering the realization of smart cities [14, 15, 16].

First, the cloud being a remote resource depreciates its ability to provide optimal latency for received

requests. Many applications in the interest of smart cities are critical and delay-sensitive, meaning

that we need to ensure that cyber infrastructure supporting smart cities provides optimal latency.

Second, the cloud serving as a centralized data storage entity also restricts the ability to provide data

privacy due to entities from unknown sources also relying on the same cloud resources. Third, hav-

ing critical infrastructure for smart cities rely on a centralized entity raises concerns of reliability.

With the rapidly growing number of IoT devices around the world, it may not always be preferable

2



Central Cloud

End Users

Edge Clouds

Figure 1.1: Our considered edge computing system model. The topmost layer, central cloud, has
expansive hardware resources but is further away from the end users — resulting in large delays for
end users. The middle layer is the layer of edge clouds which are placed closer to the user. The
bottom layer is populated by end users that submit requests to the system. The central cloud and
edge cloud collaboratively address user requests following some protocol or policy.

to rely on the same system other users outside the city are using.

In light of these possible limitations of cloud computing, a more recent paradigm has sparked a

lot of excitement. This paradigm is known as edge computing [15, 17]. Also commonly referred to as

fog [18, 19] and micro-cloud computing [20, 21], the edge computing framework serves as the next

iteration of the cloud, where compute and other resources are pushed to the edge of the network and

closer to end users to improve latency and overall Quality-of-Service (QoS). The general idea is that

when a user wishes to perform some computationally-intensive task (e.g., smart voice assistant), the

user can submit a request for a service to be performed on the edge computing infrastructure. These

edge infrastructure can be thought of as micro-clouds with their own hardware to handle service

requests to provide a response to users. Hereafter, these edge infrastructure devices will be referred

to as “edge clouds”. The physical proximity of edge clouds to the end users provides for improved

latency. Additionally, the distributed nature of edge clouds (in comparison to a centralized cloud)

can provide opportunities for building more reliable, robust, and secure ICT infrastructure for smart

cities. Additionally, edge computing can interact with conventional, centralized cloud infrastructure

to collaboratively manage user requests. Due to the various architectures that can be composed for

edge computing environments, it is crucial that the architecture we consider is clarified. In this work,

we consider (unless specified otherwise) a 3-tier edge computing architecture. The topmost tier is

the central cloud; the middle tier is the layer of edge clouds; and the bottommost tier is the layer of
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end users that submit service requests to the system. A visual overview of this architecture can be

found in Figure 1.1.

Growing popularity in edge computing has generated much interest in the possibility of deploy-

ing complex models for machine intelligence on the edge. More succinctly, this idea is commonly

referred to as edge intelligence [22, 23]. Examples of models that can be used to provide machine in-

telligence on the edge include (but are not limited to) deep learning models, unsupervised clustering

models, and regression models. Deep learning models (e.g., deep neural networks [24], convo-

lutional neural networks [25], recurrent neural networks [26]) are becoming increasingly popular

due to their relevance for a variety of applications and domains from energy disaggregation, facial

recognition, robotics, and natural language understanding [27, 28, 29, 30].

Edge intelligence is an interesting and unique area of study because it requires the consideration

of the advantages and limitations of edge computing systems. For instance, edge ICT infrastructure

being physically close to where data are generated presents an interesting and timely opportunity

to train deep neural networks. However, the hardware resources of edge clouds (e.g., communi-

cation, compute, and storage resources) are relatively constrained in comparison to a large, cen-

tralized cloud. As such, the exorbitant computational cost associated with training these complex

deep learning models to provide intelligence is a valid concern. With that said, there is much room

to understand how to optimally deploy, train, and use these models on the edge without incurring

excessively large amounts of resource costs.

1.1 Contribution

This thesis studies how edge intelligence can be used to support applications relevant for realizing

the ambitious vision of smart cities. This is done by considering an edge computing platform for

providing and training edge intelligence solutions on the edge. Contributions of this thesis include

novel algorithms, system design strategies, optimization formulations for trade-offs of such sys-

tems, etc. This thesis approaches this broad by topic by first discussing placement and scheduling

strategies for edge intelligence services. Then, compression techniques are considered for reducing

communication costs associated for offloading requests in such edge computing infrastructure. Fi-

nally, this thesis then demonstrates the potential of edge intelligence solutions for smart cities by

considering two relevant applications, namely, smart energy distribution and smart traffic control.
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1.2 Roadmap of the Thesis

This thesis begins in Chapter 2 by first considering decisions for where to place edge intelligence

services and how to schedule said services to process user requests to maximize total Quality-of-

Service (QoS). This chapter considers QoS to be a function of both accuracy and latency provided

to user requests. Chapter 3 then considers the application of compression techniques to improve

implicit accuracy-latency trade-offs when scheduling user requests. The final two chapters consider

two smart applications. Chapter 4 focuses on smart grid applications and the role edge computing

infrastructure can serve for smart grid systems. More specifically, the recent advent of federated

learning is applied to the problem of Non-Intrusive Load Monitoring (NILM) to improve commu-

nication costs for training edge intelligence applications. Finally, Chapter 5 studies how federated

reinforcement learning for the application of smart traffic light control can be used to improve road

conditions while reducing associated communication costs for smart cities.

Copyright© Nathaniel Hudson, 2022.
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Mobile edge computing pushes computationally-intensive services closer to the user to provide

reduced delay due to physical proximity. This has led many to consider deploying deep learning

models on the edge— commonly known as edge intelligence (EI). EI services can have many model

implementations that provide different QoS. For instance, one model can perform inference faster

than another (thus reducing latency) while achieving less accuracy when evaluated. In this chapter,

we study joint service placement and model scheduling of EI services with the goal to maximize

Quality-of-Servcice (QoS) for end users where EI services have multiple implementations to serve

user requests, each with varying costs and QoS benefits. We cast the problem as an integer linear

program and prove that it is NP-hard. We then prove the objective is equivalent to maximizing

a monotone increasing, submodular set function and thus can be solved greedily while maintain-

ing a (1− 1/e)-approximation guarantee. We then propose two greedy algorithms: one that theo-

retically guarantees this approximation and another that empirically matches its performance with

greater efficiency. Finally, we thoroughly evaluate the proposed algorithm for making placement

and scheduling decisions in both synthetic and real-world scenarios against the optimal solution
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and some baselines. In the real-world case, we consider real machine learning models using the

ImageNet 2012 data-set for requests. Our numerical experiments empirically show that our more

efficient greedy algorithm is able to approximate the optimal solution with a 0.904 approximation

on average, while the next closest baseline achieves a 0.607 approximation on average.

2.1 Introduction

The growth of the Internet has given birth to the advent of the Internet-of-Things (IoT). This ecosys-

tem consists of countless different devices, or things (e.g., sensors, home appliances), that can seam-

lessly communicate with one another. More importantly, these devices also serve to generate/collect

data. In order to acquire meaningful information from these data, they must first be processed. The

scale of the IoT poses a problem for processing these data in a timely fashion through a conven-

tional, centralized approach (e.g., cloud computing). As such, a promising framework to approach

this problem has been that of mobile edge computing (MEC) [31, 15, 32, 33].

The MEC framework considers the deployment of edge clouds (or edge servers) that provide

communication, compute, and storage resources closer to the end user devices to ameliorate latency

incurred from physical distance. This physical proximity allows for more immediate and timely

data processing for nearby devices in IoT. However, MEC is not without challenges. The hardware

resources available at an individual edge cloud pales in comparison to that available at the far away

central cloud server. As such, decisions related to how these resources are spent must be optimized.

Regardless, MEC remains a promising framework for performing timely data processing for IoT

devices, such as smart sensors.

The popularity of machine learning (ML) for performing the task of data processing has sky-

rocketed in recent years. ML has been shown to be capable of achieving remarkable accuracy for

complex tasks (e.g., image classification, video classification, speech-to-text). Due to the flexibility

and performance of ML technologies, deploying such models on the edge to process IoT data is

promising. Thus, the notion of edge intelligence (EI) has gained prominence. A notable feature of

EI services, such as image classification, is that several different EI architectures (i.e., deep neural

networks) can be implemented to perform inference for some input for a service. These different

architectures can have varying trade-offs in terms of the time they take to perform inference, the size

of input data they require, and how accurate they are in practice when performing inference. Given

these observations, in this work, we adapt the well-studied problem of service placement in MEC
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Request: Image
classification!

DenseNet

SqueezeNet

Placed image classification
models on this edge cloud.

Response provided
by DenseNet.
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GoogLeNet

Figure 2.1: 3-tier MEC architecture where an edge cloud has two image classification models to
serve requests for that service.

to consider EI services with different model implementations. Most notably, this problem aims to

maximize the Quality-of-Service (QoS) provided by the edge when services are allowed to have

several different model implementations to serve user requests.

To the best of our knowledge, this is the first EI service placement work that considers each

service to have multiple implementations. We summarize our contributions as follows:

• Introduce the Placement of Intelligent Edge Services (PIES) problem for optimal placement

and scheduling of EI services with multiple implementations to maximize QoS provided by

the edge.

• Prove that the PIES problem is NP-hard and that its objective maximizes a monotone increas-

ing, submodular set function under matroid constraints.

• Propose two greedy algorithms: one with a (1− 1/e)-approximation guarantee and another

more efficient greedy algorithm that empirically matches this approximation algorithm with

much greater efficiency.

• Our empirical results show that both greedy algorithms outperform their minimal approxima-

tion guarantee and each achieve an approximation of roughly 0.9 on average.

2.2 Related Works

Service Placement. The problem of deciding which services to place on edge clouds in MEC is

commonly known as the service placement problem. Many works study the problem with the goal
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to optimize resource utilization, energy consumption [34, 35], and Quality-of-Service (QoS) [36,

37]. Some works consider a static placement decision where the placement decision is made in

a single shot [38, 39]. Other works focus on dynamic placement where placement decisions are

made over some timespan [21, 40]. The case where edge clouds can share their resources with one

another to collaboratively serve user requests has been studied by He et al. in [41]. The existence

of mobile end users has encouraged research studying placement with service migration, where a

service processing a request migrates between edge clouds [42]. For a recent and comprehensive

survey on service placement, please refer to [43]. Quality-of-Service (QoS) is very domain specific.

Gao et al. in [36] study maximizing QoS, defined as a function of latency, through a joint decision

problem for both service placement and network selection where users can be served by more than

one edge cloud. Skarlat et al. define FSPP, a QoS-aware service placement problem, as an ILP

where QoS is defined as a function of application deadlines— using the Gurobi solver to provide the

optimal solution [44]. Yousefpour et al. in [45] propose a dynamic fog computing framework, called

FogPlan, for dynamic placement and release of services on fog nodes in IoT infrastructure. The

authors consider QoS-aware service placement where QoS is considered exclusively with respect to

delay latency and user’s delay tolerance. Wang et al. in [34] study a similar problem wherein they

focus on the placement of virtual machines for software-defined data centers to maximize energy

efficiency and QoS. An application placement policy using a fuzzy logic-based approach is proposed

by Mahmud et al. in [37] that maximizes QoE. In this work, the authors consider QoE under a fuzzy

framework comprised of sets for access rate, required resources, and processing times. Farhadi

et al. in [46] study service placement and request scheduling on MEC systems for data-intensive

applications. They pose the problem of service placement as a set optimization problem and provide

an algorithm that demonstrates an approximation bound on optimal solutions.

Edge Intelligence. The advent of pushing machine learning services to the edge led to the

established field of edge intelligence (EI) [47]. Due to the limited resource capacities of MEC

environments, a central focus of EI is the design of models that are less costly in terms of resources to

run [48]. One proposed solution is to simply prune the elements comprising the deep neural network

for the EI service (e.g., remove the number of neurons/units or entire layers) [49, 50, 51]. Another

proposed idea is to consider a EI model’s architecture being split across different tiers of the MEC

architecture (e.g., one half is run on the edge and the other on the central cloud) [52]. Other works

have studied optimizing theQoS provided by deep learning EImodels on the edge. Zhao et al. in [53]

study the trade-off between accuracy and latency for offloading decisions regarding deep learning
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services for provided optimal QoS on the edge through compression techniques. Hosseinzadeh et al.

in [54] study the related problem of offloading and request scheduling in edge systems to maximize

QoS for deep learning models under the assumption that placement of these models has been done

a priori. There are few works that have formally studied the service placement problem specifically

for EI models. Recently in 2021, Zehong, Bi, and Zhang study the problem of optimally placing EI

services with the objective of optimizing energy consumption and completion time [55].

Our work departs from the literature in that we focus on EI service placement where each service

can have multiple implementations. To the best of our knowledge from surveying the literature, this

is the first work to do so. A similar work by Hung et al. in [56] considers multiple implementations

of services. However, the focus of that work is on optimal query scheduling of video processing

tasks rather than placement of services on edge clouds.

2.3 System Model

2.3.1 System Architecture Definition

We consider a 3-tier MEC architecture consisting of a central cloud, edge clouds, and end users (see

Figure 2.1). The central cloud hosts all model implementations for each service in the environment.

However, the objective of this work is to maximize expected QoS provided by the edge clouds and

thus we do not closely consider the central cloud. For this work, we focus on three aspects of this

environment: edge clouds, end user requests, and available EI service models. For simplicity, we

consider requests processed by the cloud to be dropped.

Edge Clouds. We denote the set of edge clouds E = {1, · · · ,E} where E is the number of edge

clouds. We consider edge clouds to be deployed computational devices that are associated with a

wireless access point to connect to users. Each edge cloud is equipped with hardware resources

to process the requests provided by end users. Specifically, we consider each edge cloud e ∈ E to

have resource capacities Ke, We, and Re for communication, computation, and storage capacities,

respectively. For simplicity, we do not consider the possibility of edge clouds collaborating to serve

user requests. Thus, either a user’s request is served by the user’s covering edge cloud or is offloaded

to the central cloud (dropped).

User Requests. We denote the set of user requests as U = {1, · · · ,U} whereU is the number of

user requests. For simplicity, we consider each user to make a single service request. For users that
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request multiple services, we represent this as separate user requests altogether. Each user is covered

by some edge cloud, which will process their service request. We denote the edge cloud covering

user u by eu. Additionally, we denote the set of users an edge cloud e covers byUe = {u∈U : eu≡ e}.

The service some user u requests is denoted by su. When submitting a request, users also provide

thresholds for accuracy and delay to inform the MEC system for how to make decisions with respect

to QoS. The accuracy threshold provided by user u is denoted by αu ∈ [0,1]; the delay threshold

provided by user u is denoted by δu ∈ [0,δmax], where δmax represents the maximum possible delay.

These thresholds are used to prioritize the needs of end users. More specifically, some applications

that use deep learning are more sensitive to inaccurate answers and others are more time-sensitive.

For instance, a self-driving vehicle that uses object detection to detect nearby pedestrians would be

more accuracy-sensitive and delay-sensitive than a game on a smartphone.

Service Models. We consider a set of services that are available for users to request, denoted

by S = {1, · · · ,S} where S is the number of available services. We assume that there is at least

one implementation for each service s ∈ S . However, we also allow for EI services to be imple-

mented by several different machine learning architectures. For brevity, we refer to a single service

implementation as a “service model” for short. The set of implemented service models for ser-

vice s is denoted byMs = {1, · · · ,ms} where ms ≥ 1 is the number of models implemented for

service s. For simplicity, we also denote the set of all individual implemented service models by

SM= {(s,m) : ∀s∈ S,m∈Ms}. Each service model (s,m)∈ SM is associated with an accuracy

metric Asm ∈ [0,1]. We assume this value is provided by evaluation using some test data-set (as is

typical in machine learning). We denote the expected delay for performing service model (s,m)

for user u by Dsm(u) — this is defined more explicitly in §2.3.2. Finally, we denote communi-

cation, computation, and storage costs for each service model (s,m) ∈ SM by ksm, wsm, and rsm,

respectively.

2.3.2 Quality-of-Service (QoS) Definition

We consider QoS for EI models to be comprised of two components: provided model accuracy and

incurred delay. As mentioned earlier in §2.3.1, each user request submitted to the system includes

thresholds for requested minimum accuracy, αu, and requested maximum delay, δu. As such, we use

these threshold values to compute the expected QoS a service model (s,m) can provide to user u.

The formal definition is provided below in Eq. (2.1),
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Q(u,s,m)≜


1
2 [âsm(u)+ d̂sm(u)] if s = su

0 otherwise
(2.1)

where âsm(u) and d̂sm(u) represent how much service model (s,m) satisfies user u’s accuracy and

delay thresholds, respectively. The summation of these two terms is multiplied by 1/2 because the

maximumpossible values for both âsm(·) and d̂sm(·) is 1.0, thus normalizing the range toQ(·)∈ [0,1].

A key challenge when designing QoS functions for this work is addressing the fact that accuracy

and delay naturally have different ranges. As such, it is necessary to ensure that these two metrics

are made comparable to one another. The âsm(·) and d̂sm(·) functions are used for this reason. While

experimenting with other QoS function definitions, it was common for delay to dominate because

delay would often be much larger than a 1.0 (the maximum value for accuracy).

Accuracy Satisfaction

As stated, each user submits a minimum accuracy threshold, αu ∈ [0,1], which indicates the amount

of accuracy needed to satisfy them. This accuracy of a service model, Asm, is a metric retrieved

from model evaluation (as is standard with machine learning models). We define this as a nonlinear

function in Eq. (2.2) below,

âsm(u) =


1 if Asm ≥ αu

max(0,1− (αu−Asm)) otherwise
(2.2)

where the first case represents when a user’s accuracy request has been met and the second case

provides reduced satisfaction based on the difference between user-requested accuracy and the eval-

uated accuracy for service model (s,m).

Delay Satisfaction

Similarly, each user submits a maximum delay threshold, δu ∈ [0,δmax], to indicate the amount of

accuracy they are willing to tolerate. If they receive a response for their request within δmax time

units, then they are satisfied; otherwise, their satisfaction will degrade. The formal definition is

provided below in Eq. (2.3),
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d̂sm(u) =


1 if Dsm(u)≤ δu

max
(

0,1− Dsm(u)−δu
δmax

)
otherwise

(2.3)

where Dsm(u) is the expected delay from processing user u’s request using service model (s,m).

