56,073 research outputs found

    Survey on Combinatorial Register Allocation and Instruction Scheduling

    Full text link
    Register allocation (mapping variables to processor registers or memory) and instruction scheduling (reordering instructions to increase instruction-level parallelism) are essential tasks for generating efficient assembly code in a compiler. In the last three decades, combinatorial optimization has emerged as an alternative to traditional, heuristic algorithms for these two tasks. Combinatorial optimization approaches can deliver optimal solutions according to a model, can precisely capture trade-offs between conflicting decisions, and are more flexible at the expense of increased compilation time. This paper provides an exhaustive literature review and a classification of combinatorial optimization approaches to register allocation and instruction scheduling, with a focus on the techniques that are most applied in this context: integer programming, constraint programming, partitioned Boolean quadratic programming, and enumeration. Researchers in compilers and combinatorial optimization can benefit from identifying developments, trends, and challenges in the area; compiler practitioners may discern opportunities and grasp the potential benefit of applying combinatorial optimization

    On the use of biased-randomized algorithms for solving non-smooth optimization problems

    Get PDF
    Soft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines

    A hybrid GA–PS–SQP method to solve power system valve-point economic dispatch problems

    No full text
    This study presents a new approach based on a hybrid algorithm consisting of Genetic Algorithm (GA), Pattern Search (PS) and Sequential Quadratic Programming (SQP) techniques to solve the well-known power system Economic dispatch problem (ED). GA is the main optimizer of the algorithm, whereas PS and SQP are used to fine tune the results of GA to increase confidence in the solution. For illustrative purposes, the algorithm has been applied to various test systems to assess its effectiveness. Furthermore, convergence characteristics and robustness of the proposed method have been explored through comparison with results reported in literature. The outcome is very encouraging and suggests that the hybrid GA–PS–SQP algorithm is very efficient in solving power system economic dispatch problem

    Application of pattern search method to power system valve-point economic load dispatch

    No full text
    Direct search (DS) methods are evolutionary algorithms used to solve constrained optimization problems. DS methods do not require any information about the gradient of the objective function at hand, while searching for an optimum solution. One of such methods is pattern search (PS) algorithm. This study presents a new approach based on a constrained pattern search algorithm to solve well-known power system economic load dispatch problem (ELD) with valve-point effect. For illustrative purposes, the proposed PS technique has been applied to various test systems to validate its effectiveness. Furthermore, convergence characteristics and robustness of the proposed method has been assessed and investigated through comparison with results reported in literature. The outcome is very encouraging and proves that pattern search (PS) is very applicable for solving power system economic load dispatch problem

    A new control technique for active power filters using a combined genetic algorithm/conventional analysis

    Get PDF
    In this paper, the computational problems associated with the optimization techniques used to evaluate the switching patterns for controlling variable-characteristics active power filters are presented and critically analyzed. Genetic algorithms (GAs) are introduced in this paper to generate a fast and accurate initial starting point in the highly nonlinear optimization space of mathematical optimization techniques. GAs tend to speed up the initialization process by a factor of 13. A combined GA/conventional technique is also proposed and implemented to reduce the associated computational burden associated with the control and, consequently, increasing the speed of response of this class of active filters. Comparisons of these techniques are discussed and presented in conjunction with simulation and practical results for the filter operation

    Online VNF Scaling in Datacenters

    Get PDF
    Network Function Virtualization (NFV) is a promising technology that promises to significantly reduce the operational costs of network services by deploying virtualized network functions (VNFs) to commodity servers in place of dedicated hardware middleboxes. The VNFs are typically running on virtual machine instances in a cloud infrastructure, where the virtualization technology enables dynamic provisioning of VNF instances, to process the fluctuating traffic that needs to go through the network functions in a network service. In this paper, we target dynamic provisioning of enterprise network services - expressed as one or multiple service chains - in cloud datacenters, and design efficient online algorithms without requiring any information on future traffic rates. The key is to decide the number of instances of each VNF type to provision at each time, taking into consideration the server resource capacities and traffic rates between adjacent VNFs in a service chain. In the case of a single service chain, we discover an elegant structure of the problem and design an efficient randomized algorithm achieving a e/(e-1) competitive ratio. For multiple concurrent service chains, an online heuristic algorithm is proposed, which is O(1)-competitive. We demonstrate the effectiveness of our algorithms using solid theoretical analysis and trace-driven simulations.Comment: 9 pages, 4 figure

    Application of Grey Wolf Optimizer Algorithm for Optimal Power Flow of Two-Terminal HVDC Transmission System

    Get PDF
    This paper applies a relatively new optimization method, the Grey Wolf Optimizer (GWO) algorithm for Optimal Power Flow (OPF) of twoterminal High Voltage Direct Current (HVDC) electrical power system. The OPF problem of pure AC power systems considers the minimization of total costs under equality and inequality constraints. Hence, the OPF problem of integrated AC-DC power systems is extended to incorporate HVDC links, while taking into consideration the power transfer control characteristics using a GWO algorithm. This algorithm is inspired by the hunting behavior and social leadership of grey wolves in nature. The proposed algorithm is applied to two different case-studies: the modified 5-bus and WSCC 9-bus test systems. The validity of the proposed algorithm is demonstrated by comparing the obtained results with those reported in literature using other optimization techniques. Analysis of the obtained results show that the proposed GWO algorithm is able to achieve shorter CPU time, as well as minimized total cost when compared with already existing optimization techniques. This conclusion proves the efficiency of the GWO algorithm
    corecore