357,674 research outputs found

    Human-assisted self-supervised labeling of large data sets

    Get PDF
    There is a severe demand for, and shortage of, large accurately labeled datasets to train supervised computational intelligence (CI) algorithms in domains like unmanned aerial systems (UAS) and autonomous vehicles. This has hindered our ability to develop and deploy various computer vision algorithms in/across environments and niche domains for tasks like detection, localization, and tracking. Herein, I propose a new human-in-the-loop (HITL) based growing neural gas (GNG) algorithm to minimize human intervention during labeling large UAS data collections over a shared geospatial area. Specifically, I address human driven events like new class identification and mistake correction. I also address algorithm-centric operations like new pattern discovery and self-supervised labeling. Pattern discovery and identification through self-supervised labeling is made possible through open set recognition (OSR). Herein, I propose a classifier with the ability to say "I don't know" to identify outliers in the data and bootstrap deep learning (DL) models, specifically convolutional neural networks (CNNs), with the ability to classify on N+1 classes. The effectiveness of the algorithms are demonstrated using simulated realistic ray-traced low altitude UAS data from the Unreal Engine. The results show that it is possible to increase speed and reduce mental fatigue over hand labeling large image datasets.Includes bibliographical references

    Mid-level Deep Pattern Mining

    Full text link
    Mid-level visual element discovery aims to find clusters of image patches that are both representative and discriminative. In this work, we study this problem from the prospective of pattern mining while relying on the recently popularized Convolutional Neural Networks (CNNs). Specifically, we find that for an image patch, activations extracted from the first fully-connected layer of CNNs have two appealing properties which enable its seamless integration with pattern mining. Patterns are then discovered from a large number of CNN activations of image patches through the well-known association rule mining. When we retrieve and visualize image patches with the same pattern, surprisingly, they are not only visually similar but also semantically consistent. We apply our approach to scene and object classification tasks, and demonstrate that our approach outperforms all previous works on mid-level visual element discovery by a sizeable margin with far fewer elements being used. Our approach also outperforms or matches recent works using CNN for these tasks. Source code of the complete system is available online.Comment: Published in Proc. IEEE Conf. Computer Vision and Pattern Recognition 201

    Part Detector Discovery in Deep Convolutional Neural Networks

    Full text link
    Current fine-grained classification approaches often rely on a robust localization of object parts to extract localized feature representations suitable for discrimination. However, part localization is a challenging task due to the large variation of appearance and pose. In this paper, we show how pre-trained convolutional neural networks can be used for robust and efficient object part discovery and localization without the necessity to actually train the network on the current dataset. Our approach called "part detector discovery" (PDD) is based on analyzing the gradient maps of the network outputs and finding activation centers spatially related to annotated semantic parts or bounding boxes. This allows us not just to obtain excellent performance on the CUB200-2011 dataset, but in contrast to previous approaches also to perform detection and bird classification jointly without requiring a given bounding box annotation during testing and ground-truth parts during training. The code is available at http://www.inf-cv.uni-jena.de/part_discovery and https://github.com/cvjena/PartDetectorDisovery.Comment: Accepted for publication on Asian Conference on Computer Vision (ACCV) 201

    Self-Organizing Information Fusion and Hierarchical Knowledge Discovery: A New Framework Using Artmap Neural Networks

    Full text link
    Classifying novel terrain or objects from sparse, complex data may require the resolution of conflicting information from sensors woring at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when eveidence variously suggests that and object's class is car, truck, or airplane. The methods described her address a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an object's class is car, vehicle, and man-made. Underlying relationships among classes are assumed to be unknown to the autonomated system or the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierachical knowlege structures. The fusion system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples, but is not limited to image domain.Air Force Office of Scientific Research (F49620-01-1-0423); National Geospatial-Intelligence Agency (NMA 201-01-1-2016, NMA 501-03-1-2030); National Science Foundation (SBE-0354378, DGE-0221680); Office of Naval Research (N00014-01-1-0624); Department of Homeland Securit

    Evolving Spatio-temporal Data Machines Based on the NeuCube Neuromorphic Framework: Design Methodology and Selected Applications

    Get PDF
    The paper describes a new type of evolving connectionist systems (ECOS) called evolving spatio-temporal data machines based on neuromorphic, brain-like information processing principles (eSTDM). These are multi-modular computer systems designed to deal with large and fast spatio/spectro temporal data using spiking neural networks (SNN) as major processing modules. ECOS and eSTDM in particular can learn incrementally from data streams, can include ‘on the fly’ new input variables, new output class labels or regression outputs, can continuously adapt their structure and functionality, can be visualised and interpreted for new knowledge discovery and for a better understanding of the data and the processes that generated it. eSTDM can be used for early event prediction due to the ability of the SNN to spike early, before whole input vectors (they were trained on) are presented. A framework for building eSTDM called NeuCube along with a design methodology for building eSTDM using this are presented. The implementation of this framework in MATLAB, Java, and PyNN (Python) is presented. The latter facilitates the use of neuromorphic hardware platforms to run the eSTDM. Selected examples are given of eSTDM for pattern recognition and early event prediction on EEG data, fMRI data, multisensory seismic data, ecological data, climate data, audio-visual data. Future directions are discussed, including extension of the NeuCube framework for building neurogenetic eSTDM and also new applications of eSTDM

    Discovering human activities from binary data in smart homes

    Get PDF
    With the rapid development in sensing technology, data mining, and machine learning fields for human health monitoring, it became possible to enable monitoring of personal motion and vital signs in a manner that minimizes the disruption of an individual’s daily routine and assist individuals with difficulties to live independently at home. A primary difficulty that researchers confront is acquiring an adequate amount of labeled data for model training and validation purposes. Therefore, activity discovery handles the problem that activity labels are not available using approaches based on sequence mining and clustering. In this paper, we introduce an unsupervised method for discovering activities from a network of motion detectors in a smart home setting. First, we present an intra-day clustering algorithm to find frequent sequential patterns within a day. As a second step, we present an inter-day clustering algorithm to find the common frequent patterns between days. Furthermore, we refine the patterns to have more compressed and defined cluster characterizations. Finally, we track the occurrences of various regular routines to monitor the functional health in an individual’s patterns and lifestyle. We evaluate our methods on two public data sets captured in real-life settings from two apartments during seven-month and three-month periods
    • …
    corecore