This is defined below in Eq. (2.4) as the sum of two terms of the transmission delay, Dtran
sm (·), and

the computation delay, Dcomp
sm (·). See below for the formal definition:

Dsm(u) = Dtran
sm (u)+Dcomp

sm (u). (2.4)

The transmission delay is a function of the communication cost of service model (s,m) and

the communication capacity of user u’s covering edge cloud, eu. Additionally, the edge cloud’s

bandwidth is evenly shared across all of the users it covers — see Eq. (2.5),

Dtran
sm (u) =

ksm

Keu/|Ueu |
=

ksm |Ueu |
Keu

(2.5)

where ksm is the communication cost for service model (s,m). Similarly, computation delay is a

function of the computation cost of service model (s,m) and user u’s covering edge cloud, eu, and

its computation resources — see Eq. (2.6),

Dcomp
sm (u) =

wsm

Weu/|Ueu |
=

wsm |Ueu |
Weu

(2.6)

where wsm is the computation cost for service model (s,m). We assume that the an edge cloud’s

computation capacity is evenly shared across its covered users.

2.4 Problem Definition

Given the systemmodel, we now define thePlacement for Intelligent Edge Services (PIES) problem.

PIES performs service placement for EI models with multiple implementations with the goal of

maximizing QoS, defined in Eq. (2.1). On top of making placement decisions, the PIES problem

also decideswhich placed servicemodel will serve a user’s request if there are more implementations

for a requested service available. For instance, given each user u makes a request for service su, if

u’s covering edge cloud eu has had more than 1 model of service su placed on it, then the PIES

problem will also select a placed model to process u’s request.
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2.4.1 PIES Formulation

The PIES problem is defined as an integer linear program (ILP) and consists of two types of deci-

sions: (i)model placement and (ii)model scheduling. For the former, we consider a binary decision

variable x= (xsm
e )∀e∈E ,s∈S,m∈Ms = 1 if service model (s,m) is placed on edge cloud e, 0 otherwise.

For the latter, we consider another binary decision variable y= (ym
u )∀u∈U ,m∈Msu

= 1 if user u’s ser-

vice request is served by its covering edge cloud eu with service model (su,m), 0 otherwise. We

formally define the PIES problem below:

maximize ∑
u∈U

∑
m∈Msu

ym
u Q(u,su,m) (2.7)

subject to ∑
m∈Msu

ym
u ≤ 1 ∀u ∈ U (2.7a)

∑
s∈S

∑
m∈Ms

xsm
e rsm ≤ Re ∀e ∈ E (2.7b)

ym
u ≤ xsum

eu
∀u ∈ U ,m ∈Msu (2.7c)

xsm
e ∈ {0,1} ∀e ∈ E ,(s,m) ∈ SM (2.7d)

ym
u ∈ {0,1} ∀u ∈ U ,m ∈Msu (2.7e)

The objective function is defined in Eq. (2.7) and maximizes the expected QoS provided by the

edge clouds to all users. Constraint (2.7a) ensures that no more than 1 model is used to process a

user’s request. Constraint (2.7b) guarantees that all edge clouds’ storage capacities are not exceeded

by the summation of the storage costs of their placed service models. Constraint (2.7c) ensures that

users can only be served if their covering edge cloud has placed at least 1 implementation of their

requested service. Finally, constraints (2.7d) and (2.7e) defines x and y as binary decision variables.

2.4.2 PIES Problem Complexity & Properties

Next, we provide proofs related to the hardness of the PIES problem, as well as theoretical properties

that can be used to provide approximation guarantees for algorithm design.

Theorem 1. The service model placement sub-problem of the PIES problem is NP-hard.

Proof. We prove Theorem 1 using a reduction from the 0/1 Knapsack problem, which is one of

Karp’s 21 classical problems proven to be NP-complete [57, 58, 59]. To review, the 0/1 Knapsack
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problem considers 1, · · · ,n items with each item having a weight cost ci and a value vi, as well as a

maximum capacityC for the knapsack. The problem’s objective is to maximize ∑n
i=1 vixi subject to

∑n
i=1 wixi ≤C and xi ∈ {0,1}. Here, xi = 1 if and only if the ith item is selected to be placed in the

knapsack.

We can reduce the 0/1 Knapsack problem to the PIES problem as follows. Suppose that there are

|S|= n available services in the MEC system and only 1 model per service, i.e., |Ms|= 1 (∀s ∈ S).

Each service i has vi users requesting it — meaning there are |U| = ∑n
i=1 vi users in total. Suppose

there is |E|= 1 edge cloud in theMEC systemwith storage capacityR1 =C, communication capacity

K1 = ∞, and computation capacityW1 = ∞. Let all users be covered by this 1 edge cloud, such that

eu = 1 (∀u ∈ U). Let the storage costs associated with each service model be rs1 = cs (1 ≤ s ≤ n)

and the communication/computation costs ks1 = 1, ws1 = 1 (1 ≤ s ≤ n). We assume that the QoS

requirements of all users are relaxed, meaning that αu = 0.0,δu = δmax (∀u ∈ U). Then we claim

that the 0/1 Knapsack problem is feasible if and only if we can maximize expected QoS across all

users, i.e., the optimal decision variable of the constructed PIES instance equals xi1
1 ≡ xi. First, given

the optimal solution to the 0/1 Knapsack, placing the services corresponding to the decisions in xi

on the single edge cloud in our constructed instance gives the optimal solution to the PIES problem

that maximizes QoS by maximizing the number of user requests served on the edge. Moreover,

given an optimal solution to the PIES problem that maximizes QoS across all users, placing the

corresponding items in the knapsack gives an optimal solution to the 0/1 Knapsack problem. Given

the decision problem of the 0/1 Knapsack problem is NP-complete, it follows that the PIES problem

is NP-hard. This concludes the proof.

Theorem 2. Given a service model placement, x, the optimal solution to the PIES model scheduling

sub-problem is given by a greedy algorithm.

To prove Theorem 2, we consider an auxiliary, undirected multigraph and discuss its construc-

tion. Consider a multigraph G = (V,L, f ) where V is the set of nodes, L ⊆ |V | × |V | the set of

links/edges (hereafter we will refer to as links), and f : L→ {{u,v} : u,v ∈V} is the link identifier

function. Consider the node set V to be composed of 3 sets of nodes: a set containing a single root

node VR, a set of user nodes VU , and a set of service nodes VS. Thus, we say V =VR∪VU ∪VS. We

define VU as the set of users with at least 1 model placed on their edge cloud for their requested

service, i.e., VU = {u ∈ U : ∑m∈Msu
xsum

eu
> 0}. We define VS as the set of requested services for

each user u ∈ VU that have had at least 1 service model placed on their covering edge cloud, i.e.,
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Figure 2.2: Example auxiliary multigraph representing PIES scheduling sub-problem. Links be-
tween user/service nodes correspond to an model implementation for a user’s requested service
placed on the user’s covering edge. Float values correspond with QoS weights. Solid links compose
the maximum spanning tree for optimal model scheduling.

VS = {su : ∀u ∈ VU}. We note that we allow for duplicate services such that each user u ∈ VU

has its own service node. The set of links, L, contains links between node sets VR, VU and VU ,

VS. First, there is 1 edge between the root node, ϕ ∈ VR, and each of the user nodes u ∈ VU , i.e.,

{(ϕ ,u) : ∀u ∈VU} ⊆ L. Then, a user node u ∈VU can have multiple links to its corresponding ser-

vice node su ∈VS. The number of links between u ∈VU and su ∈VS is equal to ∑m∈Msu
xsum

eu
, which

is the number of model implementations for su placed on u’s covering edge cloud, eu. Finally, each

link is weighted. Links between the root node ϕ ∈ VR and user nodes u ∈ VU are weighted by 0.

Links between each user nodes u ∈ VU and its requested service nodes su are weighted by the ex-

pected Q(u,s,m) where m corresponds with the model type of the respective link between u and su.

A simple example of a multigraph constructed by this method is provided in Fig. 2.2.

Proof. Given a service placement decision, x, we can prove Theorem 2 by constructing an auxil-

iary multigraph that represents the problem space for the PIES model scheduling sub-problem as

described above and shown in Fig. 2.2. With this graph constructed, it is easy to verify that the

optimal solution to the model scheduling sub-problem is equivalent to finding a maximum spanning

tree (MST)—which can be found by applying a greedy algorithm for minimum spanning trees (e.g.,

Kruskal’s algorithm [60]) and negating all of the edge weights. This concludes the proof.

Proving Submodularity. In order to provide an approximation guarantee for the NP-hard PIES

placement sub-problem, we prove the PIES service placement sub-problem is maximizing a mono-

tone submodular set function, we rewrite our problem as a set optimization. LetP(x)≜ {(e,(s,m))∈
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E ×SM : xsm
e = 1} denote the set of service model placements according to decision variable x,

where (e,(s,m)) means service model (s,m) is placed on edge cloud e. Next, let σ(P(x)) denote

the optimal objective value of PIES for a given x. By writing P(x) as P, we can rewrite the PIES

placement sub-problem as:

max σ(P) (2.8)

s.t. ∑
(e,(s,m))∈P∩Pe

rsm ≤ Re ∀e ∈ E (2.8a)

P⊆ E ×SM (2.8b)

where Pe ≜ {e}×{(s,m)∈SM : rsm≤ Re} is the set of all possible single service model placements

at edge cloud e. From here, we observe the following:

• Matroid constraint: Let I be the collection of all P satisfying constraints (2.8a), (2.8b). It is

then easy to verify thatM= (E ×SM,I) is a matroid. This is known as the partition matroid

as {Pe}e∈E is a partition of the ground set (E ×SM).

• Monotone submodular objective function: We show that the objective function (2.8) has the

following properties.

Theorem 3. Function σ(P) is monotone increasing and submodular for any feasible P.

Proof. First, adding an element (e,(s,m)) to P corresponds to adding new possible users to serve or

new links in the auxiliary multigraph G (see Fig. 2.2). Under either outcome, the objective value,

Eq. (2.7), will either increase or remain unchanged. Thus it is sufficient to say that σ(P) is monotone

increasing.

The PIES service model placement sub-problem is submodular iff for every A,B ⊆ E ×SM

where A ⊆ B and some p /∈ B, the following condition holds: σ(A∪{p})−σ(A) ≥ σ(B∪{p})−

σ(B). We can define the objective value under optimal scheduling given a set of placements P as

σ(P)≜ ∑
u∈U

σu(P) (2.9)

where σu(P) is the optimal QoS provided to user u with service model placements P. We can define

σu(P) as follows:

σu(P)≜ max
(e,(s,m))∈P

{Q(u,s,m) : e = eu∧ s = su}∪{0}. (2.10)
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Next, we claim that for every user u∈U the following holds: σu(A∪{p})−σu(A)≥ σu(B∪{p})−

σu(B). We can verify this by elaborating on what these expressions represent and by exploiting

their definitions. First, by definition, σu(A∪{p})−σu(A) represents the increase {p} provides to

the objective. It should be noted that {p} can only provide increase if its provided QoS for u is

greater than what A could already provide. Additionally, we note σu(A∪{p}) ∈ {σu(A),σu({p})}.

We claim this because σu(A∪{p})≡ σu(A) if σu(A)≥ σu({p}), meaning an already placed model

in A is scheduled to serve u’s request, or σu(A∪ {p}) ≡ σu({p}) if σu(A) < σu({p}), meaning

the new service model placed by the new placement {p} is scheduled to serve u’s request. These

observations similarly hold for B as well. Now, we prove the following inequality σu(A∪{p})−

σu(A)≥ σu(B∪{p})−σu(B) directly by its possible cases:1

• Case 1. σu(A∪{p})≡ σu(A) and σu(B∪{p})≡ σu(B). It is easy to verify that σu(A∪{p})−

σu(A)≥ σu(B∪{p})−σu(B) becomes 0≥ 0, which holds.

• Case 2. σu(A∪{p})> σu(A) and σu(B∪{p})≡ σu(B). It is easy to verify that the lefthand

side of the original inequality becomes a value> 0 and the righthand side becomes 0, thus the

inequality holds.

• Case 3. σu(A∪{p}) > σu(A) and σu(B∪{p}) > σu(B). Since A ⊆ B, any service model

placed under A is also placed under B. Intuitively, any increase to QoS for user u provided by

A∪{p} can be matched by B∪{p} because B has every service model to serve u’s request that

A has. Additionally, B could also have service models that provide greater QoS for u than A

due to it having more service models placed. Thus, it must follow that the original inequality

holds because A’s increase in QoS for u is always at least as large as B’s increase.

Thus, σu(·) is submodular for every u ∈ U . Since any function that is a summation of submodular

functions is also submodular [61], it then follows that σ(·) is also submodular. This concludes the

proof.

2.5 Efficient Algorithm Design

1Note the case that σu(A∪{p})≡ σu(A) and σu(B∪{p})> σu(B) can never occur. This is due to the fact that A⊆ B
and thus if {p} provides greater QoS for user u than B, then it follows that is also true for A.
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Algorithm 1: Optimal Model Scheduling (OMS)
Input : Service placement (x), Input parameters of (2.7)
Output:Model scheduling (y)

1 Initialize y← (ym
u = 0)∀u∈U ,m∈M;

2 foreach user u ∈ U do
3 if ∑m∈Msu

xsum
eu > 0 then

4 m∗← argmax
m∈Msu

{Q(u,su,m),∀u ∈ Ue : xsum
eu = 1};

5 ym∗
u ← 1;

6 return y;

2.5.1 Scheduling Sub-Problem

In §2.4.2, we proved the PIES model scheduling sub-problem can be optimally solved with a greedy

solution (see Theorem 2). As such, we introduce a simple greedy algorithm,OptimalModel Schedul-

ing (OMS). The pseudocode is provided in Algorithm 1. OMS works in a straightforward fashion.

Given a service placement decision and the PIES input parameters, OMS iterates through each user

u ∈ U and if there is at least one model of their requested service, su, on their covering edge cloud,

eu, then OMS selects the model that provides the greatest QoS to user u. The runtime for OMS is

O(|U||Mmax
s |) where |Mmax

s |= maxs∈S(|Ms|).

2.5.2 Placement Sub-Problem

Here, we introduce two algorithms that can be used to solve the service model placement sub-

problem for PIES. The first is an approximation algorithm that exploits the theoretical properties

of the PIES objective (discussed in §2.4.2) to achieve an approximately optimal solution. The latter

algorithm mimics some of the logic of this algorithm while reducing computational heft.

Approximation Algorithm

Because the PIES problem aims to maximize a monotone increasing, submodular set function un-

der matroid constraints (see Theorem 3), a standard greedy algorithm can provide a (1− 1/e)-

approximation of the optimal solution [62]. As such, we introduce Approximate Greedy Place-

ment (AGP) which serves as an approximation algorithm for the PIES placement sub-problem. Its

pseudocode is provided in Algorithm 2. AGP iterates through each edge cloud e ∈ E and, in each

iteration, it finds the set of service models (s,m) ∈ SM that can be placed on e without violating

the storage capacity constraint. It then computes the objective value using optimal model schedul-
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Algorithm 2: Approx. Greedy Placement (AGP)
Input : Input parameters of (2.7)
Output: Service placement (x)

1 Initialize x← (xsm
e = 0)∀e∈E ,s∈S,m∈M;

2 P←{} ; // Placement decisions ∀e ∈ E.
3 foreach e ∈ E do
4 P̂←{} ; // Placement decisions for this e.
5 R̂← Re;
6 repeat
7 L←{(s,m) ∈ SM\ P̂ : rsm ≤ R̂};
8 s∗,m∗← argmax

(s,m)∈L
σ(P∪{(e,(s,m))});

9 P̂← (s∗,m∗);
10 P← P∪{(e,(s∗,m∗))};
11 R̂← R̂− rs∗m∗ ;
12 until |L\ P̂|= 0;

13 foreach (e,(s,m)) ∈ P do
14 xsm

e ← 1;

15 return x;

ing via Eq. (2.9) to find the immediate best choice. Once there are no more legitimate choices to

choose from, it moves on to the next edge cloud. Once iteration through edge clouds is finished,

it converts the placement decisions (represented as a set) into the standard format for the decision

variable. However, AGP’s runtime is not desirable due to its need to compute optimal scheduling

for each possible option at each iteration.

Efficient Algorithm

Due to the heavy runtime complexity of AGP, there is a need for a more efficient algorithm that can

relatively match AGP’s performance with respect to approximating the optimal solution without

the large computational cost. Thus, we introduce the Efficient Greedy Placement (EGP) algorithm.

EGP iteratively places models by keeping a record of anticipated benefit of placing any given ser-

vice model on an edge cloud. It does this without computing optimal scheduling, thus reducing its

computational cost. EGP’s pseudocode is provided in Algorithm 3. In line 1, the placement decision

variable is initialized. Then, on line 2, we begin to iterate through each edge cloud to decide which

service models should be placed on the current edge cloud. Line 3 initializes an empty hash-map

and lines 4-6 compute the total QoS each service model relevant for the current edge cloud can

provide towards the objective function. This data structure will be updated as decisions are made.

Lines 7-9 initialize some supporting variables for EGP’s logic. A records service models that have

been considered for placement at some point for the current edge cloud; B keeps track of the set
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Algorithm 3: Efficient Greedy Placement (EGP)
Input : Input parameters of (2.7)
Output: Service placement (x)

1 Initialize x← (xsm
e = 0)∀e∈E ,s∈S,m∈M;

2 foreach edge e ∈ E do
3 Initialize hash-map v with default values of 0.0;
4 foreach user u ∈ Ue do
5 foreach model type m ∈Msu do
6 vsum← vsum +Q(u,su,m);

7 A←{} ; // Considered service models.
8 B←{} ; // Satisfied users.
9 R̂← Re ; // Remaining storage.
10 repeat
11 s∗,m∗← argmax

(s,m)∈keys(v)\A
{vsm};

12 if rs∗m∗ ≤ R̂ then
13 xs∗m∗

e ← 1;
14 R̂← R̂− rs∗m∗ ;
15 foreach m ∈Ms∗ where (s∗,m) /∈A do
16 vsm← ∑

u∈Ue\B
Q(u,s∗,m)−Q(u,s∗,m∗);

17 A←A∪{(s∗,m∗)};
18 foreach u ∈ Ue do
19 if Q(u,s∗,m∗) = 1 then B← B∪{u} ;

20 until (R̂ = 0)∨ (|Ue|= |B|)∨ (|A|= |keys(v)|);
21 return x;

of users who can be provided maximum QoS; and R̂ tracks the remaining storage capacity. Lines

10-20 find the service model (s∗,m∗) that provide the maximum QoS among the service models

we have yet to consider from our hash-map. If (s∗,m∗) can be placed without violating the storage

constraint, then it will be placed (line 13) and remaining storage will be reduced (line 14). Then,

in lines 15-16 we recalculate the benefit of each other model implementation for s∗ by computing

∑u∈Ue\B Q(u,s∗m)−Q(u,s∗,m∗). Since the newly placed model degrades the benefit from picking

other implementations of the same service, we sum the difference between these other models and

the newly placed model to reevaluate the benefit of placing them. Lines 10-20 repeat until either

there is no more storage space, all of the edge cloud’s user’s achieve maximum QoS, or we have

considered all models relevant for the edge cloud (according to the keys recorded in the hash-map).

