
 Eindhoven University of Technology

MASTER

Configurable Declare

Schunselaar, D.M.M.

Award date:
2011

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/172850f6-0090-464d-8e0c-74827ee027eb

Technische Universiteit Eindhoven
Department of Mathematics and Computer Science

Master’s Thesis

Configurable Declare

by

Dennis Schunselaar

Supervisors

dr. Natalia Sidorova
dr. Fabrizio M. Maggi
dr. George Fletcher

Eindhoven, August 19, 2011

2

Abstract

In literature, there is an increasing interest in configurable process
models [Got09]. Configurable process models are process models which
can be (slightly) altered, for instance, by adding or removing tasks from
the model. This allows companies to adjust the process models to their
processes, instead of adjusting their processes to the process models.

Unfortunately, the existing configurable process models are all based
on imperative languages, which makes them rigid. Everything which is not
stated to be allowed is forbidden. When we move to environments with
high variability, e.g. a hospital, one has to choose between maintainability
of the system, versus the possibility to cope with the variability. We can
best compare the consideration between maintainability and variability
with a road network. It is easier and cheaper to maintain a small road
network instead of a large road network (maintainability). However, a
large road network is more flexible and it is able to cope with, for instance,
traffic jams, road reconstruction, disasters, etc. (variability).

Since imperative languages are very rigid, i.e. you can only drive on
the roads, we move to declarative languages, and Declare in particular.
Within Declare everything is allowed unless stated otherwise, we can best
compare Declare with the sea where we are allowed to sail everywhere ex-
cept where the beacons disallow. This removes the rigidity from process
models. However, companies still want to be able to adjust the mod-
els to their processes. More specifically, they want to have flexibility at
configuration-time, i.e. between design-time and run-time, whilst main-
taining the flexibility at run-time. Therefore, we develop Configurable
Declare, a true extension of Declare.

Configurable Declare allows the removal of tasks and constraints from
models as well as the substitution of a constraint by a different constraint.
We define rules to maintain implicit constraints, i.e. constraints that are
not explicitly encoded in the model but deducible from other constraints,
e.g. if task Opening the patient for surgery is always followed by Inserting
pacemaker and Inserting pacemaker is always followed by Closing the patient
after surgery then implicitly task Opening the patient for surgery will always
be followed by Closing the patient after surgery. Using these rules, we are
able to remove activities from the model whilst maintaining the implicit
constraints. Furthermore, we use these rules to combine a set of Declare
models into a single minimal Configurable Declare model, i.e. we use
the rules to remove constraints already encoded implicitly. After that,
we define configurations which, when applied to the Configurable Declare
model, yield the original set of Declare models.

We have implemented the combining of the different Declare models
into a single Configurable Declare model, as well as transforming a con-
figured Configurable Declare model into a Declare model. Furthermore,
we show with a case study that we can apply our approach on real life
models.

Keywords: Declare, Configurable Declare, Configurable Models, Con-
figuration, Patterns

3

4

Contents

1 Introduction 6

2 Preliminaries 8
2.1 Process flexibility . 8
2.2 Declare . 8
2.3 Linear Temporal Logic . 14

3 Known Configuration Patterns 15

4 Configurable Declare 19
4.1 Patterns supported in Declare . 19
4.2 Extending Declare to Configurable Declare 21
4.3 Configuring Configurable Declare 21
4.4 Patterns supported in Configurable Declare 22
4.5 Running example . 35

5 Combining models 40
5.1 Combining the models . 40
5.2 Removing redundant constraints 41
5.3 Running example . 42

6 Implementation 46
6.1 Configurable Declare to Declare 46
6.2 Combining Declare models . 47
6.3 Rule engine . 50

7 Case Study 54
7.1 Combining the models . 54
7.2 Configuring the models . 54
7.3 Running example . 55
7.4 Comparing the models . 56

8 Future work 58

9 Conclusion 64

Appendices 67

A Meta-models 67

B Input models 69

C Configuration models 72

5

1 Introduction

Process models are everywhere and each branch of industry uses its own set
of process models. However, within the same branch, the process models are
often very similar due to legislation and standardisation, e.g. registering a birth
or extending a driving license. The maintainability of this set of (very similar)
process models is very low. For instance, when legislation changes, all process
models have to be updated to support the new legislation. Furthermore, a one-
size-fits-all approach is usually incorporated, i.e. although different companies
use slightly different processes, they are all forced to use the same process model.

Within the industry, [Got09] (amongst others) partly solves the aforemen-
tioned problems by introducing configurable process models. Such process mod-
els allow the user to change or remove parts of the model so that the model
adheres more closely to the user’s processes. This solves the one-size-fits-all
problem and improves maintainability because it is possible to describe several
slightly different models by a single configurable model. When the configurable
model is changed, all process models will be updated automatically. Examples
of configurable process modelling languages are: C -SAP WebFlow , C -BPEL,
and C -YAWL [Got09].

However, the aforementioned configurable process modelling languages are
all imperative and thus inherently rigid, i.e. if something is not specified as
allowed, it is forbidden. If such languages would be used in an environment with
high variability, e.g. a hospital, one has to choose between the maintainability
of the system versus the possibility to cope with the high variability. Imperative
models become very complex when they have to cope with variability, i.e. every
possible execution path has to be encoded in the model, and complex models
are harder to maintain than simple models. For instance, for a hospital one has
to choose between the maintainability of the system versus the freedom of the
medical staff to perform their tasks.

To address this problem, we use a declarative approach and the declarative
language Declare. Within Declare [PvdA06, PSvdA07], everything is allowed
unless stated otherwise (differently from imperative languages in which every-
thing is forbidden unless stated otherwise). For instance, when applied to a
hospital, we only need to prohibit executions which are against legislation or
hospital policies and Declare allows the medical staff to perform their task the
way they want.

Declare partly solves our problems, since it removes the rigidity from the
models, but is does not allow us to solve the one-size-fits-all problem neither
present a solution to increase maintainability. To solve the one-size-fits-all and
maintainability problems, we create Configurable Declare, a true extension of
Declare. Configurable Declare is new and it has not been defined earlier, we
consider this thesis as a starting point for Configurable Declare. Due to time
limitations, we were not able to address all issues identified in this thesis. How-
ever, in the future work section (Section 8), we show that most issues (which
still exist) can be easily addressed.

Imperative configurable process models have to support a number of op-
erations, e.g. the removal of a task from the process model. Some patterns
have been identified to support these operations [DRvdA+06, SLS10, BDKK04,
Got09]. We want that Configurable Declare supports the identified patterns
which entail the model itself, i.e. which reason about the control-flow instead

6

of, for instance, the different views on the model.
Our goal in this thesis is to define Configurable Declare so that it supports

similar configuration possibilities as in imperative configurable process models.
Furthermore, it should support the patterns identified in literature w.r.t. the
control-flow. Configurable Declare should maintain the implicit constraints after
the removal of a task. Finally, Configurable Declare should be applicable to real
life models.

Almost every Declare model has implicit constraints. Implicit constraints
are constraints which are derived from other constraints, e.g. if task Opening
the patient for surgery is always followed by Inserting pacemaker and Inserting
pacemaker is always followed by Closing the patient after surgery then implicitly
task Opening the patient for surgery will always be followed by Closing the patient
after surgery.

We present a conversion from a Configurable Declare model and a configu-
ration to a Declare model whilst maintaining the aforementioned implicit con-
straints. These implicit constraints are encoded as a set of rules where, in case
there is a constraint between A and B, and between B and C, we specify the
implicit constraint between A and C. Each of these rules reason on a semantic
level w.r.t. the constraints.

We also present a conversion from a set of Declare models into a single Con-
figurable Declare model. This allows organisations to use Configurable Declare
on their current set of Declare models without the need to create the Config-
urable Declare model from scratch. This Configurable Declare model can be
manually configured to obtain the original set of Declare models. We use the
aforementioned rules to minimise the Configurable Declare model by removing
constraints deducible from other constraints present in the Configurable Declare
model.

We present an implementation of the conversion in both directions. We will
elaborate on the encoding of the application of the rules. We use this imple-
mentation for a case study involving a set of Declare models describing business
processes of different Dutch municipalities. These models represent the pro-
duction of an excerpt from the civil registration and all models are combined
into a single Configurable Declare model. On this Configurable Declare model,
we manually define configurations that, when applied to the Configurable De-
clare model, yield the set of input models. This case study represents a real
application of the proposed approach.

This document is structured as follows: Section 2 gives an extensive ex-
planation of Declare. In Section 3, an overview of related work with respect
to configurable models is given as well as the configuration patterns found in
literature. Configurable Declare is explained in Section 4 along with a further
explanation of the configuration patterns listed in Section 3. In Section 5, we
explain how to combine a set of Declare models into a single Configurable De-
clare model. The implementation of the conversions is described in Section 6.
Section 7 presents the case study where we apply our approach. Finally, future
work and the conclusion are presented in Section 8 and 9 respectively.

7

2 Preliminaries

In this section, we explain the notion of process flexibility, Declare, and Linear
Temporal Logic. All three notions are used throughout this thesis in different
sections.

2.1 Process flexibility

In [Sof05], a number of definitions are given for flexibility. The main idea of
these definitions is: flexibility is the ability to react to (unexpected) changes. A
number of patterns associated with flexibility can be found in [MvdAR]. One
of the patterns mentioned in [MvdAR] is the Flexibility by design pattern in
which the flexibility is encoded in the process model, i.e. instead of allowing
only one path through the model, multiple paths have been defined through the
model to offer some flexibility.

We use two types of flexibility: (1) flexibility of the process, i.e. the amount
of paths through the model, and (2) flexibility of the process model, i.e. the
amount of paths which can be altered or added to the model.

The amount of paths through a model is closely related to the notion of an
imperative modelling language. In an imperative modelling language, every-
thing has to be modelled which is allowed. When a certain order of activities is
allowed, we have to model this explicitly. To allow flexibility by design, one has
to encode this in the model using constructs like parallelism, choice, iteration,
etc. This means that the model becomes less structured and harder to maintain.

When we move to a declarative approach, we only specify what it disal-
lowed instead of what is allowed, the opposite of imperative modelling. This
yields greater flexibility without the need to add extra information to the model.
Within declarative models, we have in general that: the smaller the model the
more flexible it becomes. The Flexibility by design is automatically supported
by declarative languages because any path is allowed through the model unless
stated otherwise.

2.2 Declare

In order to understand Configurable Declare, we first explain Declare. Declare is
a constraint-based language proposed in [PvdA06, PSvdA07]. If certain events
in Declare are not explicitly allowed nor explicitly forbidden, these events are
allowed to take place. Declare consists of a graphical front-end and a formal
back-end, expressed in Linear Temporal Logic [Pnu77]. We only focus on the
graphical front-end, i.e. we take the different constraints of Declare as regular
constructs like the AND-split in process management systems.

We choose to focus on the graphical front-end, since this makes the reasoning
better understandable. Most results obtained in this thesis can also be deduced
from the formal back-end. However, in some case, we want to rewrite the
formula into a non-equivalent formula which captures the semantic meaning.
We elaborate further on these cases in the future work section (Section 8).

Within Declare, there are four sets of templates: existence, relation, negative
relation, and choice. We go over each of those four sets of templates and present
the informal definition and the graphical representation. We, furthermore, give
the order of the different templates within a set of templates. This order denotes

8

which template is stronger than the other template, i.e. whenever a template
is valid also another template is valid, the first template is considered to be
stronger.

Apart from the term template, we also use the term constraint. Constraints
are instances of templates, i.e. templates are the different constructs of the
language while constraints are the application of the constructs on the events.

Meta-model

Figure 1 depicts the meta-model of Declare which is used in this thesis. Here,
a Model class consists of a set of Events and Constraints, and a Constraint
is associated with at least one Event . The choice constraints have a m and
a n associated with them to denote that m out of the n connected events are
performed, and the existence constraints have a n associated with them to
denote the bound.

Figure 1: Meta-model of Declare

Existence templates

The existence templates in Declare are listed in Table 1. In Figure 2, the
order between the different existence templates is depicted. We do not have a
stronger/weaker relation between the different exactly templates because they
are incomparable. The exactly template is the conjunction of the existence and
absence, and when the existence template is stronger, the absence template is
weaker and vice versa.

