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ing (green), and detection’s that a human catches but the algorithm
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ABSTRACT

There is a severe demand for, and shortage of, large accurately labeled datasets

to train supervised computational intelligence (CI) algorithms in domains like un-

manned aerial systems (UAS) and autonomous vehicles. This has hindered our ability

to develop and deploy various computer vision algorithms in/across environments and

niche domains for tasks like detection, localization, and tracking. Herein, I propose a

new human-in-the-loop (HITL) based growing neural gas (GNG) algorithm to min-

imize human intervention during labeling large UAS data collections over a shared

geospatial area. Specifically, I address human driven events like new class identifi-

cation and mistake correction. I also address algorithm-centric operations like new

pattern discovery and self-supervised labeling. Pattern discovery and identification

through self-supervised labeling is made possible through open set recognition (OSR).

Herein, I propose a classifier with the ability to say “I don’t know” to identify outliers

in the data and bootstrap deep learning (DL) models, specifically convolutional neu-

ral networks (CNNs), with the ability to classify on N+1 classes. The effectiveness

of the algorithms are demonstrated using simulated realistic ray-traced low altitude

UAS data from the Unreal Engine. The results show that it is possible to increase

speed and reduce mental fatigue over hand labeling large image datasets.
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Chapter 1

INTRODUCTION

1.1 SO MUCH DATA, SO LITTLE TIME

In today’s machine learning (ML) and artificial intelligence (AI) landscape, deep

learning (DL) is the reigning king. Different flavors of DL, like convolutional neu-

ral networks (CNNs) and recurrent neural networks (RNNs), generally require large

amounts of labeled training data, which in most cases require manual human label-

ing. Also, our modern era of computational intelligence (CI), ML, AI, and related,

is focused intensely on highly specialized domain/task specific learners. In this era

of increasingly specialized algorithms for domains such as self-driving, medical diag-

nosis, and unmanned aerial systems (UAS), labeling training data sets has become a

daunting endeavor. As a result, numerous companies have emerged and raised tens of

billions of dollars to label data for ML [1]. In the case of a CNN and object detection,

many look to data sets like ImageNet and Coco; which have 14+ million and 300K

images respectively.

While leaps in recognition performance have been made via DL applications, one

drawback is that DL generally abides by a closed world assumption, meaning the

network was trained to regress or predict a certain finite number of variables or classes

that were present in the training data. This means that closed-world DL models like

CNNs cannot predict classes they were not trained on. In applications with large

or quickly populating data sets, online learning is a popular approach to training
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ML models. In online ML, data is received sequentially and the knowledge of the

model most closely represents recent data. Algorithms in online ML operate without

information such as number of total classes or total data points. More specifically, a

classifier implemented with online learning in mind (e.g. a stream classifier [2]) could

have the ability to identify beyond a finite number of possibilities, and as such would

not be inhibited by the closed-world assumption. This open set recognition (OSR)

(see ref. [3] for a recent survey) has begun to formalize this concept of open versus

closed set.

Herein, I first discuss the possibility for online ML extensions of current DL ap-

plications for OSR and allowing DL classifiers to say “I don’t know.” Then, I discuss

the application of a user interface for labeling of large data sets for supervised ML

tasks.

1.2 OPEN SET RECOGNITION FOR DEEP LEARNING

A number of challenges and questions arise as we attempt to add a new class to a

pre-trained DL model. For example, how does the model see the new class? Does

it incorrectly classify it as one of its known N classes? Can the model say “I don’t

know?” Furthermore, does the current model even have the potential to detect the

new class, e.g., are its features good enough to detect and discriminate this class? I

discuss this in further detail in Chapter 2. The desire to detect new classes is hereafter

referred to as the “N + 1” problem (where N is the number of known classes).

OSR formalizes Known-Knowns (KK), Known-Unkowns (KU), Unknown-Knowns

(UK), and Unknown-Unknowns (UU). Most DL operates on a closed set premises and

data sets are comprised of only KKs and KUs. Closed set DL models (e.g. ResNet50,

a CNN) have a hard time predicting on data they were not trained on, and therefore

the introduction of UKs and UUs in the data should expect to result in undefined

model behavior. In offline applications of N+1, transfer learning can be implemented
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to greatly increase the speed of adopting new classes into the system. The point is,

there needs to exist a more elegant way to extend DL models, in my case CNNs,

to class N + 1 without requiring extensive and expensive offline retraining. In this

dissertation, I frame the problem as such that machines should possess a sufficient

way to say “I don’t know what this is”. From there, we can implement proven online

ML methods for folding new knowledge into the system.

Distance-based classification methods, such as the k-nearest neighbor (KNN),

compute the classification of a query point using the class label of nearby known

points. Unlike the fully connected nature of multi-layer perceptron (MLP) classifi-

cation layers of a CNN, distance-based classification methods have no fundamental

limit to number of known classes. Alternative methods to KNN, including fuzzy

k-nearest neighbor (FKNN) [4] and possibilistic k-nearest neighbor (PKNN) [5], com-

pute typicalities on queries of ownership to each of N classes. These typicalities can

be thresholded (FKNN), or are already thresholded (PKNN), to allow the classifier to

say “I don’t know what this is” when the query does not have high enough typicality

to any known class. Herein, I implement a distance-based classification approach in

PKNN to allow N + 1 classification at decision time in an online ML application for

labeling large data sets.

1.3 ONLINE LEARNING AND HITL TO OBTAIN SUPERVISED

LEARNING DATA

Today’s supervised learning applications require tremendous amounts of data to per-

form well on large scale image recognition tasks. Realistically, labeling data sets at

this scale is a daunting task. In many applications, it is the bottleneck. Modern ML

is overly dependent on supervised learning and its not clear if this ideology scales

in our pursuit of next generation AI. This issue has been of importance in the field

as of late as many try to get around this bottleneck. Different approaches are be-
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ing explored, from transfer learning large models, building a generative adversarial

network (GAN) structured automated labeled data augmentation method [6], and

unsupervised domain adaptation with a human-in-the-loop (HITL) [7]. While ap-

proaching the problem uniquely, each attempt has sights set on eventually being able

to automatically label data (that’s the dream, right?).

Labeling data automatically, though, can be a tricky problem. Labeling is not a

problem that can be mostly solved, no, training data sets are no use to an algorithm

unless they are completely accurate. A common adage is, “ML/AI models are only

as good as the data you give them.” With the fact that no current ML/AI algorithms

are smart enough to run un-tethered, it is difficult to imagine a solution at our current

time where data labeling can be a truly unsupervised task.

Modern ML/AI is not good enough to label full data sets without supervision. In

all cases, a human expert is necessary to label large data sets. This HITL approach has

proven application in the field for data labeling. We are not the first to investigate

online learning, HITL, and OSR to train CI algorithms or label data. Many real-

world applications are impacted by these needs, e.g., autonomous driving, drones,

security and defense, healthcare, and medicine [8] [9] [10]. For example, Telsa’s data-

labeling approach uses a HITL to improve the accuracy of their autonomous labeling

algorithms. In a 2021 talk, Andrej Karpathy describes Tesla’s self-supervised labeling

system and reinforces the importance and need of human intervention in large-scale

autonomous data labeling [11].

The HITL approach to data labeling requires a human expert to teach the algo-

rithm the correct labels as it runs. This teacher and student approach is the current

state of the art of HITL algorithms, where the student algorithm is assumed at some

point to become smart enough to run mostly without the help of the teacher human.

This relationship raises an interesting question, does the algorithm to ever reach a

point where it can run unsupervised, without any oversight from the human? Can

4



the human trust the design and performance of the algorithm to label data sets un-

tethered and far quicker than any human could be able to supervise? My answer

to this, as explored in this paper, is “no”. In labeling data, as discussed above, we

should expect near perfect classification results. Herein, I implement a HITL ap-

proach for improving the self-supervised classification of training data for large scale

image recognition applications.

1.4 CONTRIBUTIONS

This dissertation focuses on two challenges. The first is how to efficiently extend

CNNs to class N+1 to support tasks like explosive hazard detection (EHD) and

automatic target recognition (ATR). To this end, Chapter 2 investigates different

classifiers, namely fuzzy set theoretic methods, and their performance versus the

conventional CNN fully-connected MLP classifier. Specific classifiers explored herein

include the FKNN and the PKNN, including examinations into their ability to say

“I don’t know”. To this end, Chapter 2 proposes a way to learn the bandwidth (the

mechanism by which to say “I don’t know”) in the PKNN. Next, various CNN models

are challenged to predict on N+1 classes. The first challenge listed here is concluded

by proposing an approach based on cluster validity assessment to measure the degree,

in [0, 1], to which various CNN models can add class N+1 (or not).

In the second challenge, the idea of having a human help a machine learn and

refine concepts is proposed. Specifically, this dissertation focuses on an extension

of self-supervised online classification using a HITL. The result has the potential

to significantly reduce the time and cost required to label large low altitude aerial

data sets and build ML/AI models on specialized domains that have insufficient

labeled training data. To begin, Chapter 3 details the first application of streaming

soft neural gas (StreamSoNG) [12] on a streaming computer vision task [13]. To

date, StreamSoNG has been developed using a combination of theory, controlled

5



synthetic data sets (e.g., mixtures of Gaussians with noise), and real-world texture

image data sets. Secondly, Chapter 4 extends PKNN and an online growing neural gas

(GNG) [14] to create Self-Supervised and Human-In-the-loop Growing Neural Gas

for HITL labeling of large data sets with a self-supervised online growing distance-

based classifier [15]. This dissertation concludes by demonstrating an application of

SSHING for labeling large data sets of simulated UAS data which results in quicker

labeling speeds and a reduction of labeling loads from manual labeling alone.
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Chapter 2

EXTENDING DEEP LEARNING TO NEW CLASSES

WITHOUT RETRAINING

Jeffrey Schulza, Charlie Veala, Andrew Bucka, Derek T. Andersona,

James M. Kellera, Mihail Popescua, Grant J. Scotta, Dominic K. C. Hoa,

Timothy Wilkinb

[a] Department of Electrical Engineering and Computer Science, University of Mis-

souri, Columbia MO, USA

[b] School of Information Technology, Deakin University, Geelong, Victoria, AU
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Abstract

The focus of this article is extending classifiers from N classes to N+1 classes

without retraining for tasks like explosive hazard detection (EHD) and automatic

target recognition (ATR). In recent years, deep learning has become state-of-the-

art across domains. However, algorithms like convolutional neural networks (CNNs)

suffer from the assumption of a closed-world model. That is, once a model is learned, a

new class cannot usually be added without changes in the architecture and retraining.

Herein, we put forth a way to extend a number of deep learning algorithms while

keeping their features in a locked state; i.e., features are not retrained for the new

N+1 class. Different feature transformations, metrics, and classifiers are explored to

assess the degree to which a new sample belongs to one of the N classes and a decision

rule is used for classification. Whereas this extends a deep learner, it does not tell us

if a network with locked features has the potential to be extended. Therefore, we put

forth a new method based on visually assessing cluster tendency to assess the degree

to which a deep learner can be extended (or not). Lastly, while we are primarily

focused on tasks like aerial EHD and ATR, experiments herein are for benchmark

community data sets for sake of reproducible research.

Keywords: convolutional neural network, explosive hazard detection, EHD, au-

tomatic target recognition, ATR, possibilistic K nearest-neighbor, PKNN, clustering,

clustering in ordered dissimilarity data, CLODD
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2.1 INTRODUCTION

Our modern era of computational intelligence, machine learning, artificial intelligence,

and related, is focused intensely on highly specialized domain/task specific learners.

A well-known example is the convolutional neural network (CNN) and deep learning.

While leaps in performance have been made via deep learning, a drawback is that they

generally abide by a “closed world” assumption, meaning the network was trained to

regress or predict a certain finite number of factors or classes that were present in

the training data. However, what happens if a user desires to add a new class/ob-

ject, e.g., new target in automatic target recognition (ATR)? Current practice is to

retrain a network from scratch—which is generally an offline and resource expensive

operation—or the feature extraction layers can be retained and the classification lay-

ers retrained (a type of transfer learning). The point is, we need a more elegant way

to extend models like a CNN to class “N+1” without requiring extensive and expen-

sive offline retraining. Furthermore, most CNNs utilize a normalization strategy like

soft max. Whereas this often helps during training (and perhaps testing), it turns a

network into a one of N classifier. The point it, machines should possess a sufficient

way to say “I don’t know what this is”.

Herein, we focus on two challenges. The first is how to efficiently extend modern

deep learning to class N+1 to support tasks like explosive hazard detection (EHD)

and ATR—see Figure 2.1. To this end, we investigate different classifiers from com-

putational intelligence, namely fuzzy set theoretic methods, versus the conventional

CNN approach of using a multi layer perceptron (MLP). Specific classifiers explored

herein include the fuzzy K nearest neighbor (FKNN) and the possibilistic K nearest

neighbor (PKNN). We explore the performance of these classifiers and their ability

to say “I don’t know”. To this end, we propose a way to learn the bandwidth (the

mechanism by which we say “I don’t know”) in the PKNN. Next, we investigate the

9



Table 2.1: Acronyms and Notation

KNN K nearest neighbor

PKNN Possibilistic KNN

CLODD Clustering in ordered dissimilarity data

K Number of neighbors for evaluation

K̂ Number of neighbors to fit in PKNN

xi ∈ X Train dataset of N samples and M dimen-
sion

fi ∈ ℜM̂ Neural feature encoding

[D]ij = D(i, j) Dissimilarity of xi and xj

challenge of predicting our models ability to go to N+1—see Figure 2.2. The reality

is, a CNN is generally at least two parts, feature extraction and classification. What

features did the network learn? Instead of assuming that we can just add ”N+1”, we

propose an approach based on cluster validity assessment to measure the degree, in

[0, 1], to which we can add class N+1 (or not).