The runtime complexity of EGP is O(|U|+ |U||Mmax
s |) where |Mmax

s |= maxs∈S(|Ms|).
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Figure 2.3: Validation Test. For these experiments, we consider |U|= [50,100,150,200,250], with
10 trials each. We perform this validation test to confirm the efficacy of EGP relative to the optimal
solution and the approximation algorithm, AGP.

2.6 Experimental Design & Results

We consider numerical simulations and a real-world implementation with real image data and ML

models. Algorithms are implemented in Python 3.8 and experiments are largely run on a macOS

64 bit machine with a 3.2 GHz quad-core Intel Core i5 processor and 32 GB 1600 MHz DDR3

memory.

2.6.1 Baselines

We compare AGP and EGP to the ILP defined in Eq. (2.7) which is solved using the PuLP Python

library [63] and the CBC solver [64] (referred to as “OPT”). We also adapt the standard dynamic

programming algorithm for the 0/1 Knapsack problem for the PIES problem (referred to as “SCK”).

SCK considers the individual service models as the separate items—with their storage costs serving

as their weights and Eq. (2.1) as their values. SCK will use Alg. 1 for scheduling. We also consider

a random placement and scheduling heuristic (referred to as “RND”) as our other baseline.

2.6.2 Numerical Simulations

We sample uniformly random integer values for edge capacities using the following distributions

Ke,We ∈ [300,600], and Re ∈ [100,200] (∀e ∈ E). Service model storage costs are similarly uni-

formly sampled integer values where ksm,wsm ∈ [15,30] and rsm ∈ [10,20] (∀(s,m)∈ SM). Service

models’ cached accuracy, Asm, are sampled from a Gaussian distribution with a mean of 0.65 and a
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Figure 2.4: Numerical Results. Experiments with more user requests |U| = [100,200, · · · ,1000],
with 100 trials each.

standard deviation of 0.1 (sampled values are clipped to the range [0,1]). We assume users request

service types from S uniformly at random. User accuracy thresholds, αu, are set to 1− ε where ε

is sampled from an exponential distribution clipped to the range [0,1] with λ = 0.125. User delay

thresholds, δu, are set to a sampled value (clipped to range [0,δmax] where δmax = 10 seconds) from

an exponential distribution where λ = 1.5. Finally, we consider |E|= 10 edge clouds, |S|= 100 ser-

vices with each service having a random number of implementations in the range of [1,10] (sampled

uniformly). We increase the number of users for experiments.

First, we compare our proposed algorithms (EGP and AGP) to the optimal solution. Due to

the hardness of the PIES problem, we consider a validation case to demonstrate EGP performance

relative to the optimal solution2 and AGP. In Fig. 2.3a, we see that the AGP and EGP algorithms

perform well for approximating the optimal solution provided by the solver. More importantly,

we find that EGP is able to match AGP’s performance even though it has a proven approximation

bound. Specifically, we find that, on average, AGP and EGP achieve an approximation ratio of

0.900 and 0.904, respectively.3 In Fig. 2.3b, we see that EGP greatly outclasses both Optimal and

AGP in terms of efficiency. The excessive cost associated with AGP’s runtime is due to its reliance

on performing optimal model scheduling for each candidate service model at each selection step.

EGP also manages to best SCK. When considering more requests, we see in Fig. 2.4 that our EGP

solution achieves roughly 50% more QoS than SCK while still managing to be more efficient.
2It is worth noting in some larger scenarios we ran, it took over 20 hours for the optimal solver to complete.
3These values are computed by taking the QoS for each algorithm in one experiment trial and dividing it by the QoS

provided by the optimal solution.
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2.6.3 Real-World Implementation

We consider a simple real-world setup using set of 2 Nvidia Jetson Nano and 1 Raspberry Pi 3B+

nodes as IoT devices and a 2013 Apple iMac serving as the edge cloud. Each IoT device hosts

roughly a third of the 2012 ImageNet dataset [65] via non-overlapping subsets. Each IoT device

submits 100 requests with randomly sampled images from these data. Requests are submitted wire-

lessly for image classification service models hosted on the edge cloud. Here we focus on the

multi-implementation aspect of the PIES placement sub-problem where multiple implementations

for image classification can be placed and how this affects the QoS in the real-world case. Using

PyTorch [66], we evaluate pre-trained image classification models to record their accuracy metric

over the ImageNet 2012 data and record the average time needed for each model to perform infer-

ence, see Table 2.1. The edge cloud can place |Re| = 1 model where each ML model is associated

with rsm = 1 storage cost. Since all the models accept the same data size, we fix the communica-

tion costs wsm = 1 for all the ML models. The communication and computation capacities for the

edge cloud are robustly tuned to match the real-world computation and communication delay. Sim-

ilarly to the numerical simulation setup, each request’s αu is sampled from 1−ε where ε is sampled

from an exponential distribution clipped to the range [0.0,1.0] with a rate parameter λ = 0.0625.

Each sample’s delay threshold δu is sampled from a Gaussian distribution with a mean of 0.5 and

a standard deviation of 0.125, clipped to the range [0,δmax] where δmax = 1.0 second. The QoS for

each request is calculated using Eq. (2.1) using the real-time incurred latency (in seconds) and the

evaluated model accuracy.

In Fig. 2.5a, we see that all considered algorithms but random are able to match the optimal

solution—with all non-random algorithms exclusively placingMobileNet in Fig. 2.5b. In Fig. 2.5a,

the QoS distribution of the non-random algorithms are much more concentrated on the upper end

when compared to random. In this setup, random does better than in Figs. 2.3, 2.4 because a request

will never be dropped (i.e., there is always an image classification available to provide some QoS).

Thus, future real-world implementations must consider various service types. For the meantime,

these results show promise but could be improved and expanded upon by considering a more robust

real-world setup with more EI service types (e.g., speech-to-text, video classification).
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Table 2.1: Image classificationsmodels used for the real-world implementation withmodel accuracy
metrics and average computational delay from evaluation with ImageNet 2012 data.

Models Accuracy, Asm Avg. Comp. Delay (sec.)

AlexNet [67] 56.52% 0.04
DenseNet [68] 77.14% 0.47

GoogLeNet [69] 69.78% 0.13
MobileNet [70] 71.88% 0.06

ResNet [71] 69.76% 0.08
SqueezeNet [72] 58.09% 0.07
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Figure 2.5: Real world implementation. (5a) QoS distribution achieved by each of the algorithms.
(5b) Average placement decision for each image classification model across 100 trials.

2.7 Conclusions

The PIES problem, to the best of our knowledge, is the first service placement and scheduling prob-

lem that explicitly considers the case of EI services having multiple implementations available for

the same service. We proved that the PIES problem is NP-hard and prove a greedy set optimization

algorithm can provide a (1− 1/e)-approximation guarantee of the optimal solution. We then in-

troduce a streamlined greedy algorithm that empirically matches this algorithm’s performance with

much greater efficiency. While these results are preliminary, they serve as a foundational first step

towards this breed of service placement. For future work, we plan to consider more dynamic ex-

tension of this work where service placement decisions are made over a time horizon rather than all

at once. Additionally, we will expand the real-world setup to include more EI services (e.g., video

classification) with multiple implementations for placement and scheduling.
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3

Joint Compression and Offloading Decisions for Deep

Learning Services in 3-Tier Edge Systems

©2021 IEEE. Reprinted with permission from Minoo Hosseinzadeh and Nathaniel Hudson,

“Joint Compression and Offloading Decisions for Deep Learning Services in 3-Tier Edge Sys-

tems,” 2021 IEEE International Symposium on Dynamic Spectrum Access Networks (DyS-

PAN), December 2021, DOI: 10.1109/DySPAN53946.2021.9677398

Task offloading in edge computing infrastructure remains a challenge for dynamic and complex

environments, such as Industrial Internet-of-Things. The hardware resource constraints of edge

servers must be explicitly considered to ensure that system resources are not overloaded. Many

works have studied task offloading while focusing primarily on ensuring system resilience. How-

ever, in the face of deep learning-based services, model performance with respect to loss/accuracy

must also be considered. Deep learning services with different implementations may provide vary-

ing amounts of loss/accuracy while also being more complex to run inference on. That said, commu-

nication latency can be reduced to improve overall Quality-of-Service by employing compression

techniques. However, such techniques can also have the side-effect of reducing the loss/accuracy

provided by deep learning-based service. As such, this work studies a joint optimization problem for

task offloading decisions in 3-tier edge computing platforms where decisions regarding task offload-

ing are made in tandem with compression decisions. The objective is to optimally offload requests

with compression such that the trade-off between latency-accuracy is not greatly jeopardized. We

cast this problem as a mixed integer nonlinear program. Due to its nonlinear nature, we then de-

compose it into separate sub-problems for offloading and compression. An efficient algorithm is
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proposed to solve the problem. Empirically, we show that our algorithm attains roughly a 0.958-

approximation of the optimal solution provided by a block coordinate descent method for solving

the two sub-problems back-to-back.

3.1 Introduction

Exponential technological growth has been a defining quality of the 21st century. This growth led

to the development of the Industrial Internet-of-Things (IIoT) where smart sensors, devices, digital

storage units, instruments, etc. are interconnected through the Internet to aid the needs of indus-

try [73]. Industrial sectors (e.g., manufacturing [74]) can be supplemented by the IIoT by providing

comprehensive data collection, sharing, and processing across network devices. A key enabling

technology for IIoT is that of Edge Computing (EC) [33]. Under the EC paradigm, compute re-

sources are pushed to the network edge to provide more opportunity for IIoT devices (e.g., smart

sensors) to have data they collect/generate/sense processed more immediately than if they were to

solely rely on a faraway central cloud server [75]. This is done by the deployment of edge servers

(or edge servers) that process requests/data closer to end users. Following the growing popularity of

EC, the notion of Edge Intelligence (EI) has also risen in popularity. EI pushes AI services, namely

Machine Learning (ML) and Deep Learning (DL) services, to the network edge. EI allows for

data collected/generated/sensed at the network edge to be immediately processed without needing

to relay all IIoT-generated data to be sent to a faraway central cloud [76].

The benefits of EC [77] (e.g., reduced latency, increased scalability, improved reliability), mak-

ing EI all the more attractive for providing reliable intelligent services [78, 79]. However, the hard-

ware resources (e.g., communication, computation, and storage capacities) available at the edge

servers are relatively constrained when compared to central cloud servers and these limitations must

be explicitly considered [41, 80, 81]. Many works studying problems related to EC focus on op-

timizing the use of edge resources to best serve user requests One such problem is that of request

offloading (or task offloading/scheduling). Request offloading to edge server-hosted services has

beenwidely studied for both general [41, 82] and deep learning-based services [53, 54]. The problem

of request offloading aims to decide where requests should be sent in the system to be processed (i.e.,

which edge server should serve a given request) while being mindful of system resources and in-

curred latency. Typically, the primary objective of offloading problems is to minimize latency ex-

perienced by end users [41, 46].
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One viable approach for reducing the latency for transmitting data across communication chan-

nels is to reduce the size of data transmitted over the communication channel through compression

techniques [83, 84, 85]. Beyond minimizing communication latency, compression has also been

considered for the purposes of minimizing energy consumption incurred from data transmission in

EC systems for general service requests [86]. However, the applicability of compression techniques

faces an additional challenge for deep learning-based services. It is important to note that compres-

sion techniques can largely be split into 2 groups: lossless and lossy. Lossless compression does

not compromise data quality when it is uncompressed; however lossy compression provides much

greater data size reduction [87]. Since the performance of DL-based services relies on data quality,

compression techniques that harm data quality can compromise the loss/accuracy of the DL-based

service. Thus, there is a trade-off between howmuch we compress data in service requests to reduce

latency while not jeopardizing model accuracy too greatly.

This chapter studies an offloading problemwith the objective of optimizing the latency-accuracy

trade-off for requests for DL-based services in 3-tier EC platforms while considering compression.

We define this problem, Compression andOffloadingDecisions on theEdge (CODE), as amixed in-

teger nonlinear program. The CODE problem is similar to the problem studied in a prior work [53].

The novelty of the CODE problem is the joint consideration of both compression and offloading for

DL-based service requests while considering more than 1 service request at a time. Further, CODE

assumes edge servers can offload requests to other edge servers through device-to-device (D2D)

communication channels. Finally, this chapter proposes a polynomial-time algorithm for approach-

ing the CODE problem. Our algorithm is empirically shown to achieve a 0.958-approximation of

the near-optimal solution which is given by a block coordinate descent method [88].

3.2 Related Work

Here, we briefly summarize the literature related to task offloading problems in edge computing

systems. Prior works studying the request offloading problem in 3-tier EC platforms typically em-

ploy optimization techniques (e.g., linear programming, stochastic modeling) to either maximize the

number of requests that were served under edge server hardware constraints [41, 80] or minimize

overall latency provided to end users submitting requests [89, 90]. There are few recent works that

jointly study offloading and compression decisions in EC systems. Xu et al. in [86] jointly studies

resource allocation, task offloading, and data compression under edge server resource constraints
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Figure 3.1: Illustrative overview of our considered 3-tier architecture.

while aiming to minimize energy consumption. They transform a non-convex optimization model

into a convex problem and apply convex optimization to solve this joint problem. Elgendy et al.

in [91] consider a similar joint optimization for resource allocation, data compression, and secu-

rity. They show their non-convex joint optimization is NP-hard and use relaxation and linearization

techniques to solve a convex version of the problem. However, a limitation of these prior works is

that they are for general services available in EC systems. They do not consider the loss/accuracy

provided by a DL-based service. Hosseinzadeh et al. in [54] study task offloading in a 3-tier EC

platform while considering the latency-accuracy trade-off as the objective. However, that work fails

to consider compression to reduce latency without greatly compromising model loss/accuracy. Zhao

et al. in [53] study request offloading in 3-tier EC platforms by considering a simple environment

where only 1 request is consider. Additionally, only 1 edge server is considered to simplify the

problem.

The main contributions of our work to the task offloading problem include: (i) design of a mixed

integer nonlinear program that jointly considers offloading and compression decisions for requests

for DL-based services that aims to optimize the latency-accuracy trade-off; (ii) consideration of a

complex 3-tier EC platform with multiple service requests and device-to-device (D2D) communi-

cation among edge servers to collaboratively process requests; and (iii) design of a polynomial-time

iterative algorithm for solving CODE that empirically achieves a 0.958-approximation of the opti-

mal solution provided by directly solving CODE using a block coordinate descent method [88].

3.3 System Design & CODE Problem Definition
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3.3.1 3-Tier System Architecture

We consider a 3-tier edge computing system architecture. The topmost tier of this architecture is a

central cloud server. The middle tier is a layer of edge servers deployed at the network edge. The

bottom tier is the user device tier, comprised of IoT and IIoT devices. At any given time in the

system, we consider a set of user requests submitted by the user devices in the user device layer. We

denote the set of requests by U . For this work, we assume each request i ∈ U corresponds with a

single user (hence we may use “users” and “requests” interchangeably). We also denote the set of

edge servers by E . The edge server that directly covers a user device i ∈ U is denoted by wi. The

central cloud server will commonly be referred to by c throughout the chapter.

Before defining the problem, we clarify two points of the system. First, edge servers and cloud

servers have a maximum number of requests they are able to process in the considered time win-

dow. We refer to this as the admission capacity. The admission capacity for edge server j is denoted

by ve
j and the admission capacity for the central cloud server is denoted by vc. All entities in the

system (i.e., user devices, edge servers, and the central cloud server) have hardware resources as-

sociated with them. Because this chapter is focused on offloading specifically, we only consider

communication and computation resources. The notation for these will be presented later in §3.3.4.

3.3.2 Compression and Machine Learning Accuracy

In our prior work [53], we experimentally showed that image compression techniques based on DCT

transforms, e.g., JPEG, reduce the expected accuracy of a machine learning model in a non-linear

fashion when removing high frequency DCT coefficients, e.g., by giving them a zero value. More

precisely, removing DCT coefficients initially has little to no effect in accuracy initially. There exists

an inflexion point, dependent on the model, where additional compression results in dramatic loss

of accuracy. We showed that this relationship between image compression and expected accuracy of

a machine learning model can be fitted using the asymmetric Gompertz growth curve function [92,

93]:

g(s) = a · e−b·e−c·s
(3.1)

where a,b,c ∈ R+ are parameters and s ∈ [0,1] is the scaling factor we use for data compression

(i.e., s = 0.95 means the data size of the compressed image will be roughly 95% that of its original

data size).
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We will use the same compression method of [53] and the Gompertz approximation to control

the compression level for image transmissions through the network during offloading to edge or

cloud server. The goal is change the compression level to minimize the latency-accuracy metric of

our system.

3.3.3 CODE Problem Definition

Here, we define the Compression and Offloading Decisions on the Edge (CODE) problem as a

mixed integer nonlinear program (MINLP). CODE jointly considers offloading and compression

decisions. Thus, we consider 4 decision variables: 3 binary offloading decisions (x, y, z) and 1 con-

tinuous compression decision (s). First, we let decision variable x ≜ (xi)∀i∈U = 1 iff request i is

processed locally using the requesting user’s own local hardware resources, 0 otherwise. Second,

we let decision variable y≜ (yi j)∀i∈U , j∈E = 1 iff request i is processed by edge server j, 0 otherwise.

