The recent prominence of the real-time web is proving both challenging and disruptive for information retrieval and web data mining research. User-generated content on the real-time web is perhaps best epitomised by content on microblogging platforms, such as Twitter. Given the substantial quantity of microblog posts that may be relevant to a user's query at a point in time, automated methods are required to sift through this information. Sentiment analysis offers a promising direction for modelling microblog content. We build and evaluate a sentiment-based filtering system using real-time user studies. We find a significant role played by sentiment in the search scenarios, observing detrimental effects in filtering out certain sentiment types. We make a series of observations regarding associations between document-level sentiment and user feedback, including associations with user profile attributes, and users' prior topic sentiment