The remainder of this article is organized as follows. First, in Section 2.2 we discuss

features and feature extraction, in Section 2.3 we discuss our PKNN implementation

and how to learn the PKNN from data, Section 2.4 discusses our method of assessing

if a deep learning model can be extended to class N+1, and Section 2.5 discusses our

experiments and results.

2.2 FEATURE EXTRACTION ANDDIMENSIONALITY REDUCTION

To no surprise, artificial intelligence, machine learning, pattern recognition, etc., are

only as good as the information (e.g., data and associated features) they are pro-

vided. For decades our research community has exerted significant effort in manually

identifying “manual or hand crafted features”. In signal, and specifically image, pro-

cessing, this typically equates to information like color, texture, and shape. An array

of features have been proposed to date, from Gabor filters to histogram of gradients,

fractals, Harris, etc. However, the last decade has witnessed a shift from hand crafted
10



Figure 2.1: High-level illustration of how we extend a deep learner to class N+1.
First, a network, e.g., CNN, is trained. Second, we strip off the classification layers
(the MLP). As a result, each input is presented to a CNN for feature extraction.
These features are then passed to a classifier like the KNN, FKNN, or PKNN. Based
on the resultant typicalities, a sample is classified into a known class or the system
reports “I don’t know”.

Figure 2.2: Illustration of our procedure for measuring the degree to which a model
can be extended to class N+1. We start with known classes that the model has
been trained to recognize. Next, a set of instances from class N+1 is provided. A
dissimilarity matrix is constructed, which we can visually assess to determine how
well the model can extend. Furthermore, aspects of the CLODD algorithm are used
to formally extract a number, or the [0, 1] degree to which the network is extendable.
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features to “machine learned” features.

In the context of neural networks, specifically CNNs, the story is that they learn

basic shape, color, and/or texture features in lower layers, deeper layers are associ-

ated with more complicated and compound shapes/objects, followed eventually by

higher-level relationships and semantic information. Regardless of what is learned,

the fact is that CNNs consist of layers of filters, which when presented with data

provide a response field. Consider the popular Resnet51. If one removes the “classi-

fication layers” of Resnet51, then they obtain a final response field of 2, 048 features.

Specifically, the standard Resnet51 has a 7x7 response field per feature, which means

that Resnet51 has a dimensionality of 2, 048∗7∗7. Herein, in our pursuit of extending

our models to class N + 1, we investigate nearest neighbors versus an MLP classifier

layer. This presents a dilemma as we have to compute, and use, distances between

samples in high dimensional spaces. The reader can refer to [16] for a discourse on

the challenges of assessing proximity in high dimensional spaces. Herein, in an ef-

fort to combat the curse of dimensionality, we explore a few reduction strategies to

empirically assess if they help classification.

2.2.1 Reduction Strategy 1: Pooling

The first strategy that we explore is pooling. In the context of a CNN, pooling helps

us combat a number of factors, from dimensionality reduction to combating scale

and even noise. The output feature vector for Resnet51 is of size 2, 048 ∗ 7 ∗ 7. In

an attempt to side step affine transformations that we are not concerned with, we

pool within each feature map. Herein, we use max pooling, i.e., we take the largest

response per feature (response field). A demonstration of max pooling across a 4x4

12



response field is

0.2 0.1 0 0.6

0.1 0.3 0.4 0.5

0.7 0.6 0.8 0.5

0.4 0.3 0.4 0.2

→ 0.8.

Whereas we use max pooling, the reader can engage in a variety of aggregation

operations for pooling, i.e., min, median, or more complicated and unique operators

like the ordered weighted average[17] or fuzzy integral[18, 19]. Max, a generalized

union operator, is an appropriate fit for our task as it captures the idea of what was

our strongest response per feature. In summary, for a CNN like Resnet51, pooling

is a simple procedure that helps us reduce dimensionality from 2, 048x7x7 to 2, 048,

at the expense of where in the spatial domain the feature occurred and how many

instances of that feature were observed.

2.2.2 Reduction Strategy 2: Principal Component Analysis

A second, yet simple, dimensional reduction technique explored herein is principal

component analysis (PCA). PCA is an unsupervised method that is a linear trans-

formation whose basis vectors are identified on the premises of maximizing variance.

We perform an eigen decomposition, which results in D eigenvectors with correspond-

ing eigenvalues for a D dimensional space. Herein, we select the fewest number of

eigenvectors whose eigenvalue sum corresponds to more than %99 of the overall data

variation. However, PCA is a linear transformation and there is no guarantee that

patterns or clusters in the original high dimensional space are preserved in the reduced

low dimensional space. For additional methods, the reader can refer to additional un-

supervised methods like random projections or supervised methods like Fishers linear

discriminate analysis.
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2.3 CLASSIFICATION: POSSIBILISTIC KNN

Next, we discuss our strategy for taking neural features and realizing a classifier that

can help extend to N+1 and say “I don’t know”. To this end, the PKNN improves the

KNN by improving the semantics of the nearest neighbor memberships and enabling

outlier detection. A membership value can be calculated from the KNN via

µi
knn(x) =

1

K

K∑
k=1

1i(yk), (2.1)

1i(yk) =


1 if sample yk belongs to class i

0 otherwise.

(2.2)

Clearly, µi
knn(x) ∈ [0, 1] is the number of points in class i relative to all of the nearest

neighbors (K). In [4], Keller et al. proposed an extension to the KNN, the fuzzy

KNN (FKNN),

µi
fknn(x) =

∑K
j=1 µ̃

i(yj)

(
1

||x−yj ||
2

m−1

)
∑K

j=1

(
1

||x−yj ||
2

m−1

) , (2.3)

which is a membership weighted and inverse distance ratio of theK nearest neighbors.

For each training sample data point, a fuzzy membership is computed offline,

µ̃i(x) =


0.51 + (ni

K
)× 0.49, if x belongs to class i

(ni

K
)× 0.49, otherwise,

(2.4)

where 1 ≤ ni ≤ K is the number of neighbors that belong to class i. Thus, a

membership degree is computed per data point and per class relative to its local K

nearest neighbors. If the sample point (x) belongs to class i, then a reward of 0.51

is added to start, plus the ratio of K points in class i. Otherwise, the membership

is restricted to 0 ≤ µ̃i(x) ≤ 0.49. Imagine a sample surrounded by data points from
14



the opposing class. The assumption here is that our sample (that belongs to class

i) is not noise. The resultant membership degree (i.e., µ̃i(x)) is 0.51, whereas it

would have little-to-no voice in the KNN. In general, one expects the FKNN to be

the most beneficial in overlapping regions. During test time, we calculate µi
fknn(x),

which exploits these membership degrees. Consider a scenario in which a test sample

has one retrieval from class i and the other nearest neighbors belong to a different

class. In the KNN, we would not select class i. However, in the FKNN, depending

on the proximity of x to the sample in class i, it is possible to generate µi
fknn(x) = 1

when x is sufficiently close to the ith sample. This is one story. There are clearly

other FKNN benefits that are more complicated, e.g., related to memberships and

relative neighbor distances.

In [5], Frigui and et al. created the possibilistic KNN (PKNN), an extension of

the FKNN and KNN,

µi
pknn1

(x) =
1

K

K∑
j=1

µ̃i(yj)w
p(x,yj), (2.5)

where µi
pknn1

(x) is the typicality–e.g., degree of similarity–of a test sample to a known

class. Equation 2.5 sums over K neighbors the product of the training data fuzzy

memberships and the possibilistic score wp (explained below). Herein, we also explore

an unweighted version of the PKNN,

µi
pknn2

(x) =
1

K

K∑
j=1

wp(x,yj). (2.6)

The possibilistic score, wp(·), is where the PKNN truly differs from the FKNN and

KNN. The PKNN uses a bandwidth factor, η, to take into account the distance of

the test case to the prototypes. If a data point is within the bandwidth, then the

membership value is 1. Otherwise, the membership value decays, allowing points to
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have low-to-no membership. The possibilistic scoring is

wp(x,yj) =
1

1 + [max(0, ∥x− yj∥ − η)]2/(m−1)
. (2.7)

In[5], Frigui et al. derived η from data. Specifically, Frigui let η = η1
η2
, where η1 is

the mean µ of the distances of the K closest neighbors in the training data and η2 is

three times the standard deviation of the same set.

2.3.1 Bandwidth Parameter Optimization

Not all data and patterns are created equal, which poses problems for the η parameter

presented in Equation 3.1. Whereas the parameter estimation method proposed by

Frigui et al. led to improvement for their explosive hazard detection task, it does

not necessarily generalize. In our experiments, datasets like ImageNet have relatively

large standard deviations which result in tiny η values. This required us to scale

Frigui’s η to produce positive results. While this is useful, it increased the amount of

hand-picking and fine tuning required to get a PKNN classifier running. To combat

this problem, we propose to learn the bandwidths from data. To this end, we for-

mulate a cost function, J(wp, η, α), and a genetic algorithm is used for optimization

as the equation does not have a nicely differential or analytical solution. The cost

function explored herein is

J(wp, η, α) = (1−
wp

i,i

C
) +

wp
i,j

C
+ α

C∑
i=1

|ηi| , (2.8)

where wp is the typicalities of our validation samples, wp
i,i is the sum of true-positive

typicalities (where only the typicalities belonging to the correct class are totaled), and

wp
i,j is the sum of false-positive typicalities (where only the typicalities belonging to

incorrect classes are totaled). The cost function is rounded out with a summation fac-

tor, scaled by α (a user defined parameter), meant to punish larger bandwidths. This
16



(a) No Dimensionality Reduction (b) Max-Pooling Reduction

Figure 2.3: ODM displaying 50 images per class of Monkeys, Tigers, Cheetahs, and
Horses (the N+1 class). The displayed data is the feature activation from ResNet101
max-pooled to size 1x2048. For this class balanced example, the best case scenario is
four dark diagonal squares with white in the off diagonals.

factor prevents bandwidths from ballooning farther than they need to be, increasing

the chance for future N + 1 classes to fall outside of η in feature space.

2.4 ASSESSING EXTENDING TO CLASS N+1 AND SAYING “I DON’T

KNOW”

The goal of this section is two fold. First, we desire a visual way to see and understand

the quality of different deep learning algorithms and models with respect to the N

classes it was trained on and new unknown classes. Second, we desire a way to move

this qualitative process into a quantitative procedure. The following section outlines

these two approaches.

2.4.1 Qualitative: Visualizing Architectures, Models, and Features

First, we focus on qualitative assessment. If we, as humans, can determine separability

between the features of known and unknown classes when displayed in certain data

visualization strategies, then it might be good news for our deep learning models. In

order to qualitatively determine if a model is able to separate the features of a new
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class from an existing class, we will use an ordered dissimilarity matrix (ODM). ODMs

are matrices built from our data set by computing a distance function, e.g., lp norm,

between all possible pairings of image feature vectors. For sake of description, assume

we have N classes. Furthermore, assume, without loss of generality that there is an

equal number of samples per class. In the ideal case, all samples in a class are similar

and have a low distance. Conversely, samples in a class are dissimilar to samples from

other classes. As a result, when one “looks” at an ODM they will see “dark blocks”

along the diagonal per class and “white rectangles” in the opposing classes. Whereas

all distances are positive, in order to draw an ODM one can engage in a strategy like

range compressing the ODM between the min and max value for visual display. A

dissimilarity matrix (not ordered), like what we will use in this paper, is shown in

Figure 2.3.

In the context of clustering (unsupervised learning), one typically uses a procedure

like VAT or iVAT[20], for ordering the samples and enhancing the visual structure

of an ODM. Herein, we have class labels, we are doing supervised learning. While

we could reorder samples in each class via VAT/iVAT, one can regardless make out

the structure and class separation in Figure 2.3. However, for larger sets of samples,

we recommend running VAT per class and the enhancement step of iVAT on the

permuted VAT ODM/image. As Figure 2.3 shows, our N+1 class, horses, has a

distinguishable dark box, indicating similarity to itself and dissimilarity to the rest of

the data set (aka other classes). As a result, it suggests that even though the network

was not trained on horses, it learned visual features to recognize and distinguish

horses. This is a positive indicator that the model can be extended, i.e., the network

might not need to be retrained.
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2.4.2 Quantitative: Numerical Value Indicating “Goodness”

In order to rank models according to their ability to extend to N+1, we need to estab-

lish a measure that somehow determines the separability of the N+1 class features to

known class features. This takes the human out of the loop and it enables automating

the ranking for large numbers of trained models. Herein, we leverage the measure

component of the Clustering in Ordered Dissimilarity Data (CLODD) [21] algorithm,

which is a method to automatically discover the number of clusters in a VAT/iVAT

image. The equation for CLODD is

Eα(U ;D∗) = αEsq(U ;D∗) + (1− α)Eedge(U ;D∗); 0 ≤ α ≤ 1, (2.9)

where Eα(U ;D∗) is the weighted score between the “edginess” Eedge(U ;D∗) of the

clusters and the “squaredness” Esq(U ;D∗) of the clusters. The weight, a user defined

parameter, of the “edginess” and “squaredness” factors are determined by the mixing

factor α. The equation for squaredness in CLODD is

Esq(U ;D∗) =

(∑c
i=1

∑
s∈i,t/∈i d

∗
st∑c

i=1(n− ni)ni

)
−

(∑c
i=1

∑
s,t∈i,s ̸=t d

∗
st∑c

i=1(n
2
i − ni)

)
, (2.10)

where the average dissimilarity within dark regions is subtracted from the average

dissimilarity between dark and non-dark regions. In the first factor, dissimilarity

between classes and all other classes (d∗s∈i,t/∈i) is averaged. In the second factor,

dissimilarity between classes and themselves (d∗s,t∈i,s ̸=t) is averaged. The equation for

edginess in CLODD is

Eedge(U ;D∗) =
1

c− 1

c−1∑
j=1

∑mj

i=mj−1

∣∣∣d∗i,mj
− d∗i,mj+1

∣∣∣+∑mj+1

i=mj+1

∣∣∣d∗i,mj
− d∗i,mj+1

∣∣∣
nj + nj+1

,

(2.11)

19



where the dissimilarity between one cluster and the next is summed up over all clus-

ters, averaged over the number of samples. Equations 2.10 and 2.11 are combined

to create Equation 2.9, which is maximized in the CLODD algorithm to find good

clusters.