9

Template name Informal definition Graphical representation

existence(n,A) Event A has to happen at
least n times

A

n..*

absence(n+ 1, A) Event A can happen at
most n times

A

0..n

exactly(n,A) Both existence(n,A) and
absence(n + 1, A) have to
hold

A

n

init(A) Event A has to be the first
event which is executed

A

init

Table 1: The existence templates

absencen+2 exactlyn+1 existencen+1

init

absencen+1 exactlyn existencen

absencen exactlyn−1 existencen−1

Figure 2: The order between the existence templates in Declare

Relation templates

The relation templates are listed in Table 2. In Figure 3, the ordering be-
tween the different constraints is shown. Note that co-existence(A,B) is equiv-
alent to co-existence(B,A), therefore, succession(A,B) is stronger than co-
existence(A,B) and co-existence(B,A). We have a similar relation between
co-existence and responded existence, i.e. co-existence(A,B) is stronger than
responded existence(A,B) and responded existence(B,A).

10

Template name Informal definition Graphical

responded exis-
tence(A,B)

If event A happens event B
should also happen

A B

co-existence(A,B) Both responded existence(A,B)
and responded existence(B,A)
have to hold

A B

response(A,B) If event A happens event B
should eventually follow

A B

precedence(A,B) Event B has to be preceded by
event A

A B

succession(A,B) Both response(A,B) and prece-
dence(A,B) have to hold

A B

alternate response(A,B) Event A should be followed by
event B and we cannot have an
A in between

A B

alternate prece-
dence(A,B)

Event B has to be preceded by
event A and we cannot have a
B in between

A B

alternate succes-
sion(A,B)

Both alternate response(A,B)
and alternate precedence(A,B)
have to hold

A B

chain response(A,B) Event A should be directly fol-
lowed by event B

A B

chain precedence(A,B) Event B should be directly pre-
ceded by event A

A B

chain succession(A,B) Both chain response(A,B) and
chain precedence(A,B) have to
hold

A B

Table 2: The relation templates

chain successionchain response chain precedence

alternate succession alternate precedencealternate response

succession precedenceresponse

co-existenceresponded existence responded existence(C ,A)

Figure 3: The order between the relation templates in Declare

11

Negative relation templates

The different negative relation templates are listed in Table 3. Furthermore,
the ordering between the negative relation templates is depicted in Figure 4.

Template name Informal definition Graphical

not co-existence(A,B) Event A and event B do not oc-
cur together in a trace

A B

not succession(A,B) Event B does not follow event
A

A B

not chain succes-
sion(A,B)

Event B does not follow event
A directly

A B

Table 3: The negative relation templates

not co-existence not succession not chain succession

Figure 4: The order between the negative relation templates in Declare

Choice templates

In Table 4, the different choice templates are listed. The ordering between
the templates is shown in Figure 5. When we have to execute n of n events,
there is an equivalence between choice and exclusive choice, i.e. choice(n of n)
is equivalent to exclusive choice(n of n), because we have to execute all events.
We do not have a stronger/weaker relation between the different exclusive choice
templates because the different templates exclude each other. When exclusive
choice(m of n) is valid, exactly m events have to be executed, which means that
we do not execute exactly m− 1 or exactly m+ 1 events.

12

Template name Informal definition Graphical

choice (m of n)
(A,B, · · ·)

at least m out of the n events
have to occur A

B

m of n

exclusive choice (m of n)
(A,B, · · ·)

exactly m out of the n events
have to occur A

B

m of n

Table 4: The choice templates

exclusive choice(m of n) choice(m of n)

exclusive choice(m + 1 of n) choice(m + 1 of n)

exclusive choice(m − 1 of n) choice(m − 1 of n)

Figure 5: The order between the choice templates in Declare

Branched Declare

For each of the aforementioned templates, except the choice templates, we also
have a branched variant in Branched Declare. A branched variant means that,
instead of a single event, we have a multitude of events. Consider, for instance,
the response template, in Branched Declare, we have instead of response(A,B)
two sets of events: response({A1, · · ·An}, {B1 · · ·Bm}) denoting that if either
event A1 or A2 etc. happens, eventually event B1 or B2 etc. should happen. In
the tables for the different templates, one needs to read A1 or A2 etc. instead
of A and B1 or B2 etc. instead of B.

Apart from a different semantic, Branched Declare also has a different graph-
ical representation. Instead of a single arrow between two events, we now have
an arrow with multiple heads and tails between the different events. In Figure 6,
an example of a branched response constraint is shown.

13

B1

Bm

A1

An

Figure 6: An example of a branched response

2.3 Linear Temporal Logic

Linear Temporal Logic [Pnu77], or LTL for short, is a logic which reasons about
paths through some model, e.g. an automaton. For instance, if we have a set
of traces, we can view each trace as a path through the process model that
generated those traces. Using LTL, we can validate whether the traces, and to
some extent also the process model, adheres to certain constraints on the paths
through the process model. For instance, if we never want to see a B directly
following an A, we can express this with: �(A ⇒ ¬ © (B)). Using a model
checker, we can validate this formula on our set of traces.

It goes beyond the scope of this thesis to give a full explanation of LTL.
We would like to refer the interested reader to [Pnu77] for a more extensive
explanation on LTL. We give a formal definition of the different constructs of
LTL. In Table 5, the main LTL constructs are listed which are used in this
thesis.

We use the following variables: letA be the set of actions, A = {b, c, d, e, · · · },
w a sequence of actions, i.e. w = a1, a2, a3, · · · and let wi denote the ith
action in the sequence, i.e. wi = ai. With wj , we denote the suffix of w, i.e.
wj = aj , aj+1, · · · . The satisfaction relation |= between a sequence of actions
and a LTL formula is now defined for the different operators of LTL in Table 5,
note that p ∈ A is a single action, where ψ and φ are arbitrary formulas.

LTL construct Formal meaning
w |= p if p ∈ w1

w |= ¬ψ if w 6|= ψ
w |= ψ ∨ φ if w |= ψ or w |= φ
w |= ψ ∧ φ if w |= ψ and w |= φ
w |= ψ ⇒ φ if w |= ¬ψ ∨ φ
w |= ψ ⇔ φ if w |= φ⇒ ψ ∧ ψ ⇒ φ
w |= true if w |= p ∨ ¬p
w |=©ψ if w2 |= ψ
w |= ψUφ if there exists i > 0 such that wi |= φ and for all 0 < k < i, wk |= ψ
w |= ♦(ψ) w |= trueUψ
w |= �(ψ) w |= ¬♦(¬ψ)
w |= ψWφ w |= (ψUφ) ∨ �(ψ)

Table 5: LTL constructs

14

3 Known Configuration Patterns

Some configuration patterns have been identified in literature. We list the pa-
pers from which we have used configuration patterns as a starting point for
Configurable Declare. Each paper we consider is accompanied by a small intro-
duction and a table listing the different patterns considered in those papers.

As mentioned in the introduction, we want that Configurable Declare sup-
ports a number of patterns. These patterns, or configuration patterns, are a
collection of constructs or operations which have to be supported by the pro-
cess model, i.e. they can be used in the process model. We have two types
of configuration patterns: patterns related to the views on the process model,
and patterns related to the process model itself. Note that we use the terms
workflow and process interchangeable to stay consistent with the papers.

In [DRvdA+06] (Table 6), a process model is designed but it can later on be
(slightly) altered at build-time, i.e. certain parts of the model can be substituted
or removed. E.g. the user has the option to change the relation between different
events, so instead of both events occurring the user can choose that exactly one
of the events occurs. Similarly, in Configurable Declare, we want that after the
creation of the configurable process model the user has the option to (slightly)
alter parts of the model.

Pattern Name Effects Will be considered

Optionality
(Sect. 4.4)

Choose to execute a task or not
(build-time)

Yes, we want to have the flexi-
bility to remove events from the
configurable model prior to ex-
ecuting the model

Inter-
relationship
(Sect. 4.1)

Execution of a task depends on
the execution of another task

No, we will not consider this
as a pattern since the language
constructs already allow such
behaviour when specified. E.g.
co-existence or not co-existence

Interleaved
parallel routing
(Sect. 4.1)

Choose in which order a set of
tasks is executed

No, we will not consider this
as a pattern since the language
constructs already allow such
behaviour when specified. E.g.
precedence

Parallel
split (OR)
(Sect. 4.1)

Choose a subset of the tasks No, we will not consider this
as a pattern since the language
constructs already allow such
behaviour when specified. E.g.
choice in combination with the
optionality pattern

Table 6 continues on the next page

15

Pattern Name Effects Will be considered

Exclusive
choice
(Sect. 4.1)

Choose exclusively a task No, we will not consider this
as a pattern since the language
constructs already allow such
behaviour when specified. E.g.
exclusive choice

Multi choice
(Sect. 4.1)

XOR, OR, and AND split No, we will not consider this
as a pattern since the lan-
guage constructs already al-
low such behaviour when speci-
fied. E.g. choice and exclusive
choice in combination with the
optionality pattern

Table 6: Configuration patterns [DRvdA+06]

[Got09] (Table 7) gives an overview of adding configurations to different
workflow management systems, and workflow languages. [Got09], furthermore,
gives an approach to configure a process model by hiding or blocking inflow and
outflow ports, i.e. the incoming and outgoing arcs. These patterns are similar
to some patterns in [DRvdA+06].

Pattern Name Effects Will be considered

(optional)
Blocking

Choose to block (not execute)
or not to block (execute) an
event

No, we will not consider this
as a pattern since the language
constructs already allow such
behaviour when specified. E.g.
absence1 in combination with
the optionality pattern

(optional) Hid-
ing

Choose to hide or not to hide an
event

Yes, similar to the optionality
pattern

Table 7: Configuration patterns [Got09]

In [SLS10] (Table 8), the authors assume a static model in which different
users want different views on a workflow model, e.g. a sales manager needs
different information than a programmer. One has to be able to support a
number of actions with respect to different views, e.g. within the abstraction
patterns one can choose from which parts of the model to abstract in a certain
view. We only support the patterns by [SLS10] which can be transformed in
patterns for the process model itself, e.g. abstraction, since Declare reasons
about process models and not about the views on the process model.

16

Pattern Name Effects Will be considered

Omission
(Sect. 4.4)

Same as optionality pattern Yes, we want to have the flexi-
bility to remove events from the
configurable model

Abstraction Do not state explicitly what is
happening, i.e. we know some-
thing is happening but we do
not know exactly what

No, since it is part of the view
on the model and thus outside
the scope of this thesis

Insertion Insert an event No, gives room for too diverse
models which are harder to
maintain, and a designer of a
configurable model can already
include a multitude of events to
suit the processes of the differ-
ent users in combination with
the optionality pattern

Aggregation
(Sect. 4.1)

Combine events into one event No, we will not consider this
as a pattern since the language
constructs already allow such
behaviour when specified. E.g.
chain succession

Alteration
(Sect. 4.4)

Change properties of the model Yes, but only the constraints
between the events, and only
based on rules specified by
the designer of the configurable
model

Preservation
(Sect. 4.1)

States whether a pattern can be
applied

Yes, implicit in the model, i.e.
which parts can be changed

Presentation
Patterns

Change the representation of
constructs

No, outside the scope of the the-
sis

Table 8: Configuration patterns [SLS10]

Within [BDKK04] (Table 9), a number of patterns are described which allow
the user to change her view on the process model. These patterns entail that the
user can select sets of “similar” process elements and hide these, each pattern
defines a different kind of similarity between process elements. E.g. the user
can select all objects which have a certain value for a certain attribute. We only
support a slightly altered Relationship type selection pattern.

Pattern Name Effects Will be considered

Object Type
Selection

Selecting all events of a partic-
ular type

No, can be done manually

Table 9 continues on the next page

17

Pattern Name Effects Will be considered

Representation
Variations

Change the representation of
constructs

No, outside the scope of the the-
sis

Attribute-based
object selection

Selecting or hiding events with
a certain value for a certain at-
tribute

No, can be done manually

Term-based ob-
ject selection

Selecting or hiding events based
on an expression with respect to
some identifiers

No, can be done manually

Relationship
type selection
(Sect. 4.4)

Choose the type of the relation-
ship which one wants to hide or
wants to show

Yes, can be done by switching
constraints on or off

Table 9: Configuration patterns [BDKK04]

There are no configuration patterns for Declare or for Configurable Declare,
therefore, we use a number of patterns mentioned in the papers listed here
as a starting point for patterns which need to be supported by Configurable
Declare. Note that all patterns listed in these papers reason about process
models specified in an imperative language. Therefore, we cannot apply the
patterns directly to Configurable Declare. Within each table, we have presented
some intuition on how to support the different patterns if they can already be
encoded in Declare. Each pattern, which we want to support or is already
supported, is considered in more detail in the next section.

