129,105 research outputs found

    The Effectiveness of Using Diversity to Select Multiple Classifier Systems with Varying Classification Thresholds

    Get PDF
    In classification applications, the goal of fusion techniques is to exploit complementary approaches and merge the information provided by these methods to provide a solution superior than any single method. Associated with choosing a methodology to fuse pattern recognition algorithms is the choice of algorithm or algorithms to fuse. Historically, classifier ensemble accuracy has been used to select which pattern recognition algorithms are included in a multiple classifier system. More recently, research has focused on creating and evaluating diversity metrics to more effectively select ensemble members. Using a wide range of classification data sets, methodologies, and fusion techniques, current diversity research is extended by expanding classifier domains before employing fusion methodologies. The expansion is made possible with a unique classification score algorithm developed for this purpose. Correlation and linear regression techniques reveal that the relationship between diversity metrics and accuracy is tenuous and optimal ensemble selection should be based on ensemble accuracy. The strengths and weaknesses of popular diversity metrics are examined in the context of the information they provide with respect to changing classification thresholds and accuracies

    Steering Wheel Behavior Based Estimation of Fatigue

    Get PDF
    This paper examined a steering behavior based fatigue monitoring system. The advantages of using steering behavior for detecting fatigue are that these systems measure continuously, cheaply, non-intrusively, and robustly even under extremely demanding environmental conditions. The expected fatigue induced changes in steering behavior are a pattern of slow drifting and fast corrective counter steering. Using advanced signal processing procedures for feature extraction, we computed 3 feature set in the time, frequency and state space domain (a total number of 1251 features) to capture fatigue impaired steering patterns. Each feature set was separately fed into 5 machine learning methods (e.g. Support Vector Machine, K-Nearest Neighbor). The outputs of each single classifier were combined to an ensemble classification value. Finally we combined the ensemble values of 3 feature subsets to a of meta-ensemble classification value. To validate the steering behavior analysis, driving samples are taken from a driving simulator during a sleep deprivation study (N=12). We yielded a recognition rate of 86.1% in classifying slight from strong fatigue

    Closing the performance gap between siamese networks for dissimilarity image classification and convolutional neural networks

    Get PDF
    In this paper, we examine two strategies for boosting the performance of ensembles of Siamese networks (SNNs) for image classification using two loss functions (Triplet and Binary Cross Entropy) and two methods for building the dissimilarity spaces (FULLY and DEEPER). With FULLY, the distance between a pattern and a prototype is calculated by comparing two images using the fully connected layer of the Siamese network. With DEEPER, each pattern is described using a deeper layer combined with dimensionality reduction. The basic design of the SNNs takes advantage of supervised k-means clustering for building the dissimilarity spaces that train a set of support vector machines, which are then combined by sum rule for a final decision. The robustness and versatility of this approach are demonstrated on several cross-domain image data sets, including a portrait data set, two bioimage and two animal vocalization data sets. Results show that the strategies employed in this work to increase the performance of dissimilarity image classification using SNN are closing the gap with standalone CNNs. Moreover, when our best system is combined with an ensemble of CNNs, the resulting performance is superior to an ensemble of CNNs, demonstrating that our new strategy is extracting additional information

    Convolutional Neural Fabrics

    Get PDF
    Despite the success of CNNs, selecting the optimal architecture for a given task remains an open problem. Instead of aiming to select a single optimal architecture, we propose a "fabric" that embeds an exponentially large number of architectures. The fabric consists of a 3D trellis that connects response maps at different layers, scales, and channels with a sparse homogeneous local connectivity pattern. The only hyper-parameters of a fabric are the number of channels and layers. While individual architectures can be recovered as paths, the fabric can in addition ensemble all embedded architectures together, sharing their weights where their paths overlap. Parameters can be learned using standard methods based on back-propagation, at a cost that scales linearly in the fabric size. We present benchmark results competitive with the state of the art for image classification on MNIST and CIFAR10, and for semantic segmentation on the Part Labels dataset.Comment: Corrected typos (In proceedings of NIPS16

    Ensemble machine learning approach for electronic nose signal processing

    Get PDF
    Electronic nose (e-nose) systems have been reported to be used in many areas as rapid, low- cost, and non-invasive instruments. Especially in meat production and processing, e-nose system is a powerful tool to process volatile compounds as a unique ‘fingerprint’. The ability of the pattern recognition algorithm to analyze e-nose signals is the key to the success of the e-nose system in many applications. On the other hand, ensemble methods have been reported for favorable performances in various data sets. This research proposes an ensemble learning approach for e-nose signal processing, especially in beef quality assessment. Ensemble methods are not only used for learning algorithms but also sensor array optimization. For sensor array optimization, three filter-based feature selection algorithms (FSAs) are used to build ensemble FSA such as reliefF, chi-square, and gini index. Ensemble FSA is developed to deal with different or unstable outputs of a single FSA on homogeneous e-nose data sets in beef quality monitoring. Moreover, ensemble learning algorithms are employed to deal with multi-class classification and regression tasks. Random forest and Adaboost are used that represent bagging and boosting algorithms, respectively. The results are also compared with support vector machine and decision tree as single learners. According to the experimental results, our ensemble approach has good performance and generalization in e-nose signal processing. Optimized sensor combination based on filter-based FSA shows stable results both in classification and regression tasks. Furthermore, Adaboost as a boosting algorithm produces the best prediction even though using a smaller number of sensor

    Pattern Recognition in Macroscopic and Dermoscopic Images for Skin Lesion Diagnosis

    Get PDF
    Pattern recognition in macroscopic and dermoscopic images is a challenging task in skin lesion diagnosis. The search for better performing classification has been a relevant issue for pattern recognition in images. Hence, this work was particularly focused on skin lesion pattern recognition, especially in macroscopic and dermoscopic images. For the pattern recognition in macroscopic images, a computational approach was developed to detect skin lesion features according to the asymmetry, border, colour and texture properties, as well as to diagnose types of skin lesions, i.e., nevus, seborrheic keratosis and melanoma. In this approach, an anisotropic diffusion filter is applied to enhance the input image and an active contour model without edges is used in the segmentation of the enhanced image. Finally, a support vector machine is used to classify each feature property according to their clinical principles, and also for the classification between different types of skin lesions. For the pattern recognition in dermoscopic images, classification models based on ensemble methods and input feature manipulation are used. The feature subsets was used to manipulate the input feature and to ensure the diversity of the ensemble models. Each ensemble classification model was generated by using an optimum-path forest classifier and integrated with a majority voting strategy. The performed experiments allowed to analyse the effectiveness of the developed approaches for pattern recognition in macroscopic and dermoscopic images, with the results obtained being very promising
    • …
    corecore