Herein, we have a slightly different problem than CLODD. Specifically, we are not

working with unlabeled data and we do not permute the dissimilarity matrix with

respect to underlying cluster structure. Instead, the dissimilarity matrix is organized

according to know class labels, which alters the semantics of edginess. As such, two

procedures are explored herein.

In Method 1, only squaredness is calculated, not edginess, with respect to class

N+1. The idea is to subtract the average of the class N+1 to not N+1 classes from

the average of the class N+1 to class N+1 instances. However, we first normalize the

dissimilarity matrix by subtracting its minimum and then dividing by the maximum.

This normalization is performed for sake of interpretability, i.e., a value of one is best

and negative one is the worst possible outcome. In Method 2, we compute Equation

2.10, just squardness on the entire matrix. The difference between Method 1 and

Method 2 is, Method 1 says “how well can we separate class N+1 from the other

classes”, and Method 2 says that plut “how well does the not N+1 classes separate

from one another”. It might be important to consider both, as the goal would be

an ODM with all dark blocks across the diagonal, indicating that class N+1 can be

detected and discriminated, but it does not come at the expense of any of the existing

classes. This nuance is subtle and elaborated on via example in the results section.

2.5 EXPERIMENTS AND RESULTS

In this section, we investigate three questions: what is our classification accuracy rela-

tive to different models and projections; does optimal bandwidth parameter selection

lead to performance gain; and is it possible to rank order approaches based on our
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Figure 2.4: Our Imperfect Dataset consists of oranges, bananas, and donuts. Oranges
and bananas are pulled from ImageNet and donuts are pulled from Food101.

predictive metric. While our primarily goal is detection relative to aerial EHD and

ATR, our experiments are performed on benchmark community data sets for sake of

reproducible research. Figures 2.4 and 2.5 show samples of the data used for each

class.

2.5.1 PKNN-Based Classification

In this subsection, we focus on two data sets with varying levels of complexity, noise,

and class similarity.

Experiment 1: Visually Challenging Classes and Imperfect Dataset

In Experiment 1 (see Figure 2.6), we demonstrate the classification accuracy of the

PKNN on a three class dataset; Oranges, Bananas, and Donuts. Oranges and Bananas

are from ImageNet but Donuts (the “class N+1” here) are from the Food101 dataset.

The Food101 dataset has noisy labels, at an estimated level of twenty percent. The

model under test is ResNet101, pretrained on ImageNet. Since the model is pretrained

on ImageNet and ImageNet does not include donuts, presumably our model has not
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Figure 2.5: A simpler dataset consists of monkeys, cheetahs, tigers, and horses. Mon-
keys, cheetahs, and tigers are pulled from ImageNet and horses are hand-picked.

seen class N+1 and it may not be equipped with features to recognize donuts. The

weight factor α, from the cost function 2.8 is 0.001 and the typicality threshold for

classficiation is 0.34. Optimized bounds are found using a DEAP genetic algorithm

in 10 generations with 100 individuals, a 0.5 cross-over rate, and 0.2 mutation rate.

In the case of PCA, the data is reduced to 1x200 per sample. When reducing the

max-pooled data with PCA, the data is reduced to 1x180.

Experiment 1 tells the following story. First, when no dimensionality reduction

is performed, donuts worsen banana classification. For sake of page count, we do

not focus on why these miss-classifications occur—e.g., shape, background versus

foreground object features, etc.—the reader can refer to methods like GradCAM

or convolution matrix transpose (e.g., “deconvolution”) for visual explainable AI if

desired. PCA is the worst performer and the best solution is max pooling with PCA.

That is, the best answer is to reduce dimensionality after performing an optimistic
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(a) No Dimensional Reduction (b) Max-Pooling

(c) PCA (d) Max-Pooling & PCA

Figure 2.6: Confusion matrices of test data after bandwidth parameter estimation
using the raw (high dimensional) data, max-pooled, PCA, and max-pooled data re-
duced with PCA.

pooling step per feature map. The reader should recall that Food101 has noisy labels

and complex backgrounds (aka, image content that is not our class of interest). This is

a major reason for selecting these datasets versus a dataset like MNIST; which consists

of foreground digits with no background complexity. Furthermore, we determined

that it was important to start with a relatively hard visual task, e.g., distinguishing

foods, versus something simpler like different animals (Experiment 2).
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Experiment 2: More Relevant, Albeit Simpler Dataset

In Experiment 2 (Figure 2.7), we demonstrate the PKNN on a four animal class

dataset; Monkeys, Tigers, Cheetahs, and Horses. Monkeys, Tigers, and Cheetahs are

from ImageNet, whereas Horses are not, their reference imagery were handpicked by

us. The model under test is ResNet101, pretrained on ImageNet. Since the model is

pretrained on ImageNet and ImageNet does not include horses, the question is, did our

model learn features that can help detect and distinguish horses. The weight factor

α, from the cost function 2.8 is 0.001 and the typicality threshold for classficiation is

0.34. Optimized bounds are found using a DEAP genetic algorithm in 10 generations

with 100 individuals, 0.5 cross-over rate, and 0.2 mutation rate. When reduced via

PCA, the data is reduced to 1x300 per sample and the max-pooled data with PCA

is reduced to 1x264.

A limitation of only reporting classification rates and confusion matrices is that

the reader cannot see the typicality degrees. For example, a confusion matrix is built

with respect to which class has the highest typicality. In Figure 2.7, we show the

classification rates, confusion matrices, and stem plots of the typicalities. The PCA

stem plot paints a picture where the machine is almost always certain about the

known classes, but class N+1 has many high typicalities. On the other hand, max-

pooling shows varying confidences in the class examples with little-to-no typicalities

in the class N+1. The reader can see that max-pooling reduction led to an accuracy

of 82%, while PCA led to a drop of 9%.

Furthermore, we would like to stress that just because the model does not have a

class does not mean that a model has not seen, and possibly built features for class

N+1. For example, two unrelated objects can share features and learning features

across classes can lead to discriminatory potential. Furthermore, even though Ima-

geNet does not have a class for Horses, it does have a synset for “horse-cart” and

other horse-drawn vehicles. We discovered this after identifying and running this
24



(a) PCA (b) Max-Pooling

(c) Stem Plot - PCA (d) Stem Plot - Max-Pooling

Figure 2.7: Confusion matrices and corresponding typicality stem plots for test data
after bandwidth estimation.

experiment. Hence, our success with respect to this experiment—i.e., our ability to

add and discriminate class N+1—could be due to the fact that a model pretrained

on ImageNet learned/remembers features for horses, even though the specific class is

not an option for classification in a traditional CNN pretrained on ImageNet. It is

an interesting tidbit and something that the reader should be aware of.

Experiment 3: Bandwidth Optimization

In Experiment 3, we demonstrate that it is important to individually optimize band-

widths for each class as the Frigui et al.[5] method of calculating η based on class

statistics does not hold for every dataset. The results of the originally proposed η
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are shown in Figure 2.8, with respect to the same setup as outlined in Experiment 2,

except the data was max-pooled then reduced with PCA to 1x264.

(a) η = µ/(3 ∗ σ) Parameters (b) GA Optimized η

(c) Stem Plot: η = µ/(3 ∗ σ) (d) Stem Plot: GA Optimized η

Figure 2.8: Visualization of the confusion matrices and typicality stem plots for the
two bandwidth estimation procedures. Figures (a) and (c) show that the data-derived
bandwidths are too small, resulting in total classification of “none”. The optimized
bandwidths for this dataset are clearly higher, as shown in (b) and (d).

Clearly, the bandwidths calculated from class statistics are too small. While

they lead to perfect classification for class N+1, they are so tiny that they do not

generate any high typicalities for the known N classes. While this selection scheme

worked for the explosive hazard detection problem and set of features that Frigui et

al. investigated, it does not hold across datasets. This is not alarming as we did

expect the optimized bandwidths to perform better, as it has the ability to adapt to
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the underlying data/needs.

We want to make sure that the following is clear. The bandwidth optimization

achieves a score of 92%, at the expense of mistaking some tigers as horses. While

horses are almost perfectly classified, same with cheetahs and monkeys, the neural

network has not learn enough features to properly distinguish all of its classes. We

can optimize the bandwidth parameters all we like, but we cannot overcome this

limitation with the features.

2.5.2 Predicting a Models Ability to Extend to Class N+1

In this subsection we switch gears and we explore both qualitative and quantitative

ways to assess if its possible to extend a model to class N+1. The above subsection

approached this challenge with respect to the PKNN and classification accuracy. The

aim of this subsection is to weaken our assumptions. We desire to determine if it is

possible to take an ODM and directly predict a networks extension potential.

Experiment 4: Dimensionality Reduction Technique Assessment

In Experiment 4, we use squaredness (Equation 2.10) on the full ODM (Method 1)

and only the N+1 rows (Method 2) to assess the different dimensionality reduction

techniques explored herein. That is, we desire to observe if its advantageous to retain

the full set of original features or their reduced and more efficient counterparts; the

latter being our intuition. For this experiment, we use features from ResNet101 on

the animal dataset from Experiment 2. The results for both measures are reported

in Table 2.2 and Figure 2.9.

Figure 2.9 and Table 2.2 tell the following story. Overall, max-pooling with PCA

is the best. However, PCA achieves a better score with respect to Method 1, Equation

2.10 for just class N+1. That is, PCA alone does the best job rejecting class N+1

samples. However, it does the such at the expense of the other N classes. As the
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Table 2.2: Dimensionality reduction techniques on ResNet101 features.

Model Squaredness, Full Matrix Squaredness, Sub Matrix

No reduction 0.1106 0.1523

Max-pooling 0.1652 0.4253

PCA 0.2889 0.2344

Max-pooling & PCA 0.2257 0.6732

overall squaredness tells us, max-pooling does a better job discriminating between

the N classes and with class N+1. We included this example to illustrate the fact

that only listening to rejecting unknown samples is not enough, it cannot come at

the expense of the N classes.

Experiment 5: Assessing Different Architectures and Models

In Experiment 5, we use our squaredness measure to compare and rank various models

with respect to their ability to extend to class N+1. For this experiment, we max-

pool the features coming out of the network on the animal dataset from Experiment

2. The results for each of the models are reported in Table 2.3 and Figure 2.10.

Table 2.3: Experiment 5 results.

Model Squaredness, Full Mat. Squaredness, Sub Mat. Rank # Features

ResNet101 0.1652 0.2565 1 2048

AlexNet 0.0992 0.0733 4 256

VGG19 0.1237 0.1511 3 512

DenseNet201 0.1333 0.1992 2 1920

Table 2.3 and Figure 2.10 tell the following story. First, the measure scores align

with how we visually would rank the four architectures. Namely, ResNet101 was best,

followed by DenseNet201, VGG19, then AlexNet. While this is reinforcing, there is a

trend. Namely, the rank ordering of our models align with the number of features in

the respective architectures. This might lead one to believe, in general, that the more

features the better. However, we are not able to deduce such a conclusion based on
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(a) None (b) Max-pooling

(c) PCA (d) Max-pooling & PCA

Figure 2.9: Dissimilarity matrices (normalized to [0, 1]) for Experiment 4.

such a simple basis; set of experiments. What Table 2.3 really highlights is the fact

that this experiment is apples-2-oranges. That is, each model has a different number

of features and as such they are challenging to compare. Again, our results are nice

in the respect that they help support the validity of our qualitative and quantitative

processes, however the reader would benefit from using the proposed measure across a

wider range of models or perhaps apples-2-apples experiments, e.g., like architectures

trained on different data, different initializations, etc. All we can logically extract

from Experiment 5 is that our measure lines up with what a human would assess

and that more features, up to some limiting or diminishing point, possibly result in

a richer visual vocabulary that help with extending to class N+1.
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(a) ResNet101 (b) AlexNet

(c) VGG19 (d) DenseNet201

Figure 2.10: Dissimilarity matrices of max-pooled feature activations from each CNN,
normalized to [0, 1].

2.6 SUMMARY AND FUTURE WORK

Herein, we explore how to extend artificial neural networks to class N+1 (aka a new

class that the network has not been trained on). To this end, we investigate dif-

ferent dimensionality reduction methods to remediate the impact of undesired affine

transformations and the curse of dimensionality relative to the proposed possibilistic

k nearest neighbor classifier (PKNN). As the PKNN depends on bandwidth param-

eters, we optimize them using a genetic algorithm. We couple these methods with

the generation of ordered dissimilarity matrices and automatic scoring based on the

notion of squaredness in CLODD. Our experiments show that the combination of
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max pooling and PCA lead to the best classification accuracy, typicalities, and or-

dered dissimilarity matrices. All of the above results were observed on community

benchmark datasets for sake of reproducible research versus some underlying EHD

or ATR dataset that cannot be shared. The particular experiments were selected to

highlight classes of varying visual complexity.