18

4 Configurable Declare

Configurable process models have been defined for some of the imperative mod-
elling languages. However, as mentioned in the introduction, we do not yet
have configurable process models for declarative languages. Therefore, we de-
fine Configurable Declare which is explained in this section.

Prior to defining Configurable Declare, we list the patterns identified in Sec-
tion 3 which are already supported by Declare (Section 4.1). In general, these
patterns are supported by the flexibility which a Declare model already offers.
For example, with the inter-relationship pattern, we want to introduce correla-
tion between the execution of activities A and B which is supported by either
a co-existence or a not co-existence between A and B.

After defining the supported patterns, we extend Declare to Configurable
Declare. We, furthermore, list the different types of configuration patterns we
allow. Then, we list how to configure a Configurable Declare model. Finally,
we list how we support the patterns identified in Section 3 but which are not
supported by Declare.

4.1 Patterns supported in Declare

The following patterns are already present as a construct in Declare. We list
how the different patterns can be supported using the constructs.

Inter-relationship

Inter-relationship means that the execution of a task A depends on the execution
of a task B and vice versa. According to [DRvdA+06], we have two types of
inter-relationship, mutually dependent and mutually exclusive. With mutually
dependent, we have that either A and B occur together or they do not occur
at all. This can be modelled with a co-existence between A and B. When we
have a mutually exclusive relation between A and B, this means that A and B
cannot occur together. We can model this by having a not co-existence between
A and B.

Interleaved parallel routing

We want to choose in which order a set of tasks is executed with the interleaved
parallel routing pattern. Let the set of tasks be the tasks A1, · · ·An. By using
the precedence constraint between a number of events, the user can choose which
events should occur before which other events by simply switching the precedence
constraint on or off. If we want to support all possible orders of events, we need
to add the precedence constraint between all pairs of events. Assume we want
that the tasks are execute based on their indices, i.e. Ai is executed before
Ai+1, then we add a precedence constraint between two consecutive tasks. This
precedence constraint enforces that we can only execute the tasks in a certain
order.

The aforementioned approach only works the first time the tasks are exe-
cuted, i.e. after Ai has been executed we can do any number of Ai+1 independent
of Ai. When we strengthen the precedence constraints, i.e. substitute them by
alternate precedence constraints, we can enforce that the order of execution is

19

always maintained after the first execution of the events. With the alternate
precedence constraint, Ai+1 cannot happen twice in a row without the execution
of Ai.

When we want to strengthen the previous model even further, by stating
that the first task cannot execute another time before the last task has been
executed, we have to add alternate succession between all pairs of tasks. This
means we have alternate succession(Ai, Aj) for all pairs i and j for which i < j.

Parallel split

Within this pattern, we want to choose a subset of the set of tasks consisting of
A1, · · ·An. We can construct this pattern by using the choice(1 of n) constraint
between the tasks, this constraint states that we need to do at least one task
and we can do at most n tasks, i.e. all of them. If we combine this constraint
with the optionality pattern for greater flexibility, i.e. in some cases one does
not want to consider some tasks, we can express the parallel split pattern as
described in [DRvdA+06].

Exclusive choice

Within Declare, we have the exclusive choice(1 of n) which expresses that we
want to have exclusively 1 task out of the n tasks. Using the optionality pattern
in a similar way as for the parallel split , we can support the exclusive choice
pattern.

Multi choice

The multi choice can be translated in a parallel split , an exclusive choice and
an and-split . Both the parallel split and the exclusive choice can be made in the
same way as described before. The and-split can be made by using the choice(n
of n) constraint which states that all n tasks should be executed. Again, we can
use the optionality pattern to remove some tasks.

Aggregation

With the aggregation pattern, one wants to combine two events into a single
event. Assume these two events are event A and event B, we can aggregate them
by placing a chain succession between A and B, i.e. every A is directly followed
by a B and every B is directly preceded by an A. Using this construction, one
can see A and B as a single event, i.e. no other event can occur between A and
B.

Preservation

The preservation pattern denotes which patterns can be applied on a certain
part of the model. Within Configurable Declare, each event and constraint is
augmented with a boolean stating whether it can be removed, and each con-
straint has a list associated with it denoting in which other constraints it can be
altered. In this sense, the preservation pattern is already encoded in the model.

20

(optional) Blocking

Optional blocking gives the user the option to prevent the execution of a par-
ticular branch in an imperative model. When we block an activity in Declare,
i.e. prevent it from executing, we only block activities dependant on the ex-
ecution of this blocked activity, e.g. via response or precedence constraints in
which, if we want to execute the non-blocked activity, we also need to execute
the blocked activity. In this sense, we do not block a particular branch from
executing but a set of activities dependant on the execution this activity. We
can use the absence1 to encode that a particular activity is blocked, i.e. it does
not occur once. If we also make this absence1 constraint optional, we can encode
the (optional) blocking.

4.2 Extending Declare to Configurable Declare

Configurable Declare is a true extension to Declare in the sense that it only
annotates the events and constraints in the model with extra information. We
can express a multitude of models in Configurable Declare with the use of these
annotations. However, a Configurable Declare model is not executable and
operates on a level higher than Declare.

We introduce three types of configuration patterns: (1) the removal of an
event, (2) the removal of a constraint, and (3) the alteration of a constraint into
a different constraint. In the meta-model for Configurable Declare, depicted
in Figure 60 (Appendix A), the events and constraints have been substituted
by configurable events and configurable constraints, identifiable by the prefix C.
Each configurable event and configurable constraint has an attribute omit which
denotes whether this event or constraint can be omitted, i.e. removed from the
model. Furthermore, each configurable constraint has a, possibly empty, list
associated with it containing all the constraints to which it can be changed to.

4.3 Configuring Configurable Declare

After the design phase of the configurable model, we transform the configurable
model in a configuration model. A configuration model is a configurable model
which can be annotated, or configured, by the user to model her processes. I.e.
in the configuration model the user sets which events and constraints she wants
to keep in the model and to which constraints the configurable constraints are
changed to. The meta-model for the configuration model is depicted in Figure 61
(Appendix A).

When the user has finished configuring the configuration model, i.e. changed
the configuration model in such a way that it resembles, as much as possible, the
users processes, it will be transformed into a Declare model. These transforma-
tions are listed in Section 4.4, and the implementation of these transformations
is summarised in Section 6. The different steps are depicted in Figure 7.

In order to clarify the difference between configurable, configuration and a
Declare model, we use the analogy with a multiple choice test. The configurable
model can be viewed as a multiple choice test in which the teacher specifies
which options can be chosen for certain questions, events and constraints in
our case. The student receives the multiple choice test with the possibility to
select which answers she thinks are correct, the configuration model. After

21

Configurable
Declare
Model

Configuration
Model

Configuration

- Rule 1
- Rule 2
- Rule 3
- …

Declare
Model

Figure 7: The different transformation when transforming a Configurable De-
clare model into a Declare model

completing the multiple choice test, i.e. setting all of the configuration options
in the configuration model, the teacher transforms the filled in test to a grade,
or a Declare model in our case, which takes the selected options into account.

4.4 Patterns supported in Configurable Declare

In the remainder of this section, we elaborate on the patterns we were not able
to support within Declare but which we can support in Configurable Declare.

Optionality pattern

The optionality pattern allows the user to configure whether one does want to
include an event or one does not want to include an event in the model. We
have to define some conversions from the old set of constraints to a new set of
constraints in order to remove an event.

We have to define these conversions such that the implicit constraints be-
tween events are preserved, e.g. if we have that B and C do not occur together
and A and B always occur together, we implicitly have that also A and C do not
occur together. In the configured model, we would like to have those implicit
constraints since in this way we have a new model which stays, with respect to
the allowed behaviour between A and C, close to the configurable model.

We first look at the different existence templates and their implication on the
other events when we remove an event. Afterwards, we explain how we deal with
the relation templates such that the implicit constraints still hold between the
remaining events. We then show how the different negative relation templates
are handled, and finally, the conversions of the choice templates are mentioned.

At the end of this section, we show how to solve the implicit constraints for
models which contain branched constraints. We, furthermore, present problems
which have not been solved in this thesis but we present solutions to those
problems in the future work section (Section 8).

Shorthand notations Within this section, we use shorthand notation to de-
note certain sets of templates, e.g. we write ♦B ⇒ ♦A for the set of templates
which denote that if we have a B in a trace we also have an A in that trace.
In Table 10, a full list is presented with the shorthand notations used in this
section. Furthermore, the meaning of the shorthand notation, and the list of
templates which are associated with that shorthand notation are listed in that
table. Note that if we do not denote the order of the arguments of a template,
we assume it is (A,B), e.g. when we write chain succession we mean chain
succession(A,B). We use some shorthand notations identified by [DAC99].

22

Abbreviation Meaning Templates

#A ≤ #B Means that the total amount of times
A is executed does not exceed the total
amount of times B is executed

alternate response, alter-
nate precedence(B,A),
alternate succession,
chain response, chain
precedence(B,A), chain
succession

#A ≥ #B Means that the total amount of times A
is executed is at least the total amount
of times B is executed

alternate response(B,A),
alternate precedence,
alternate succession,
chain response(B,A),
chain precedence, chain
succession

#A = #B Means that the total amount of times A
is executed is equal to the total amount
of times B is executed

alternate succession,
chain succession

♦A⇒ ♦B Means that if there is an A in the trace,
there is also a B in the trace

responded existence, co-
existence, response, prece-
dence(B,A), succession,
alternate response, alter-
nate precedence(B,A),
alternate succession,
chain response, chain
precedence(B,A), chain
succession

♦A⇔ ♦B Means that if there is an A in the trace,
there is also a B in the trace and vice
versa

co-existence, succession,
alternate succession,
chain succession

¬BWA B can only happen after an A has hap-
pened

precedence, succession,
alternate precedence,
alternate succession,
chain precedence, chain
succession

�(A ⇒
©(¬AUB))

Means that if there is an A in the trace,
it is eventually succeeded by a B and
there is no other A between these A and
B

alternate response, alter-
nate succession, chain re-
sponse, chain succession

Table 10 continues on the next page

23

Abbreviation Meaning Templates

¬BWA ∧
�(B ⇒
©(¬BWA))

Every B is preceded by an A and there
is no B between these A and B

alternate precedence, al-
ternate succession, chain
precedence, chain succes-
sion

�(A⇒ ♦B) Means that if there is an A in the trace,
it will eventually be followed by a B

response, succession, al-
ternate response, alter-
nate succession, chain re-
sponse, chain succession

�(A⇒©B) Means that every A is directly followed
by B

chain response, chain suc-
cession

�(©A⇒ B) Means that every A is directly preceded
by B

chain precedence, chain
succession

Table 10: Shorthand notation for sets of constraints

In the remainder of this subsection, we list how to deal with the different
templates. For each template, we have identified the cases where implicit tem-
plates occur. Each case consists of a combination of two templates, or classes
of templates denoted by the shorthand notation, which are in the model, and,
if applicable, a template which should be added after the removal of the event.
When we write an LTL like formula, e.g. ♦A ⇒ ♦B, we mean the set of tem-
plates associated with this formula. We write the name of a template, e.g. not
succession, when we want a particular template.

Existence templates Within the existence templates, we consider two events,
A and B, and we want to remove one of the events (B). A can then be in two
different positions with respect to B: it is either in front or after event B. We
consider both cases separately. The position of an event A w.r.t. the position
of event B is based on the templates between A and B. If A is in front of B, we
mean that either after the execution of A we need to have a B, e.g. response,
or prior to executing a B we need to have executed an A, e.g. precedence. A
similar reasoning holds when we consider the case in which A is after B.

