61,700 research outputs found

    Texture Structure Analysis

    Get PDF
    abstract: Texture analysis plays an important role in applications like automated pattern inspection, image and video compression, content-based image retrieval, remote-sensing, medical imaging and document processing, to name a few. Texture Structure Analysis is the process of studying the structure present in the textures. This structure can be expressed in terms of perceived regularity. Our human visual system (HVS) uses the perceived regularity as one of the important pre-attentive cues in low-level image understanding. Similar to the HVS, image processing and computer vision systems can make fast and efficient decisions if they can quantify this regularity automatically. In this work, the problem of quantifying the degree of perceived regularity when looking at an arbitrary texture is introduced and addressed. One key contribution of this work is in proposing an objective no-reference perceptual texture regularity metric based on visual saliency. Other key contributions include an adaptive texture synthesis method based on texture regularity, and a low-complexity reduced-reference visual quality metric for assessing the quality of synthesized textures. In order to use the best performing visual attention model on textures, the performance of the most popular visual attention models to predict the visual saliency on textures is evaluated. Since there is no publicly available database with ground-truth saliency maps on images with exclusive texture content, a new eye-tracking database is systematically built. Using the Visual Saliency Map (VSM) generated by the best visual attention model, the proposed texture regularity metric is computed. The proposed metric is based on the observation that VSM characteristics differ between textures of differing regularity. The proposed texture regularity metric is based on two texture regularity scores, namely a textural similarity score and a spatial distribution score. In order to evaluate the performance of the proposed regularity metric, a texture regularity database called RegTEX, is built as a part of this work. It is shown through subjective testing that the proposed metric has a strong correlation with the Mean Opinion Score (MOS) for the perceived regularity of textures. The proposed method is also shown to be robust to geometric and photometric transformations and outperforms some of the popular texture regularity metrics in predicting the perceived regularity. The impact of the proposed metric to improve the performance of many image-processing applications is also presented. The influence of the perceived texture regularity on the perceptual quality of synthesized textures is demonstrated through building a synthesized textures database named SynTEX. It is shown through subjective testing that textures with different degrees of perceived regularities exhibit different degrees of vulnerability to artifacts resulting from different texture synthesis approaches. This work also proposes an algorithm for adaptively selecting the appropriate texture synthesis method based on the perceived regularity of the original texture. A reduced-reference texture quality metric for texture synthesis is also proposed as part of this work. The metric is based on the change in perceived regularity and the change in perceived granularity between the original and the synthesized textures. The perceived granularity is quantified through a new granularity metric that is proposed in this work. It is shown through subjective testing that the proposed quality metric, using just 2 parameters, has a strong correlation with the MOS for the fidelity of synthesized textures and outperforms the state-of-the-art full-reference quality metrics on 3 different texture databases. Finally, the ability of the proposed regularity metric in predicting the perceived degradation of textures due to compression and blur artifacts is also established.Dissertation/ThesisPh.D. Electrical Engineering 201

    Zero Shot Learning with the Isoperimetric Loss

    Full text link
    We introduce the isoperimetric loss as a regularization criterion for learning the map from a visual representation to a semantic embedding, to be used to transfer knowledge to unknown classes in a zero-shot learning setting. We use a pre-trained deep neural network model as a visual representation of image data, a Word2Vec embedding of class labels, and linear maps between the visual and semantic embedding spaces. However, the spaces themselves are not linear, and we postulate the sample embedding to be populated by noisy samples near otherwise smooth manifolds. We exploit the graph structure defined by the sample points to regularize the estimates of the manifolds by inferring the graph connectivity using a generalization of the isoperimetric inequalities from Riemannian geometry to graphs. Surprisingly, this regularization alone, paired with the simplest baseline model, outperforms the state-of-the-art among fully automated methods in zero-shot learning benchmarks such as AwA and CUB. This improvement is achieved solely by learning the structure of the underlying spaces by imposing regularity.Comment: Accepted to AAAI-2

    Temporal regularity effects on pre-attentive and attentive processing of deviance

    Get PDF
    Temporal regularity allows predicting the temporal locus of future information thereby potentially facilitating cognitive processing. We applied event-related brain potentials (ERPs) to investigate how temporal regularity impacts pre-attentive and attentive processing of deviance in the auditory modality. Participants listened to sequences of sinusoidal tones differing exclusively in pitch. The inter-stimulus interval (ISI) in these sequences was manipulated to convey either isochronous or random temporal structure. In the pre-attentive session, deviance processing was unaffected by the regularity manipulation as evidenced in three event-related-potentials (ERPs): mismatch negativity (MMN), P3a, and reorienting negativity (RON). In the attentive session, the P3b was smaller for deviant tones embedded in irregular temporal structure, while the N2b component remained unaffected. These findings confirm that temporal regularity can reinforce cognitive mechanisms associated with the attentive processing of deviance. Furthermore, they provide evidence for the dynamic allocation of attention in time and dissociable pre-attentive and attention-dependent temporal processing mechanisms