In future work, we will investigate the following. First, we will explore how to ex-

tend the notion of edginess in a supervised context. Second, while the PKNN is useful

for rejecting outliers, the mechanism (equation) needs improvement, beyond parame-

ter (bandwidth) optimization. Next, our procedures, e.g., the PKNN and bandwidth

selection, are learned independent of the neural network, which is merely perform-

ing feature extraction. Ideally, these would be learned in conjunction—parallel or

simultaneously—with one another. From an experimental standpoint, a deeper and

more thorough analysis is needed across existing architectures and models. Last, this

article focuses on detection. A next step will be assessing how to extend the proposed

ideas to detection and localization. In summary, we are excited about the preliminary

results but more work is needed before a robust real-time solution is in hand.

This work is partially funded by the Army Research Office (ARO) grants numbered

W911NF-18-1-0153 and W911NF-19-1-0181 to support the U.S. Army RDECOM

CERDEC NVESD.
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Abstract

In general, there is a severe demand for, and shortage of, large accurately la-

beled datasets to train supervised machine learning (ML) algorithms for domains like

smart cars and unmanned aerial systems (UAS). This impacts a number of real-world

problems from standing up ML on niche domains to ML performance in/across dif-

ferent environments. Herein, we consider the task of efficiently, meaning requiring

the least amount of human intervention possible, converting large UAS data collec-

tions over a shared geospatial area into accurately labeled training data. Herein, we

take a human-in-the-loop (HITL) approach that is based on coupling active learn-

ing and self-supervised learning to efficiently label low altitude UAS imagery for the

goal of training ML algorithms for underlying tasks like detection, localization, and

tracking. Specifically, we propose an extension to our stream classification algorithm

StreamSoNG based on human intervention. We also extend StreamSoNG to rely on

a second and initially more mature, but assumed incomplete, ML classifier. Herein,

we use the Unreal Engine to simulate realistic ray-traced low altitude UAS data and

facilitate algorithmic performance analysis in a controlled fashion. While our results

are preliminary, they suggest that this approach is a good trade off between not

overloading a human operator and circumventing fundamental stream classification

algorithm limitations.

Keywords: active learning, self-supervised learning, human-in-the-loop, HITL,

drone, unmanned aerial vehicle, unmanned aerial system, object detection, Unreal

Engine, stream classification, StreamSoNG
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3.1 INTRODUCTION

In today’s machine learning (ML) and artificial intelligence (AI) landscape, deep

learning (DL) is the reigning king. Different flavors of DL, like convolutional neural

networks (CNNs) and recurrent NNs (RNNs), generally require large amounts of

labeled training data. In the case of a CNN and object detection, many look to data

sets like ImageNet and Coco; which have 14+ million and 300K images respectively.

Realistically, labeling data sets at this scale is a daunting task. In many applications,

it is the bottleneck. Modern ML is overly dependent on supervised learning and its

not clear if this ideology scales in our pursuit of next generation AI. Herein, we explore

the idea of having a human help a machine learn and refine concepts. Specifically,

we focus on an extension of self-supervised stream classification using a human-in-

the-loop (HITL). The result has the potential to significantly reduce the time and

cost required to label large low altitude aerial data sets and build ML/AI models on

specialized domains that have insufficient labeled training data. Figure 4.1 illustrates

our motivation.

Current DL models cannot predict classes that they are not trained on. For

example, if a CNN is trained to find people and cars, then it will not find aliens

or hamburgers. We refer to this hereafter as a “closed world” model and our desire

to detect new classes as the “N + 1” problem (where N is the current number of

known classes). In the research community, these concepts are often called open set

recognition (see Ref. [3] for a recent survey). A number of questions arise as we

attempt to add a new class. For example, how does the model see the new class?

Does it incorrectly classify it as one of its known N classes? Can the model say “I

don’t know?” Furthermore, does the current model even have the potential to detect

the new class, e.g., are its features good enough to detect and discriminate this

class? Herein, we explore the case of a human working with a CNN that has a fixed
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Figure 3.1: Illustration of our application of interest. Low altitude UAV imagery
on niche domains is collected and subsequently labeled automatically by a stream
classification algorithm. However, algorithms are not perfect; they need help getting
started and achieving a desired steady state. A human is in the loop and helps teach
the algorithm. However, the image stream is large and the human does not want
to analyze every candidate image. The goal is to strike a balance of active and self-
supervised learning to ultimately reduce the time and cost associated with labeling
large UAV collected data sets. The image shows correct AI/ML detection’s for known
classes (gray boxes), algorithm detection’s for new patterns that the machine does not
know but a user might want labeled (red), algorithm mistakes that need correcting
(green), and detection’s that a human catches but the algorithm misses (purple).
Our aim is to create a collaborative human-machine coupling that results in a small
amount of effort to kick start high quality subsequent data labeling.

vocabulary (e.g., pre-trained convolutional weights) in an online fashion. Instead of

using the pre-trained CNN decision making layers, we use stream classification. The

machine can now label things it knows (one of its N classes), it can be extended to

new classes (aka N+1), it can be used to identify outliers, and it can be used to

combat “concept drift”. Of course, all of the above is contingent on the pre-trained

CNN feature weights being able to extend to class N+1. In a final step, the newly

labeled data can be used offline, if desired, to learn a new set of weights, achieving a

form of self-supervised learning.

For this paper, we focus on a subset of the desired functionality outlined above.

Herein, we make the following specific contributions. This is the first application of

StreamSoNG [12] on a real streaming computer vision task. To date, StreamSoNG

has been developed using a combination of theory, controlled synthetic data sets (e.g.,
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mixtures of Gaussians with noise), and real-world texture image data sets. Second, we

extend StreamSoNG to take into account a HITL. A fundamental limit of algorithms

like StreamSoNG are that they must make very complicated decisions using little

information. For example, when has a new pattern emerged? Herein, we take a first

step to couple StreamSoNG with a HITL to improve the N+1 problem. Third, we

explore a use case of automatically labeling low altitude drone imagery. In order to

maintain control, we generate aerial imagery from ray tracing in the Unreal Engine.

As the reader will see, the imagery is extremely similar to real aerial data, providing

a wonderful testbed and potential source of training data. Simulation at this level

allows us to more rapidly explore the user interface, find break cases, and develop

new algorithms.

In section 3.2.1, we discuss our implementation of StreamSoNG. In section 3.2.2,

we introduce our user interface with which the HITL supervision is performed. In

section 3.3, we discuss preliminary experiments and results. Last, in section 3.4 we

discuss future work. Table 3.1 shows acronyms and our notation.

Table 3.1: Acronyms and Notation

HITL Human-In-The-Loop

StreamSoNG Streaming Soft Neural Gas

PKNN Possibilistic KNN

PCM Possibilistic C-Means

GNG Growing Neural Gas

xt Sample at time t

pik kth closest prototype to ith class label

t′ik Typicality of sample x to the kth closest
prototype of the ith class
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3.2 METHODS

3.2.1 Stream Classification

As mentioned above, our HITL labeling problem can be cast as an instance of stream

classification. In Ref. [12], Wu et al. proposed the Streaming Soft Neural Gas

(StreamSoNG) algorithm. StreamSoNG makes the assumption that data cannot be

stored, e.g., a reality for many Big Data applications. For example, consider the

case of imagery streaming at multiple frames per second for hundreds of cameras

monitoring traffic in a city 24-7. Problems such as these break the majority of existing

supervised and unsupervised learning algorithms. StreamSoNG addresses problems

like these by combining unsupervised learning and classification into a streaming

algorithm that specializes in extending the knowledge of a system with new data. In

short, StreamSoNG first utilizes growing neural gas (GNG) to initialize prototypes

for a training set of data and saves out the prototypes. Then during data streaming,

typicality is computed on new data with possibilistic k-nearest neighbor (PKNN),

separating streaming data as either belonging to an existing class (one of N classes)

or as an outlier (with the potential to be class N+1). The list of outliers are then

run through the possibilistic c-means (PCM) algorithm with an attempt to find new

patterns. If patterns are found in the outlier list, they are extracted, added to the

knowledge base of the algorithm as class N+1 (a generic label), and initialized with

another GNG to establish cluster prototypes. The algorithm now has a knowledge

base for the N+1 class, and new streaming data can now get this classification. The

algorithmic flow for how we drop our implementation of StreamSoNG into the system

is shown in Figure 3.2.

To go into more detail, the StreamSoNG algorithm can either assign an incoming

streaming data vector as part of an existing pattern or as an outlier. StreamSoNG

utilizes the PKNN algorithm to calculate typicality and determine classification for
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Figure 3.2: After training data is provided to initialize the StreamSoNG algorithm,
the streaming test data is streamed into StreamSoNG where clusters and outliers are
determined and new classes can emerge. When a new class is detemined to exist,
the user is prompted with a ”New Class” GUI where he/she can select the objects
belonging to the new class. The StreamSoNG algorithm is then updated to reflect
those truths.

incoming data points. During the PKNN step, computing typicality has historically

been contentious, so in this paper we define our typicality equation by,

t′ik(xt,pik) =
1

1 + [max(0, ∥xt − pik∥ − η)]2/(m−1)
, (3.1)

where if the distance of the sample xt and the nearest k prototypes is within η distance,

the typicality is greater than zero. Any sample outside of η from any prototype is

given a typicality of zero. The typicality is leveraged w.r.t. to the distance with a

factor m. In our implementation, estimate a unique η per pattern and choose a m of

2.0.

If the sample is determined to part of an existing pattern (typicality of greater

than 0 to any prototype), then the system updates prototypes belonging to that class

as follows,

pt+1
ik = pt

ik + α ∗ t′ik(xt) ∗ e−k/λ(xt − pt
ik), (3.2)

where pt
ik is the kth closest prototype to sample xt at time t for the ith pattern label,

α is the learning rate (0.2 in this paper), t′ik(xt) is the typicality of the sample xt to

the kth closest prototypes for the ith pattern label, and λ is the “neighborhood range
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parameter” which determines the drop off for prototype update. Note, we exclude

the S-function presented in the original paper.

Figure 3.3: StreamSoNG flowchart. During initialization, Growing Neural Gas
(GNG) networks are trained on each known data cluster and prototypes are saved.
During streaming, data is introduced to the system one chip at a time. Herein, chips
are image space regions of interest (R.O.I.) identified by a change detection algorithm.
Classification is determined by the PKNN algorithm and outliers are clustered via
PCM. If a new pattern appears, the class is initialized with GNG to find prototypes
and the pattern is added to the known patterns in StreamSoNG.

If the sample is determined to be an outlier (typicality of 0 to every prototype),

then after a certain minimum amount of outliers, StreamSoNG tries to automatically

identify clusters in the outlier list with PCM clustering. If any clusters are found,

they are added to the patterns in StreamSoNG as a new and separate class. This

algorithm flow is discussed in Figure 3.3.

In this paper, PCM is initialized to find one cluster and is simplified for Stream-

SoNG for sequential computation. As per Wu, et al [12], the algorithm is modified

to become Sequential Possibilistic One-Means (SP1M). For more information on the

specific implementations of GNG, PKNN, and SP1M, see Ref. [12].
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3.2.2 User Interface

The purpose of this section is to discuss our considerations for a user interface (UI)

prototype. First, we discuss how the user should be able to interact with our stream

classification algorithms. We intend to have clear divisions of responsibility between

the user and algorithmic labeler to improve the ease of use for this potential im-

plementation. This relationship is shown in Figure 3.4. After the human operator

provides the necessary initialization data and a source for the streaming data, they

can sit back and only intervene at certain, clearly defined moments. However, our

current article is about extending stream classification via a HITL interaction. Even

though we do not focus on optimal user interface design nor human factors, achieving

our algorithmic goal requires us to at least explore a UI prototype. The UI outlined

in this section is focused on the idea of extending StreamSoNG. Figure 3.5 shows the

proposed UI.

Figure 3.4: This diagram shows the relationship between the human operator and
the self-supervised labeling algorithm as proposed in this paper. After providing the
necessary initialization data, the human operator takes a back seat and monitors the
self-supervised labeler. As the labeler streams data, we propose that it is possible to
interrupt the data stream to correct wrong labels and preempt new class creation.
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Figure 3.5 consists of the following parts. As data is streaming in, the user can

specify a “play rate”. The UI also has “arrows” for go backward and forward in time.

This supports the need to take small steps or to go back and correct something that

the user saw as wrong and it rotated off the UI. Here, we focus on the aspects related

to giving the human operator the ability to understand and make decision on what

is happening on screen as quickly as possible. Things we keep in mind include: not

forcing the operator to make decisions with time constraints, keeping information

in consistent locations on screen, and having clear and uncluttered controls. Again,

while this paper is not about UI design, we try to consider at least a few good design

principles in our prototype.

Figure 3.5: Prototype of the user interface explored herein. See the text for a full
description.