The relation between A and B can either be a template or a set of templates
based on the shorthand notation. If a rule holds for a set of templates, this
means that we can apply this rule for each template in that set of templates.

A in front of B We have the case as depicted in Figure 8, note that n1
and n2 are conjunctions of non-contradictory existence templates, e.g. n1 is init
and existence3 but not that n2 is exactly5 and absence4.

A B

n1 n2

Figure 8: Part of the model if we want to remove event B

In Table 11, all conversions are presented with n1 consisting of different
templates and the relation between A and B. In the last column, the templates

24

are listed which need to be added to n1 after the removal of event B such that
the implicit templates on event A still hold. Note that we have split the exactly
into its existence and absence parts, e.g. instead of considering exactly(5, A) we
consider the rules for existence(5, A) and absence(6, A).

n2 Relation A B Add to n1

existencem ♦B ⇒ ♦A existence1
existencem #A ≥ #B existencem
existencem ♦B ⇒ ¬♦A absence
absencem #A ≤ #B absencem

Table 11: Steps for removing event B

A after B We have the case as depicted in Figure 9, note that n1 and n2
are, again, conjunctions of non-contradictory existence templates.

AB

n1n2

Figure 9: Part of the model if we want to remove event B

In Table 12, the different steps are presented to maintain the implicit tem-
plates. Note that we have split the exactly into its existence and absence parts.

n2 Relation B A Add to n1

existencem #B ≤ #A existencem
existencem ♦B ⇒ ♦A existence1
existencem ♦B ⇒ ¬♦A absence
absencem #B ≥ #A absencem
init �(B ⇒©A) init

Table 12: Steps for removing event B

Relational templates We have three events: A, B, and C, and we want to
remove event B from the model. There are three cases: A and C in front of B,
A in front of B and C after B, and A and C after B. Each of these cases is
treated in isolation. We use the same notion of before and after, similar to the
existence templates. Furthermore, whenever we use an LTL-like formula we use
it to denote the shorthand notation, when we mean a particular template we
denote this by using the template name, e.g. chain response.

A and C in front of B We have a part of the model as depicted in
Figure 10, note that x and y are relation templates.

When we have that event A is always followed by event B and event B is
always directly preceded by event C, we have the implicit template that event
A is followed by event C. In Table 13, a full list of rules is presented. Note
that we have a symmetric case when x and y are swapped. We will not list this
symmetric case, however, note that the templates will be inverted, i.e. if we
have precedence(C,A), swapping x and y yields precedence(A,C).

25

A B

C

x

y

Figure 10: Part of the model if we want to remove event B

We only need to consider combinations of templates in which A implies the
existence of B and B implies the existence of C. In these cases, we have that
A implies the existence of C by transitivity. This reasoning also needs to be
applied in the opposite direction, i.e. C implies B and B implies A then we
have that C implies A.
x y Between C and A

chain response precedence precedence
chain response succession precedence
chain response alternate precedence alternate precedence
chain response alternate succession alternate precedence
chain precedence response response
chain precedence succession response
chain precedence alternate response alternate response
chain precedence alternate succession alternate response
chain succession response response
chain succession precedence precedence
chain succession succession succession
chain succession alternate response alternate response
chain succession alternate precedence alternate precedence
chain succession alternate succession alternate succession
♦A⇒ ♦B ♦B ⇒ ♦C responded exis-

tence(A,C)
♦A⇔ ♦B ♦B ⇔ ♦C co-existence

Table 13: Steps for removing event B

A in front and C after B We have the situation as depicted in Figure 11,
we again have that x and y are relation templates.

A B C
x y

Figure 11: Part of the model if we want to remove event B

When x and y are both relation templates, the obtained model has a re-
lation z between A and C, where z = min(x, y), if x and y are comparable,
i.e. x is weaker/stronger than y, for instance, when x is response and y is
alternate response. We do not have a relation, i.e. no template, between A
and C if x and y are incomparable, for instance, x is chain response and y
is precedence. In Figure 12, the weaker/stronger relation is depicted. When
we have an arrow between x and y, this means x is stronger than y. To

26

compute min(x, y), we take the strongest template which is implied by both
x and y, e.g. min(chain response, alternate succession) is alternate response,
min(succession, succession) is succession, and min(response, precedence) yields
no template.

chain successionchain response chain precedence

alternate succession alternate precedencealternate response

succession precedenceresponse

co-existenceresponded existence

no template

responded existence(C ,A)

Figure 12: The order between the relation templates in Declare

When we have the case as depicted in Figure 13 and we remove event B
from the model, we do not have all possible execution paths when we apply the
aforementioned approach. In the original model, the execution of ABACBC is
possible while, if we remove event B from the model, we want to obtain a new
model in which AACC is a valid execution. Unfortunately, when we apply our
approach, this allows only executions of AC.

A B C

Figure 13: A model in which, after the removal of B, our approach only allows
a subset of executions

This problem is more fundamental than meets the eye, consider the model
in Figure 14. If we omit all Bis from the model, we need to have a model which
supports the traces AnCn which is a non-regular language. Our approach only
allows the traces AC. We propose to extend Declare with a new template to
support these reductions, we elaborate on this extension in Section 8.

A B1 CBn−1

Figure 14: A model in which, after the removal of all Bis, our approach only
allows the trace AC

We only have this problem when we combine two alternate templates, i.e.
alternate response, alternate succession, or alternate precedence, into a single

27

alternate template. We classify these rules as strong rules, i.e. they allow for less
behaviour of the new model compared to the behaviour allowed in the original
model.

A and C after B We have the partial model as depicted in Figure 15,
with x and y being relation templates.

x

y

B A

C

Figure 15: Part of the model if we want to remove event B

For example, when we have that event A is always preceded by event B and
event B is always directly succeeded by event C, we implicitly have that event
A is always preceded by event C. In Table 14, a full list of combinations is
presented. Note that, similar to the case in which A and C are in front of B,
we have a symmetric case when we swap x and y as explained earlier.
x y Between A and C

chain response precedence precedence
chain response succession precedence
chain response alternate precedence alternate precedence
chain response alternate succession alternate precedence
chain precedence response response
chain precedence succession response
chain precedence alternate response alternate response
chain precedence alternate succession alternate response
chain succession response response
chain succession precedence precedence
chain succession succession succession
chain succession alternate response alternate response
chain succession alternate precedence alternate precedence
chain succession alternate succession alternate succession
♦A⇒ ♦B ♦B ⇒ ♦C responded existence
♦A⇔ ♦B ♦B ⇔ ♦C co-existence

Table 14: Steps for removing event B

Negative relation templates For the negative relation templates, we have
the same cases as for the relation templates. We, furthermore, have the same
figures as with the relation templates.

A and C in front of B We have the case as depicted in Figure 10, note
that x or y are now negative relation templates. In Table 15, the conversions
are listed, note that we have symmetric cases when we swap x and y similar to
the symmetric cases for the relation templates.

28

x y Relation A and C

not co-existence ♦C ⇒ ♦B not co-existence
not succession �(C ⇒ ♦B) not succession

Table 15: Steps for removing event B

The combinations listed are inspired by transitivity, for instance, the not
succession between A and B. When we also have that every C is eventually
followed by B, i.e. succeeded by B, we do not want to have a C after we have
seen an A. A similar reasoning hold for the not co-existence between A and B,
we now want to consider templates in which C implies the existence of B.

A in front and C after B In Figure 11, this case is depicted. Note
that again x or y are negative relation templates. The conversions are listed in
Table 16.
x y Relation A and C

not co-existence ♦C ⇒ ♦B not co-existence
♦A⇒ ♦B not co-existence not co-existence
not succession ¬CWB ∧ �(C ⇒

©(¬CWB))
not succession

�(A⇒©(¬AUB)) not succession not succession
not chain succession �(©C ⇒ B) not chain succession
�(A⇒©B) not chain succession not chain succession

Table 16: Steps for removing event B
Similar to the previous case, i.e. A and C in front of B, we are searching

for combinations of templates in which A prevents the execution of B and C
demands the execution of B. When we have two templates which fulfill the
aforementioned conditions, we know we have to create a template between A
and C.

A and C after B This case is depicted in Figure 15 with again x or y being
negative relation templates. Table 17 contains the conversions. The symmetric
case can easily be obtained in a similar way as with the relation templates.
x y Relation A and C

not co-existence ♦C ⇒ ♦B not co-existence(A,C)
not succession ¬CWB not succession(C,A)

Table 17: Steps for removing event B
The rules identified are very similar to the rules identified when A and C

are in front of B. This is mainly because we have a symmetric cases for the first
rule, for the second rule we need to have a template between B and C in the
opposite direction, i.e. C followed by B versus C preceded by B.

Choice Templates With the choice templates, we encounter a problem when
we want straightforward deduction rules. Consider the model depicted in Fig-
ure 16 from which we want to remove event B. We can deduce that B will
always be executed, hence we need to keep the choice construct, and m− 1 out

29

of the n − 1 events need to be executed. Although, we can deduce that B will
always be executed, we need to follow a chain of response templates to deduce
it. This is, however, undesirable from the viewpoint of the user configuring the
model since she needs to observe a large portion of the model. This approach
is also error prone because one might miss a response template.

A1 A` B

C1

C2 Cn−1

m of n

Existence1

Figure 16: Example in which we need to consider a large portion of the model

The best way of solving the problem is to assume that either event B is
always executed or event B is never executed independent of the model, i.e. in
the example of Figure 16 we might still assume that event B is never executed,
although this is not the case. The main reason is that we want a deterministic
approach for dealing with choices based on the local properties. The user of
the configurable model can then adjust the m attribute of the choice template
to reflect the semantics of the model without event B while the user does not
need to considering the entire model to find out whether event B will always or
never be executed.

We assume event B is never executed; this has the advantage that the user
of the configurable model can set the m of the choice and it will not be changed,
i.e. it denotes the minimal amount of events needed to be executed with respect
to the choice after removing the omitted events. If we would assume that event
B is always executed, we would have updated the m and the n. In this case,
the user would have to set the m at such a value that after the removal of the
omitted events the m has the right value, which is obviously harder.

Supporting branched templates In order to apply the rules defined earlier
on branched templates, we need to extend the language. Consider the example
in Figure 17 and we want to remove the events B1, B2, and B3.

The implicit template which holds after the removal of the Bis is depicted in
Figure 18. Although, this kind of template is not part of Declare, Declare can
be extended with it. We elaborate more on this extension in the future work
section (Section 8).

We can solve this problem when we only compare the same templates, e.g.
only response templates with response templates. Consider the model in Fig-
ure 19 where, after the removal of B2, we can deduce and express the implicit
templates in Declare. These implicit templates are response({A}, {B1, C}) and
response({B3}{C}).

When we have composed templates, i.e. templates which consist of the
conjunction of other templates, for instance, succession and co-existence, we

30

A

B1

B2

B3

C1

C2

C3

Figure 17: A model in which we cannot express the implicit templates

A

C1

C2

C3

Figure 18: The implicit templates after the removal of the Bis in Figure 17

A

B1

B2

B3

C

Figure 19: Model in which, after the removal of B2, we have partial implicit
templates

31

only consider the templates in the conjunction. Consider the model in Figure 20.
When we compute the implicit templates, we have the model as depicted in
Figure 21 in which we do not have a single succession template.

A

B1

B2

B3

C

Figure 20: Model in which after the removal of B2 we do not have implicit
succession templates

A

B1

B3

C

Figure 21: Figure 20 with the implicit templates after the removal of B2

We can be slightly more permissive than only comparing the same templates.
In general, when we have that A places a constraint on B, e.g. response(A,B),
and B places a constraint on C, e.g. precedence(C,B), we have implicitly that
A places a constraint on C. With branched constraints, we have two sets B1

and B2 instead of a single B, i.e. response(A,B1) and precedence(C,B2), A can
only place a constraint on C if all event in B1 are omitted and B1 is a subset of
B2. We want that B1 is a subset of B2 such that we know that A only places a
constraint on C. If B1 is not a subset of B2, A might also place a constraint on
another event such that we cannot conclude anything about its relation with C.
Both cases, i.e. B1 6⊆ B2 and B1 ⊆ B2, are depicted in Figure 22. In the left
model, we have that A can be followed by B1. When A is followed by B1, we
do not have a constraint on C. If A is followed by B2, we do have a constraint
on C, this means that A cannot place a constraint on C. In the right model, it
does not matter whether we perform B1 or B2 after A because we always know
that C will be executed, hence A places a constraint on C.