Third, we let a set of decision variables z≜ (zi)∀i∈U = 1 iff request i is processed on the remote central

cloud, 0 otherwise. Finally, we consider a decision variable s≜ (si)∀i∈U ∈ [0,1] which corresponds

to the compression rate used to compress the data associated with request i prior to processing (i.e.,

si represents the size of request after compression). Below, we present the definition of the CODE

problem, dubbed as P1 for short:

P1 : minimize
x,y,z,s

L−αA (3.2)

subject to L≤ Lmax (3.2a)

A≥ Amin (3.2b)

xi +
(

∑
j∈E

yi j

)
+ zi = 1 ∀i ∈ U (3.2c)

∑
i∈U

yi j ≤ ve
j ∀ j ∈ E (3.2d)

∑
i∈U

zi ≤ vc (3.2e)

xi,yi j,zi ∈ {0,1} ∀i ∈ U , j ∈ E (3.2f)

0≤ si ≤ 1 ∀i ∈ U (3.2g)

The Pareto objective, defined in Eq. (3.2), aims tominimize the trade-off between average latency, L,

and average accuracy, A (with α being a tunable hyperparameter). Note, both L and A are functions
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of offloading (x, y, z) and compression decisions (s). Constraint (3.2a) ensures that the average la-

tency is less than or equal to the maximum allowed latency (Lmax). Similarly, Constraint (3.2b) guar-

antees that the average accuracy is greater than or equal to the minimum required accuracy (Amin).

Constraint (3.2c) guarantees that each request will be processed locally, by 1 edge server, or the cen-

tral cloud. Constraints (3.2d) and (3.2e) guarantee that the admission capacity of the edge servers

and the central cloud server are not exceeded. Note, requests that cannot be processed on an edge

server or the central cloud due to the Constraints (3.2d) and (3.2e) will be processed locally. The

last two constraints ensure that the decision variables are in the defined range.

CODE Problem Complexity. A robust proof of NP-hardness is beyond the scope of this chap-

ter. With the problem being a mixed integer nonlinear program (MINLP), it has been shown that

both convex and non-convex MINLPs in general are NP-hard [94]. Hence, we assume that the

CODE problem is difficult to directly solve for the optimal solution.

3.3.4 Defining Average Accuracy & Latency

Accuracy Definition

Each entity in the system (i.e., user devices, edge servers, and central cloud) hosts an ML model

to perform some task (namely, image classification). However, the models can vary across these

entities and thus it follows that the accuracy provided by these entities varies as well. Thus, we

assume that we have fitted Gompertz functions to estimate the accuracy of the ML model hosted at

each entity in the system similar to our initial results in [53]. Using these fitted functions and the

compression decisions, s, we can compute the average accuracy, A, which is used in the objective

for P1. Its definition is found below:

A =
1
|U| ∑i∈U

(
xigu

i (1)+ ∑
j∈E

yi jge
j(si)+ zigc(si)

)
(3.3)

where gu
i (·) is the Gompertz function fitted for user i’s local ML model, ge

j(·) is the Gompertz

function fitted for the ML model hosted at edge server j’s, and gc(·) is the Gompertz function fitted

for the ML model hosted at the central cloud. Note that no compression is ever performed if the

request is processed locally (i.e., gu
i (1)). The definitions of the individual Gompertz functions are

based on fitted parameters and Eq. (3.1). These parameters are provided in §3.5.2.
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Latency Definitions

The latency incurred to complete a request i is the sum of both transmission/communication latency

and computation latency. In P1, one of the goals is to minimize the average latency, L, by making

decisions related to compression and offloading. As such, latency is a function of both compression

and offloading decisions. The definition we consider for average latency can be found below:

L =
1
|U| ∑i∈U

(
xiLu(i)+ ∑

j∈E
yi jLe(i, j)+ ziLc(i)

)
(3.4)

where Lu(i) is the latency to locally process request i, Le(i, j) is the latency to process request i on

edge server j, and Lc(i) is the latency to process request i on the central cloud server.

Local Latency. If a task is processed locally, then latency is only a function of local compute

latency since no data transmission is needed to process the task on another device. Thus, we define

local latency on the user-side for user i’s request, Lu(i), as the following,

Lu(i) =
ci

f u
i

(3.5)

where ci is the CPU clock cycles needed to process user i’s request and f u
i is the CPU frequency of

user i’s device.

User-to-Edge Latency. Tasks processed on the edge require both communication and compu-

tation to be completed. First, the user i’s request must be transmitted to their covering edge server,

wi, and either processed there or offloaded to another edge server through device-to-device com-

munication channels. Once the request is received by the final edge server, it will be processed,

thus incurring additional compute latency. Thus, we define the user-to-edge latency, Le(i, j), as

the latency for user i’s request to be communicated and processed by edge server j. It is formally

presented below,

Le(i, j) =


sidi
Ru

i
+ ci

f e
j

if j ≡ wi(
sidi
Ru

i
+ sidi

Re
wi j

)
+ ci

f e
j

otherwise.
(3.6)

The first case occurs when j is user i’s covering edge server (wi). In the first case, only one com-

munication hop and processing is needed — where Ru
i is the data transmission rate from user i to

its covering edge server and f e
j is the CPU frequency on edge server j. The latter case covers the

scenario where j is not user i’s covering edge server, thus requiring an additional hop of communi-
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cation. Here, we note that Re
wi j is the bit rate between edge servers wi and j and di represents the

original size of data in request i.

User-to-Edge-to-Cloud Latency. Finally, we consider the user-to-edge-to-cloud latency, Lc(i),

for any task i that is offloaded to the central cloud server. It is defined below:

Lc(i) =
(

sidi

Ru
i
+

sidi

Rc
wi

)
+

ci

f c . (3.7)

where Rc
wi
is the bit-rate between user i’s covering edge server and the central cloud and f c is the

CPU frequency at the central cloud.

3.4 Problem Decomposition & Heuristic Design

Because P1 (provided in §3.4) is a nonlinear optimization, it is hard to solve. As such, rather than

solve it directly, we instead choose to decompose it into two sub-problems, P1.1 and P1.2, that

separately focus on the offloading decisions and compression decision (respectively). Further, we

will solve both sub-problems back-to-back using a block coordinate descent method [88] to attain a

near-optimal solution for P1. We define the decomposed sub-problems for P1 below:

P1.1 : minimize
x,y,z

L−αA (3.8)

subject to Constraints (3.2a)-(3.2f) (3.8a)

P1.2 : minimize
s

L−αA (3.9)

subject to Constraints (3.2a), (3.2b), (3.2g) (3.9a)

A≥ 0.368 ·Ap
max (∀p ∈ {u,e,c}) (3.9b)

where Ap
max represents the maximum provided accuracy by the user layer (p = u), edge layer (p =

e), and cloud layer (p = c). Since the Gompertz function has both concave and convex parts, we

introduce the constraint (3.9b) to guarantee that we only consider the concave part, which is convex

in the negative form. Because the objective of this problem is convex, the constraints should be

concave — meaning a nonlinear solver can solve P1.2 directly.
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Algorithm 4: Proposed PCODE Algorithm
Input : Input parameters to CODE, λ ≥ 2 (int)
Output: Offloading/compression decisions (x, y, z, s).

1 Init decision variables x, y, z,s;
2 Init total latency σL← 0, total accuracy σA← 0;
3 Init total number of processed requests η ← 0;
4 Init counterc← 0, countere

j← 0 (∀ j ∈ E);
5 C← row-vect. of λ evenly-spaced values from 0 to 1;
6 foreach request i ∈ U in a random order do

/* Consider local processing */
7 π∗u ← E[objui ];
8 xi← 1, si← 1;
9 Li← Lu(i), Ai← gu

i (1);
/* Consider offloading to edge */

10 foreach j ∈ E do
11 if countere

j < ve
j then

12 ψ∗e j← argmins∈CE[objei j|s];
13 π∗e j← E[objei j|ψ∗e j];

14 else
15 π∗e j← ∞;

16 j∗← argmin j∈E π∗e j;
17 if edge offloading is better, i.e., π∗e j∗ < π∗u then
18 yi j∗ ← 1, si← ψ∗e j;
19 xi← 0;
20 Li← Le(i, j∗), Ai← ge

j∗(ψ∗e j∗);

/* Consider offloading to cloud */
21 if counterc < vc then
22 ψ∗c ← argmins∈CE[objci |s];
23 π∗c ← E[objci |ψ∗c ];
24 if cloud offloading is best, i.e., (π∗c < π∗u )∧ (π∗c < π∗e j∗) then
25 zi← 1, si← ψ∗c ;
26 xi← 0, yi j∗ ← 0;
27 Li← Lc(i), Ai← gc(ψ∗c );

28 Increment counter variables for edge and cloud based on offloading decision;
29 σL← σL +Li, σA← σA +Ai, η ← η +1;
30 return x, y, z, s;

3.4.1 Efficient Algorithm Design

We propose an efficient algorithm to solveP1. This algorithm approachesP1 in an iterative manner

by considering each user request i ∈ U and greedily makes offloading and compression decisions

based on the expected gain to the objective of P1. The pseudocode for the proposed algorithm

is presented in Algorithm 4. Before explaining the pseudo code line-by-line, we introduce some

mathematical definitions on which PCODE is based upon. First, to adhere to the Lmax and Amin
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constraints (i.e., constraints (3.2a) and (3.2b)), our algorithm uses a moving average that tracks the

expected average latency and average accuracy for requests as decisions are made. For the moving

average, we denote the total latency and total accuracy by σL and σA, respectively. Next, we denote

the number of requests processed thus far by η .

Approximating objective values

The proposed algorithm relies on approximating how an offloading and compression decision for a

single user will affect the global objective using a moving average technique. As such, we define

how these are approximated. Requests can be processed in 3 ways: local processing, edge-based

processing, and cloud-based processing. First, the estimated objective if a request i is processed

locally is computed by

E[objui ]≜
σL +Lu(i)

η +1
−α · σA +gu

i (1)
η +1

(3.10)

where σL is the summation of latency across all requests processed thus far based on prior offload-

ing/compression decisions, σA is similar but for the summation of accuracies for previously pro-

cessed requests, and η is the number of previously processed requests. Next, we approximate the

global objective if a request i is offloaded to edge server j using compression s by

E[objei j|s]≜


σL+Le(i, j|si=s)

η+1 −α · σA+ge
j(si=s)

η+1 Ie(i, j)

∞ otherwise
(3.11)

where Ie(i, j) is an indicator function such that Ie(i, j) = 1 if and only if
(σL+Le(i, j|si=s)

η+1 ≤ Lmax
)
∧(σA+ge

j(si=s)
η+1 ≤ Amin

)
, 0 otherwise. Finally, we approximate the global objective if a request i is

offloaded to the central cloud using compression s by

E[objci |s]≜


σL+Lc(i|si=s)

η+1 −α · σA+gc(si=s)
η+1 Ic(i)

∞ otherwise
(3.12)

where Ic(i) is a binary indicator function such that Ic(i) = 1 if and only if
(σL+Lc(i|si=s)

η+1 ≤ Lmax
)
∧(σA+gc(si=s)

η+1 ≤ Amin
)
, Ic(i) = 0 otherwise.

Stepping through the Algorithm

PCODE’s input includes the system parameters and an integer λ ≥ 2which is used to generate a (1×

λ )-row vector (C) of evely-spaced values from 0 to 1 (e.g., if λ = 3 then C = [0.0, 0.5, 1.0]). C is
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used as a quantized compression value search space. Larger λ values increase PCODE’s complexity

but provides more space to find good compression decisions for PCODE. With that said, PCODE

starts by initializing decision variables and other supplemental variables (lines 1-5). Line 6 starts

a loop that iterates through each request i ∈ U in a random order. At the start of the loop, lines 7-

9 approximate the gain towards the objective for processing request i locally. Then, lines 10-16

iteratively do the same process but for each of the edge servers j ∈ E and identifies the edge server

that maximizes the approximated objective value for request i (line 16). On lines 17-20, PCODE

determines if processing request i on the edge is better for the objective than local processing. If

so, then offloading and compression decisions are changed accordingly (lines 18-20). Then, lines

21-27 do the same for cloud-based processing and change offloading and compression decisions

if processing request i is shown to be the best choice (lines 24-27). Lines 28 and 29 then update

the variables maintained throughout the loop to approximate the objective and respect admission

capacities.

Proposition 4. PCODE is a polynomial-time algorithm with an asymptotic runtime complexity of

O(λ · |U| · |E|).

Proof. This can be seen simply be first noting that the outer loop (lines 6-29) takes place exactly

|U| times (i.e., number of requests). For each iteration through this outer loop, PCODE also iterates

through each of the edge servers (i.e., a multiplicative of |E|) to consider edge processing. Finally, on

line 12 (within the loop iterating through E), argmin(·) iterates over the compression spacewhich has

λ elements (as per its definition). Since the considering local and cloud processing only occurs once

in each iteration through the main outer loop, their complexity is constant and does not contribute

to the overall runtime. Thus, the runtime is O(λ · |U| · |E|). This concludes the proof.

The complexity of optimal solution due to having a continuous decision variable (s) cannot be

exactly calculated. We have observed some cases of 9.5 hours running time, while our proposed

PCODE algorithm runs in 0.7 seconds, for the same test.

3.5 Experimental Design
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3.5.1 Benchmark Algorithms/Heuristics

We demonstrate the efficacy of our proposed algorithm (presented in §30) against the following

benchmarks:

Optimal (OPT)

It solves P1.1 and P1.2 back-to-back over several iterations using block coordinate descent [88]

method which minimizes the objective with respect to one block at a time while the other block is

fixed.

Optimal_2 (OPT_2)

Its approach is similar to OPT with this difference that it first solves P1.2 and then P1.1. For both

OPT and OPT_2, we stop running each P1.1 and P1.2 back-to-back when either the results in

terms of objective converges or a threshold of back-to-back running passes which is set to 10, here,

due to computationally expensive cost of running these two algorithms. So, the solver might not be

able to find the optimal solution in some cases.

No-Compression (NC)

This heuristic applies no compression but will apply optimal offloading. In short, full image data

size is used (i.e., si = 1 (∀i ∈ U)) and one iteration of P1.1 is solved.

Fixed-Compression-50 (FC)

It solves the offloading problem with the assumption that compression is allowed only at a fixed

size of si = 0.5 (∀i ∈ U).

Random-Serving-Optimal-Compression (RSOC)

It provides near-optimal compression solution using a similar approach to the PCODE by search-

ing the compression space assuming random offloading decisions. It randomly selects a location

(user/edge/cloud) to process requests the requests. If the location is either an edge server or the

cloud server and it has enough admission capacity, it selects the minimum possible data size which

minimizes the objective; else, it selects another server randomly and repeats the process again.
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Random-Serving-Random-Compression (RSRC)

It randomly selects one of the servers (user/edge/cloud). If the server is either edge server or cloud

server and it has enough admission capacity, it selects a random size of compression from the range

of (0,1]; else, it selects another server randomly and repeats the process again.

Worst-case (W)

This algorithm provides a worst case bound for the objective value. It works similar to the PCODE

algorithm with this difference that it always selects the maximum objective value, i.e., maximizing

the average latency and minimizing the average accuracy.

3.5.2 Environment Setup

We use the Python programming language to simulate the problem. For solving the P1.1 and P1.2

problems, we use the PyomoAPIwith glpk and ipopt solvers [95]. We consider a simulation environ-

ment with the following setup. We simulate the accuracy of DL models using a Gompertz function

for the cloud server, edge servers, and users’ devices. These are used to predict the DLmodel’s accu-

racy based on compression decisions (see §3.3.2). The Gompertz arguments used for the DL model

placed on the cloud server, a = 0.95, b = 20, and c = 1; for the DLmodel placed on the edge servers,

a = 0.70, b = 6, and c = 18; and for the DL model placed on the user devices, a = 0.45, 50, and

c = 20. These are similar to the curves fitted for state-of-the-art DL models in our prior work [53].

Next, the CPU clock cycles to process request i are uniformly sampled from ci ∈ [150,156] (∀i∈U).

The size of request i’s data (in bytes) is uniformly sampled from di ∈ [150,156] (∀i ∈ U). The data

transmission rate (bytes/sec) from each user i to their covering edge server, wi, is uniformly sampled

from Ru
i ∈ [150,175] (∀i ∈ U). Then, the CPU frequency of user i’s device is uniformly sampled

from f u
i ∈ [5,8] (∀i ∈ U). Data transmission rate (bytes/sec) for D2D communication between edge

servers j and j′ is uniformly sampled from Re
j j′ ∈ [200,206] (∀ j, j′ 6= j ∈ E) and each edge server has

a CPU frequency uniformly sampled from f e
j ∈ [500,506] (∀ j ∈ E). Further, admission capacities

for edge servers (i.e., number of requests that can be served in an instance of the problem) are ran-

domly sampled from ve
j ∈ [5,7] (∀ j ∈ E). Finally, data transmission rates (btyes/sec) from the edge

servers to the cloud server are uniformly sampled from Rc
j ∈ [4,6] (∀ j ∈ E), the CPU frequency of

the cloud server is uniformly sampled from f c ∈ [10000,10007] in each trial. The cloud’s admission

capacity is fixed at vc = 60.
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Figure 3.2: CDF of Objectives (OPT and OPT_2 are overlapping and are the leftmost curves)

0.1 1.0 10
.0

50
.0
10

0.0
20

0.0
30

0.0
40

0.0
50

0.0

0.25

0.50

0.75

1.00

P
ro

po
rti

on

OPT
cloud edge local

0.1 1.0 10
.0

50
.0
10

0.0
20

0.0
30

0.0
40

0.0
50

0.0

0.25

0.50

0.75

1.00
OPT_2

0.1 1.0 10
.0

50
.0
10

0.0
20

0.0
30

0.0
40

0.0
50

0.0

0.25

0.50

0.75

1.00
PCODE

0.1 1.0 10
.0

50
.0
10

0.0
20

0.0
30

0.0
40

0.0
50

0.0

0.25

0.50

0.75

1.00
NC

0.1 1.0 10
.0

50
.0
10

0.0
20

0.0
30

0.0
40

0.0
50

0.0

0.25

0.50

0.75

1.00

P
ro

po
rti

on

FC

0.1 1.0 10
.0

50
.0
10

0.0
20

0.0
30

0.0
40

0.0
50

0.0

0.25

0.50

0.75

1.00
RSOC

0.1 1.0 10
.0

50
.0
10

0.0
20

0.0
30

0.0
40

0.0
50

0.0

0.25

0.50

0.75

1.00
RSRC

0.1 1.0 10
.0

50
.0
10

0.0
20

0.0
30

0.0
40

0.0
50

0.0

0.25

0.50

0.75

1.00
W

Figure 3.3: Impact of α on the proportion of served requests by each layer

We fix the seed and repeat each test 10 times to remove the effect of randomness. The total

number of user requests, |N |, is set to 150 where each of requests is associated with one user and

they are randomly connected to the edge servers. The number of edge servers, |M|, is set to 10. We

fix the α to 50, Lmax = 50, and Amin = 0.5, unless otherwise stated. We set the λ , the size of vector

C of generated compressed data, for both our proposed algorithm and RSOC equal to 11.