Factors like the above led us away from having a real-time cluttered video feed

that requires a high cognitive investment, e.g., Figure 4.1. Instead, we run an existing

detection and localization algorithm to find candidate regions of interest (R.O.I.).
41



Specifically, we run YOLOv5[22]. Non-open set algorithms like YOLOv5 have the

advantage that their community default models (set of weights) have been trained on

many image data sets. The problem is, these algorithms can be wrong or incomplete

when adapted to new domains and applications. We use an algorithm like YOLOv5

to bootstrap our stream classification. In the long run, we expect the stream classifier

to perform the majority of work in our approach. However, using an algorithm like

YOLOv5 leaves us vulnerable. It only knows what it knows. Meaning, people in a new

data can look different and we often desire to find new classes. Therefore, we also rely

on change detection for R.O.I. identification. The reader can refer to the literature for

decades of image (2D) and world (3) space methods from mixtures of Gaussians[23]

to modern change detection in deep learning[24, 25]. In this initial paper, we simulate

change detection from one flight or day to the next. We do not consider frame-2-frame

change detection, but it could be added. Last, it should be noted that while we focus

on the above two methodologies for finding R.O.I.s for HITL assisted StreamSoNG,

other strategies exist. For example, the modern computer vision literature has a

heavy investment in visual attention modeling[26, 27, 28] and lower level algorithms

like optical flow (e.g., FlowNet[29]) can be used to find temporal movement in a video

sequence. In summary, our UI is driven by a stream of video R.O.I.s.

Keeping the above in mind, Figure 3.5 is based on a few simple design ideas. Each

class gets its own real estate in the UI. For example, “Class 1” is people, “Class 2”

is cars, and “Class 3” is benches. The goal of the UI is not to show the internal

representation of StreamSoNG, e.g., graphical depictions of the underlying neurons.

Instead, the goal is to show a rotating set of examples that the algorithm feels belong

to that class. At any moment in time a human watching the rotating UI can pause

the interface if a chip (R.O.I.) is wrong. Our idea was its perhaps simpler for a human

to watch these categories and stop–to provide feedback–when they notice mistakes.

Thus, the human is sitting over the algorithm letting it do its thing until errors are
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encountered. Furthermore, there are R.O.I.s that do not belong to a class that a user

cares about. We have a section of the UI dedicated to this. These are examples on

the “watch list” and StreamSoNG. The next sub-sections of this article go into depth

on the a human monitoring the watch list and reacting to StreamSoNG inquiries.

Overall, the UI is simple and its about supporting interactivity with the user.

The point is, Figure 3.5 is a proof-of-concept. Future work will focus more on the

human angle, e.g., ergonomics. The current UI is a real-time class clustered rotating

stream of R.O.I.s and outliers in support of HITL enhanced StreamSoNG. The next

few sections go into greater depth on the UI relative to three use cases.

3.3 USE CASES

Figure 3.6: Simulated Modular Neighborhood Pack[30] environment on the Unreal
Marketplace[31] for the Unreal Engine[32]. Example (left) view in the editor and
(right) imagery we generated for this paper using a Camera (Cinematic Actor), pre-
scripted flight sequence via a Cinematic Track, and ray tracing offline using the Movie
Render Queue. See Section 3.3.1 for additional details.

3.3.1 Simulated Data and Experimental Design

Herein, our primary focus is the extension and exploration of stream classification

(StreamSoNG) with respect to a HITL and an additional classifier. In order to

experiment with a wide and controlled range of conditions to speed up algorithmic

prototyping, the Unreal Engine[32] is used as a surrogate to a real low altitude drone
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equipped with a visual spectrum (aka RGB) camera. We use a combination of free

and for purchase content (3D models, animations, and textures) from the Unreal

Marketplace[31]. Figure 3.6 is example imagery that we generated in Unreal. It

is worth noting that Unreal’s ray tracing, which can be approximated in real time

using NVIDIA hardware like the GeForce RTX 3090, provides access to high fidelity

rendering capable of mimicking real cameras. For example, a user has control over

features like motion blur, fstop, focal distance, FOV, pixel resolution, noise, and much

more. This provides flexibility in mimicking different systems, making simulated data

more like real-world data. However, if a user desires real time simulation, then the

AirSim[33] Unreal Editor plug in can be used, and Ref. [34] outlines a plug in for

extended cameras models and effects.

Specifically, we use a Camera (Cinematic Actor), a pre-scripted flight sequence

is configured (versus a real-time autonomous flight in AirSim) as a Cinematic Track

and last, imagery is generated offline using the Movie Render Queue. An advantage

of this offline route in the short research term is it gives us greater control, e.g., use

of Deferred Rendering (via Path Tracer), multiple spatial and temporal samples for

anti-aliasing, specification of maximum number of ray bounces, etc. This offline pro-

cedure has allowed us to achieve a desired level of image quality for our experiments.

Furthermore, it is our belief that our algorithms and codes can be migrated without

major effort to real data from a drone next. A further advantage of simulation is we

know the truth. The reader can refer to our articles on visual guided autonomy[35],

meta data enabled contextual fusion[36], or simulated augmentation data for explo-

sive hazard detection[37] for details about how to use stencil buffers to automatically

generate labeled bounding boxes or per-pixel semantic labels.

Herein, we simulate a neighborhood in Unreal via the Modular Neighborhood

Pack[30] that includes people, cars, bicycles, and miscellaneous objects (outlined be-

low). As already discussed, we assume that StreamSoNG is operating on alarms
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generated by a region of interest (R.O.I.) algorithm, e.g., change detection between

consecutive flights over the same region, frame-to-frame change detection, etc. As

the focus of our current article is StreamSoNG and not a change detection algorithm,

a human curated the R.O.I.’s using the visual object tagging tool (VoTT)[38]. A set

of simulated streets containing people and cars were held back for StreamSoNG ini-

tialization. Additional streets were held back for testing or stream evaluation. These

streets have the following. First, we consider duplicates of known people and cars in

different contexts (locations and poses). Second, we add objects that belong to these

classes that the algorithm has not seen before, e.g., new people and cars. Third, we

add R.O.I. that an algorithm has not seen before but might be interested in, e.g., trash

bags, bicycles, toilets, etc. Last, we add R.O.I.’s that change detection algorithms

frequently find that a user likely does not care about, e.g., algorithm mistakes, nature

(bushes, trees), etc. The point is, our curated data set has a mixture of challenges.

The human chipped varying size bounding boxes around each R.O.I., as this is likely

the reality for an imperfect change detection algorithm.

Now that our scene is set up and data is generated, we use the following exper-

imental design. First, we use an existing deep learning model for feature extraction

on R.O.I.’s. Second, we use a method to reduce the dimensionality of these neural

features. R.O.I. features are generated using a modified ResNet50 (no classification

layer) pretrained on the ImageNet dataset. The result is initially of size 2048x(7x7)

per sample; 2048 features with response fields of size 7x7. As we are primarily inter-

ested in the degree to which a feature is present or not, versus where spatially these

features exist, max pooling was used per feature map, which results in 2048 features.

These features are then reduced to size 128 using an Autoencoder trained on the

ImageNet dataset. Experimentally, we tried different sizes and we determined that

128 was a good balance for our data set. We did this visually by generating a sorted

dissimilarity matrix and we looked at similarity between objects within, and across
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classes. For an ideal situation, dark diagonal blocks should appear for each sorted

class, indicating low dissimilarity (aka high similarity) for objects of the same class.

Conversely, off diagonal blocks should be high in value, indicating low similarity (high

dissimilarity) between objects in the different classes. In the end, StreamSoNG op-

erates on our features in this reduced 128 dimensional space. In future work, we will

study the effect of running StreamSoNG in different dimensions and we will explore

different transformations than what is outlined herein. The above was used because

it is somewhat common operating practice nowadays; i.e., ML on neural features with

reduced dimensionality.

Last, before we can start streaming data into our interface, we need to initialize

StreamSoNG. This initialization includes a training set of features for all “known”

classes and their labels. In our case, our held back training data streets had 30 samples

for each known class (cars and people). The interface is now ready for streaming data.

In the following sections, we demonstrate three use cases.

3.3.2 Use Case 1: StreamSoNG Recommended Emergent Patterns

Use case one is driven by the following need. A user would expect a stream classifi-

cation algorithm to prompt them when something new has been detected, i.e., a new

class (or sub-class) has been found. We expect that this is one of the most important

problems to handle when developing a truly self-supervised algorithm. Figure 3.7

shows our HITL desktop interface. When StreamSoNG identifies new patterns in the

streaming data, we want the interface to interrupt the stream and alert the user for

input. This is demonstrated in Figure 3.8. The user is now responsible for selecting

images that are similar to each other–or they can simply accept all recommended

by StreamSoNG–and they must provide a class label. In the case of Figure 3.8, the

user has determined that these are examples of bushes and they provide a new label

(“bush”). However, inner class variation can exist and it is possible that a newly de-
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tected pattern belongs to an existing class, e.g., a new type of car, for which the user

can provide an existing class label. After the user submits their changes, streaming

continues but StreamSoNG now has knowledge of this new class and it can leverage

this to increase its classification accuracy.

While effective in many scenarios, this use case can falter in real world deployment.

In order for StreamSoNG to find and recommend a new pattern, StreamSoNG had

to determine that a new pattern (cluster) has emerged. This requires a few factors.

Namely, a sufficient number of samples with satisfactory similarity. This is where

stream classification algorithms are at a disadvantage. It is not trivial to answer

these question. It is one thing to address questions like these in controlled settings like

compact well separated Gaussian clouds, but how does it perform on high dimensional

neural features where classes are likely multi modal? The next use case was designed

with this shortcoming in mind.

Figure 3.7: Snapshot of the HITL interface performing stream classification on in-
coming simulated data. Cars and humans that StreamSoNG has confidently classified
populate in their respective regions. All chips that StreamSoNG determines are out-
liers populate in the right column.
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Figure 3.8: When StreamSoNG determines a new pattern is present in the data, it
interrupts the streaming data and presents this dialog box for the user. The user
selects similar images, or simply accepts all, and provides a label for the emergent
pattern. Once streaming resumes the system now classifies images using this new
knowledge.

3.3.3 Use Case 2: Preemptive Identification of a Pattern

Another use case we expect our system to handle is the preemptive identification of

a pattern by the human operator. The idea is as follows. Say the user is monitoring

the streaming data and they see an important pattern of data start to populate in

the outliers column. The user should be able to preempt the identification of this

class as they please. Figure 3.9 highlights this interactive process.

To preempt the identification a new pattern, the user can click any image chip

on screen to bring up a dialog box showing the clicked image and a rank ordered set

of similar images to help aid in the process of quickly identifying imagery for a new

pattern. The user can then select the images they think belong in the new pattern

and provide a label. This process can be repeated as much as needed. Similar

to the behavior in Use Case 1, the new pattern is now added to the knowledge

of StreamSoNG and then system will now attempt to classify images accordingly.
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Figure 3.9: If a user chooses to preempt the creation of a new class, or extend an
existing one, this dialog box pops up showing the target image similar imagery. The
user then selects chips and they provide a label. In this figure, the user noticed a
class of toilets being thrown away. They clicked on a toilet from the outlier list and
a rank ordered list of similar chips (according to the underlying neural feature space)
are presented. The user picks which chips are toilets, they provide the label, and
streaming resumes.

Note, our underlying implementation includes adding a neural gas neuron for each

user identified selection. While this is likely more neural gas neurons than what

StreamSoNG would find for an emergent pattern, we chose to keep the users resolution

of sampling. Alternatively, the reader could select to run growing neural gas on the

user identified samples.

This use case aims to remedy shortcomings in Use Case 1. Namely, StreamSoNG

might be too slow to react. If objects are rare, it might take a lot of time to see

enough examples before StreamSoNG is willing to declare a new emergent pattern.

This specifically addresses the number of samples challenge in StreamSoNG. However,

it is also not trivial to determine similarity in high dimensional spaces driven learned

neural features. If StreamSoNG is unable to detect a cluster, but the user has already
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made this connection, then it make sense to have StreamSoNG include this preemptive

strike, as its a feature of having a HITL.

While the above helps, it still often results in outlier lists containing many in-

stances of known classes. For example, consider Figure 3.9. The outlier list has many

cars and people still, regardless of the fact that is has classes supposedly covering

those classes. A challenge that StreamSoNG has to face is, its a streaming classifica-

tion algorithm and it takes time for it to “come up to speed.” Meaning, in the early

stages the user will likely have to help the algorithm more than desired. In the next

setion we address this challenge.

3.3.4 Use Case 3: Using Another Classifier to BootStrap StreamSoNG

The last use case we discuss is the ability to extend an existing algorithm. As briefly

discussed earlier, frameworks like YOLOv5 have an immense knowledge base already

for object detection. In this section, we explore the use of an algorithm like YOLOv5

to boostrap StreamSoNG. The idea is, an algorithm like YOLOv5 may fail to work

on new domains and its a closed set/world algorithm. However, while StreamSoNG

is coming up to speed, an algorithm like YOLOv5 could be used to reduce our set of

R.O.I.’s in an outlier list. We would like for our StreamSoNG extension to be able

to draw from this capability. When images are streamed, they are first run through

YOLOv5 for localization and detection. If a confident classification is achieved and

it has a generalized intersection over union (GIOU) with one of our alarms, then

the chip is auto-labeled and fed to our algorithm, i.e., its respective neural gas class

is updated. An additional benefit of this approach is the user can select if they

want all YOLOv5 detection’s to be added to StreamSoNG. That is, chips that are

not associated with alarms can be found and used for learning. While this sounds

redundant, i.e., YOLOv5 already knows about these objects, it allows StreamSoNG

to learn from YOLOv5, helping it learn faster. Figure 3.10 shows an example.
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Figure 3.10: Example of image chips that StreamSoNG determined were outliers but
YOLOv5 correctly classified.

