1,794 research outputs found

    Process Discovery on Deviant Traces and Other Stranger Things

    Get PDF
    As the need to understand and formalise business processes into a model has grown over the last years, the process discovery research field has gained more and more importance, developing two different classes of approaches to model representation: procedural and declarative. Orthogonally to this classification, the vast majority of works envisage the discovery task as a one-class supervised learning process guided by the traces that are recorded into an input log. In this work instead, we focus on declarative processes and embrace the less-popular view of process discovery as a binary supervised learning task, where the input log reports both examples of the normal system execution, and traces representing a “stranger” behaviour according to the domain semantics. We therefore deepen how the valuable information brought by both these two sets can be extracted and formalised into a model that is “optimal” according to user-defined goals. Our approach, namely NegDis, is evaluated w.r.t. other relevant works in this field, and shows promising results regarding both the performance and the quality of the obtained solution

    Decomposition-based Verification of Global Compliance in Process Choreographies

    Get PDF
    The verification of global compliance rules (GCR) in process choreographies (e.g., partner-spanning quality assurance in supply chains) is crucial and challenging due to the restricted visibility of the private processes of the collaborating partners. This paper provides a novel algorithm that decomposes global compliance rules into assertions that can be verified by the partners in a distributed way without revealing any private process details. The decomposition is based on transitivity properties of the underlying GCR specification. This work uses GCR based on antecedent and occurrence patterns and illustrates the transitivity properties based on their specification in first order predicate logic. It is formally shown that the original GCR can be reconstructed from the assertions, which ensures the viability of the approach. The algorithms are prototypically implemented and applied to several scenarios. The ability of checking global compliance constitutes a fundamental pillar of any approach implementing process choreographies with multiple partners

    Discovering Business Processes models expressed as DNF or CNF formulae of Declare constraints

    Get PDF
    In the field of Business Process Management, the Process Discovery task is one of the most important and researched topics. It aims to automatically learn process models starting from a given set of logged execution traces. The majority of the approaches employ procedural languages for describing the discovered models, but declarative languages have been proposed as well. In the latter category there is the Declare language, based on the notion of constraint, and equipped with a formal semantics on LTLf. Also, quite common in the field is to consider the log as a set of positive examples only, but some recent approaches pointed out that a binary classification task (with positive and negative examples) might provide better outcomes. In this paper, we discuss our preliminary work on the adaptation of some existing algorithms for Inductive Logic Programming, to the specific setting of Process Discovery: in particular, we adopt the Declare language with its formal semantics, and the perspective of a binary classification task (i.e., with positive and negative examples

    Knowledge-Intensive Processes: Characteristics, Requirements and Analysis of Contemporary Approaches

    Get PDF
    Engineering of knowledge-intensive processes (KiPs) is far from being mastered, since they are genuinely knowledge- and data-centric, and require substantial flexibility, at both design- and run-time. In this work, starting from a scientific literature analysis in the area of KiPs and from three real-world domains and application scenarios, we provide a precise characterization of KiPs. Furthermore, we devise some general requirements related to KiPs management and execution. Such requirements contribute to the definition of an evaluation framework to assess current system support for KiPs. To this end, we present a critical analysis on a number of existing process-oriented approaches by discussing their efficacy against the requirements

    Resolving inconsistencies and redundancies in declarative process models

    Get PDF
    Declarative process models define the behaviour of business processes as a set of constraints. Declarative process discovery aims at inferring such constraints from event logs. Existing discovery techniques verify the satisfaction of candidate constraints over the log, but completely neglect their interactions. As a result, the inferred constraints can be mutually contradicting and their interplay may lead to an inconsistent process model that does not accept any trace. In such a case, the output turns out to be unusable for enactment, simulation or verification purposes. In addition, the discovered model contains, in general, redundancies that are due to complex interactions of several constraints and that cannot be cured using existing pruning approaches. We address these problems by proposing a technique that automatically resolves conflicts within the discovered models and is more powerful than existing pruning techniques to eliminate redundancies. First, we formally define the problems of constraint redundancy and conflict resolution. Second, we introduce techniques based on the notion of automata-product monoid, which guarantees the consistency of the discovered models and, at the same time, keeps the most interesting constraints in the pruned set. The level of interestingness is dictated by user-specified prioritisation criteria. We evaluate the devised techniques on a set of real-world event logs

    Design principles for ensuring compliance in business processes

    Get PDF
    In this thesis, we evaluate the complexity and understandability of compliance languages. First, to calculate the complexity, we apply established software metrics and interpret the results with respect to the languages’ expressiveness. Second, to investigate the languages’ understandability, we use a cognitive model of the human problem-solving process and analyze how efficiently users perform a compliance modeling task. Our results have theoretical and practical implications that give directions for the development of compliance languages, and rule-based languages in general.Diese Arbeit beurteilt die KomplexitĂ€t und VerstĂ€ndlichkeit von Compliance-Sprachen. Zur Messung der KomplexitĂ€t wenden wir etablierte Software-Metriken an und interpretieren die Ergebnisse in Hinblick auf die Aussagekraft der Sprachen. Zur Untersuchung der VerstĂ€ndlichkeit verwenden wir ein kognitives Modell und analysieren, wie effizient eine Compliance-Sprache zur Lösung eines Modellierungsproblems eingesetzt wird. Unsere Ergebnisse haben theoretische und praktische Implikationen fĂŒr die Entwicklung von Compliance-Sprachen und anderen regelbasierten Sprachen

    The functional connectome of 3,4‐methyldioxymethamphetamine‐related declarative memory impairments

    Full text link
    The chronic intake of 3,4‐methylenedioxymethamphetamine (MDMA, “ecstasy”) bears a strong risk for sustained declarative memory impairments. Although such memory deficits have been repeatedly reported, their neurofunctional origin remains elusive. Therefore, we here investigate the neuronal basis of altered declarative memory in recurrent MDMA users at the level of brain connectivity. We examined a group of 44 chronic MDMA users and 41 demographically matched controls. Declarative memory performance was assessed by the Rey Auditory Verbal Learning Test and a visual associative learning test. To uncover alterations in the whole brain connectome between groups, we employed a data‐driven multi‐voxel pattern analysis (MVPA) approach on participants' resting‐state functional magnetic resonance imaging data. Recent MDMA use was confirmed by hair analyses. MDMA users showed lower performance in delayed recall across tasks compared to well‐matched controls with moderate‐to‐strong effect sizes. MVPA revealed a large cluster located in the left postcentral gyrus of global connectivity differences between groups. Post hoc seed‐based connectivity analyses with this cluster unraveled hypoconnectivity to temporal areas belonging to the auditory network and hyperconnectivity to dorsal parietal regions belonging to the dorsal attention network in MDMA users. Seed‐based connectivity strength was associated with verbal memory performance in the whole sample as well as with MDMA intake patterns in the user group. Our findings suggest that functional underpinnings of MDMA‐related memory impairments encompass altered patterns of multimodal sensory integration within auditory processing regions to a functional heteromodal connector hub, the left postcentral gyrus. In addition, hyperconnectivity in regions of a cognitive control network might indicate compensation for degraded sensory processing

    Configurable Declare

    Get PDF

    A pattern based approach for data quality requirements modelling

    Get PDF
    • 

    corecore