3.6 Results
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Figure 3.4: Impact of α on the compression decision

3.6.1 Impact of Amin & Lmax on the Objective Value

We change the Amin from 40% to 70% and & Lmax from 20 to 50 ms to evaluate the effect of QoS

metrics–average latency and average accuracy– on the objective value. We set the α equal to 50.

Fig. 3.2 represents the Cumulative Distribution Function (CDF) of the objective value of the pro-

posed problem obtained by each algorithm when Amin and Lmax are changed. The OPT and OPT_2

converge to the same results. Therefore, they show same values on the plot. As shown in Fig. 3.2,

the proposed algorithm provides near optimal results in terms of objective value even when Amin

and Lmax are changed while the performance of baseline algorithms decreases when Amin and Lmax

are changed.

3.6.2 Impact of α on Compression Decisions (s) and the Objective

Value

We fix the Lmax to 50 and Amin to 0.5 and change the α in the range of 0.1 to 500 to evaluate the

effect of α on compression decisions and the objective value. The objective value of all algorithms

based on different α values are provided in Table. 3.1. The results imply that PCODE achieves near

optimal solutions. Given the results presented in Table. 3.1, our proposed PCODE algorithm can

empirically achieve in average 0.958-approximation of the optimal solution provided by OPT and

OPT_2.
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Figure 3.5: Impact of edge servers and cloud server CPU on objective value

Table 3.1: The average objective value of all algorithms based on different α values (note that “-”
means that algorithm did not find valid solution for that case.)

α Values

Algorithm 1.0 10 50 100 200

OPT - 3.231 -24.779 -61.231 -135.037
OPT_2 - 3.231 -24.779 -61.231 -135.037
PCODE 10.631 4.921 -23.260 -59.705 -133.419
RSOC 11.959 6.411 -20.301 -54.546 -124.137
RSRC 14.263 9.170 -14.752 -44.173 -102.950

NC - 14.056 -15.547 -52.739 -127.165
FC 13.408 6.483 -9.820 -36.756 -91.287
W 29.063 24.167 1.750 -23.202 -79.416

The effect of α on the compression decision of requests is shown in Fig. 3.4 where the y-axis

represents the average compression ratio of all requests and the x-axis represents different α values.

When α increases, the accuracy dominates the latency and the compression ratio, si, is increased

which is intuitive given that larger data size provides better accuracy. Fig. 3.3 represents the portion

of requests served by each layer–cloud, edge, and users. As shown, the optimal solutions and the

proposed algorithm provide a trade-off between the amount of resources used by each layer in the

network while most of baseline algorithms do not. Although the RSOC and RSRC provide a trade-

off between a portion of consumed resources in the networks, their objective value is worse than our

proposed algorithm, PCODE, based on Table. 3.1. Additionally, the solver cannot find a solution

for OPT and OPT_2 when α < 10 because we limited the number of back-to-back running of P1.1

and P1.2. While our proposed algorithm can find a solution for these cases in less than a second.

42



3.6.3 Impact of Hardware Resources

We changed the CPU capacity of both the cloud layer and the edge layer. We fixed the edge CPU

capacity across all edge servers. Fig. 3.5 represents the effect of cloud server CPU and edge servers

CPU on the objective value of all algorithms. When either the cloud server CPU or the edge servers

CPU increases, the objective improves. Fig. 3.5 implies that the objective value of our proposed

PCODE algorithm is close to OPT and OPT_2 in all cases of different CPU capacities for both edge

servers and the cloud server.

3.7 Conclusions

This chapter studies joint offloading and compression decisions in a 3-tier user-edge-cloud system

considering limited communication and computation capacity of the devices. We proposed a Mixed

Integer Nonlinear Program (MINLP) to solve the proposed problem. We decompose the proposed

MINLP into two sub-problems: one that solves the offloading sub-problem and another that solves

the the compression sub-problem with one set of continues decision variables. The MINLP is NP-

hard. Therefore, we propose a heuristic algorithm, namely PCODE, to solve the problem. We

compare our proposed PCODE algorithm against several baselines in terms of objective value and

the final decisions of each algorithm regarding both the compression and offloading problems using

extensive simulation. Our results show that PCODE can match the solution found by the optimiza-

tion solver by an 0.958-approximation on average. In future works, we will focus on a real-world

implementation of this work.
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Recent advances in distributed data processing and machine learning provide new opportunities

to enable critical, time-sensitive functionalities of smart distribution grids in a secure and reliable

fashion. Combining the recent advents of edge computing (EC) and edge intelligence (EI) with

existing advanced metering infrastructure (AMI) has the potential to reduce overall communication

cost, preserve user privacy, and provide improved situational awareness. In this chapter, we provide

an overview for how EC and EI can supplement applications relevant to AMI systems. Addition-

ally, using such systems in tandem can enable distributed deep learning frameworks (e.g., federated

learning) to empower distributed data processing and intelligent decision making for AMI. Finally,

to demonstrate the efficacy of this considered architecture, we approach the non-intrusive loadmoni-

toring (NILM) problem using federated learning to train a deep recurrent neural network architecture

in a 2-tier and 3-tier manner. In this approach, smart homes locally train a neural network using their

metering data and only share the learned model parameters with AMI components for aggregation.

Our results show this can reduce communication cost associated with distributed learning, as well as

provide an immediate layer of privacy, due to no raw data being communicated to AMI components.

Further, we show that FL is able to closely match the model loss provided by standard centralized
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deep learning where raw data is communicated for centralized training.

4.1 Introduction

As the Internet of Things (IoT) matures, more environments originally designed to be disjoint are

becoming increasingly interconnected. One such environment generating much excitement is that

of smart grids. The vision and realization of various aspects of smart grids have been underway

for a couple of decades now. An important sub-component of smart grids is advanced metering

infrastructure (AMI). AMI is an integrated system of smart meters, communication networks, and

data management systems to provide two-way communication between utility providers and cus-

tomers. The advent of AMI provides an opportunity to allow for services not previously possible

with more conventional power distribution infrastructures. The vast amount of data collected by

these systems enables a wide range of applications and can likely be combined by other modes of

data to make even smarter decisions related to the distribution grid functions. Such smart distri-

bution grid functions include automated metering of energy consumption, demand response (DR)

management [96], dynamic pricing (DP) [97], tampering detection, outage identification, and wide

area monitoring systems (WAMS) [98].

Handling and processing the large volume of sensitive data for smart grids, and particularly

for AMI applications, require communication- and computational-resource-aware and privacy- and

security-conscious solutions. Emerging distributed computing technologies, and more specifically

edge computing (EC), can provide computationally-intensive and data-oriented applications closer

to where the data are being generated [32]. Moreover, pushing artificial intelligence (AI) to the edge,

known as edge intelligence (EI), introduces immense potential for EC to provide computationally-

intense models (e.g., deep learning) for smart grids. EC, along with EI, provides a viable ecosystem

with countless possibilities to support various smart grid functions and services with ameliorated

delay, robust reliability, and improved data privacy/security [22].

In light of stringent data privacy requirements and growing privacy concerns in smart grids,

the recent federated learning (FL) framework has been considered as a promising EI solution for

smart grids [99]. In FL, a machine learning (ML) model (e.g., deep neural network) is trained

in a distributed fashion by sending the model updates rather than raw data to the central server

for aggregation. This consideration immediately introduces a layer of privacy and has shown to

be an effective approach to deep learning for edge systems in terms of communication cost and
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performance efficacy [100].

In this chapter, non-intrusive load monitoring (NILM) function in AMI is considered to demon-

strate the promising potential of EI and FL in supporting smart grid applications. NILM allows

detailed energy sensing from aggregated data (e.g. from smart meters), which is essential for energy

management solutions and addressing energy conservation challenge due to increasing energy de-

mands. However, NILM can reveal detailed appliance-specific energy consumption statistics, which

can expose privacy and security risks to consumers and, as such, needs to be handled delicately. In

this chapter, 2-tier and 3-tier FL frameworks are developed for the NILM function. The perfor-

mance of the proposed models are evaluated with respect to communication cost and the model

training loss. We compare these approaches to a centralized deep learning solution. Our results

show that our 2-tier and 3-tier FL approaches show comparable performance to the centralized deep

learning approach. However, our 2-tier and 3-tier FL approaches reduce the associated communica-

tion cost, while providing some immediate layer of privacy, because raw data is not communicated

to central servers in AMI systems.

The presented study along with recent developments in this domain suggest that EI and FL have

great potential in addressing data processing challenges in smart grids. However, research and prac-

tice on this emerging multidisciplinary domain—EI-enable smart grids—are still in a very early

stage. These studies can help bridge the gap between highly dynamic and fast-growing EI and FL

domains and smart grids. The marriage of these technologies can ultimately work towards a more

reliable, secure, and efficient smart grids. The remainder of the chapter is organized as follows. In

§4.2, we present a concise, yet robust overview of AMI systems alongside their benefits and chal-

lenges. Then, in §4.3 we discuss edge computing and edge intelligence and how these concepts can

supplement AMI specifically. §4.4 describes our 2-tier and 3-tier FL approach considered for the

NILM problem. We then discuss experimental design in §4.5. We discuss the findings of our ex-

perimental results in §5.6. Finally, in §5.8, we present our conclusions and discuss open challenges,

problems, and points of interest related to using EC and EI for AMI systems.

4.2 Smart Distribution Grids & Advanced Metering In-

frastructure
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4.2.1 AMI Overview and Requirements

The evolution of smart grid technology as a cyber-physical system with extensive integration of

metering devices, such as smart meters, phasor measurement units (PMUs) [101] and micro-PMUs

[102, 103], has enabled the utilities to evolve from a traditional bulk centralized power grid to a

system capable of distributed generation (DG), monitoring, and control. Such technologies along

with their supporting communication and computation platforms provide real-time data and analyt-

ics power to provide a more reliable, secure, and efficient operation of the system through situational

awareness (SA) [104] functions (e.g., remote asset monitoring, distribution-level oscillation analy-

sis), as well as other applications related to power and services (e.g., customer profiling for demand

response, peak leveling and dynamic pricing and more). AMI in particular is a key component of

the smart distribution grid that is responsible for collecting and analyzing data to support many of

the smart distribution grid functions.

AMI is a collection of technologies consisting of systems, meters, and networks (for two-way

communication between utilities and consumers) to monitor, collect and analyze time-stamped con-

sumer and system information such as voltage, power, phase, and load as sequential meter read-

ings [98]. The AMI can expand all the way to the end-user devices connected to the smart meters

through home area networks (HANs). The data collected from the AMI is stored and analyzed in

meter data management system (MDMS) which includes long-term storage as well as analytical

tools [105].

AMI Communication System Requirements: The communication system is an important com-

ponent of AMI, which enables two-way communication between the consumer and the utility to

transfer the collected data as well as operational commands. Considering the size of the system

and the large number of end-users, the communication network is required to support the transfer

of a high volume of data. The overhead of communicating this large amount of data (to a central-

ized server) can introduce latency in time-critical applications and interrupt seamless operation and

control. As such, it is important that the communication system supporting AMI provides a reli-

able transfer that also meets the latency requirements of the AMI functions and applications. The

minimum data rate in AMI is considered to be 56 kbps and the maximum acceptable latency to be

2 seconds [106]. However, considering the fast developing technologies, functions and services

in smart grids, the communication network should be designed to support future needs with more

stringent latency requirements. In general, the AMI communication network can be deployed based
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on wired or wireless technologies, such as Power Line Communications, Broadband over Power

Line (BPL), landline, or cellular networks [107, 108] considering cost, availability, and support for

future expansion and applications.

AMI Privacy and Security Requirements: The consumer data collected by the smart meters en-

ables various applications including consumer profiling, adaptive pricing, and energy theft detection;

however, it also bears personal information about consumers, which needs to be protected [109].

As such, the AMI subsystems including its communication network should enable controlling data

access, preserving the confidentiality of data, and ensuring data authenticity and precision. Vari-

ous measures including hardware security technologies for preventing tampering with smart me-

ters, data encryption technologies, and communication network security solutions against Denial-

of-Service (DoS), False Data Injection (FDI) attacks [110, 111] have been considered in AMI to

support these requirements. A review of efforts in addressing the security and privacy challenges in

smart grids and AMI has been presented in [111, 112].

4.2.2 AMI Functions and NILM

The data generated and processed in AMI and smart grids can fuel a vast set of smart decision mak-

ing processes and functions in smart grids, which are essential for their reliable, secure and efficient

operation. Examples of such data-driven functions include: wide area monitoring and control and

situational awareness [113] for voltage/power profiling [114], oscillation detection, topology iden-

tification [115], and cyber and physical event detection [116, 117, 118], and anomalous activity

detection [119, 120, 121] as well as, customer profiling and load monitoring (e.g., NILM) for de-

mand response, peak leveling and dynamic pricing [122]. As NILM is the application of focus in

this study, we present a brief overview of this function and the existing work in this domain next.

NILM (also known as load disaggregation) is the process used for appliance load monitoring

that can support many other energy management solutions in smart grids such as energy conser-

vation, abnormality detection, dynamic load scheduling, load shedding, and dynamic energy pric-

ing. It provides fine-grained energy monitoring without the need for deploying smart power outlets

on every device by analyzing the aggregated data collected from smart meters. NILM can reveal

appliance-specific energy consumption statistics and consumer behavior and as such privacy is a

major concern in this function. To process the large volume of data from smart meters for the pur-

pose of NILM, while preserving privacy requirements various techniques have been proposed in
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Figure 4.1: An overview of EI-AMI architecture. AMI infrastructure (in yellow) are resources
deployed specifically for the EI-AMI architecture and is a subcomponent of the distribution grid.
General infrastructure (in purple) are EC resources deployed for general use but can be leveraged
through communication channels to supplement the AMI infrastructure.

the literature [123, 124]. Among such techniques include approaches based on Hidden Markov

Model (HMM) [125], Graph Signal Processing (GSP) [126], Deep Learning [127, 128, 129, 130],

and classification based approaches based on load signature learned from historical data [123, 124].

Among such techniques, deep learning-based approaches are gaining more popularity due to the

availability of a large volume of data and new supporting platforms and frameworks for their de-

velopment in distributed and privacy-preserving manners. Specifically, the emerging distributed

computing technologies, EC and EI including FL [131], as discussed in subsequent sections, can

provide such supporting platforms not only to support NILM function (as discussed later in §4.5)

but also various data-driven AMI applications and their aforementioned requirements.

4.3 Edge Intelligence for Smart Grids

4.3.1 EC Overview and Architecture

Cloud computing can provide a wide array of computationally-intense services (e.g., data analytics)

to end users with minimal local hardware resources. With increasing demands on the cloud and

emerging delay-sensitive applications (such as AMI functions related to situational awareness), there

is a clear need to look beyond the cloud [80]. One promising paradigm is edge computing (EC) [53,

32] — also known as fog [18] or micro-cloud computing [20]. EC often considers the deployment
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of servers close to the users, known as edge clouds, with their own computational resources to serve

users while providing reduced latency [132, 133, 33, 134]. EC also does not require all user data to

be sent and/or stored in some remote, central cloud server — providing some degree of privacy.

Many EC architectures consider a three-tier architecture of central cloud, edge clouds, and end

users [15, 41, 133] where edge clouds can cooperate with the central cloud or other edge clouds to

serve user requests [41, 54]. The EC architecture that can support AMI is depicted in Fig.4.1 and a

brief description of the EC layers is presented next.

Central Computational Layer

This layer corresponds to the central cloud in EC and the utility central processing server. This layer

is tasked with delegating decisions related to other portions of the smart grid system (e.g., billing

and distribution). It can also provide additional computational power to edge resources if necessary

to serve a service request from a connected component (e.g., a connected smart home). It is not

necessary for these central cloud computational resources to be physically adjacent to the utility

component for AMI. These resources can be rented through a trusted vendor that provides cloud

computing resources.

Edge Computational Layer

This layer is made up of two key components: MDMS units (or data collector units) from AMI and

edge clouds from EC. The former component is tasked with the traditional responsibilities of ag-

gregating metering data over a given neighborhood in AMI to perform immediate decisions related

to the distribution grid. The latter is tasked with handling service requests and/or collecting data

submitted by connected devices. The MDMS units and edge clouds can work together collabora-

tively. In this regard, two cases can be considered: (i) the case where MDMS units and edge clouds

are jointly paired with one another and (ii) the case where edge clouds are not directly tied with

an MDMS unit but communicate with AMI infrastructure through a trusted third party to provide

additional resources. In addition, the data collected/generated by and analytics provided by edge

clouds can additionally supplement decision making in AMI.
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Smart Users Layer

This layer corresponds with a smart home’s HAN, equipped with a smart meter and other devices.

At each time-step, a smart meter associated with a smart home will communicate metering data to

its covering MDMS unit in the Edge Computational Layer. This layer corresponds with IoT devices

that interact with edge clouds. These devices are not an explicit part of the architecture, but their

existence is worth noting.

4.3.2 Edge Intelligence

The notion of edge intelligence (EI) is the deployment of computationally-intensive intelligent mod-

els (predominantly machine learning, deep learning, and data analytics) on edge clouds rather than

the central cloud. EI provides the same class of benefits to end users provided by EC, such as ame-

liorated delay and robust scalability. For critical infrastructures, such as AMI, these are necessary

benefits. AMI-related data are often sensitive and have associated privacy concerns. It is worth not-

ing that these details are relevant for metering data provided by AMI. However, training EI models

using data hosted by end users introduces some challenges with regard to privacy. Additionally, the

distribution of data for training among end users are typically non-independent and identically dis-

tributed (non-iid) — which can pose challenges for training adequate models due to the unbalanced

nature of the data. The recent frameworks of FL and split learning [135] are promising solutions for

distributed learning that addresses these concerns. A recent and comprehensive survey of EI can be

found in [22].