We can be even more permissive when A is in front of B and C is after B,
we now do not need that B1 is a subset of B2. In this case it is sufficient that
the template between A and B1 is not stronger than the template between B2

and C, in the case A places a constraint on C. When C places a constraint on
A, we need to have that the template between C and B2 is not stronger than

32

A

C

B1

B2

B3

A

C

B1

B2

B3

B1

B2

B1

B2

Figure 22: In the left model, A does not pose a constraint on C, but in the right
model A does pose a constraint on C

the template between B1 and A. Consider, for instance, Figure 23, if B1 and
B2 are omitted, A still posses a constraint on C1, C2, and C3, although, B1 is
not a subset of B2.

A

B1

B2

B3

C1

C2

C3

B1

B2

Figure 23: A poses a constraint on C although, B1 is not a subset of B2

All unidirectional templates, i.e. one set of events constrain the other set of
events and not vice versa, can be split on one of their arguments. For instance,
response({A1, A2}, B) is equivalent to response(A1, B) in conjunction with re-
sponse(A2, B), and precedence(A, {B1, B2}) is equivalent to precedence(A,B1)
in conjunction with precedence(A,B2). This allows us to combine templates
and split templates. The templates which can be split on their first argument
are: responded existence, response, alternate response, chain response, not suc-
cession, and not chain succession, the templates which can be split on their
second argument are: precedence, alternate precedence, and chain precedence.
The co-existence, succession, alternate succession, and chain succession tem-
plates cannot be split straightforward but we can substitute them by their con-
juncts, i.e. succession consists of the conjunction of response and precedence.
Finally, the not co-existence can be split on either its first argument or its second
argument but not on both at the same time.

The aforementioned equivalence can be used to create the subset relation.

33

Let B1 be the set of events which needs to be a subset of B2, we can try to
decrease the size of B1 or increase the size of B2 by combining or splitting
templates.

A similar problem, w.r.t. implicit templates which cannot be expressed,
occurs when we consider the existence templates. In Figure 24, we cannot
deduce what implicit templates hold on B1, B2, and B3 after the removal of A2.
If A1 and A3 only occur 4 times, or less, we know any of the Bis have to occur
at least once. Also this template cannot be expressed in Declare, but we have
opted for an extension to Declare to support these cases in Section 8.

A1

A2

A3

B1

B2

B3

existence5

Figure 24: We cannot express the implicit templates after the removal of A2

Not all existence templates are problematic. Consider the model in Fig-
ure 25. If we remove A1, A2, and A3, we know B1, B2, or B3 has to occur at
least once. This yields for the following decision, w.r.t. application of a rule:
if an existence template is between a subset of events of the connected relation
template and all events connected to the existence template are omitted, i.e.
isOmitted is set to true, we can apply the rule.

A1

A2

A3

B1

B2

B3

existence5

A4

A5

Figure 25: We can deduce the implicit templates after the removal of A1, A2,
and A3

When we have existence(5, {A1, A2, A3}) and we omit A2, we cannot deduce

34

anything about how many times A1 and A3 have to be executed. With the
absence(5, {A1, A2, A3}), where we omit A2, we can deduce that A1 and A3

cannot happen more than 5 times. Therefore, we can keep the absence template
but we cannot keep the existence template when one of the events is omitted.

Removing a constraint We have seen how to handle the deletion of an event
from the model. The deletion of a constraint is straightforward, we simply
remove the constraint from the model. We do not need to take anything else
into account since the removal of a constraint c also means we want to remove
the implicit constraints with respect to c. This holds automatically after the
removal of c.

Alteration pattern

We can change constraints into different constraints, or into a similar constraint
but with different attribute values, e.g. existence5 instead of existence7. The
alteration is straightforward since we only need to remove the old constraint
and add the new constraint connected to the same sets of events.

4.5 Running example

We have listed all of the different rules identified to change a Configurable De-
clare model into a Declare model. We present an example from the case study
(Section 7) in which we demonstrate the application of the different rules. Con-
sider model A (Figure 26) in which filled red crosses denote that we want to
remove that event or constraint.

First, we remove the events which do not yield any implicit constraints, e.g.
Send to department in mailbox, and the constraints which need to be remove, i.e.
exclusive choice between Inform customer via telephone or e-mail and Produce
extract and sign it. This yields the model in Figure 27.

We remove the events which are inside a blue or green square. The events
in a blue square can be removed straightforward by applying the non-branched
rules. Removing Inform customer via telephone or e-mail entails more steps.
First, this constraint is split into a response and a precedence. We can update
the precedence constraint by removing the Inform customer via telephone or e-
mail, however, we cannot remove this event from the response constraint. We,
therefore, remove the response constraint. The newly acquired model is depicted
in Figure 29.

We have annotated the previous output model with blue squares denoting
which events are removed in this step. All events can be removed straightforward
without any extra computations, note that we remove the duplicate succession,
between Send to DMS department and Produce extract and sign it, prior to de-
ducing any implicit constraints. The model obtained after the removal of the
events in blue is depicted in Figure 30.

Figure 30 is annotated with which events will be removed in the next itera-
tion. In the next iteration, the duplicate succession, between Process payment
and Produce extract and sign it, is removed. The obtained model is depicted in
Figure 31 which is also annotated with which events will be removed in the next
iteration.

35

The output model (Figure 32) does not contain any duplicate constraints.
Since there are no events which need to be removed, i.e. isOmitted is true, we
know we are done with applying the rules.

Figure 26: The input model for applying the different rules

Figure 27: The model after removing all omitted constraints and event which
do not yield any implicit constraints

36

Figure 28: The model from Figure 27 annotated with which events will be
removed in the following step

Figure 29: The model obtained after the previous step annotated with which
events will be removed in the following step

37

Figure 30: The model obtained after the previous step annotated with which
events will be removed in the following step

Figure 31: The model obtained after the previous step annotated with which
events will be removed in the following step

38

Figure 32: The output model

39

5 Combining models

When an organisation wants to apply Configurable Declare to increase the main-
tainability and flexibility of their process models, they have to design this Con-
figurable Declare model from scratch. Designing this Configurable Declare model
is difficult, i.e. it has to support all the different Declare models, and it is costly.
Therefore, we present a conversion in the opposite direction, i.e. instead of go-
ing from a Configurable Declare model to a Declare model, we are now given a
set of Declare models and we want to create a Configurable Declare from which
all of those Declare models can be deduced from (Figure 33).

Declare model Configurable Declare

model

Figure 33: The combining of different Declare models into a single Configurable
Declare model

We first show the straightforward approach in which we simply include ev-
erything which is in the Declare models. This means that although a constraint
can be deduced from the current set of constraints in the Configurable Declare
model, it will be added if it is present in one of the Declare models. For in-
stance, assume we have that every A is eventually followed by a B and every
B is eventually followed by a C, then we also have implicitly that every A is
eventually followed by a C. When a Declare model contains the constraint that
every A is eventually followed by a C, this constraint will be made explicit in
the Configurable Declare model, although, this might already be encoded.

After the straightforward approach, we define heuristics to reduce the amount
of constraints in the Configurable Declare model as well as how to deal with
choice and exclusive choice templates. Finally, we go step by step through the
merger of two models from the case study.

5.1 Combining the models

We have a set of Declare models which we want to merge. For these Declare
models, we create a single Configurable Declare model. The different constructs,
events and constraints, are dealt with in the following sections.

Event

All of the Events are converted to CEvents with the same name. If an Event
appears in all Models, i.e. an Event with the same name is present in all
Models, we add the corresponding CEvent to the CModel with the CEvent ’s
attribute omit set to false. If an Event appears only in some Models, we add
the corresponding CEvent to the CModel with the CEvent ’s attribute omit set
to true.

Constraint

Every Constraint is converted to a CConstraint with the same name, and the
canBeChangedTo attribute is set to the Constraint which we are transforming.

40

If a Constraint appears in all Models, i.e. every Model has the same constraint
between the same set of Events, its omit attribute is set to false. If a Constraint
does not appear in all Models, we set the omit to true.

We check whether a Constraint appears in all Models independent of all
events which it constrains are present in the models. If we would take this into
account, i.e. a Constraint c(A,B) can be omitted if and only if there is a model
in which c does not occur and all events in A and B are present in that model,
we would not be able to deduce all models. Consider, for instance, the models
depicted in Figure 34, since B occurs always with the succession constraints
(succession(A,B) and succession(B,C)), we cannot omit the succession con-
straints. This prevents us from deducing the bottom model since, after the
removal of B, we always have a succession between A and C.

A B C

A C

a:

b:

Figure 34: Two models for which it must hold, after combining them, that all
constraints can be omitted, although, B does not occur in all models

After initialising the name and the omit attributes, the from and to at-
tributes have to be set. We want to have a mapping which, after applying it,
yields the same set of constraints but now on the set of CEvents. Figure 35
depicts the conversion from Constraint to CConstraint w.r.t. the from and to
attributes. Here, c is a Constraint , c′ is de conversion from c to a CConstraint
where the name and omit attributes have been set. When we apply χ to an
Event , we transform it to a CEvent in the aforementioned way.

5.2 Removing redundant constraints

When we have combined all models, we might have redundant constraints in our
model. We can use the rules defined in Section 4.4 to compute the redundant
constraints in our model. The main difference is that we keep all events in the
model instead of removing events.

We cannot apply the rules naively, i.e. if we can omit an event we can apply
the rules to deduce implicit constraints. Consider the example in Figure 36, if
we combine all three models, we have a response between A and B, between B
and C, and between A and C. The response between A and C is redundant since
we can obtain this constraint by removing B and applying the rules. However,
if we remove the response between A and C, we cannot deduce model c.

Therefore, we need to take into account which events are present in a certain
model prior to applying the rules. If an event B and a constraint c are both
present in at least one model, we cannot apply rules which state that, after the
removal of B from the model, we can deduce constraint c.

41

A1

An

B1

Bm

c

χ(A1)

χ(An)

χ(B1)

χ(Bm)

c′

Figure 35: The conversion from a Constraint to a CConstraint

We also have to take into account that two rules can deduce each other. Con-
sider the model in Figure 37, where we can deduce both precedence constraint
by applying deduction rules on the other two constraints, the chain succession
and the precedence. We want to have one precedence in the model to be able to
deduce the original set of input models, therefore, we need to take into account
which constraints can be deduced by which other constraints. This way we can
easily deduce when two constraint deduce each other and hence, one needs to
remain in the model.

Choice templates

We have seen with the conversion from a Configurable Declare model to a
Declare model that we are not able to convert the choice templates straightfor-
ward. We have a similar problem when we combine two models. Consider the
two models depicted in Figure 38.

When we combine both models, we can have both resulting models as de-
picted in Figure 39. For the choice templates, we choose the right resulting
model. We choose this model since it allows the same traces as the combination
of the traces of the input models. E.g. the trace CD is allowed in the input
models and also in the right combined model, but not in the left combined
model.

5.3 Running example

In order to get some more intuition for the model combiner, we combine two
models used for the case study. Assume we have the models depicted in Fig-
ures 40 and 41 (models D and F of the case study).

42

A B C

A C

A B C

a:

b:

c:

Figure 36: Three models from which, after combining them, we cannot remove
any implicit constraints

A B

C

Figure 37: An example of a model in which both precedence constraints can be
deduced from the other precedence and chain succession constraint

We first need to check which events and constraints are present in both the
models. We apply the decision making mentioned earlier, i.e. if an event or
constraint is present in all models we set omit to false else we set it to true,
furthermore, an open red cross means that omit is set to true. We now combine
all events and constraints into a single model which is depicted in Figure 42.

When we apply the rules identified in Section 4.4, we obtain the minimal
Configurable Declare model depicted in Figure 43.