This process of bootstrapping StreamSoNG using another algorithm is not with-

out flaw. Herein, it helped us reduce our outlier, lessening the users amount of desired

interactivity. However, in future work we will need to address how to modify Stream-

SoNG to accommodate YOLOv5 mistakes. That is, YOLOv5 is trusted and if it

provides labels that are wrong, then StreamSoNG learns from these examples.

3.4 CONCLUSIONS AND FUTURE WORK

In this paper, we focused on a HITL extension to a stream classification algorithm,

StreamSoNG. In addition we also explored bootstrapping StreamSoNG using a sec-

ond classifier. Three common use cases were explored relative to controlled scenes

generated by simulation. Use case one showed that StreamSoNG can recommend new

patterns to a user, use case two allows the user to preemptively declare patterns, and

use case three outlined how to reduce the outlier set using an algorithm like YOLOv5.

Overall, while qualitative and preliminary, our use cases show promise for HITL as-

sisted labeling of low altitude aerial data sets. However, more work is required in

order to achieve high quality labeling on real world streaming data.
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In future work, we will address the following. First, we will continue to rely on

simulation in the short term. However, we will integrate our change detection algo-

rithms to remove the human identified R.O.I.’s. Now that a pipeline for generation,

labeling, and next segmentation and alarm generation exists, we will identify per-

formance metrics to facilitate quantitative scoring. The user interface will also be

improved around human factors. At an algorithmic level, we will explore how to fuse

the secondary algorithm (e.g., YOLOv5) with StreamSoNG classification results. We

will also explore how a user can provide feedback to scrub or update mistakes made

by StreamSoNG. In addition, StreamSoNG currently uses the PKNN and possibilsitic

clustering. We would like to explore other ways of updating growing neural gas rela-

tive to the desire to generate a membership per sample and to automatically discover

new emergent patterns. Finally there are a number of user defined parameters in

this system that need sensitivity analysis and studying to determine if they can be

analytically understood. Last, while the proposed algorithms can be used in a stream

classification setting per run, it would be good to study these algorithms across runs

and environments to see their effects on different environments and under conditions

like concept drift.
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Chapter 4
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Abstract

There is a severe demand for, and shortage of, large accurately labeled datasets

to train supervised computational intelligence (CI) algorithms in domains like un-

manned aerial systems (UAS) and autonomous vehicles. This has hindered our abil-

ity to develop and deploy various computer vision algorithms in/across environments

and niche domains for tasks like detection, localization, and tracking. Herein, we pro-

pose a new human-in-the-loop (HITL) based growing neural gas (GNG) algorithm

to minimize human intervention during labeling large UAS data collections over a

shared geospatial area. Specifically, we address human driven events like new class

identification and mistake correction. We also address algorithm-centric operations

like new pattern discovery and self-supervised labeling. The effectiveness of our al-

gorithm is demonstrated using simulated realistic ray-traced low altitude UAS data

from the Unreal Engine. Our results show that it is possible to increase speed and

reduce mental fatigue over hand labeling large image datasets.

Keywords: active learning, self-supervised learning, human-in-the-loop, unmanned

aerial vehicle.
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Figure 4.1: High-level overview of SSHING. In our aerial application, change detec-
tion is used to identify regions of interest in imagery. SSHING attempts to classify
ROIs based on machine learned DNN features. SSHING operates in a self-supervised
fashion to identify new classes and evolve its knowledge. SSHING also makes use
of a human-in-the-loop to accelerate learning, refine its knowledge, and/or answer
questions it cannot otherwise solve.

4.1 INTRODUCTION

In today’s Artificial Intelligence (AI) and Machine Learning (ML), Deep Learning

(DL) is the reigning king. Some flavors of DL, e.g., Convolutional Neural Networks

(CNNs) and Recurrent Neural Networks (RNNs), typically require large amounts of

supervised data for learning. ImageNet, for example, is trained on approximately 14

million images. However, not every application has the luxury of millions of labeled

images. Labeling requires a large amount of labor, i.e., time and cost. As a result,

numerous companies have emerged and raised tens of billions of dollars to label ML

data [1]. Herein, we explore the combination of self-supervision and human assisted

labeling (Figure 4.1) to improve machine intelligence and reduce the expense of human

labeling.
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Modern DL does not identify classes it was not trained on. This is captured

in Open-Set Recognition (OSR)[3]. OSR formalizes Known-Knowns (KK), Known-

Unkowns (KU), Unknown-Knowns (UK), and Unknown-Unknowns (UU). Most DL

operates on a Closed-Set (CS) premises and data sets have just KKs and KUs; e.g.,

combination of labeled and unlabeled imagery. A problem is, with the introduction

of new data and classes, DL models can have undefined behavior. Herein, we are

interested in online learning and approaches that can evolve their understanding of

KK, KU, UK, and UU. However, there are fundamental limits with respect to what

a machine can learn on its own. As a result, we focus on Human-in-the-Loop (HITL)

enhanced online learning.

We are not the first to investigate online learning, HITL, and OSR to train Com-

putational Intelligence (CI) algorithms or label data. Many real-world applications

are impacted by these needs, e.g., autonomous driving, drones, security and defense,

healthcare, and medicine [8] [9] [10]. For example, Telsa’s data-labeling approach

uses a HITL to improve the accuracy of their autonomous labeling algorithms. In

a 2021 talk, Andrej Karpathy describes Tesla’s self-supervised labeling system and

reinforces the importance and need of human intervention in large-scale autonomous

data labeling [11].

Herein, we introduce a Self-Supervised and HItl growing Neural Gas (SSHING)

algorithm for labeling image datasets. While we address algorithm-centric operations

like new pattern discovery and self-supervised labeling, our primary contribution is

integration of human events like new class identification and mistake correction. The

SSHING algorithm is build on top of well-established CI methods like the Possibilistic

K-Nearest Neighbor (PKNN) and Growing Neural Gas (GNG).
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4.2 APPLICATION DOMAIN

The focus of this article is SSHING, not unmanned vehicles nor computer vision.

However, for context, motivation, and sake of completeness, we summarize our appli-

cation and data. Our problem consists of labeling, for training and evaluation, aerial

data relative to object detection in support of human-robot teaming for augmented

reality in collaborative spaces. The objects we need to detect cannot be found in

publicly available data sets due to object type and/or context. Our data is based

on a geospatial location that we have previously 3D mapped. New video, i.e., site

re-visitations, are registered and change detection in point cloud or voxel space is

performed. 3D change is then back-projected into image space, thresholded, mathe-

matical morphology is applied for filtering, and the connected components algorithm

is used to identify ROIs in image space (see [13] for details). Each ROI is fed to a

Deep Neural Network (DNN) that was trained on a large and diverse collection of

unrelated imagery and classes. SSHING takes as input the DNN feature embedding

for ROIs. Thus, each ROI is transformed from an image chip into a set of machine

learned features. To re-iterate, we cannot train a new DNN because there is little-

to-no labeled data for our niche domain. Also, our KK-UU sets are changing with

respect to new data collections and initially unintended system uses. Herein, we focus

on labeling previously collected aerial datasets. If chips were constantly fed to SSH-

ING in real-time during flight, then SSHING would be an online streaming algorithm.

However, streaming is not our concern herein as our application does not require it.

Our goal is to reduce the human time and cost required to label data in not real-time.

4.3 METHODOLOGY

SSHING, outlined in Figure 4.1 and Algorithm 1, is motivated by StreamSoNG [12],

a fuzzy neural network-based streaming classification algorithm. The StreamSoNG
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algorithm is a combination of clustering (unsupervised learning) and classification.

It can identify new patterns, via clustering, and update its knowledge, realized via

neural gas, to account for situations like concept drift. In [12], Wu et al. states

that StreamSoNG is designed for large streaming data, and as a result the algorithm

cannot store raw data. A difference between StreamSoNG and this article is we do not

throw away data. The data and eventual labels are needed to train and/or evaluate

CI algorithms. StreamSoNG is also fundamentally limited in what it can achieve as it

only exploits data, there is no HITL to guide and correct learning. Next, we outline

SSHING, a new online HITL-based GNG algorithm.
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Algorithm 1: SSHING
----------------------------------------
0. Initialization

U is the set of unlabeled images
K = ∅ (labeled data)
O = ∅ (outlier set)

1. DO UNTIL user is done labeling
2. Select image Ik from U and U = U \ Ik
3. FOR EACH ROI (ri) in Ik
4. User generates a label (li) for ri
5. K = K ∪ {(ri, li)}
6. Initialize GNG on K (see Sec. 4.3.2)
7. Initialize PKNN η values (Sec. 4.3.3)
----------------------------------------
8. DO UNTIL U = ∅
9. Sample an image Ik from U
10. FOR EACH ROI (ri) in Ik
11. PKNN(ri) (Sec. 4.3.3)
12. If known PKNN class
13. K = K ∪ {(ri, li)}
14. Else
15. O = O ∪ {ri} (add to outlier set)
16. Run SP1M on O
17. If SP1M identifies a cluster
18. Prompt user for class label
19. Add cluster to K
20. Remove cluster from O
21. Update GNG on K (see Alg. 4.3.2)
22. IF user provides interaction
23. DO UNTIL DONE
24. IF user adds a class (Sec. 4.3.4)
25. Retrieve neighbors (N ) from
26. {K ∪O} per Sec. (4.3.4)
28. IF mistake observed (Sec. 4.3.5)
29. Retrieve neighbors (N ) from
30. {K ∪O} per Sec. (4.3.5)

4.3.1 SSHING: Initialization

Of all the algorithmic decisions to be made, initialization might be the most con-

tentious. We chose the following due to a few factors, namely a need to label chipped

ROIs from UAS captured image data and the goal to reduce human intervention. To

initialize the self-supervised labeling, first the knowledge needs to be seeded. The

most qualified available agent is the human. The first steps involve manual labeling.
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SSHING predictions are still made behind the scene and shown to the operator as a

suggestion, allowing the human to understand the progression of the knowledge base

and decide when to allow the self-supervised system to take over.

Our data collection pipeline outputs ROIs chipped from images that have been

feature encoded by a CNN. These vectorized chips populate Euclidean space and

are represented at the classification layer by GNG neurons. As patterns in high

dimensional Euclidean spaces are known to be sparse and problematic, e.g., difficult

to cluster and computationally intensive, we classify the set of GNG neurons rather

than the entire known data set. Once the GNG has organized and reached a target

max neuron error threshold (γ∗), we initialize unique bandwidth (η) values for each

neuron (see sec. 4.3.3).

After initialization, there are three exclusive data set partitions; known class data

(K), known-unknown class data (O), and existing unknown-unknown class (not yet

seen) data (U). Set K comprises all known data from known classes that have been

actively labeled. Set O, our current outlier set, are data that we know are unknown.

Classes can emerge from O as SSHING progresses and an operator decides to label.

The big question is, how long should the user manually label until the self-

supervised labeler takes over? SSHING gives the user the choice of when to activate

the self-supervised portion of the system, as the user has the best idea of when the

data set has been thoroughly sampled.

4.3.2 SSHING: Growing Neural Gas

GNG is an unsupervised incremental network that learns data set topology [14]. GNG

is used to represent SSHINGs knowledge due to its lack of rigidity and its ability to

be tuned for target performance. In this section we discuss our implementation of

GNG for self-supervised labeling.
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Initialization

We start by running conventional GNG [14] until a desired target error is reached. In

our implementation, the target is when the error of all the neurons are below a user

defined threshold, γ∗. This threshold can be tuned to directly influence how many

neurons the network should produce.

GNG Update

Difficulties in our aerial data set problem, which is collected over a span of hours or

even days, are natural inner class variation and concept or class drift. Examples are

different visual appearances of objects caused by changes in time of day, environmental

conditions, and the objects themselves (deformation, materials, etc.). SSHING needs

to account for such factors so it can identifying the same objects from different viewing

conditions and contexts.

Our GNG update loop includes the evaluation of the error of neurons in the

system, addition of neurons to reduce error, and deletion of old neurons. Our GNG

implementation is a slight variant of Fritzke’s original algorithm [14]. Our change

only impacts Friztke’s Step 8 (see Algorithm 2). Instead of creating new neurons

every γ iterations, we create new neurons based on a user defined error threshold

(γ∗). This threshold is an essential addition for continuous iteration as it enforces the

network to maintain ideal topology for a state of the knowledge regardless of number

of updates. Without a hard cap on number of iterations to create an ideal map nor

the number of neurons that can represent a class at any time in the algorithm, our

modified GNG can stay accurate to any moment in the iterative algorithm process.
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Algorithm 2: GNG Update Algorithm
----------------------------------------
Step 8. If a neuron has an error greater

than γ∗, insert a new unit:
a. - Determine unit q with maximum

accumulated error.
b. - Insert a new unit , r, halfway

between q and its neighbor , f ,
with largest error:

wr = 0.5(wq + wf ).

c. - Insert edges connecting unit r
with units q and f , and remove the
original edge between q and f .

d. - Decrease the error variables of
q and f by multiplying them with
a constant α. Initialize the
error variable of r with the new
value of the error variable of q.

4.3.3 SSHING: Possibilistic K-Nearest Neighbor

Now that we have established the organization of points in space, we need to determine

a method to classify new points. We use the Possibilistic K-Nearest Neighbor[5]

(PKNN) algorithm. As opposed to the original K-Nearest Neighbor (KNN) algorithm,

PKNN allows us to organize our data in an open-set friendly respect. In addition to

allowing a null classification, PKNN produces a set of typicalities to each of the

known classes. This can further provide information to the algorithm for potentially

confusing classifications, which we leverage in section 4.3.5.