4.3.3 Federated Learning

FL was first proposed as a framework for training machine learning models in a distributed, collab-

orative fashion in client-server environments (e.g., EC) [100]. Under the FL framework, a central

server initializes a machine learning model with random model parameters and shares the model

with the clients in the system. Over a series of global training rounds, the server selects some

portion of clients to perform local training using their local data to update their local model’s param-

eters. These clients then communicate their updated parameters to the server. The server then uses a

federated aggregation (FA) algorithm to aggregate the collected updated model parameters to then

update its global model for redistribution across the clients. This framework provides immediate

user/client privacy by not relying on the communication of client data — only the updated model
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Algorithm 5: 2-Tier Federated Averaging (FedAvg)
Input : K clients indexed by k, B is the local minibatch size, E is the number of local

epochs, and η is the learning rate.
1 Initialize w0;
2 foreach round t = 1,2, · · · do
3 m←max(1,C · |K|);
4 St ← random subset of m clients from K;
5 foreach client k ∈ St do
6 wk

t+1← LocalUpdate(k,wt);

7 wt+1← ∑k∈K
Nk
N wk

t+1

1 Procedure LocalUpdate(k,w)
2 B ← split Pk into batches of size B;
3 foreach local epoch i = 1,2, · · · ,E do
4 for batch b ∈ B do
5 wt+1← wt −η∇l(wt ;b);

parameters. Additionally, FA algorithms, such as FedAvg [136] and FedProx [137], perform well in

the face of non-iid data distributions of client data. These benefits address potential concerns related

to metering data in AMI (e.g., distribution of metering data across different homes), suggesting that

FL can be a promising approach to AMI-related problems (e.g., load forecasting and adaptive pric-

ing). This could allowMDMS units to learn from each other’s data while maintaining privacy. More

recently, decentralized FL where edge clouds are able to perform FAs among themselves via device-

to-device communication channels has also been studied [138, 139]. Additionally, the framework

of FL has also been adapted and studied for problems related to the reduction of energy consumption

on resource-constrained devices (e.g., IoT devices) in [140].

The added privacy of FL has made it an attractive framework for approaching problems related

to smart grids and AMI more specifically. Recently FL has been considered for AMI applications,

such as load forecasting [99] and disaggregation/non-intrusive load monitoring [131]. These prior

works consider a simple 2-tier ecosystem. Because FL is a flexible framework [138, 139], we can

expand upon this assumption by considering the aggregation point to be in different components of

the considered architecture. As such, we investigate both 2-tier and 3-tier FL where the latter has

an additional aggregation step involving the central utility server.
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4.4 FL-Based NILM Model

In this section, we discuss our approach of using FL for the NILM problem (discussed earlier in

§4.2.2). First, we briefly describe the deep neural network architecture that we employ for this

work and then describe, in detail, how we approach both 2-tier and 3-tier FL. In both approaches,

we consider the federated averaging (FedAvg) algorithm proposed by McMahan et al. in [136] to

perform the task of model parameter aggregation. The pseudocode for this algorithm is provided in

Algorithm 5.

4.4.1 Deep Neural Network Model Design

In [127], Kelly et al. chiefly use long short-term memory (LSTM) architectures for the NILM

problem. LSTMs are a recurrent neural network architecture that has specialized gates to avoid the

vanishing and exploding gradient problems. They are especially useful for time-series data. How-

ever, the complex nature of LSTMs induce additional training cost in terms of complexity. As such,

themore recent gated recurrent unit (GRU) has demonstrated comparable performance with reduced

complexity [141]. We thus incorporate a simple GRU architecture. Further, we consider the input

to our model to be time-series data of length ℓ. Our GRU model f (·) will consider two inputs: an

aggregated energy signal e = 〈ei,ei+1, · · · ,ei+ℓ〉 and a time signal (in minutes) t = 〈ti, ti+1, · · · , ti+ℓ〉,

both of length ℓ. Given these inputs, our model will predict the disaggregated energy signal for

a considered appliance in the (ℓ+ 1) time-step. We leverage dropout to prevent overfitting. Our

considered GRU architecture can be found below. For clarity, the model accepts 2 inputs of length

ℓ. The energy signal, e, is sent to the energy GRU sub-network and the time signal, t, is sent to the

time sub-network:

• (Energy GRU Sub-Network):

– GRU(units=64, #layers=2, activation=Tanh)

– Dense(units=32)

• (Time Sub-Network):

– Dense(units=32, activation=Tanh)

• Flatten([Outputs of energy and time sub-networks])
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Algorithm 6: Proposed 3-Tier Federated Averaging
Input : K clients indexed by k, B is the local minibatch size, E is the number of local

epochs, and η is the learning rate.
1 Initialize global model parameters w0;
2 foreach round t = 1,2, · · · do
3 foreach AMI-Edge a ∈ A do
4 ŵa

t ← wt ;
5 m←max(1,C · |Ka|);
6 St ← random subset of m clients from Ka;
7 foreach client k ∈ St do
8 wk

t+1← LocalUpdate(k, ŵa
t );

9 ŵa
t+1← ∑k∈Ka

Na
k

Na wk
t+1;

10 wt+1← ∑a∈A
|Ka|
|K| ŵ

a
t+1;

• Dense(64, activation=Tanh)

• Dense(32, output_size=1, activation=Linear)

4.4.2 2-Tier & 3-Tier Federated Learning

For this work, we are interested in considering 3-tier FL in addition to 2-tier FL. The latter is as

described in §4.3.3 and pseudocode for this setup using the FedAvg [136] algorithm is presented in

Algorithm 5. In 2-tier FL, we consider a simple scenario where smart homes k ∈ K communicate

their updated model parameters wk
t+1 to their covering AMI-Edge (see Fig. 4.1). Following the

FedAvg algorithm, the AMI-Edge will perform a weighted average to aggregate model parameters

across all smart homes it covers; the weight is based on the number of data items a smart home

has relative to all the smart homes covered by its AMI-Edge. However, a 2-tier approach may not

be sufficient. It is intuitive to imagine a relationship between the geography of homes and their

respective energy consumption. For instance, homes in more affluent regions of a smart city will

likely have more high-energy appliances than homes from less affluent regions. Therefore, the

model parameters aggregated by an AMI-Edge covering a specific region may require an additional

layer of aggregation to have a more general model. For this, we consider a 3-tier FL approach for

NILM. While FL has recently been considered for the NILM problem [131], this marks the first

attempt (to the best of our knowledge) to consider an extra layer of aggregation.

The pseudocode for the proposed 3-tier adaptation of the FedAvg algorithm is presented in Al-

gorithm 6. Line 1 initializes the global model, which will be hosted by the central utility server in
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the context of AMI. Lines 2-9 then commence the iterative rounds of FL. First, the algorithm iterates

through each AMI-Edge a ∈A (lines 3-10) and a downloads the most recent model from the utility

server (line 4). The AMI-Edge then selects a random subset of homes it covers, Ka, based on some

proportion C (lines 5-6). Each of the randomly selected homes will then train the most recently

aggregated model using their own data and update their local model parameters as a result (line 8).

Then, in line 9, the AMI-Edge averages the model parameters across all of its covered homes in a

weighted fashion viaNa
k /Na whereNa

k is the number of data items at home k belonging to Edge-AMI

a andNa ≜∑k∈K Na
k . Finally in line 10, after each Edge-AMI has performed neighborhood-wide ag-

gregation in this round, the central utility server will aggregate the newly updated AMI-Edge models

in a weighted fashion via |Ka|/|K| where Ka is the set of smart homes covered by AMI-Edge a and

K is the set of all smart homes (i.e., K ≜⋃
a∈AKa).

4.5 Experiment Design

Here, we describe the design of our evaluation of considering deep learning for the task of NILM

on the considered architecture (discussed in §4.3.1). The central aim of this work is to demonstrate

the trade-offs between centralized and federated learning of a deep neural network for the NILM

problem. These trade-offs are with respect to the trained models’ performance and the incurred

communication cost associated with each training approach. Further, we consider both a 2-tier or

3-tier approach to FL. It should be noted that FL also has the benefit of providing an immediate layer

of privacy. Measuring the degree of privacy is beyond the scope of this work. For a comprehensive

survey on the privacy/security benefits of FL, refer to [142].

4.5.1 Data Description

From the Pecan Street dataport [143], we have real-world energy consumption data from 25 actual

homes in the New York region over a span of 6 months. The data is collected in 1 sample/minute

frequency and contains disaggregated energy consumption signals for a large number of different

appliances including distributed generation. For simplicity, we focus specifically on 3 appliances:

clothes washer, electric vehicle, and refrigerator. We further pre-processed the data by considering

an auxiliary energy signal by summing the energy consumed by each of the 3 appliances at each

recorded time-step. This auxiliary signal represents the measurements from smart meters which we

used as input to the disaggregation algorithms. Finally, we split 22 of the homes into neighborhood
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blocks consisting of 10, 8, and 4 homes. We consider each neighborhood block to be covered by a

single Edge-AMI node. The remaining 3 are reserved for testing/validation.

4.5.2 Communication Model

For this evaluation, we are not only interested in the accuracy that an EI model can provide to both

home owners and the utility companies but also interested in the network load (or communication

cost) associated with the discussed learning approaches. The approaches we have discussed include

centralized learning (i.e., all data sent to a central operator before training), 2-tier FL (i.e., learning

happens at the smart home level and model aggregation occurs locally at each AMI-Edge node), and

3-tier FL (i.e., each AMI-Edge node’s aggregated models are aggregated by the central operator).

We now provide a simple, yet intuitive, communication model to analyze the cost of network load

affiliated with each of these approaches to gauge the communication benefit of these approaches.

As a reminder, A refers to the set of AMI-Edge nodes, K refers to the set of all smart homes, and

Ka refers to the set of smart homes directly covered by AMI-Edge a ∈ A.

Centralized Network Load

First, we consider the standard approach of centralized learning. As mentioned, we assume all

data are sent to a central operator in central computational layer of the considered architecture (see

Fig. 4.1). As such, all data from a smart home are first communicated to its covering AMI-Edge

node AMI-Edge node and then communicated to the central server. We define it below,

Lc ≜ ∑
a∈A

∑
k∈Ka

|Pk| · (hopska +hops′a) (4.1)

where |Pk| is the size of the data hosted by smart home k, hopska is the number of hops from smart

home k to its covering AMI-Edge a, hops′a is the number of hops from AMI-Edge a to the central

utility server.

2-Tier FL Network Load

In FL, only the parameters for the model being trained are communicated between AMI components

(e.g., smart home, AMI-Edge, central utility server). As such, we instead consider the size of the

model parameters rather than the size of the raw data hosted at each smart home. For 2-tier FL

specifically, we consider each AMI-Edge to aggregate model parameters trained by its covered smart
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homes independently of any other system component. Therefore, themodel parameters are only ever

communicated from the smart homes to their covering AMI-Edge. As such, we define the network

load for 2-tier FL, L f , in Eq. (4.2) below,

L f ≜ ∑
a∈A

∑
k∈Ka

|model| ·hopska (4.2)

where |model| is the size of the parameters for the model being trained distributedly and hopska is

the number of hops from smart home k to AMI-Edge node a.

3-Tier FL Network Load

In 3-tier FL, we consider an extra step of aggregation. Each of the AMI-Edge nodes will communi-

cate their newly aggregated model parameters to the central utility server to further aggregate them

(according to Algorithm 6). As such, we define the network load for 3-tier FL, L′f , in Eq. (4.3)

below,

L′f ≜ ∑
a∈A

∑
k∈Ka

|model| · (hopska +hops′a) (4.3)

where |model| is the size of the parameters for the model being trained distributedly, hopska is the

number of hops from smart home k to AMI-Edge node a, and hops′s is the number of hops from

AMI-Edge a to the central utility server.

4.6 Results & Discussion

Here, we present and discuss the results of our approach to the NILM problem. The focus of these

results is the comparison between FL-based solutions to the NILM problem against centralized deep

learning when considering model performance and incurred communication cost/network load.

4.6.1 Network Load Analysis

Here, we evaluate the network load incurred from training machine learning models through cen-

tralized, 2-tier federated, and 3-tier federated approaches. To perform this evaluation, we fix the

number of hops from each AMI-Edge a ∈ A to each of its smart homes k ∈ Ka (hopska). We vary

this value over the range [1,10]. We do the same for the number of hops between the central util-

ity server and the AMI-Edge nodes, hops′a. For this chapter, we use the real-world measurements
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and federated aggregation rounds (2-tier and 3-tier FL). (b) The CDF distribution of the testing loss
after the models have been trained — which shows a tight similarity in performance.

collected from a considered subset of the Pecan Street Data, corresponding with a weeks-worth of

data, to evaluate the size of the data and parameters, which leads to |Pk| ≈ 16.8 million bytes being

the size (in bytes) of the raw training data hosted on each smart home k. Meanwhile, the size of the

considered model parameters is |model|= 4896 bytes. For the FL scenarios (both 2-tier and 3-tier),

we considerC = 1 (i.e., all smart homes submit locally trained model parameters) to show the max-

imum possible network load under both scenarios. With the setup established, we now show the

distribution of the network loads under each scenario in Fig. 4.2. We observe that both 2- and 3-tier

FL notably outperform centralized training in terms of network load/communication cost. This is

due to the sheer size of the training data, which vastly exceeds the size of the model parameters.
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Also, in 2-tier FL, since communication for training only occurs between smart homes and their re-

spective AMI-Edge nodes, the number of hops between the AMI-Edge nodes and the central utility

server has no effect — thus, in Fig. 4.2, the 2-tier FL network load appears to have a single line.

Finally, we see that centralized learning is the most costly in terms of network load. However, it

is necessary to mention that this analysis is sensitive to the frequency of data communication. For

instance, if model parameters are communicated more frequently than raw data, this will affect the

communication benefit of the FL approaches. However, given that metering data is dynamic and

changes over time, it is likely insufficient to train a model on static data. This would elicit cen-

tralized training to collect new data. This trade-off requires further investigation, but these results

indicate that there can exist a substantial benefit with respect to network load when employing FL

approaches for AMI.

4.6.2 Trained Model Performance

Here, we compare the loss provided by our considered GRU model (discussed in §4.4.1) when

trained under centralized, 2-tier FL, and 3-tier FL training approaches. First, we overview the

considered hyperparameters for training. For training, we use the standard mean absolute error

loss function. All scenarios utilize the state-of-the-art Adam algorithm [144] with a learning rate

η = 0.001. Training is done with minibatch sizes of B = 32. Centralized training uses 100 training

epochs. Meanwhile, both considered FL approaches use 100 federated aggregation rounds with each

smart home performing 3 local epochs. Due to the stationary nature of smart homes, we assume that

they are always connected to the system infrastructure and thus we consider C = 1 — meaning all

smart homes participate in local training in each federated aggregation round. Finally, for 2-tier FL,

since there is no true global model, we aggregate the training/testing loss and the predicted energy

signals provided by all the models aggregated by the 3 considered AMI-Edge nodes.

In Fig. 4.3(a), we see the training losses between the three approaches. On first glance, it would

appear that centralized training performs the worst. However, this cannot be claimed because it

is being trained directly on the entire data-set — meaning there is more room for error. The FL

approaches, on the other hand, are being distributedly trained on smaller shards of the data. However,

in Fig. 4.3(b), we compare the testing losses between the models using a set of the Pecan Street data

that they were not trained on. From this, we find that the models are able to perform comparably

under evaluation. Given this comparable performance with respect to test loss and the ameliorated
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network load (according to Fig. 4.2), FL shows a considerable benefit for critical systems where

resources must be well spent.

4.7 Conclusions & Future Directions

In this chapter, we described the ways in which edge computing and edge intelligence technologies

can be leveraged to support and supplement many of the current and future functions in smart distri-

bution grids and particularly AMI. Examples of such functions include wide area monitoring, situa-

tional awareness, load monitoring and forecasting, dynamic pricing, and more. To demonstrate the

efficiency of edge intelligence, we applied federated learning approach to the task of non-intrusive

load monitoring in AMI using 2-tier and 3-tier approaches. In addition to immediate privacy bene-

fits associated with federated learning, our analysis shows that there is a reduction in network load

of the system with comparable loss to the centralized learning approaches. There is still much room

for further exploration on how the edge and smart distribution grids can operate in tandem. For

instance, the data considered in this chapter is fairly limited geospatially, which limits the degree at

which the region itself affects the metering data distribution. As mentioned, smart homes in more

affluent regions likely consume more energy when compared to smart homes from less affluent ar-

eas. This could present a challenge for standard 2-tier FL because the aggregation is more local to

the neighborhood covered by that AMI-Edge.

Looking towards the future, there are still open problems and questions to be explored. The

trade-off between communication cost and network load regarding these learning methods in smart

distribution grids is of great interest. This calls into question how frequently new data comes in

to train such models. Additionally, the question of the optimal frequency of performing federated

aggregation in this architecture is also worth investigating. Additionally, how we deploy/place edge

resources to benefit smart distribution grids in a cost-effective manner to support applications and

services of interest also must be explored.
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Smart Edge-Enabled Traffic Lights Using Federated

Reinforcement Learning for Reward-Communication

Trade-Off

©2022 IEEE. Reprinted with permission fromNathaniel Hudson, “Smart Edge-Enabled Traf-

fic Light Control: Improving Reward-Communication Trade-offs with Federated Reinforce-

ment Learning,” to appear in the proceedings of the 2022 IEEE International Conference on

Smart Computing (SMARTCOMP), June 2022.

Traffic congestion is a costly phenomenon of everyday life. Reinforcement Learning (RL) is a

promising solution due to its applicability to solving complex decision-making problems in highly

dynamic environments. To train smart traffic lights using RL, large amounts of data is required.

Recent RL-based approaches consider training to occur on some nearby server or a remote cloud

server. However, this requires that traffic lights all communicate their raw data to some central lo-

cation. For large road systems, communication cost can be impractical, particularly if traffic lights

collect heavy data (e.g., video, LIDAR). As such, this work pushes training to the traffic lights di-

rectly to reduce communication cost. However, completely independent learning can reduce the

performance of trained models. As such, this work considers the recent advent of Federated Re-

inforcement Learning (FedRL) for edge-enabled traffic lights so they can learn from each other’s

experience by periodically aggregating locally-learned policy network parameters rather than share

raw data, hence keeping communication costs low. To do this, we propose the SEAL framework

which uses an intersection-agnostic representation to support FedRL across traffic lights controlling
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heterogeneous intersection types. We then evaluate our FedRL approach against Centralized and

Decentralized RL strategies. We compare the reward-communication trade-offs of these strategies.