43

A

C

B A

D

B
1 of 3 1 of 3

Figure 38: Two input models

A

C

B A

C

B
1 of 4

D D

1 of 3

1 of 3

Figure 39: Two possible output models

Figure 40: Input model D

Figure 41: Input model F

44

Figure 42: The configurable declare model of the models D and F with the omit
attributes set

Figure 43: The minimal configurable declare model of the models D and F

45

6 Implementation

We have implemented both directions mentioned in the previous sections, i.e.
going from a Configurable Declare model via a Configuration model to a Declare
model, and combining a set of Declare models into a single Configurable Declare
model. This implementation is used in the case study to show that Configurable
Declare can be applied to real life models.

The implementation is done in Java and Figure 44 depicts the architecture
and the communication between the different parts of the code. The Main class
is the orchestrator of the code, it takes care that the input models, arguments,
and rules are read, and that the output models are written. Based on the argu-
ments it either performs one of the four conversions: (1) Configurable Declare→
Configuration, (2) Configuration→ Declare, (3) Declare → Configurable Declare,
and (4) Declare + Configurable Declare → Configurable Declare. Each of these
conversion either belongs to Configurable Declare → Declare or to the Model
Combiner . We elaborate on the two different directions in the following sec-
tions as well as explain the rule engine which is used in both directions. Note
that we do not fully support Branched Declare since Declare does not yet al-
low all constructs necessarily. When the implementation is applied on cases
which are not covered, we cannot guarantee anything about the output of the
conversions.

Configurable Declare →

Main

Model

Rule Engine

Arguments RulesModel(s)

Configuration → Declare

Declare → Configurable Declare

Declare + Configurable Declare →
Configurable Declare

Configuration

Configurable Declare → Declare Model Combiner

Figure 44: The architecture for the different conversions

6.1 Configurable Declare to Declare

Transforming a Configurable Declare model into a Declare model entails two
steps: (1) going from a Configurable Declare model to a Configuration model and
(2) going from a configured Configuration model to a Declare model. The con-
version from a Configurable Declare model to a Configuration model is straight-
forward, i.e. we only need to initialise an extra attribute, isOmitted which is

46

Attribute Configurable Declare Configuration Declare
name name name name
omit omit omit 7
isOmitted 7 omit 7
from A1, · · · , An φ(A1), · · · , φ(An) ψ(φ(A1)), · · · , ψ(φ(An))
to B1, · · · , Bm φ(B1), · · · , φ(Bm) ψ(φ(B1)), · · · , ψ(φ(Bm))
canBeChangedTo canBeChangedTo canBeChangedTo 7
isChangedTo 7 7

Table 18: The initialisation of the different attributes in the different conversions

set to the value of the omit attribute, and change the types of the different
constructs, e.g. a CConstraint is changed into a ConfConstraint .

In Table 18, the different value for the different conversions are listed. Note
that φ(Ai) means the conversion from a CEvent to a ConfEvent , and ψ(Ai)
means the conversion from a ConfEvent to an Event .

The conversion from a Configuration model to a Declare model entails more
work. Apart from converting the different constructs, we also have to apply
the rules as defined in Section 4.4. We only mention the conversion from a
Configuration model to a Declare model, the application of the rules is described
in detail in Section 6.3.

Prior to applying the rules, we need to perform some preprocessing. We
first have to remove all constraints which are omitted, i.e. the isOmitted at-
tribute is set to true. We, furthermore, need to substitute constraints, when the
isChangedTo attribute is set, to the intended constraint.

When our model contains composed constraints, we need to split this com-
position on the different constraints. Consider, for instance, a succession(A,B),
this constraint is composed of response(A,B) and precedence(A,B), but also co-
existence(A,B) is a composed constraint consisting of responded existence(A,B)
and responded existence(B,A). We need to split the constraints on their com-
position to support Branched Declare. Note that we duplicate the not co-
existence constraint, i.e. when we have not co-existence(A,B), we also add
not co-existence(B,A) to the model, such that we can split on both arguments.

We now apply the rule engine on the remaining set of constraints to compute
all the implicit constraints. After having computed the implicit constraints, we
need to remove the omitted events and all constraints, implicit and explicit,
connected to those events. Finally, we map weaker constraints to stronger con-
straints, e.g. when we have response(A,B) and alternate response(A,B), we
remove the response and keep the alternate response.

6.2 Combining Declare models

Combining a set of Declare models is implemented as an iterative approach. We
first transform a Declare model into a Configurable Declare model, and then,
we add the remaining Declare models, one-by-one, to obtain every time a new
Configurable Declare model.

Using an iterative approach increases the flexibility but it reduces the mini-
mality of the model, i.e. the model becomes bigger. The increased flexibility is
achieved by only considering a Configurable Declare model and a Declare model

47

without considering all Declare models which lead to the Configurable Declare
model. In Figure 45, we have an example in which combining the models in a
certain order does not yield a minimal model.

A

A

A

C

C

C

B

B

a:

b:

c:

A CB((a + b) + c):

A CB(a + (b + c)):

Figure 45: Combining three different models in two different ways.

As mentioned before, combining the Declare models consists of two phases:
(1) transform a Declare model into a Configurable Declare model (initialisation),
and (2) combining a Declare model with a Configurable Declare model (iterative
step). We explain both steps in isolation in the following sections.

Initialisation

We transform a Declare model (Model) into a Configurable Declare model
(CModel) by transforming the different constructs, i.e. constraints and events.
We list per construct the steps taken to transform it. Prior to transforming
the events and constraints, we first create a new CModel with its name equal
to the name of the Model . Afterwards, we transform the Events into CEvents
where the name of the CEvent is equal to the name of the Event and the omit
attribute is set to false.

The different initialisations are summarised in Table 19, note that we can use
the initialisation for both the CEvents and CConstraints, e.g. we keep the name
the same for both the CEvent and the CConstraint . When we write χ(Ai), we
mean the transformation from Event Ai to a CEvent . Prior to applying these
transformation, we first split composed constraints, similar to the conversion
from a Configuration model to a Declare model, we also duplicate the not co-
existence.

48

Attribute Declare Configurable Declare
name name name
omit 7 false
from A1, · · · , An χ(A1), · · · , χ(An)
to B1, · · · , Bm χ(B1), · · · , χ(Bm)
canBeChangedTo 7

Table 19: The initialisation of the different attributes when transforming a
Declare model into a Configurable Declare model

Iterative step

In the iterative step, we need to do some more work apart from simply converting
a Declare model into a Configurable Declare model and combine this with the
original Configurable Declare model. The first step in the iterative approach is
setting the omit attributes correct. For each CEvent , we check whether there is
an Event in the Declare model with the same name. If we cannot find an Event
with the same name, we set the omit attribute of the CEvent to true else we
do not change the value.

We apply a similar approach for the CConstraints, of which first the com-
posed constraints are split, and all not co-existence are duplicated. If there
is not a semantically equivalent Constraint present in the Model , we set the
omit attribute of the CConstraint to true. Semantical equivalence between a
CConstraint and a Constraint means that they both represent the same con-
straint on the same set of events, e.g. Succession(A,B) is semantically equiva-
lent to the CSuccession(A,B).

After having set all of the omit attributes of the events and constraints
already in the Configurable Declare model, we can add the events and constraints
not in the Configurable Declare model, but which are in the Declare model, to
the Configurable Declare model. We convert each event and constraint in the
same way as we did in the initialisation step. The main difference with the
initialisation step is that the omit attribute is set to true instead of false.

We use the rule engine to deduce all implicit constraints which can be ob-
tained by considering the events not present in both models as being omitted.
For each constraint, we store from which other constraints it can be deduced
from (children) and which constraint it deduces (parents). Consider, for in-
stance, the model in Figure 46, here, c1 and c2 are the children of c3, i.e. c3 can
be deduce from c1 and c2 using the rules and c3 is a parent of c1 and a parent
of c2.

c1 c2

c3

A B C
c1 c2

c3

Figure 46: The parent child relation for a model

The output of the rule engine is a directed graph denoting which constraints
can be deduced from which other constraints. Each constraint c can be part of
any of the following classes:

49

• Explicit: c cannot be deduced or it occurs in all models, i.e. omit is false

• Implicit: c can be deduced and c does not occur in all models

• Deducible: c is either explicit or it has a pair of children and both children
are deducible

We want that all constraints are deducible which means that our model
covers all constraints. When some constraints are not deducible, this means that
some behaviour is allowed which should not be allowed, i.e. some constraints
are in the complete and naive model but are not in the reduced model.

We use Algorithm 1 to compute which constraints should remain in our
model. Let Sc denote the set of constraints we want to keep, note that we only
include constraints which are present in at least one model, this to prevent the
algorithm to choose and add implicit, and thus redundant, constraints to the
model.

Algorithm 1: The pseudo code for choosing which constraints to in-
clude in the model

chooseConstraints()
(1) Sc ← ∅
(2) foreach constraint c which is present in all models
(3) add c to Sc
(4) foreach constraint c which cannot be deduced from

any constraint
(5) add c to Sc
(6) while there are constraints not yet deducible from the

constraints in Sc
(7) Let constraint c be a constraint not yet deducible

by the constraints in Sc and c is present in at least
one model

(8) add c to Sc

6.3 Rule engine

We have created a rule engine which is used in both directions, i.e. going from
a Configuration model to a Declare model and going from a Declare model
and a Configurable Declare model to a Configurable Declare model. The rule
engine consists of four different functionalities: (1) a rule container which is a
wrapper for the different rules as defined in Section 4.4, (2) a rule referee which
determines whether we can apply a certain rule in a certain case, (3) the closure
takes care of the actual application of the rules on the set of constraints, and
(4) a cleaner maps equivalent constraints on top of each other.

The rule container mainly consists of the following functionality: given two
constraints and the position of the to-be-removed event, i.e. the cases we iden-
tified in Section 4.4, which constraint holds implicitly between the remaining
events. We use the rule referee to query when we may apply a certain rule on a
pair of constraints, e.g. when we transform a Configuration model to a Declare
model we only compute an implicit constraint for two constraints if they share
an omitted event.

50

The application of the rules is done similar to Algorithm 2 which computes
the closure. We have included the handling of a single rule, A in front and C
after B, in Algorithm 3. Each of the functions is dealt with in isolation.

CalculateClosure Within the calculation of the closure, we keep iterating
through the list of constraints until we reach a fixpoint. This fixpoint is defined
to be the maximal length a constraint can have, where the length of a constraint
is recursively defined as the length of the constraints from which it is deduced.
When a constraint is not deduced from any other constraints, we assume the
length of this constraint to be one.

The constraints in the `c are traversed and, for every constraint ci, we check
whether we can apply a certain set of rules. For instance, if ci is an existence
constraint, we know we cannot apply the rules for the choice templates. If we
can apply a certain rule, we pass the constraint to a function to try and apply
the rules on this constraint.

After each iteration of the computation of the closure, we clean the set of
constraints we have computed so far. This cleaning entail mapping pairs of
constraints on top of each other. Consider Figure 47 where c12 can be deduced
from c1 and c2, and c34 can be deduced from c3 and c4. Obviously, we do not
want to keep both c12 and c34 inside of the model. We, therefore, map c34 on
top of c12 which means that we remove c34 from the model, add c3 and c4 as a
pair of children to c12, and make c12 the parent of c3 and of c4.

c1 c2

c3 c4

c12

c34

A

B

C

D

Figure 47: A model in which the cleaner maps c34 on top on c12

51

Algorithm 2: The pseudo code for computing the closure
CalculateClosure()
(1) while We have not yet arrived at a fixpoint
(2) copy the constraints to a temporal list `c
(3) foreach ci ∈ `c: we want to consider ci
(4) if the rule referee allows us to apply the existence

set of rules on ci then

(5)
...

(6) if the rule referee allows us to apply the relation
or negative relation set of rules on ci then

(7) applyRulesABC(`c, ci)
(8) applyRulesACB(`c, ci)
(9) applyRulesBAC(`c, ci)
(10) if the rule referee allows us to apply the choice

set of rules on c1 then

(11)
...

(12) Clean the constraints using the cleaner

ApplyRulesABC When we possibly can apply a rule, we try a constraint
(ci) with all possible other constraints (cj ∈ `c). If the rule referee allows us
to combine two constraints, we apply the rules and obtain a new constraint c′.
We set the from and to relation of c′, note that we assume that ci is between A
and B and cj is between B and C, if this is not the case, we do not allow the
application of this rule.