Classification

In the PKNN algorithm, a bandwidth parameter η determines the cut-off distance.

If a query point is not within the bandwidth of any labeled points, it is unclassified.
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For reference, the PKNN classification metric is

t′ik(xt,pik) =
1

1 + [max(0, ∥xt − pik∥ − ηik)]2/(m−1)
(4.1)

where the L2-normalized distance between sample xt, at time t, and each prototype,

pik, for each neuron (k) of each class (i) is thresholded by the unique bandwidth

parameter ηik to produce a typicality value, t′. Typicalities of sample xt to each class

fall off for distances larger than ηik, eventually reaching zero. This mechanic, when

the sample typicality to every known class is zero, is what allows null classification,

which we use to define “outliers.”

Initialization

PKNN η values provide a threshold for possibilistic classification. The initialization

is important in dividing up the classification space in our training set. While other

approaches to initializing η exist [39], we choose to utilize knowledge already in the

system to compute bandwidths. To set unique bandwidths for all neurons, we use the

GNG neuron error, which already holds information unique to each neuron relating to

how well it represents nearby data in both K and O. This initialization is as follows,

ηik = ω ∗ ϵik, (4.2)

where bandwidths for each prototype k for each class i are computed as a multiple ω

of the GNG neuron errors ϵ for each prototype k for each class i.

Upon unique initialization of the PKNN η bandwidth parameter for each neuron,

query points can compute a typicality to neurons using the PKNN metric in Equation

4.1. Over time, neurons without classification can self-organize into emergent classes,

discussed next.
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4.3.4 SSHING: Human Identifies a New Class

Adding a human element to an online algorithm can increase its labeling speed and

accuracy. First, we address the case of when the human identifies a new class. Specif-

ically, we are concerned about two scenarios. The first scenario is when the operator

manually identifies a new class of interest that they want to preemptively label, versus

let SSHING try to eventually discover and recommend. The second case is when the

human notices potential problematic non-target classes that could lead to classifier

confusion.

Recall, one of our main objectives is to reduce the human workload. To this

end, we try to reduce the number of overall human events by increasing the amount

of interaction during an event. ROIs are retrieved from un-labeled regions via the

nearest neighbor algorithm. In practice, a user interface may not be able to display

all chips (retrievals). Therefore, chips are sampled to rapidly expand the reach of a

new class definition. This feature is especially useful in quickly defining new class

bounds. When the user feels the class has been adequately expanded, they terminate

the interaction.

4.3.5 SSHING: Human Corrects a Labeling Mistake

The second scenario is when the human notices a SSHING mistake. Similar to Section

4.3.4, the idea is to take advantage of the fact that the user interrupted SSHING and

retrieve related chips. In this interaction, we are concerned with only when the human

operator notices misclassified KKs.

The idea is to use human interaction to refine class boundaries around mistakes.

Similar to Section 4.3.4, SSHING displays a set of chips sampled from a larger retrieval

and the human can choose to label as many chips from that set as they want. This

retrieval method is as follows. Starting with a nearest neighbor retrieval of K chips,

calculate the PKNN typicalities of each neighbor to each class. To score the set of
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(a) First few iterations after
manual labeling

(b) New class dialog to define
“Class 2” (c) System knowledge after

many iterations

(d) After few iterations after
manual labeling

(e) After adding orange clus-
ter as “Class 2”

(f) After many self-
supervised iterations

Figure 4.2: Example 1. Figure (a) shows the state of SSHING for a single defined
class (blue). Aided by the extended period of manual labeling (e.g., subfigure (b)),
new classes are quickly established. Subfigure (c) shows the state of SSHING after
the 2nd class label has fully claimed the space occupied by the orange class. Row two
shows data (gray) and the neural gas memory (colored points) in feature space.

typicalities for each neighbor by most confusing to least confusing, a small amount

is added to each typicality score, e.g., .01. Next, we multiply the typicalities for

each neighbor to each class. This results in a value that is larger for neighbors with

typicalities to many classes; and are therefore more confusing. The scores are then

sorted and displayed to the user with respect to their confusion. The objective of

this retrieval is to refine the decision boundaries between classes, quickly setting new

prototypes in the confusion area.

4.4 EXAMPLES

In this section, we begin with a controlled synthetic and easy to visualize data set.

Next, the Unreal Engine[32] is used to generate a more challenging yet fully ground

truthed low-altitude aerial image data set. The UE environment consists of free and
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(a) 2D data set with non-linear boundaries
(b) Final SSHING results

Figure 4.3: SSHING for Experiment 2 with more complex non-linear boundaries.

paid content from the Unreal Marketplace[31].

The first simple 2D data set is synthesized using Numpy in Python[40] with the

goal of creating poignant problem samples to demonstrate the behavior of SSHING.

The data set in Section 4.4.1 is generated from three separable normal distributions.

The data in Section 4.4.2, which has more complex non-linear decision classes, was

produced by hand in Microsoft Paint.

The simulated aerial data generated in UE requires processing for ROI identifica-

tion before it is processed by SSHING, see Section 4.2 and [13]. UE was used due to

its photorealism and since it is often used to help train ML/AI algorithms. UE is also

idea for rapid testing the concepts presented herein as we know the ground truth and

its simple to change the scene, e.g., add or remove objects, change properties, vary

the time of day, repeat an experiment, etc.

Herein, we focus on the speed with which a human assists labeling and the degree

to which we have lowered their mental load. Namely, we track the following metrics.

Metric 1 is the number of images manually and automatically labeled; showing the

balance of assisted labeling. Metric 2 is the number of clicks; which tracks the physical

labeling act. Metric 3 is completion time; which measures labeling efficiency.
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4.4.1 Example 1: User Adds New Class

In Example 1, we examine the behavior of the labeler when a new class is identified

in a simplified 2D data set with 3 separable clusters. SSHING is first initialized

with a period of manual labeling. Specifically, a human manually labeled 50 images

consisting of the known (blue) and unknown (green) classes. Neural gas elements

are shown color coded in feature space in Figure 4.2. However, colors were slightly

perturbed in the user interface to help the user easily determine when a new sample

is streamed in. Otherwise, it is challenging to tell when something is updated.

Next, the orange class is introduced. In this instance, the operator is now advanc-

ing the labeler from image to image without having to pick labels (see Figure 4.2a),

as the system has enough knowledge to correctly label Class 1 (blue) and unknown

examples (green) in this easily-separable toy data set. When the orange class is in-

troduced, corresponding data points start to populate in the user interface outlier

section. The human sees this data and makes the decision to create a new class,

prompting the system to retrieve nearby samples (see Section 4.3.4). These data

points are then displayed to the user and it prompts a period of manual labeling

(Figure 4.2b). As the user labels, SSHING continues to pull in un-labeled data ac-

cording to the retrieval method. When the human is finished labeling, they close the

labeling prompt and continue advancing images (Figure 4.2c). Figures 4.2d, 4.2e, and

4.2f all show the state of SSHINGs knowledge at each interval in the labeling process

respective to the figures above them.

We asked a user to label the same data set (N = 500) twice: once with only manual

labeling for each data point, and once with respect to SSHING and 50 manually

labeled points. The results are shown in Table 4.1.

We discovered (Table 4.1) that SSHING could label Experiment 1 629 seconds

faster than a human with no assistance. This was due primarily to the fact that SSH-

ING correctly classified 379 labels. Granted, Experiment 1 is overly simple and this is
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Evaluation Measure Just Human SSHING

Images Manually Labeled 500 121

Images Automatically Labeled 0 379

Number of Clicks 1000 561

Completion Time (seconds) 770 141

Table 4.1: Experimental results of human manually labeling versus SSHING for Ex-
periment 1.

a good indicator of an upper bound on performance. Experiment 1 is a sanity check

and opportunity to ensure that SSHING is operating as advertised. The algorithm

automatic labeling also contributed to a decrease in user number of clicks from 1000

(one click to choose label, one click to advance to next image) to 561, with the user

only having to make 61 additional clicks aside from advancing each image.

To clarify a possible point of confusion, manual labels include the initialization

labels as well as any labeling when defining a new class or correcting a mistake by

the algorithm. Automatically labeled images include only images that are labeled by

the self-supervised labeling mechanism and allowed to pass through the user interface

without intervention.

4.4.2 Example 2: User Identifies a Labeling Mistake

In Example 2, we explore the SSHING scenario of the user identifying a mistake.

As in Example 1, SSHING is initialized with 50 iterations of manual human labeling

before turning on the self-supervised labeling mechanism. Figure 4.3a shows the 2D

non-linear data set, which consists of 2 classes with more complex and potentially

confusing class boundaries.

When the user identifies a labeling mistake, SSHING retrieves nearby un-labeled

data points with high confusion (see Section 4.3.5) and a subset are displayed in the

interface. The human labels as many data points as they see sufficient. By retrieving
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the data this way and prompting the user for an extending labeling period, SSH-

ING can quickly learn the space around the misclassification. Figure 4.3b shows a

snapshot of SSHINGs knowledge after a good amount of self-supervised iterations;

meaning SSHING is not in need of much correction, it is correctly classifying most

incoming data points. As the reader can see, the incoming data points (gray) are

heavily concentrated in and around the class boundary, as our retrieval prioritizes

those points. As such, SSHING has concentrated the GNG neurons (blue and or-

ange) in that space to better represent class boundary. As performance results are

extremely similar to Example 1, which is encouraging, we omit them. The take away

from Experiment 2 is that SSHING is properly focusing on mistakes around class

boundaries and human intervention is helping SSHING to adapt and grow.

4.4.3 Example 3: SSHING on Simulated UE Aerial Imagery

Now that we have verified two of the main aspects driving efficient HITL-based self-

supervised labeling, we demonstrate SSHING on a harder real-world problem. Label-

ing objects of interest in real aerial imagery can be time intensive and complex, e.g.,

what bounding box to assign, when/how to label in light of resolution, occlusion, etc.

SSHING can help us address some of these challenges in a quicker and less mentally

taxing affair. With respect to tracking an increasing number of labels (new classes),

SSHING allows labeling outliers, giving the user the opportunity to label things that

are important and unique to each run/collection. SSHING also allows the user to

decide when they want to begin labeling; though the longer a user waits the more

damage is done and corrections are needed.

In Example 3, we asked the user to label aerial region of interest chips, see Figure

4.4. As before, the human was asked to complete two runs of the data set, one entirely

manual (no SSHING) and one pass SSHING assisted. The results are tabulated in

Table 4.2.
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Figure 4.4: Screenshot of SSHING labeling simulated aerial imagery. Known classes
in this example include cars, humans, traffic cones, and road barricades. Outliers
(KUs) include trees, bushes, benches, trash cans, and furniture.
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Evaluation Measure Just Human SSHING

Images Manually Labeled 500 258

Images Automatically Labeled 0 242

Number of Clicks 1000 655

Completion Time (s) 870 617

Table 4.2: Experimental results of human manually labeling versus SSHING on a 500
chip data set of simulated drone imagery (Experiment 3).

In a stark difference to Experiment 1 and 2, fewer ROIs (image chips) are auto-

matically labeled and the SSHING-assisted run resulted in only a 29% performance in

completing the data set. As a side note, the last 100 images labeled were 60 automatic

and 40 manual. At this moment in the labeling process, the user has the knowledge

necessary to start to quickly labeling the data set. Labeled data consisted of 79 cars,

31 humans, 38 construction cones, 19 barricades, and 333 outliers. The point being,

outliers made up the significant portion of the automatically labeled data, forcing the

user to manually label most of the target classes in the data.

4.5 DISCUSSION AND FUTURE WORK

In Example 1 and 2 we see that labeling separable patterns in a simple 2D data set

is trivial for SSHING, or any HITL assisted or streaming algorithm at that. After no

time at all, SSHING runs almost entirely untethered. On the other hand, labeling real-

world higher dimensional image data struggles to achieve the same lofty expectations.

Why? Is this a flaw in SSHING, an artifact of our experiment and data set, etc.?

Of the few differences in performance across experiments is the time taken to

label Experiment 3 stands out as only slightly improved over manual labeling. A

significant portion of this time is the mental ability to quickly identify the content

of the image chip. Assisted self-supervised labeling serves to improve, at most, the

amount of time necessary for the user to click a label. The time needed to click a
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Figure 4.5: Dissimilarity matrix for Example 3 data, showing the differences of 20
instances from each class (car, human, cone, and barricade). Instances are organized
by class, i.e., samples 1 to 20 are cars, 21 to 40 are humans, etc. In this plot, darker
means more similar and the matrix is normalized between min and max distance for
display. This matrix shows that it is difficult for SSHING to distinguish between
classes, as indicated by the lack of organized darker shades in the off-diagonal sub-
matrices. The ideal dissimilarity matrix has zeros in (class i, class i) and ones in
(class i, class j), i ̸= j.

Figure 4.6: Dissimilarity matrix between 50 outliers (first 50 indices) and 50 cars
(last 50 indices). This shows that outliers in Experiment 3 have higher intra-class
similarity than cars while maintaining low inter-class similarity. This reaffirms that
SSHING’s strong suit on Example 3 is labeling outliers.
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label is far less impactful than the time needed to identify possibly obstructed objects

in low-resolution imagery. As it turned out, most automatically classified ROIs were

outliers. While this may not be novel by itself, it does contribute to reducing the

labeling load on the user. An approach to assist the user in labeling could be to make

available multiple cropping of ROI chips to the user. With multiple levels of cropping

on target (aka scales), the operator could potentially more quickly establish context

of the ROI and identify the target of the chip.