Our results show that FedRL is able to reduce the communication costs associated with Centralized

training by 36.24%; while only seeing a 2.11% decrease in average reward (i.e., decreased traffic

congestion) in our experiments.

5.1 Introduction

According to recent transportation analytics data by INRIX, traffic congestion cost the United States

economy $88 billion in 2019 alone [145]. Traffic congestion poses a constant threat to the econ-

omy and safety within an urban environment, which can be alleviated by using the compute and

communication resources available in smart cities. Urban traffic networks exemplify a typical CPS

where data, communication, and connected infrastructure can now jointly optimize traffic operations

within a road network. Communication capabilities of the vehicles, traffic lights, and other road-side

units (RSUs) powered by vehicle-to-everything (V2X) and vehicular ad-hoc networks (VANETs)

provide opportunities for novel strategies to mitigate traffic congestion over large and complex ur-

ban road networks [146, 147]. Such strategies may require reliable computing resources for the strict

needs of urban traffic networks. The recent advent of Edge Computing (EC) [33] pushes compute

resources to the network edge via compute node servers, known as “edge servers”, that are close to

the smart city infrastructure. EC can be used to support more compute-intensive tasks for vehicular

networks.

Many recent works trying to support smart decision making for traffic lights (commonly referred

to as adaptive traffic signal control) consider Reinforcement Learning (RL)-based approaches [148,

149, 150, 151, 152, 153, 154]. RL is a popular technique for training sequential decision-making

policies for problems that are highly dynamic and complex. Smart traffic light strategies that in-

corporate RL typically employ either a centralized [155, 156, 157] or decentralized [158, 153, 159]

technique for training policies. In the centralized case, a policy is trained (typically on a roadside

server) from the observations collected by detectors and other infrastructural components through-

out the system. This central, roadside server then communicates actions to each of the traffic lights.

Because the policy is learning over observations throughout the road network, these approaches

perform well in terms of maximizing total reward. However, in practice, the amount of communi-

cation needed to send all observational data to the server can be costly. Decentralized approaches
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push the policy training to the traffic lights based on observations local to that traffic light, meaning

less communication is needed since training is local to the traffic light itself. However, in decen-

tralized approaches, the performance of the trained policies can be compromised because policies

are learning in an isolated and independent manner. Therein lies a natural trade-off between policy

performance with respect to maximizing reward and the communication cost associated with train-

ing. To the best of our knowledge, this trade-off has not been formally studied for smart traffic light

control with RL.

To this end, we study the reward-communication trade-off for training smart traffic light con-

trol policies in an edge-enabled traffic system. We do this by proposing a Federated Reinforcement

Learning (FedRL) technique inspired by the recent Federated Learning (FL) paradigm [160, 161].

Under our FedRL technique, we train traffic lights in a decentralized manner to reduce overall com-

munication costs. Periodically, traffic lights will communicate their current policy network to a

roadside edge server (hereafter referred to as “edge-RSU”) which will then aggregate the policy net-

work parameters using a weighted averaging method based on total reward. This newly-averaged

policy network is then distributed to traffic lights for further training until the next aggregation

phase. This aggregation will allow traffic lights to learn from each other without sharing raw obser-

vational data. For our FedRL to work, representation of current traffic conditions must be consistent

across the road network, even in the face of heterogeneous intersection types. In this way, the rep-

resentation needs to be transferable across road networks and intersections. For this, we design

a novel, intersection-agnostic Markov Decision Process (MDP) [162] which we refer to as Smart

Edge-enabled trAffic Lights (SEAL). The central contributions of this work can be summarized

as follows:

• Design a novel, intersection-agnostic MDP for representing traffic conditions at traffic lights

which we call SEAL. SEAL is designed to have a general representation of traffic conditions

at intersections.

• Proposal of a Federated Reinforcement Learning (FedRL) approach for training RL decision-

making policies for smart traffic light control.

• Improve reward-communication cost trade-off associated with solving SEAL using our pro-

posed FedRL approach by reducing communication costs up to 36.24% on average while

losing 2.11% on average when compared to Centralized training.
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Figure 5.1: Example of our traffic system where traffic lights communicate with an edge-enabled
roadside unit (Edge-RSU).

5.2 System Description

We now describe the system requirements for traffic infrastructure, data, and communication ca-

pabilities for our model. Fig. 5.1 shows a typical traffic environment where our model could be

deployed. Our system considers a road network with one or more intersections (depending on the

road topology), each equipped with a traffic light k ∈ K where K denotes the set of traffic lights in

the entire system. Each traffic light k ∈K controls the traffic flow entering the intersection through

an incoming lane. A set of such controlled lanes is denoted by Lk. A traffic controller, either lo-

cated at each intersection or at a server calculates a “phase state” φ t
k for the traffic lights at a given

traffic light k at time-step t. The assigned phase state is such that a traffic light will be assigned a

green, yellow or red “signal state”, represented by G,y,r, respectively. Therefore, a phase state is a

string representing the signal states of the traffic lights at all controlled lanes at an intersection. For

example, the phase state for an intersection with eight controlled lanes would be GyrrGyrr. For a

visual example of phase states, refer to Fig. 5.2. Note that the phase states are assigned such that the

vehicles with conflicting traffic flows are not allowed to access the intersection at once. The length

of the phase state is based on the number of incoming controlled lanes at a given intersection. Our

model also expects that the vehicles obey the traffic regulations and do not violate the assigned phase

permissions indicated by the traffic lights. Finally, in our system, we assume each traffic light k ∈K

cannot change phase states until 4 seconds have elapsed since k’s last phase state change. Further,

we assume each traffic light k ∈ K must change after 120 seconds have elapsed since k’s last phase
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state change. These timings are calculated in accordance with the U.S. federal highway administra-

tion (FHWA) guidelines based on average traffic behavior [163] and can be changed as per traffic

regulatory requirements. This is enforced for all training and evaluation.

Traffic infrastructure is equipped either with road-side sensors installed within every controlled

lane to measure traffic parameters such as lane occupancy, average traffic flow speed, etc. (detailed

in §5.3) or have connected vehicles to report such data to the traffic lights by utilizing the connected

infrastructure. Traffic lights are equipped with edge compute resources to process the data and

perform local learning. The edge resources also enable the connectivity among all traffic lights

within the traffic network as well as the centralized cloud server to enable global optimization of the

learning models. For simplicity, we assume the presence of a single deployed edge-RSU server in

the region that maintains communication channels to all the traffic lights in a given region to support

additional processes. Additionally, traffic lights are also equipped with compute resources as well as

the edge-RSU server. As a simplifying assumption, we assume compute resources at both the traffic

lights and the edge-RSU server are sufficient to train policies for smart traffic decisions. Succinctly,

this work aims to improve the implicit reward-communication trade-off associated with distributed

learning solutions to support smart traffic systems using FedRL.

5.3 Proposed SEAL Model Definition

Here, we define the Smart Edge-enabled trAffic Lights (SEAL) system. SEAL is modeled as a

Markov Decision Process (MDP) [162] with the goal to minimize traffic congestion in road net-

works. SEAL’s novelty is in defining a general state space representation that can describe current

traffic conditions at a traffic light in an intersection-agnostic way. This is necessary to support policy

aggregation in our FedRL approach (discussed later in §5.4.3).

The work most similar to ours is that of Zhou et al.’s DRLE framework in [158]. This work is

able to consider a distributedmulti-agent RL approach to smart traffic light control with convergence

guarantees. However, this does not consider the possibility of traffic lights themselves training

their own policy networks. Instead, the DRLE framework sets traffic lights to communicate their

local state observations to a roadside server to perform state aggregation to form a “global” state.

This global statefulness allows for convergence guarantees, but may not be attractive for future

solutions where traffic lights may collect large volumes of data (e.g., hyper-spectral images, videos,

LIDAR imaging, etc.) to make decisions. Having large amounts of traffic lights stream these data
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Figure 5.2: Example traffic light action transition graph. Consider the given traffic light k’s current
phase state is GGrGGR. If the action at

k = 1 at time-step t, then the phase state for k will transition to
yyryyr if sufficient time has elapsed since its last transition. Otherwise, its phase state remains the
same, unless too much time has elapsed since its last change.

in real-time to make timely decisions may not scale well. Thus, we consider SEAL. Future works

investigate possible convergence bounds of SEAL is of interest but is beyond the scope of this work.

5.3.1 Action Space

In prior works investigating the use of RL for traffic light control, various kinds of actions have

been considered. These include phase switch [158, 159], phase duration [152], and the phase state

itself [150]. The phase state considers a discrete space of size n where n is the number of possible

states for a traffic light. Since phase state depends on the number of controlled lanes and hence

the traffic lights at an intersection, it is infeasible to aggregate knowledge among the intersections

with varying topologies. For this work, we consider a simpler phase switch approach in which we

consider each traffic light k ∈ K in time-step t to take an action at
k ∈ {0,1} where at

k = 1 signifies

that traffic light k will attempt to change to the next phase state. Otherwise, at
k = 0 signifies no phase

state change will be attempted by traffic light k at time-step t.

Note, if a traffic light k attempts to change in some time-step t (i.e., at
k = 1), a change can only

occur if enough time has elapsed since its last change; further, a traffic light k will be forced to

change its phase state regardless of its action if toomuch time has elapsed since its last change. This

is due to the phase state timer (discussed in §5.2) to ensure policies mean mandatory regulations
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related to road safety [163]. Refer to Fig. 5.2 for an illustrated example of phase state logic and

transitions made when at
k = 1.

5.3.2 State Space

State space features consist of the following for a traffic light k in time-step t: lane occupancy (ot
k),

halted lane occupancy (ht
k), average speed (ψ

t
k), and phase state ratios (φ

t
k(·)) for all possible phase

states (e.g., green, yellow, red).

Lane Occupancy

The average ratio of occupancy across all lanes controlled by a traffic light k in time-step t. Each

traffic light k controls some set of lanes. Thus, we consider the occupancy of a lane l to be how

much of a lane’s length (in meters) is occupied by vehicles (as a ratio). However, we average this

across all lanes controlled by traffic light k. The formal definition for lane occupancy is provided

below:

ot
k ≜

∑l∈Lk ∑v∈V t
l
len(v)

∑l∈Lk
len(l)

(5.1)

where Lk is the set of lanes controlled by traffic light k, V t
l is the set of vehicles occupying lane l in

time-step t, and len(·) is the length of the vehicle or lane (in meters).

Halted Lane Occupancy

SEAL’s goal is to minimize congestion in road systems. Thus, we consider howmuch of a lane is oc-

cupied with halted vehicles. As such, we consider ht
k to be the halted lane occupancy of traffic light k

in time-step t when we consider a vehicle to be halted if its current speed is ≤ 0.1 meters/second.

Thus, we define ht
k below:

ht
k ≜

∑l∈Lk ∑v∈Ht
l
len(v)

∑l∈Lk
len(l)

(5.2)

whereHt
l is the set of halted vehicles occupying lane l in time-step t.
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Average Speed

We also consider the average speed (ψ t
k) among vehicles occupying lanes controlled by a traffic

light k at time-step t as a feature. Similar to the other features, this one is also normalized as a ratio

in the range [0,1]. The formal definition is below:

ψ t
k ≜


∑l∈Lk ∑v∈Vt

l
min

(
spdt

v,spdmax
l

)
∑l∈Lk ∑v∈Vt

l
spdmax

l

∣∣⋃
l∈Lk
V t

l

∣∣≥ 1

1.0 otherwise
(5.3)

where spdt
v is the moving speed of vehicle v in time-step t and spdmax

l is the speed limit on lane l.

The second case in Eq. (5.3) is for cases when there are no vehicles occupying lanes controlled by

traffic light k.

Phase State Ratio

The current phase state of a traffic light has been used as feature in prior works (namely, [158]).

This is possible because simple road networks are considered with homogeneous intersections where

traffic lights have the same sets of possible phase states. To handle heterogeneous phase state sets

across different intersection types, we instead represent the ratio of how each possible traffic light

signal (e.g., green, yellow, red) makes up the entire phase state. Thus, we denote the ratio of a traffic

light signal for a traffic light k in time-step t by φk
k (·) ∈ [0,1]. For instance, given a phase state at

traffic light k in time-step t GGrGGr, we denote how much of the phase state are red lights, r, by

φ t
k(r) =

2
6 (similarly for prioritized green lights, G, φ t

k(G) = 4
6 ). Because we represent the ratio

rather than assign an arbitrary discrete value to represent the entire phase state, the representation

is general and can be used across different road networks with various intersections. It should be

noted that ∑p∈Pk
φ t

k(p) = 1 (∀k, t) where Pk is the set of phase states for traffic light k.

5.3.3 Reward Function

The goal of SEAL is to reduce congestion in a given road network. With that in mind, we let

reward rt
k for a traffic light k at time-step t be a function of both lane occupancy (ot

k) and halted lane

occupancy (ht
k). We define it below:

rt
k ≜−(ot

k +ht
k)

2. (5.4)

68



These state space features are summed to penalize traffic lights with more congestion. We let halted

vehicles to incur more penalty since they contribute to both lane occupancy and halted lane occu-

pancy. From there, we define the total reward, rt , over the road whole network at time-step t as

rt ≜ ∑
k∈K

rt
k. (5.5)

5.3.4 Communication Model

As discussed in §5.2, we require robust communication capabilities between vehicles, traffic lights

and edge-enabled RSUs to support smart traffic control. Depending on the training approach (de-

tailed in §5.4), a traffic control system must account for different communication channel utiliza-

tion and their incurred costs. We therefore consider the following 6 different types of possible

communications that can take place under the SEAL system: (i) policy network parameters from

edge-RSU to traffic light, (ii) policy network parameters from traffic light to edge-RSU, (iii) action

from edge-RSU to traffic light, (iv) observations from traffic light to edge-RSU, and (v) vehicle-

to-infrastructure (V2I) communication from vehicle to traffic light. We will evaluate the associated

communication costs while training of our proposed model in §5.6. To reiterate, we assume that

edge-enabled traffic lights and the edge-RSU have sufficient compute capacity to performing policy

training. Thus, we do not consider compute constraints and focus on communication cost instead.

5.4 Training Algorithms

The goal of SEAL is to learn optimal traffic light control policies to minimize congestion for a given

road network. To solve the SEAL model, we adopt model-free reinforcement learning techniques.

More specifically, we will incorporate the recent Proximal Policy Optimization (PPO) [164] algo-

rithm. Solutions to SEAL will aim to find a smart traffic light control policy, π , such that

Qπ(s,a) = (1− γ) ·E

[
∞

∑
t=1

(γ)t−1 · rt |s1 = s,a1 = a

]
(5.6)

is maximized where the policy is a decision-making function π : S 7→ A and γ is the discount factor.

Eq. (5.6) is known as the Q-function. The optimal policy that maximizes the Q-function is defined

as π∗= argmaxπ Qπ(s,π(s)) ∀s. For the sake of convenience, we denoteQ(s,a) =Qπ∗(s,a), ∀(s,a)

where s and a are a state and action, respectively.
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Figure 5.3: Training approaches considered for solving SEAL.

RL algorithms can be implemented in real-world systems in various ways. As such, we consider

3 different approaches for facilitating the PPO algorithm to solve SEAL: (i) centralized training,

(ii) decentralized training, and (iii) federated training. A visual example of how these approaches

compare can be found in Fig. 5.3. For a comprehensive overview on the theory of RL, please refer

to [165].

5.4.1 Centralized Training

Under centralized training, there is a single policy network that is hosted on the nearby edge-RSU.

At each time-step t, each traffic light k ∈K submits their current state st
k to the edge-RSUwhich then

returns an action at
k to traffic light k. Since a single policy network is learning across all observations

in the system, it is expected to learn the optimal policy faster than other approaches. However, this

is at the expense of incurring a large amount of overhead in terms of communication cost because of

the traffic light having nonstop communication with the edge-RSU to take an action. For this work,

we view this approach as an upper bound in terms of most quickly learning the optimal policy, π∗.

Centralized Training Communication Costs

Decision-making in a centralized manner requires traffic lights to always communicate to the edge-

RSU leading to higher communications. Under Centralized training, the following communications

take place at each time-step: actions from the edge-RSU to traffic lights, observations from traffic

lights to edge-RSUs, and V2I communications from vehicles to traffic lights.
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5.4.2 Decentralized Training

Unlike centralized training, decentralized training equips each traffic light k ∈ K with a policy net-

work that aims to independently learn an optimal local policy for traffic light k, π∗k , for optimizing

reward using only observations local to that traffic light. In essence, if all traffic lights in the system

are able to learn an optimal policy, then that can benefit the entire road network. Zhou et al. in [158]

proved that a decentralized training approach using per-traffic light policies for smart traffic light

control, can converge to a centralized approach if given infinite time. In general, this approach can

attain good performance if given enough time. While the decentralized approach is bested by the

centralized approach in finding an optimal policy, since the latter is learning from global observa-

tions, the former approach is of interest as it requires less communication.

Decentralized Training Communication Costs

In the decentralized case, since the traffic lights never communicate to the edge-RSU for making

decisions, little communication occurs. The only communication that takes place is V21 communi-

cation from vehicles to traffic lights.

5.4.3 Federated Training

With the expectation that decentralized trainingwill not perform as well as centralized training due to

policies learning over fewer observations, but will require less communication, we wish to achieve

the best of both worlds. A novel contribution of this work is that we leverage the findings of the re-

cent federated learning (FL) paradigm [160, 161] for distributed systems. Here we apply it to decen-

tralized training to allow the traffic lights to learn from each other without needing to communicate

raw data. We refer to this notion aptly as Federated Reinforcement Learning (FedRL) [166, 167].

FL has shown to reduce communication cost in the literature [168] while providing an immediate

layer of privacy because no raw data are communicated. These are crucial advantages for smart

traffic light control for future systems. For instance, consider a system that considers live video

feed as a feature in the state space representation. Because identifying information (e.g., license

plate numbers and faces of pedestrians) may be included, privacy is crucial. Additionally, such data

may be very large and incur hefty data transmission costs. As such, we will focus on the benefit of

federated training for smart traffic light control with respect to the trade-off between communication

cost on the system and maximizing reward.
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In FedRL, the traffic light agents training their own policy networks will periodically commu-

nicate the learned policy network parameters to the edge-RSU. The edge-RSU will then aggregate

them using an averaging function. The newly aggregated policy network parameters are then com-

municated back to the traffic lights for further learning. Aggregation will occur after a number of

time-steps occurs. We refer to this time period as a frame and denote it by F . We denote the policy

network parameters learned by traffic light k at the end of frame F by ωF
k .

