2,467 research outputs found

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm

    Get PDF
    Offshore Wind has become the most profitable renewable energy source due to the remarkable development it has experienced in Europe over the last decade. In this paper, a review of Structural Health Monitoring Systems (SHMS) for offshore wind turbines (OWT) has been carried out considering the topic as a Statistical Pattern Recognition problem. Therefore, each one of the stages of this paradigm has been reviewed focusing on OWT application. These stages are: Operational Evaluation; Data Acquisition, Normalization and Cleansing; Feature Extraction and Information Condensation; and Statistical Model Development. It is expected that optimizing each stage, SHMS can contribute to the development of efficient Condition-Based Maintenance Strategies. Optimizing this strategy will help reduce labor costs of OWTs׳ inspection, avoid unnecessary maintenance, identify design weaknesses before failure, improve the availability of power production while preventing wind turbines׳ overloading, therefore, maximizing the investments׳ return. In the forthcoming years, a growing interest in SHM technologies for OWT is expected, enhancing the potential of offshore wind farm deployments further offshore. Increasing efficiency in operational management will contribute towards achieving UK׳s 2020 and 2050 targets, through ultimately reducing the Levelised Cost of Energy (LCOE)

    Kernel-based fault diagnosis of inertial sensors using analytical redundancy

    Get PDF
    Kernel methods are able to exploit high-dimensional spaces for representational advantage, while only operating implicitly in such spaces, thus incurring none of the computational cost of doing so. They appear to have the potential to advance the state of the art in control and signal processing applications and are increasingly seeing adoption across these domains. Applications of kernel methods to fault detection and isolation (FDI) have been reported, but few in aerospace research, though they offer a promising way to perform or enhance fault detection. It is mostly in process monitoring, in the chemical processing industry for example, that these techniques have found broader application. This research work explores the use of kernel-based solutions in model-based fault diagnosis for aerospace systems. Specifically, it investigates the application of these techniques to the detection and isolation of IMU/INS sensor faults – a canonical open problem in the aerospace field. Kernel PCA, a kernelised non-linear extension of the well-known principal component analysis (PCA) algorithm, is implemented to tackle IMU fault monitoring. An isolation scheme is extrapolated based on the strong duality known to exist between probably the most widely practiced method of FDI in the aerospace domain – the parity space technique – and linear principal component analysis. The algorithm, termed partial kernel PCA, benefits from the isolation properties of the parity space method as well as the non-linear approximation ability of kernel PCA. Further, a number of unscented non-linear filters for FDI are implemented, equipped with data-driven transition models based on Gaussian processes - a non-parametric Bayesian kernel method. A distributed estimation architecture is proposed, which besides fault diagnosis can contemporaneously perform sensor fusion. It also allows for decoupling faulty sensors from the navigation solution

    Domain knowledge-informed Synthetic fault sample generation with Health Data Map for cross-domain Planetary Gearbox Fault Diagnosis

    Full text link
    Extensive research has been conducted on fault diagnosis of planetary gearboxes using vibration signals and deep learning (DL) approaches. However, DL-based methods are susceptible to the domain shift problem caused by varying operating conditions of the gearbox. Although domain adaptation and data synthesis methods have been proposed to overcome such domain shifts, they are often not directly applicable in real-world situations where only healthy data is available in the target domain. To tackle the challenge of extreme domain shift scenarios where only healthy data is available in the target domain, this paper proposes two novel domain knowledge-informed data synthesis methods utilizing the health data map (HDMap). The two proposed approaches are referred to as scaled CutPaste and FaultPaste. The HDMap is used to physically represent the vibration signal of the planetary gearbox as an image-like matrix, allowing for visualization of fault-related features. CutPaste and FaultPaste are then applied to generate faulty samples based on the healthy data in the target domain, using domain knowledge and fault signatures extracted from the source domain, respectively. In addition to generating realistic faults, the proposed methods introduce scaling of fault signatures for controlled synthesis of faults with various severity levels. A case study is conducted on a planetary gearbox testbed to evaluate the proposed approaches. The results show that the proposed methods are capable of accurately diagnosing faults, even in cases of extreme domain shift, and can estimate the severity of faults that have not been previously observed in the target domain.Comment: Under review / added arXiv identifie

    MEMS Accelerometers

    Get PDF
    Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc

    Sensitivity Analysis of a Neural Network based Avionic System by Simulated Fault and Noise Injection

    Get PDF
    The application of virtual sensor is widely discussed in literature as a cost effective solution compared to classical physical architectures. RAMS (Reliability, Availability, Maintainability and Safety) performance of the entire avionic system seem to be greatly improved using analytical redundancy. However, commercial applications are still uncommon. A complete analysis of the behavior of these models must be conducted before implementing them as an effective alternative for aircraft sensors. In this paper, a virtual sensor based on neural network called Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) is analyzed through simulation. The model simulates realistic input signals of typical inertial and air data MEMS (Micro Electro-Mechanical Systems) sensors. A procedure to define the background noise model is applied and two different cases are shown. The first considers only the sensor noise whereas the latter uses the same procedure with the operative flight noise. Flight tests have been conducted to measure the disturbances on the inertial and air data sensors. Comparison of the Power Spectral Density function is carried out between operative and background noise. A model for GNSS (Global Navigation Satellite System) receiver, complete with constellation simulator and atmospheric delay evaluation, is also implemented. Eventually, a simple multi-sensor data fusion technique is modeled. Results show good robustness of the Smart-ADAHRS to the sensor faults and a marginal sensitivity to the temperature-related faults. Solution for this kind of degradation is indicated at the end of the paper. Influences of noise on input signals is also discussed

    An Unsupervised Approach for Automatic Activity Recognition based on Hidden Markov Model Regression

    Full text link
    Using supervised machine learning approaches to recognize human activities from on-body wearable accelerometers generally requires a large amount of labelled data. When ground truth information is not available, too expensive, time consuming or difficult to collect, one has to rely on unsupervised approaches. This paper presents a new unsupervised approach for human activity recognition from raw acceleration data measured using inertial wearable sensors. The proposed method is based upon joint segmentation of multidimensional time series using a Hidden Markov Model (HMM) in a multiple regression context. The model is learned in an unsupervised framework using the Expectation-Maximization (EM) algorithm where no activity labels are needed. The proposed method takes into account the sequential appearance of the data. It is therefore adapted for the temporal acceleration data to accurately detect the activities. It allows both segmentation and classification of the human activities. Experimental results are provided to demonstrate the efficiency of the proposed approach with respect to standard supervised and unsupervised classification approache
    • …
    corecore