In future work, we will also explore more intelligent methods of encoding our image

ROIs. Our current method consists of using pretrained deep neural network features

from benchmark computer vision data sets reduced down using an autoencoder to a

lower dimensional feature space. A problem with this is it does not express our aerial

near nadir imagery well; both in relative pose, environment, and types of objects

we wish to classify. At the end of the day, our current approach, while community

accepted, is not as separable as needed, which results in more SSHING misclassifica-

tions and ultimately less efficiency. These claims are backed by manual analysis of

class examples in the context of feature dissimilarity matrices, see Figures 4.5 and

4.6. In particular, we see low inter-class dissimilarity and low intra-class similarity

in the encoded features. Furthermore, Figure 4.6 backs the claims of low similarity

between outliers and one known class (cars). The point is, our aerial image data set

SSHING performance is hindered significantly by our feature encoding.

Another consideration is that our initial experiments do not take into account

variability with respect to the number of neural gas neurons used. One of our goals,

versus working ith the entire data set, is to maintain a a user defined max or relatively

small percentage of the total amount of data as it relates to classification and retrieval

efficiency. In future work, we will explore human performance relative to minimizing

the number of neurons and more intelligently distributing these neurons in the feature

space, e.g., areas of potential confusion like class boundaries.
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There are a number of additional future extensions that we will consider related

to image processing and computer vision. For example, Experiment 3 was plagued

by a significantly large number of not class of interest ROIs generated by our change

detection algorithm. A next step will be to improve the change detection algorithm

and incorporate domain knowledge to reduce this stream of ROIs. Clearly this will

have a large impact on SSHING as it relates to how much data requires supervision.

Furthermore, Experiment 3 was shown as a stand alone experiment. However, this

is not the intended use of SSHING for aerial image labeling. Our goal is to reuse

SSHING on consecutive runs in a same scene and for related environments. As such,

SSHING will not start from tabula rasa. This consumes a great deal of human effort.

In future work we will use SSHING to label consecutive runs and measure performance

over longer periods of time. We are also interested in if there exists additional filters

that can be exploited. For example, if the operator sees particular color or altitude or

other contextual information about ROIs, is it possible to incorporate this information

and abstract the problem to reduce the amount of constant visual inspection that is

required. Last, a few measurements were used herein. In future work, we will explore

more advanced user interface and cognitive measures and metrics to assess workload.
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Chapter 5

DISCUSSION

Chapter 2 explores how to extend artificial neural networks to class N+1. After

proposing a pipeline to input, encode, and predict on image data, the system is opti-

mized using a genetic algorithm. After generating ordered dissimilarity matrices and

performing automatic scoring based on squaredness in CLODD, the best pipeline

is concluded to be ResNet101 → Max-pooling → PCA reduction. To simplify the

pipeline complexity and increase consistency between data sets and runs, in the fol-

lowing works ResNet101 is substituted for its smaller sister model ResNet50 and PCA

is substituted for the repeatable encoding method in a pre-trained Autoencoder. In

this chapter, I learn mostly that PKNN is limited. I get around this in future works

by testing and picking parameters to allow the best performance from PKNN, but

the bane of the usage for PKNN in this chapter is the lack of well-defined context for

the value assignment of the bandwidth parameter. This parameter, of course, being

integral to the ability of the PKNN-based classifier to say “I don’t know.” Frigui and

Gader, in their work [5], derive the parameter statistically. This did not work without

amplification for encoded visual features, and rarely did the amplifying factor remain

the same between contexts. In Chapter 2, the bandwidth parameter is defined with

the help of a genetic algorithm, brute-forcing the performance of the PKNN classifier

to find the optimal bandwidth. Without an explainable and derivable parameter for

the bandwidth, it is tough to see PKNN at the core of an OSR classifier.
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In Chapter 3, this dissertation outlines the first use of StreamSoNG on a streaming

computer vision task. Along with StreamSoNG, I implement a HITL into the data-

labeling online classification algorithm. By bootstrapping an established stream-

classification algorithm in StreamSoNG, I show that a collection of algorithms can

exist to perform quick and self-supervised classification with the assistance of a human

operator. In this step, I also propose a graphical user interface (GUI) for intelligently

interfacing the human operator with the self-supervised labeling system. In this

chapter, I learn mostly that more work is required to achieve high quality labeling on

real world streaming data. Among many small algorithmic changes, it became clear

that StreamSoNG was not the right algorithm for my HITL labeling application.

StreamSoNG, by design, does not store any of the streaming data. The application

built here is a data labeler, which should store out every data point that it labels. At

this point, it is unclear if a “teacher” algorithm should exist, in Chapter 3 I mention

YOLOv5 as an option, to further help steer the online classifier in the correct direction

in combination with the human expert. Lastly, it is important that whatever new

algorithm is implemented, it must keep in mind concept drift. As UAS data can be

collected at any time in the day and include many different variations of objects in

the same class, drift in the data will occur and must be accounted for.

Chapter 4 proposes and demonstrates the Self-Supervised and Human-In-the-

loop Growing Neural Gas (SSHING) for human-assisted self-supervised labeling of

large data sets. SSHING demonstrates a polished version of the GUI previously in-

terfaced with StreamSoNG and introduces two focal points for human assistance in

online self-supervised image classification. This chapter demonstrates that SSHING

reduces the labeling load on the human operator in real-data labeling applications.

In this chapter, I primarily struggle with encoding image data in a way that features

are separable when represented in low-dimensional space. My approach to human-

assisted labeling is proven to be advantageous in separable low-dimensional toy data
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sets, but SSHING can only work as well as the input features are separable. This

chapter proposes the use of well-known methods of feature extraction for image data,

such as using modified implementation of different deep CNNs, but exploration into

alternative methods of image feature extraction is reserved for future works. Specif-

ically with the SSHING user interface, the most labor-intensive responsibility of the

human seems to be in the identification of low resolution imagery and highly ob-

structed looks on target. While attempting to use simulated imagery akin to that

collected from a drone, both of these problem cases should be expected. One approach

to improving the time to label tough images could be modifying the change detection

and ROI extraction methods to include multiple intensities of cropping on the target

to increase the human operator’s ability to draw context from the scene. With a

larger context to identify targets, the human operator may be able to label imagery

quicker in the SSHING application. Finally, even though SSHING’s performance on

simulated UAS data didn’t meet the same lofty performance expectations set in the

toy 2-D data set examples, the system provides a noticeable improvement in mental

load an labeling speed over manually labeling the same data set. In the simulated

UAS data, there is a large amount of non-interesting change (tuned to emulate that

of ROI extraction results from real data applications), which is largely automatically

labeled by SSHING. SSHING struggles at target classification early in labeling, but it

very quickly establishes between the set of target classes and non-target classes (out-

liers). Automatically labeling the outliers in a data set that consists 50% of outliers

is marked improvement over manual labeling, especially when considering the light

overhead to initializing SSHING.

Overall, reflecting on the dissertation as a whole, a couple things stand out.

Firstly, I needed better features. At all points in this process, I was in need of

feature encoding methods that produced separable vectors based on visual features.

This problem is not unique by itself, of course, but I feel as if I was close to a passable
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solution by using CNN encoded features. In those features exist the separable data

I am seeking, I just did not have the bandwidth to find the right encoding method.

After all, the focus was on the following, which I am proud of.

After iterating on HITL guidelines and user events for an entire paper (Chapter

3), I was proud to boil every possible event in SSHING down to two well-defined

categories: user defines class and user corrects mistake. By finding two main actions

that the user can take at any time in the usage of the application, I feel I am laying

groundwork for progress on future HITL applications. With a starting philosophy of

how to gauge human input on a HITL labeling application, I hope future works can

spring board to achieving better results.
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Chapter 6

FUTURE WORK

Future work on SSHING and surrounding algorithms include the following. Firstly,

the PKNN method is useful for rejecting outliers with its bandwidth component

but the mechanism (equation) needs improvement. Classification methods that are

distance-based like PKNN suffer from a perfectly circular world-view, a structure

in which clusters of target classes hardly manifest. A well-designed classifier for

SSHING would likely adopt a topological strategy, molding a kernel to best fit to

the known data instead of in circular sub-structures. In addition, a deeper and more

thorough analysis is needed across existing architectures and models. Ideally, every

part of SSHING from the change detection and ROI extraction to the online GNG

and PKNN classification to the application should be interconnected and optimized.

As this dissertation focuses on exploration within this topic, this thorough work has

not been attempted.

Secondly, the change detection and ROI extraction methods have lots of room for

improvement. Improving change detection in the data set can improve classification

speeds by simply reducing the amount of data for which the human operator is re-

sponsible. At this time, the change detection and ROI extraction pipeline exists as a

headless operation. In the future, this process could have a user-facing interface for

real-time tuning of change detection parameters. As mentioned above, each step of

the system is deeply interconnected. Improving the ROI extraction to include more
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meaningful change will succeed in reducing the labeling load on the human operator.

For the time being, SSHING has not been asked to run on data sets with large

amounts of concept drift. Large amounts, for example, might include exaggerated

color and shadow differences in different hours of the day or different weather condi-

tions. This may also include inner-class concept drift of like objects, including similar

car bodies with different paint colors, or classes like people where each sample is

unique. Future works surrounding SSHING should identify and test the performance

under these varying types of concept drift in the data set. While my augmented GNG

algorithm should account for and adapt to any amount of concept drift, the upper

bound was not tested. Iterating SSHING on real data collected in the field should

test the system’s susceptibility to concept drift in classes.

Next, future work developing SSHING should look at better methods of encoding

the image data for use in metric learning space. The current method is still largely

inseparable, resulting in too many misclassifications by SSHING. While succeeding

in defining a methodology for human-assisted labeling, SSHING is still limited by

the lack of separable features in the encoded image data. With improvements in the

encoding pipeline, either by more intelligent dimensional reduction or better trained

CNNs with more separable raw features, I believe the application of simluated UAS

can see similar performance improvements to manual labeling as the toy 2-D data

set examples. While not being utilized in the same way as a fully-connected MLP

classifier, I believe that the data necessary to separate the vectors exists in the encoded

visual features.

Finally, the future of SSHING relies on real-time, lightweight, online operation.

The idea of SSHING was born from the idea of running a system on-board the drone

to identify and classify notable change in the environment and reporting that la-

beled change to the user. While the execution of SSHING pivoted to an iterative

data-labeling application for large supervised learning models in its infancy, the goal
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still remains of a simple, light, and powerful ROI classification backbone for drone

imagery. This future iteration of SSHING should prove to be CNN and context in-

dependent, only requiring that features be separable in some space. Future works

on SSHING should aim for lightweight deployment to enable execution on mobile

platforms, enabling real-time human-assisted labeling in-flight during data collects.

Not only does this enable the system to live on a drone and execute mid-flight, but

it continues to enable uses of SSHING for labeling large offline data sets, just as we

have explored in this dissertation.
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Smagt, D. Cremers, and T. Brox. “FlowNet: Learning Optical Flow with Con-

85



volutional Networks”. In: 2015 IEEE International Conference on Computer

Vision (ICCV). 2015, pp. 2758–2766.

[30] Modular Neighborhood Pack. https://www.unrealengine.com/marketplace/

en-US/product/modular-neighborhood-pack. (Accessed: 1 March 2021).

[31] Marketplace - UE marketplace. https://www.unrealengine.com/marketplace/

en-US/store.

[32] Unreal Engine. https://www.unrealengine.com/.

[33] AirSim. https://github.com/microsoft/AirSim. (Accessed: 1 March 2021).

[34] P. Pueyo, E. Cristofalo, E. Montijano, and M. Schwager. CinemAirSim: A

Camera-Realistic Robotics Simulator for Cinematographic Purposes. 2020. arXiv:

2003.07664 [cs.RO].

[35] A. Buck, M. Deardorff, D. T. Anderson, T. Wilkin, J. M. Keller, G. Scott,

R. H. L. III, and R. Camaioni. “VADER: A Hardware and Simulation Platform

for VisuallyAware Drone Autonomy Research”. In: SPIE. 2021.

[36] M. Deardorff, B. Alvey, D. T. Anderson, J. M. Keller, G. Scott, D. Ho, A.

Buck, and C. Yang. “Metadata Enabled Contextual Sensor Fusion for Un-

mannedAerial System-Based Explosive Hazard Detection”. In: SPIE. 2021.

[37] B. Alvey, D. T. Anderson, J. M. Keller, A. Buck, G. Scott, D. Ho, C. Yang,

and B. Libbey. “Improving Explosive Hazard Detection with Simulated and

Augmented Data for an Unmanned Aerial System”. In: SPIE. 2021.

[38] VoTT. https://github.com/microsoft/VoTT. (Accessed: 1 March 2021).

[39] W. Wu, J. M. Keller, and T. A. Runkler. “Sequential possibilistic one-means

clustering with dynamic eta”. In: 2018 IEEE International Conference on Fuzzy

Systems (FUZZ-IEEE). IEEE. 2018, pp. 1–8.

[40] NumPy. https://numpy.org/.

86


	Chair Name: Dr. Derek T. Anderson
	Committee Name 1: James M. Keller
	Committee Name 2: Dr. Grant J Scott
	Committee Name 3: Dr. Mikhail Popescu
	Committee Member 4: 
	Degree Type: Master of Science
	Student: Jeffrey Schulz
	Title: HUMAN-ASSISTED SELF-SUPERVISED LABELING OF LARGE DATA SETS
	Thesis or Dissertation: thesis