Similar to the examples in Section 4.4 and in particular Figure 23, we either
need to combine the from or to events of the new constraint with the from or
to of ci or cj . If all constraints are response type of constraints, i.e. they can be
split on their first argument, we need to add ci .to to the c′.to. We need to add
this since the events which are between ci and cj which are omitted are now
substituted by the events in cj .to.

If all constraints are precedence type of constraints, i.e. they can be split on
their second argument, we know that the events which are between ci and cj ,
which are omitted, are now substituted by the events in ci .from. But, we still
have to maintain the events which were already in cj .from.

Consider, for instance, the model in Figure 48 from which we want to remove
B2. c′.from is equal to the ci .from, and c′.to is equal to the union of cj .to and
ci .to. In other words, event B2 is substituted, in ci, by C1 and C2, and c′ now
represents this constraint.

52

ci cj

c′

A

B1

B2

B3

C1

C2

Figure 48: A model in which both the ci .to, and cj .to have to be added to c′.to

Algorithm 3: The pseudo code for applying the ABC type of rules
applyRulesABC(`c, ci)
Input: `c a list of constraints, ci a constraint
Output:
(1) foreach cj ∈ `c: ci 6= cj
(2) if the rule referee allows us to apply a rule on ci and

cj then
(3) c′ ← the constraint after applying the rules, on

ci and cj
(4) c′.from ← ci .from
(5) c′.to ← cj .to
(6) if ci, cj , and c′ are response type of constraints

then
(7) c′.to ← c′.to ∪ ci .to
(8) if ci, cj , and c′ are precedence type of constraints

then
(9) c′.from ← c′.from ∪ cj .from
(10) add c′ to the ConfigurationModel

53

7 Case Study

In order to validate the applicability of Configurable Declare to real life mod-
els, we have performed a case study. We performed our case study on models
obtained by interviewing different municipalities. These interviews yielded im-
perative models from which we have deduced the Declare models. The different
models entail the request for an excerpt from the civil registration. The different
municipalities model this process in different, but very similar, ways.

All models include the following three activities: (1) Fill in e-form in which
the customer fills in her credentials on an e-form in order to obtain an excerpt.
(2) Produce extract and sign it in this step the municipality produces the excerpt
and signs it denoting that this is an official excerpt. (3) Send extract denotes
that the excerpt is sent to the customer.

We want to show with this case study that we can combine the Declare
models from the municipalities into a Configurable Declare model and configure
the Configurable Declare model such that we can obtain all original models.

7.1 Combining the models

We have combined the different input models, depicted in Appendix B, in al-
phabetical order, i.e. first model A with model B, then the combined model
AB with model C, etc. The output model is depicted in Figure 49. Combining
the models is done in the same way as explained in Section 5.

The output model is minimal in the sense that we do not have any redundant
constraints. Using the model combiner, we were able to remove three redundant
constraints. The succession between Process payment and Produce extract and
sign it, for instance in model A, has been removed when we added model C
to the combined model. Between Fill in payment information and Send to DMS
department, we have a succession in model F , this constraint was never added
since we already had an implicit succession from model D. Finally, we had a
succession between Produce extract and sign it and Send extract, for instance, in
model B, but this succession is implicit in model D and has been removed.

We can also see why we need to split the succession constraints in response
and precedence constraints. Instead of a succession between Print request and
Produce extract and sign it, we have a response. The reason we have a response
is because the precedence between Print request and Produce extract and sign
it can be deduced via Determine whether request is admissible and Send to the
department concerned.

7.2 Configuring the models

We use two different crosses to denote the different reasons for removing a
constraint. A complete red cross denotes that we have to remove this constraint
to obtain a model which allows all desired behaviour. Red crosses filled with
green denote that we remove a constraint to remove redundant constraints, note
that, when we transform a Configuration model to a Declare model, we do not
consider other implicit constraints already in the model.

In order to obtain the input models, we first set the isOmitted attribute of
the activities not in the input model to true. When we have an exclusive choice
consisting of only one activity, e.g. when we want to remove Inform customer

54

Figure 49: The configurable Declare model

via telephone or e-mail, we also remove the exclusive choice. If we would not
remove this exclusive choice, it would mean that the other activity is always
executed. In some cases we need to remove some constraints from the model
to prevent unwanted implicit constraints, e.g. to obtain model E we need to
remove, amongst other constraints, the succession between Process payment and
Send e-mail to central desk, if we would keep this constraint it would need to
hold that every Process payment is eventually followed by a Produce extract and
sign it while the user might want to choose to execute activity Inform customer
via telephone or e-mail.

After all activities and constraints which need to be removed have been re-
moved, we choose to remove some extra constraints from the model. By remov-
ing these extra constraints, we prevent the deduction of redundant constraints
on the models. Consider, for instance, model C, if we would keep the succes-
sion constraint between Process payment and Send to DMS department, we can
deduce that we have a succession between Process payment and Produce extract
and sign it. Although, this is not incorrect, it is redundant since we already have
this succession implicit via the activities: Send e-mail to central desk and Check
request in digital desk.

7.3 Running example

We have seen how we combined the models D and F in Section 5. We now
elaborate on how to configure the Configurable Declare model such that we
obtain the original models again.

Model D, and the configuration for model D, are depicted in Figure 50 and
Figure 51 respectively. We first need to set the isOmitted attribute of all events
not present in the original model to true.

55

The exclusive choice between Produce extract and sign it and Inform customer
via telephone or e-mail has to be removed. After the removal of Inform customer
via telephone or e-mail, exclusive choice demands that we always execute Produce
extract and sign it, although, the user might have chosen to execute Stop after
the execution of Send payment request such that we cannot execute Produce
extract and sign it.

We remove the succession(Process payment, Send e-mail to central desk),
succession(Process payment, Print request), and succession(Send to DMS de-
partment, Indicate already paid) to prevent the deduction of redundant implicit
constraints.

Figure 50: Top: model D, bottom: model F

Figure 50 contains model F and Figure 51 contains the configuration for
model F. Similar to model D, we first set the isOmitted attribute for the event
not present in model F to true. We, furthermore, remove the exclusive choice
between Produce extract and sign it and Inform customer via telephone or e-mail
to prevent the model from demanding that Produce extract and sign it is always
executed. Finally, similar to the configuration of model D, we have to remove
some succession constraints from the model in order to prevent the deduction
of redundant implicit constraints.

7.4 Comparing the models

We cannot find any difference between the input and output models after com-
bining and configuring the models in the way described above. We wanted to
show that we can combine a set of Declare models into a Configurable Declare

56

model and by configuring this Configurable Declare model we wanted to obtain
the input models. This is shown by the case study.

Figure 51: Top: configuration for model D, bottom: configuration for model F

57

8 Future work

Here, we identify a number of direction in which we can extend Configurable
Declare. For each direction, we list the benefits when extending Configurable
Declare with this extension but also, if applicable, possible problems one might
encounter when exploring this direction.

Meta-constraints

We do not guide the user in configuring its Configurable Declare model, i.e. the
user can configure a Configurable Declare model in such a way that it cannot
be executed. Therefore, we want to extend Configurable Declare with meta-
constraints. Meta-constraints are constraints between constraints or between
tasks and constraints. These meta-constraints would allow the designer to re-
strict the configurability of a model such that the user can only model valid
Declare models.

Consider, for instance, the model depicted in Figure 52 in which we have a
not co-existence between task B and response(A, C) denoting that if task B is
present, we do not have response(A, C) in our model.

A B C

Figure 52: Example of a model with a meta-constraint

Automatic rule discovery

The rules defined in Section 4.4 are defined both manually and automatically.
Ideally one has an approach to deduce all rules in an automated fashion which
is based on some formal notion. This automated approach can then later on be
applied when one decides to extend Declare with new constraints.

One can design this automated approach in such a way that it automati-
cally satisfies the soundness, completeness, and confluence properties. Sound-
ness means that all rules are correct, while completeness means that we have
discovered all of the rules. Finally, when the confluence property holds, this
means that we can apply the rules in any order.

The main problem with automatic rule discovery is that it is far from triv-
ial, consider, for instance, the model depicted in Figure 53. We have the fol-
lowing LTL formula to denote this model (chain response(A,B) and chain re-
sponse(B,C)):

�(A⇒©(B)) ∧�(B ⇒©(C)) .

We want to obtain the following formula denoting that whenever we execute
an A we immediately execute a C afterwards.

�(A⇒©(C))

58

This means we have to find an approach which can remove the next operator
from the LTL formula and obtain a formula no longer equivalent to the original
formula, i.e. in the original formula we have the relation that if we execute an
A, we first execute something else (B) and then execute C (�(A⇒©(©(C)))).

A B C

Figure 53: Problematic model for automatic rule discovery

Solving alternate problem

As mentioned before, we have a non-regular language when we apply the rules
with the alternate templates, e.g. alternate succession. We can solve this prob-
lem by introducing a new binary constraint denoting what the maximal differ-
ence in executions can be. Assume we have two activities, A and B, and the
maximal difference between the amount of executions of A and B is five. Then
A can never happen six times in a row without a B in between.

In Figure 54, we would add the constraint that A can have at most a differ-
ence of two w.r.t. C. This means that after we have executed A two times we
need to execute a C. We can encode this in LTL with the following formula:
�(A ⇒ ©((¬AUC) ∨ ((A ⇒ ©(¬AUC))U (C ∧ ©(¬AUC))))). Intuitively,
whenever we have an A we either do not perform A until we perform C, or if
we perform a second A, we do not perform an A until we perform a C and we
keep on doing this until we encounter two Cs without an A in between.

A B C

Figure 54: A model in which A cannot execute three times without the execution
of C

This approach only works in a non-branched setting: consider, for instance,
the model in Figure 55. Within this model, after the removal of B2, we allow,
amongst other, the traces: AAB1C, AACB1, AACC but not the trace AAB1B1.
Therefore, we need to create distance equivalence classes, i.e. two events are in
the same distance equivalence class if the same number of alternate response
constraints are between A and the events. In our example, B1 is at distance
one, and C is at distance two.

When an event is in a certain distance equivalence, it can respond to an
amount of As proportional to its distance to A without the execution of a new
A. B1 can respond to at most one A, while C can respond to two As. Basically,
we are counting the amount of times an event from a distance equivalence class
can happen to validate this constraint. Before A can happen a next time, we
have to make sure that A did not happen more often than the events at the
maximal distance to A, in the example two times. Furthermore, if A happened
five times and afterwards the events in the distance equivalence class at distance
one also happened five times, we still need to observe four times events from
different distance equivalence classes.

59

A

B1

B2 C

Figure 55: A model in which, after the removal of B2, we cannot pose the same
constraint between A and B1 and between A and C

Full support for branched constraints

We have seen in Section 4.4 that we have a problem when we have the case as
depicted in Figure 56. We could solve it by allowing constraints similar to the
constraint in Figure 57.

A

B1

B2

B3

C1

C2

C3

Figure 56: A model in which we cannot express the implicit constraints

A

C1

C2

C3

Figure 57: The implicit constraints after the removal of the Bs in Figure 56

We have the following LTL formulas for the different constraints, where
A = {a1, · · · , an} and B = {b1, · · · , bm} are sets of events: response(A,B) =
�((a1∨· · ·∨an)⇒ ♦(b1∨· · · bm)), alternate response(A,B) = �((a1∨· · ·∨an)⇒
(¬(a1 ∨ · · · ∨ an)U (b1 ∨ · · · bm))), and chain response(A,B) = �((a1 ∨ · · · ∨
an) ⇒ ©(b1 ∨ · · · bm)). The different formulas only differ on the righthand
side of the implication. We can support the new branched constraint by taking
the disjunction of the righthand sides, this yields as LTL formula for the new
constraint: �((a1 ∨ · · · ∨ an)⇒ (♦(b1 ∨ · · · bm)∨¬(a1 ∨ · · · ∨ an)U (b1 ∨ · · · bm)∨
©(b1 ∨ · · · bm))).

The second problem we identified was the problem depicted in Figure 58.
We needed a constraints between A1, A3 and the Bs denoting that if A1 or A3

occurred less than 5 times we needed to execute a B.