    P3b reflects periodicity in linguistic sequences

    Get PDF
    Temporal predictability is thought to affect stimulus processing by facilitating the allocation of attentional resources. Recent studies have shown that periodicity of a tonal sequence results in a decreased peak latency and a larger amplitude of the P3b compared with temporally random, i.e., aperiodic sequences. We investigated whether this applies also to sequences of linguistic stimuli (syllables), although speech is usually aperiodic. We compared aperiodic syllable sequences with two temporally regular conditions. In one condition, the interval between syllable onset was fixed, whereas in a second condition the interval between the syllables’ perceptual center (p-center) was kept constant. Event-related potentials were assessed in 30 adults who were instructed to detect irregularities in the stimulus sequences. We found larger P3b amplitudes for both temporally predictable conditions as compared to the aperiodic condition and a shorter P3b latency in the p-center condition than in both other conditions. These findings demonstrate that even in acoustically more complex sequences such as syllable streams, temporal predictability facilitates the processing of deviant stimuli. Furthermore, we provide first electrophysiological evidence for the relevance of the p-center concept in linguistic stimulus processing

    Event-related potential correlates of spatiotemporal regularities in vision

    Get PDF
    Spatiotemporal regularities in stimulus structure have been shown to influence visual target detection and discrimination. Here we investigate whether the influence of spatiotemporal regularity is associated with the modulation of early components (P1/N1) in Event-Related Potentials (ERP). Stimuli consisted of five horizontal bars (predictors) appearing successively towards the fovea followed by a target bar at fixation, and participants performed a key-press on target detection. Results showed that compared to the condition where five predictors were presented in a temporally regular but spatially randomised order, target detection-times were faster and contralateral N1 peak latencies were shorter when the predictors and the target were presented with spatial and temporal regularity. Both measures were most prolonged when only the target was presented. In this latter condition, an additional latency prolongation was observed for the P1 peak compared to the conditions where the target was preceded by the predictors. The latency shifts associated with early ERP components provides additional support for involvement of early visual processing stages in the coding of spatiotemporal regularities in humans

    Incremental Visual-Inertial 3D Mesh Generation with Structural Regularities

    Full text link
    Visual-Inertial Odometry (VIO) algorithms typically rely on a point cloud representation of the scene that does not model the topology of the environment. A 3D mesh instead offers a richer, yet lightweight, model. Nevertheless, building a 3D mesh out of the sparse and noisy 3D landmarks triangulated by a VIO algorithm often results in a mesh that does not fit the real scene. In order to regularize the mesh, previous approaches decouple state estimation from the 3D mesh regularization step, and either limit the 3D mesh to the current frame or let the mesh grow indefinitely. We propose instead to tightly couple mesh regularization and state estimation by detecting and enforcing structural regularities in a novel factor-graph formulation. We also propose to incrementally build the mesh by restricting its extent to the time-horizon of the VIO optimization; the resulting 3D mesh covers a larger portion of the scene than a per-frame approach while its memory usage and computational complexity remain bounded. We show that our approach successfully regularizes the mesh, while improving localization accuracy, when structural regularities are present, and remains operational in scenes without regularities.Comment: 7 pages, 5 figures, ICRA accepte

    Visual Perception as Patterning: Cavendish against Hobbes on Sensation

    Get PDF
    Many of Margaret Cavendish’s criticisms of Thomas Hobbes in the Philosophical Letters (1664) relate to the disorder and damage that she holds would result if Hobbesian pressure were the cause of visual perception. In this paper, I argue that her “two men” thought experiment in Letter IV is aimed at a different goal: to show the explanatory potency of her account. First, I connect Cavendish’s view of visual perception as “patterning” to the “two men” thought experiment in Letter IV. Second, I provide a potential reply on Hobbes’s behalf that appeals to physiological differences between perceivers’ sense organs, drawing upon Hobbes’s optics in De homine. Third, I argue that such a reply would misunderstand Cavendish’s objective of showing the limited explanatory resources available in understanding visual perception as pressing when compared to her view of visual perception as patterning
    corecore