32,833 research outputs found

    Automated user modeling for personalized digital libraries

    Get PDF
    Digital libraries (DL) have become one of the most typical ways of accessing any kind of digitalized information. Due to this key role, users welcome any improvements on the services they receive from digital libraries. One trend used to improve digital services is through personalization. Up to now, the most common approach for personalization in digital libraries has been user-driven. Nevertheless, the design of efficient personalized services has to be done, at least in part, in an automatic way. In this context, machine learning techniques automate the process of constructing user models. This paper proposes a new approach to construct digital libraries that satisfy user’s necessity for information: Adaptive Digital Libraries, libraries that automatically learn user preferences and goals and personalize their interaction using this information

    An evaluation of the role of sentiment in second screen microblog search tasks

    Get PDF
    The recent prominence of the real-time web is proving both challenging and disruptive for information retrieval and web data mining research. User-generated content on the real-time web is perhaps best epitomised by content on microblogging platforms, such as Twitter. Given the substantial quantity of microblog posts that may be relevant to a user's query at a point in time, automated methods are required to sift through this information. Sentiment analysis offers a promising direction for modelling microblog content. We build and evaluate a sentiment-based filtering system using real-time user studies. We find a significant role played by sentiment in the search scenarios, observing detrimental effects in filtering out certain sentiment types. We make a series of observations regarding associations between document-level sentiment and user feedback, including associations with user profile attributes, and users' prior topic sentiment

    A Semantic Graph-Based Approach for Mining Common Topics From Multiple Asynchronous Text Streams

    Get PDF
    In the age of Web 2.0, a substantial amount of unstructured content are distributed through multiple text streams in an asynchronous fashion, which makes it increasingly difficult to glean and distill useful information. An effective way to explore the information in text streams is topic modelling, which can further facilitate other applications such as search, information browsing, and pattern mining. In this paper, we propose a semantic graph based topic modelling approach for structuring asynchronous text streams. Our model in- tegrates topic mining and time synchronization, two core modules for addressing the problem, into a unified model. Specifically, for handling the lexical gap issues, we use global semantic graphs of each timestamp for capturing the hid- den interaction among entities from all the text streams. For dealing with the sources asynchronism problem, local semantic graphs are employed to discover similar topics of different entities that can be potentially separated by time gaps. Our experiment on two real-world datasets shows that the proposed model significantly outperforms the existing ones

    Transfer Meets Hybrid: A Synthetic Approach for Cross-Domain Collaborative Filtering with Text

    Full text link
    Collaborative filtering (CF) is the key technique for recommender systems (RSs). CF exploits user-item behavior interactions (e.g., clicks) only and hence suffers from the data sparsity issue. One research thread is to integrate auxiliary information such as product reviews and news titles, leading to hybrid filtering methods. Another thread is to transfer knowledge from other source domains such as improving the movie recommendation with the knowledge from the book domain, leading to transfer learning methods. In real-world life, no single service can satisfy a user's all information needs. Thus it motivates us to exploit both auxiliary and source information for RSs in this paper. We propose a novel neural model to smoothly enable Transfer Meeting Hybrid (TMH) methods for cross-domain recommendation with unstructured text in an end-to-end manner. TMH attentively extracts useful content from unstructured text via a memory module and selectively transfers knowledge from a source domain via a transfer network. On two real-world datasets, TMH shows better performance in terms of three ranking metrics by comparing with various baselines. We conduct thorough analyses to understand how the text content and transferred knowledge help the proposed model.Comment: 11 pages, 7 figures, a full version for the WWW 2019 short pape
    corecore