60

A1

A2

A3

B1

B2

B3

existence5

Figure 58: We cannot express the implicit constraints after the removal of A2

We can extend the existence templates with a new template which takes four
arguments, basically consisting of the amount of times the events in a certain
set of events should occur. When we write existence′(nr , A,nr ′, B), this means
that the events in A should occur at least nr times or the events in B should
occur at least nr ′ times.

In the aforementioned problem, we can encode the implicit constraint as
existence′(5, {A1, A3}, 1, {B1, B2, B3}) = ♦(B1 ∨ B2 ∨ B3) ∨ (♦((A1 ∨ A3) ∧
©(existence′(4, {A1, A3}, 1, {B1, B2, B3})))). In which existence′ is recursively
defined similar to the existence template.

Support for more configuration patterns

When we operate in a Branched Declare setting, we also want to extend the
possibilities for configuring the models. One may think of removing a branch
from a constraint instead of removing the entire constraint. If we extend Declare
such that the different branches can have different semantics, one also wants to
be able to change the semantics of some branches, similar to substituting a
constraint in the non-branched Declare setting.

Extending the code

Within the case study, we had to remove constraints not because they had to
be removed but because this yielded nicer models. In the future, we will not
only compute implicit constraints between omitted activities but also between
activities which remain in the model. When we have computed all implicit
constraints between activities, we can remove the redundant explicit constraints
still in the model.

We currently have a command line program which, using command line
arguments, performs the different conversions, e.g. from Configurable Declare
to a Configuration. We use the Eclipse Modelling Framework (EMF) [Fra11] to
generate the eXtensible Markup Language (XML) documents representing the
models. We want to add a Graphical User Interface (GUI) to the program such
that the users can use the GUI to design and configure their models similar
to the Declare designer[Des11]. Within this GUI, it also should be possible to
define new constraints and rules.

61

Perform multiple case studies

We have used Configurable Declare in a single case study where the models
shared a large number of similarities. In order to see the full potential of Con-
figurable Declare, we want to apply this approach to less homogeneous models.
To apply Configurable Declare to those less homogeneous models, we first need
to solve most of the problems addressed in this section, since less homogeneity
means that we want to combine different constraints into a single constraint.

Apart from simply combining different models and then configuring them so
that we obtain the original models again, we also want to apply our approach
within a real organisation. This will allow us to observe how Configurable De-
clare would be used by people who are not familiar with Configurable Declare.
Then, we can optimise Configurable Declare to better suit their needs and also
remove bottlenecks if they exist.

Automatically configuring the model based on a log

[SMS11] presents an approach to automatically validate, given a log and a model,
which constraints hold non-vacuously. Non-vacuous satisfaction means that the
value, i.e. true or false, of some subformulas of a formula does not change
the validity of the entire formula. Consider, for instance, response(A,B) which
means that every A is eventually followed by a B. In logs where A does not
occur, this formula is always valid, i.e. every A is followed by a B.

We can take our Configurable Declare model and a log from an organisation
and deduce which constraints hold non-vacuously on the log and should be kept
in the model. The approach by [SMS11] also takes into account whether certain
events are present in the log, hence we can use this to automatically configure
the events in the Configurable Declare model.

Automatic configuration to obtain a given model

To obtain the Declare models, used in the “combining models” algorithm,
the user has to manually define the configurations on the Configurable De-
clare model. We want to define these configurations automatically, so given a
Configurable Declare0 model and a Declare model, we want to obtain the config-
uration (if it exists) of the Configurable Declare0 model, which yields the given
Declare model.

We first need to check whether the tasks in the Declare model are all present
in the Configurable Declare0 model. If this is the case, we need to validate that
all tasks not present in the Declare model can be configured to be omitted in
the Configurable Declare0 model. We remove all tasks not in the Declare model
from the Configurable Declare0 model using the rules defined earlier and obtain
the Configurable Declare1 model. After we have validated whether the tasks
can be omitted, we need to validate that the constraints can be configured as
needed w.r.t. the constraints of the Declare model.

We compute all implicit constraints on the Configurable Declare1 model and
the Declare model. If the (implicit) constraints of the Declare model are not
a subset of the (implicit) constraints on the Configurable Declare1 model, we
know some constraints are present in the Declare model but not in the Con-
figurable Declare1 model. This means that we cannot define a configuration.

62

If the constraints of the Declare model are a subset of the constraints in the
Configurable Declare1 model, we remove all constraints in the Configurable De-
clare1 model not present in the Declare model and which can be removed, i.e.
omit is true. After removing these constraints from Configurable Declare1, we
obtain Configurable Declare2.

By removing the constraints from the Configurable Declare1 model not present
in the Declare model, we might also remove constraints necessarily to deduce
implicit constraints present in the Declare model. In order to ensure that
we did not remove an explicit constraint needed for this deduction, we re-
compute the implicit constraints on the Configurable Declare2 model and ob-
tain the Configurable Declare3 model. Consider, for instance, the Declare and
Configurable Declare1 model in Figure 59. If we remove the constraints not in
the Declare model from the Configurable Declare1 model, we also remove the
implicit responded existence between C and B which is explicit in the Declare
model.

A B

C

A B

C

Figure 59: Left: Declare model, right: Configurable Declare1 model

Instead of a subset relation, we want to have an equivalence between the
constraints, implicit and explicit, of the Configurable Declare3 model and the
constraints, implicit and explicit, in the Declare model. If we have an equiva-
lence, we also have the configuration, i.e. all tasks which are not in the Declare
model have to be removed and all constraints not in the Declare model (either
implicit or explicit) have to be removed. In case we do not have an equivalence,
we cannot deduce a configuration, i.e. there are constraints in the Declare model
which are not in the Configurable Declare3 model.

Configuring the model based on a questionnaire

In [LRLS+07], the authors propose an approach to configure a model by means
of a questionnaire. Each question of the questionnaire is linked to a set of
decision point and each decision point has a set of questions associated with it.
A decision point is a construct of the language which can be altered, i.e. similar
to the alteration of constraints.

We want to use such a questionnaire-based approach for Configurable De-
clare. This would allow the user of Configurable Declare to configure the model
without any knowledge of Configurable Declare, and it would allow the designer
of the Configurable Declare model to limit possible configurations. By limit-
ing possible configurations, the designer can forbid configurations which lead to
non-executable Declare models or which lead to Declare models which invalidate
a legislation.

63

9 Conclusion

We have presented a solution to extend Declare to Configurable Declare. Con-
figurable Declare allows for flexibility within a process model, i.e. everything is
allowed unless stated otherwise. Configurable Declare also allows for flexibility
of the process model itself, i.e. the process model can be changed to better cope
with the environment in which it will be applied. This means that as well as
having flexibility at run-time we also have flexibility at configuration-time, i.e.
between design-time and run-time. After the process model has been designed
but before the process model is used, we can adapt the process model towards
company’s needs.

By supporting both notions of flexibility, we developed a process modelling
language which is the preferred choice to be applied in environments with high
variability. The application of Configurable Declare is not limited to environ-
ments with high variability. In every environment where rules or legislation
must be obeyed, Configurable Declare is a candidate worth considering.

All the configuration patterns identified in literature, which are useful to
consider, are supported by Configurable Declare. Unfortunately, we were not
able to address all problems which occur when moving to Branched Declare.
In the future work section (Section 8), we show that most of the issues which
still exist can be easily addressed. Most of the patterns which are difficult to
incorporate in imperative languages are almost trivial to support in Configurable
Declare, especially the patterns which entail the flexibility within the process
model.

Considering that Configurable Declare takes implicit constraints into ac-
count, we can use it to encode legislation. If the legislation is non-configurable,
we know that, after transforming this Configurable Declare model into a Declare
model, all legislation is still encoded in the Declare model. If the legislation is
configurable, we can remove parts of the legislation and we have to be sure that
this does not yield incomplete encoded legislation. Therefore, we opt for the
creation of a questionnaire to guide the user in configuring the legislation for her
organisation. By using this questionnaire, we can guarantee that all legislation
is encoded properly in the Declare model.

The theoretical design is supported with both an implementation and a case
study. With the implementation, we can perform the conversions, described in
the thesis, in combination with the application of the rules. Using this imple-
mentation, we showed in the case study that our approach can be applied to
real life declarative process models, whilst yielding the expected outcome.

64

References

[BDKK04] J. Becker, P. Delfmann, R. Knackstedt, and D. Kuropka. Con-
figurative process modeling - outlining an approach to increased
business process model usability. In Proceedings of the 15th In-
formation Resources Management Associatino Information Con-
ference, New Orleans, 2004.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett.
Patterns in property specifications for finite-state verification. In
Proceedings of the 21st international conference on Software en-
gineering, ICSE ’99, pages 411–420, New York, NY, USA, 1999.
ACM.

[Des11] Declare Designer. http://www.win.tue.nl/declare/, June 2011.

[DRvdA+06] Alexander Dreiling, Michael Rosemann, Wil van der Aalst, Lutz
Heuser, and Karsten Schulz. Model-based software configuration:
Patterns and languages. European Journal of Information Sys-
tems, 15:583–600, 2006.

[Fra11] Eclipse Modeling Framework. http://www.eclipse.org/modeling/emf/,
June 2011.

[Got09] F. Gottschalk. Configurable Process Models. PhD thesis, Eind-
hoven University of Technology, The Netherlands, December 2009.

[LRLS+07] Marcello La Rosa, Johannes Lux, Stefan Seidel, Marlon Dumas,
and Arthur H. M. ter Hofstede. Questionnaire-driven Configura-
tion of Reference Process Models. Advanced Information Systems
Engineering, 4495:424–438, 2007.

[MvdAR] N. Mulyar, W.M.P. van der Aalst, and N. Russell.
Process flexibility patterns. Technical report, BETA
Working Paper Series, WP 251, Eindhoven Univer-
sity of Technology, the Netherlands, 2008. Available at
http://cms.ieis.tue.nl/Beta/Files/WorkingPapers/Beta wp251.pdf.

[Pnu77] Amir Pnueli. The temporal logic of programs. Foundations of
Computer Science, Annual IEEE Symposium on, 0:46–57, 1977.

[PSvdA07] M. Pesic, H. Schonenberg, and W.M.P. van der Aalst. Declare:
Full support for loosely-structured processes. In Enterprise Dis-
tributed Object Computing Conference, 2007. EDOC 2007. 11th
IEEE International, page 287, 2007.

[PvdA06] M. Pesic and W. van der Aalst. A declarative approach for flexible
business processes management. In Johann Eder and Schahram
Dustdar, editors, Business Process Management Workshops, vol-
ume 4103 of Lecture Notes in Computer Science, pages 169–180.
Springer Berlin / Heidelberg, 2006. 10.1007/11837862 18.

65

[SLS10] David Schumm, Frank Leymann, and Alexander Streule. Process
viewing patterns. In Proceedings of the 14th IEEE International
EDOC Conference, EDOC 2010, 25]29 October 2010, Vitoria,
Brazil, pages 89–98. IEEE Computer Society, 2010.

[SMS11] D.M.M. Schunselaar, F.M. Maggi, and N. Sidorova. Do My Con-
straints Constrain Enough? - Patterns for Strengthening Con-
straints in Declarative Compliance Models. Technical report,
BPMcenter.org, 2011. BPM Center Report BPM-11-15.

[Sof05] Pnina Soffer. On the notion of flexibility in business processes. In
Proceedings of the CAiSE05 Workshops, pages 35–42, 2005.

66

Appendices

A Meta-models

Figure 60: Meta-model of Configurable Declare

67

Figure 61: Meta-model of a Configuration

68

B Input models

Figure 62: Input model A

Figure 63: Input model B

Figure 64: Input model C

69

Figure 65: Input model D

Figure 66: Input model E

Figure 67: Input model F

70

Figure 68: Input model G

71

Figure 69: The Configurable Declare model

C Configuration models

Figure 70: The configuration for model A

72

Figure 71: The configuration for model B

Figure 72: The configuration for model C

73

Figure 73: The configuration for model D

Figure 74: The configuration for model E

74

Figure 75: The configuration for model F

Figure 76: The configuration for model G

75

	Abstract
	Contents
	1. Introduction
	2. Preliminaries
	3. Known configuration Patterns
	4. Configurable declare
	5. Combining models
	6. Implementation
	7. Case Study
	8. Future work
	9. Conclusion
	References
	Appendices
	Appendix A
	Appendix B
	Appendix C