In [161], the federated averaging (FedAvg) technique was proposed. This technique addresses

the challenge of non-independent and identically distributed (iid) data distributions across different

client devices. FedAvg uses a weighted average of the client’s locally-updated model parameters

based on the number of data items owned by that client. This weight combats non-iid data dis-

tributions common in distributed systems. For the sake of this work, we consider a simplifying

assumption that traffic lights have identical data sampling rates — resulting in the same amount of

observations. Below is the definition of the averaging we consider,

ωF+1 ≜ ∑
k∈K

1
|K|

ωF+1
k (5.7)

where the newly-aggregated, global parameters ωF+1 is the average of the parameters collected

from all the traffic lights. These parameters are then sent back to the traffic lights at the start of

frame F + 1 to resume training. Asynchronous aggregation techniques to address heterogeneous

data sampling rates among traffic lights is beyond the scope of this work.

In addition to this aggregation function, we consider a reward-based aggregation technique.

However, our experiments showed that it is

ωF+1 ≜ ∑
k∈K

rF
k

rk
ωF+1

k (5.8)

where rF
k is the total reward received by traffic light k over the training frame F and is the total

reward received by all traffic lights during training frame F (i.e., rk = ∑k∈K rF
k ). Note, if rk = 0,

then aggregation is done using Eq. (5.7). Since reward under SEAL is never positive (i.e., rt
k ≤

0 (∀k, t)), traffic lights that achieve the least amount of reward will have the greatest weighting

coefficients for aggregation in Eq. (5.8). The intuition for this design is based on findings from

works in conventional federated learning. For instance, Cho et al. in [169] analyze convergence

in federated learning processes and find that bias towards clients with higher amount of loss (i.e.,

perform worse) improves convergence. Their intuition is that clients that have high loss have data

that can best improve the model. Meanwhile, the global model can be seen as doing a good job
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for making predictions for the data hosted on clients with low loss. In our case, we consider traffic

lights with good reward to be less important. Intuitively, traffic lights with no vehicles with nearby

will receive maximum reward — which is not helpful for learning how to best train traffic lights.

However, we find from simple evaluation that this aggregation function was less stable and was

often bested by the aggregation function defined in Eq. (5.7). As such, we focus on Eq. (5.7).

Federated Training Communication Costs

With federated training, communications that occur at each time-step are mostly identical to that for

decentralized training (discussed in §5.4.2). The only difference is at the end of each frame (which

occur less frequently than each time-step), 2 additional communications occur: policy network pa-

rameters from edge-RSU to traffic lights and policy network parameters from traffic lights to edge-

RSU.

5.5 Experiment Design

We implement the SEAL framework using the Python programming language. Further, we imple-

ment the training approaches described in §5.4 using the SUMO traffic simulator [170] for the traffic

simulation and Ray’s RLlib [171] toolbox for the RL pipeline. Our software serves as the interface

for these tools to fit our work’s very specific needs. Thus, we only train the policy networks using

PPO using simulations with these tools.

5.5.1 Considered Road Network Topologies

For training the policies using Ray’s RLlib [171] and performing evaluation via simulation, we

consider 3 road network topologies provided in Fig. 5.4: (a)Grid-3×3, (b)Grid-5×5, and (c)Grid-

7× 7. Roads on the border of the network have 1 lane going each direction, with the number of

lanes going north/south and east/west increasing by 1 when approaching the center north/south and

east/west roads. This is to introduce heterogeneous road network topologies. For an example, refer

to Fig. 5.4. For simplicity, we do not allow vehicles tomake turns to prevent the vehicles from getting

stuck in the simulation. Note that this is a limitation of SUMO and SEAL’s design is general enough

to support turning vehicles. Each training approach (discussed in §5.4) will learn policies over each

road network topology. Vehicles routes for training and evaluation are randomly generated using
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Figure 5.4: Example Grid-3×3 road network with heterogeneous intersection types. Note that the
number of lanes increase as roads are more central.

the randomTrips.py module provided by SUMO with 360 vehicles per lane per hour (VPLPH)

generated. According to SUMO’s documentation, vehicles are inserted into the network using any

of the edges in the system following a binomial distribution. Further, SUMO’s documentation notes

that for large road networks this distribution will approximate a Poisson distribution. Analysis of

how road traffic distribution affects learning is left to future work.

5.5.2 Training Parameters

We use Proximal Policy Optimization (PPO) [164] to train policies to solve SEAL. We use the

following hyper-parameters. The learning rate is 5×10−5. SGD minibatch size is 128. PPO CLIP

parameter is set to 0.3. Target value for KL divergence is 0.3. Train batch size is 4000 time-steps.

(Note policy network parameter aggregation, described in §5.4.3, occurs every 4000 steps.) Roll-out

fragment length (size of batches collected from each worker) is 200. We useGeneralized Advantage

Estimator (GAE) and the GAE parameter is set to 1.0. The VF clip parameter is set to 10.

5.6 Results & Discussion
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Figure 5.5: Learning curves with each training approach on each road network.

5.6.1 Reward Evaluation During Training

First, we compare the different training strategies discussed in §5.4 in terms of the reward achieved

by the policy networks during training. In Fig. 5.5, we can see the learning curves of each train-

ing strategy when used on each of the 3 road network topologies described in §5.5.1. From these

results, we find that, in general, make the following observations: (i) Centralized training gener-

ally achieves the greatest reward, (ii) Decentralized training generally achieves the worst reward

and, (iii) Federated training achieves greater reward than Decentralized training (and often nearly

matches that of Centralized training). These observations are fairly intuitive. Since Centralized

training trains a single policy network over all observations collected in the environment, it has more

to learn from. Conversely, with Decentralized training, each traffic light learns independently using

its own observations — meaning each traffic light’s policy learns over fewer observations. Since

Federated training expands on Decentralized training by allowing parameter aggregation among the

policy networks learned by the traffic lights, the traffic lights are essentially able to learn from each

other without explicitly sharing observations and other raw data. More specifically, we find that

Decentralized training suffers from an 8.01% drop in reward compared to the Centralized training.

Meanwhile, Federated training only suffers from an 2.11% drop in reward compared to Centralized

training.

5.6.2 Communication Cost Evaluation During Training

Given Federated training is able to more closely approximate the reward achieved by Centralized

training when compared to Decentralized training, we next compare the communication costs as-

75



0k 100k 200k
Time-Steps

(a)

80k

100k

120k
# B

yte
s

Grid-3×3

0k 100k 200k
Time-Steps

(b)

100k

120k

140k

Grid-5×5

0k 100k 200k
Time-Steps

(c)

100k

120k

140k

160k
Grid-7×7

Federated Centralized Decentralized

Figure 5.6: Communication cost (i.e., data size in bytes) transmitted during training time under each
training strategy for each road network.

Grid-3x3
Grid-5x5

Grid-7x7
Pre-Timed0

50

100

Tr
av

el 
Ti

me

Tested On "Grid-3x3"

Grid-3x3
Grid-5x5

Grid-7x7
Pre-Timed0

50

100
Tested On "Grid-5x5"

Grid-3x3
Grid-5x5

Grid-7x7
Pre-Timed0

50

100

Tested On "Grid-7x7"

Grid-3x3
Grid-5x5

Grid-7x7
Pre-Timed

Trained On

0

20

40

60

W
ait

ing
 T

im
e

Tested On "Grid-3x3"

Grid-3x3
Grid-5x5

Grid-7x7
Pre-Timed

Trained On

0

20

40

Tested On "Grid-5x5"

Grid-3x3
Grid-5x5

Grid-7x7
Pre-Timed

Trained On

0

20

40

Tested On "Grid-7x7"

Federated Decentralized Centralized Pre-Timed

Figure 5.7: Evaluation of trained policy networks on each road network using trip metrics, namely
Travel Time (top row) and Waiting Time (bottom row). We compare the results to a Pre-Timed
phase transition model as a baseline. Results confirm the RL-based solutions generally outperform
the baseline.

sociated with each training strategy. We do this by tracking the number of communication that

occurs (refer to §5.3.4) and the number of times each communication type occurs by the amount

of bytes needed to transmit the data for that communication. In Fig. 5.6, we compare the size of

the data needed to be communicated through the system during training using each of the train-

ing strategies under each of the road network topologies. There is a glaring difference in terms of

communication efficiency between Centralized and Decentralized/Federated. Because Centralized

training requires constant communication between the edge-RSU and the traffic lights in order to

transmit observations, actions, and other data, it naturally incurs much greater communication cost.
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Meanwhile, Decentralized and Federated training greatly reduce this cost due to them keeping com-

munication mostly between the vehicles and the traffic light. The only communication between the

Edge-RSU and the traffic lights under Federated training is when policy network parameters are

aggregated after each frame concludes. It is interesting to note that Federated is able to best Decen-

tralized training in terms of communication cost in these results. This is due to the Federated training

strategy producing better policy networks and removing vehicles from the system more efficiently

than the Decentralized model — resulting in less vehicle-to-infrastructure communication. More

numerically speaking, from our results Decentralized and Federated training are able to achieve a

communication cost reduction of 34.65% and 36.24%, respectively, when compared to Centralized

training.

5.6.3 Trained Policy Network Performance

Here, we are interested in two questions: (1) Can RL-based traffic lights trained with SEAL improve

traffic conditions? (2) Can policy networks trained with SEAL perform well when used on road

networks they were not trained on? To answer the first question, we compare our trained policy

networks against a standard traffic light control baseline: a pre-timed control [163] where traffic

lights cycle through phase states at fixed time intervals. We support this comparison using real-

world traffic metrics to evaluate the experience of drivers in the system. Namely, we consider both

“Travel Time” and “Waiting Time”. The former is the total amount of (simulation) time taken for

vehicles to reach their destination; the latter is the amount of (simulation) time vehicles are waiting

to move at a traffic light. The results of this evaluation are shown in Fig. 5.7. We see that in nearly

all cases, the RL-based training strategies outperform that of the Timed-Phase baseline. The only

outlier is the Centralized trainer when learning in the Grid-3× 3 road network. As for the second

question regarding possible transferability of the policy networks, we observe in Fig. 5.7 that the

policy networks are generally able to perform comparable to one another (ignoring the Centralized

trainer when trained on Grid-3× 3). This generally holds true for policy networks being tested on

the same road network they were trained on when compared to policy networks trained on other

networks. These results serve to motivate the use of RL-based approaches for future smart traffic

applications. We find that (on average) Centralized, Decentralized, and Federated reduce travel

time compared to Pre-Timed by 11.63%, 18.16%, and 18.14%, respectively. Also, we find that (on

average) Centralized, Decentralized, and Federated reduce waiting time compared to Pre-Timed by
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42.81%, 58.92%, and 58.93%, respectively. The underperformance of Centralized here, compared

to Decentralized and Federated, is likely due to the outlier scenarios when its trains on Grid-3×3.

We attribute these anamolies to potential overfitting, though further experiments are needed.

5.7 Related Works

Improving traffic light signal control in road networks has been a widely studied subject. Much work

is being done to improve traffic conditions by developing adaptive traffic signal control (ATSC)

where traffic lights adapt intelligently based on current traffic demands [172]. Many different tech-

niques have been considered for realizing ATSC. Early works considered linear optimization frame-

works [173].While linear programming is straightforward, it is not an appropriate match for ATSC

because of the highly dynamic nature of real-world traffic systems — making accurate objective

functions and constraints difficult to define. Genetic (or evolutionary) algorithms have also been

considered in prior works [174]. In the early 2000s, initial works focusing on the application of Re-

inforcement Learning (RL) techniques for ATSC were published [149, 155]. While seminal, these

initial works considered very simple road network scenarios. With advancements in both vehicular

communication [146, 147] and RL algorithms [165], interest in RL for ATSC (or smart traffic) has

been renewed. However, recent RL algorithms use more complex policy networks that require more

compute resources to train.

Works considering RL for smart traffic light signal control have greatly increased over the

years [150, 152, 153]. Because of the large number of entities in a traffic system (e.g., multiple

traffic lights, multiple vehicles), multi-agent RL techniques have been applied to smart traffic light

control [159, 154]. El-Tantawy et al. in [159] propose a multi-agent RL framework where agents

can either be independent or collaborative in how they make decisions with other traffic light agents.

Chu et al. in [151] propose a decentralized, multi-agent RL framework to provide robust learning

with using a scalable framework. Chen et al. in [148] propose a decentralized actor-critic model

and a difference reward method to accelerate the convergence of the trained policies for smart traffic

light control. Mousavi et al. in [156] study both, policy- and value-based deep reinforcement learn-

ing approaches for smart traffic light control. However, they only consider a single intersection,

where the state space is a screenshot of the intersection provided by a traffic simulator. These works

focus on improving training first and foremost. For instance, the communication cost for training

these policies is neglected.
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Edge Computing (EC) [33, 17] is a recent enabling technology that pushes compute resources to

the network edge. This has become an increasingly popular context for deploying AI (e.g., machine

learning, deep learning, and RL) services to the network edge to provide low-latency intelligence.

A significant recent work by Zhou et al. in [158] studied the applicability of edge computing for

decentralized RL for smart traffic lights. A central contribution of this work is the theoretical guar-

antees that show that their proposed decentralized framework can provide a near-optimal guarantee

on reduced traffic if given enough time. Different from this work, we design a framework that allows

heterogeneous traffic lights to train policy networks in a federated manner to reduce communication

costs.

The central gap in the literature related to RL for smart traffic light control is that the trade-off

between reward and communication cost has been neglected. Additionally, recent advancements in

the realm of Federated Learning (FL) or, more specifically, Federated Reinforcement Learning (Fe-

dRL) has yet to be applied to the smart traffic control problem.

5.8 Conclusions

In closing, this work to the best of our knowledge, is the first to approach smart traffic light control

usingFederated Reinforcement Learning (FedRL) in an edge computing-enabled system. We do this

by proposing SEAL, which is an intersection-agnostic Markov Decision Problem for smart traffic

light control to support aggregating learned policy network parameters across heterogeneous inter-

section types. This allows traffic lights to learn from each other’s experiences without sharing raw

experience data which reduces communication workloads (while providing some level of privacy).

Our experiments demonstrate that SEAL combined with FedRL approach is able to closely match

the rewards provided by a Centralized training approach (only a 2.11% decrease) when compared

to the Decentralized approach that shows a 8.01% drop in reward. Further, our FedRL approach

reduces the communication cost by 36.24% when compared to Centralized training. Hence, FedRL

improves the implicit reward-communication trade-off for distributedly training smart traffic sys-

tems. In the future, we aim to extend our work to further analyze the theoretical bounds of SEAL

and to study its effectiveness in small robotic testbed systems.
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6

Conclusions & Final Remarks

Turning the ambitious vision of smart cities from fantasy into reality is a daunting task. It will require

robust information communications and technology infrastructure to achieve. Edge computing is

a viable candidate for supporting many of the expected services needed to support smart cities.

Further, pushing artificial intelligence-based solutions to the edge (i.e., edge intelligence) can aid

in transforming data collected throughout smart cities into knowledge while also automating smart

decision-making in a resource-conscious way.

6.1 Findings

In Chapter 2 we studied the problem of placing and scheduling edge intelligence services. We first

cast the problem as an integer linear program and proved that it is, in fact, NP-hard to solve. Next,

we proved that scheduling can be solved optimally via a greedy algorithm given a set of placement

decisions. We then proved that a greedy algorithm for placement achieves a (1−1/e)-approximation

of the optimal solution. With this, we propose two greedy algorithms: one that theoretically guar-

antees this approximation bound and another that is more efficient while empirically matching the

performance of the former algorithm.

Chapter 3 builds on top of prior work that showed the relationship between lossy compression

techniques and the achieved accuracy of deep learningmodels for image classification. It was shown

this relationship can be fitted with a Gompertz function. Using this finding, this chapter defines a

nonlinear problem for joint compression and offloading decisions in a 3-tier edge computing system

with the goal to provide high accuracy to end users while minimizing overall communication costs
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via lossy compression. Using a block coordinate descent method, we were able to find a close-to-

optimal solution. Additionally, we proposed an iterative algorithm that is able to closely match its

performance in an efficient manner — besting all other benchmarks.

In Chapter 4 describes how edge computing can aid smart energy distribution grids in the context

of smart cities. Further, this chapter focuses on the application of non-intrusive load monitoring for

smart energy distribution grids. This problem is approached using 2-tier and 3-tier federated learning

to train a deep neural network to disaggregate energy loads. The results showed that using federated

learning through the edge provides comparable loss as conventional centralized techniques while

greatly reducing overall communication costs.

In Chapter 5 demonstrates the applicability of edge computing infrastructure to support future

smart traffic control systems that adapt to current traffic conditions. This is done using deep rein-

forcement learning and applying averaging techniques found in federated learning (which we refer

to as federated reinforcement learning). Our results confirm that federated reinforcement learning

is also able to reduce the communication costs associated with training models for making smart

decisions related to traffic light control in smart road systems.

6.2 Future Work

There still remain countless challenges and problems on the horizon of realizing smart cities in

future urban environments. Some of these remaining challenges include expanding upon the work

established in this thesis. For instance, considering more dynamic systems for optimization seen

in Chapters 2 and 3 is of utmost importance. Given how diverse and large smart cities will be, it

is absolutely crucial that more dynamic settings are considered for future works. Additionally, the

notion of data freshness is an obvious next step for the work of this thesis. Consider Chapter 4,

where we use energy data collected by individual smart homes to train a predictive model in a

federated fashion. The question of how long smart homes should hold onto data before discarding

it is interesting. Will old data harm predictive accuracy of the model? How do storage constraints

at the smart home affect the decision to hold onto data? There are possible trade-offs here that must

be further explored. Finally, Chapter 5 only aims to optimize road conditions. However, road traffic

has implicit and interdependent relationships with many other smart city systems and processes. For

instance, traffic light control could likely benefit from knowing about a protest occurring in the city

that was detected via crowd-sensing solutions deployed elsewhere in the system. Modeling smart
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traffic as an interdependent process is crucial in order to envision this ultimate, ambitious vision of

a smart city where data and technology seamlessly cooperate.
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