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Research Article

The effectiveness of using diversity
to select multiple classifier systems
with varying classification thresholds

Harris K Butler IV, Mark A Friend, Kenneth W Bauer Jr and
Trevor J Bihl

Abstract

In classification applications, the goal of fusion techniques is to exploit complementary approaches and merge the

information provided by these methods to provide a solution superior than any single method. Associated with choosing

a methodology to fuse pattern recognition algorithms is the choice of algorithm or algorithms to fuse. Historically,

classifier ensemble accuracy has been used to select which pattern recognition algorithms are included in a multiple

classifier system. More recently, research has focused on creating and evaluating diversity metrics to more effectively

select ensemble members. Using a wide range of classification data sets, methodologies, and fusion techniques, current

diversity research is extended by expanding classifier domains before employing fusion methodologies. The expansion is

made possible with a unique classification score algorithm developed for this purpose. Correlation and linear regression

techniques reveal that the relationship between diversity metrics and accuracy is tenuous and optimal ensemble selec-

tion should be based on ensemble accuracy. The strengths and weaknesses of popular diversity metrics are examined in

the context of the information they provide with respect to changing classification thresholds and accuracies.

Keywords

Accuracy, classifier fusion, classification threshold, classification, diversity, ensembles

Introduction

There is considerable effort in the pattern recognition
field to combine the outputs of individual classifiers to
create a multiple classifier system (MCS), also termed
an “ensemble,” which endeavors for robustness over
any single classifier in the MCS. The underlying
principle is that greater accuracy can be achieved by
combining the outputs of classifiers strong in different
areas of the decision space. Classifiers that are strong in
different areas of the decision space are said to be
diverse, and intuitively selecting diverse classifiers
would lend itself to improved accuracy.

However, the concept of diversity has yet to be for-
malized but there is consensus among researchers that
diverse classifiers make errors in different areas of the
classification domain. Herein, we consider diversity to
be the abstract concept that describes differences
between outputs of multiple distinct classifiers, while
a diversity metric will be considered to be a rigorously
defined method for describing this abstract concept of
diversity. Currently, there are many proposed diversity

metrics, c.f. literature,1–3 without any clear consensus

as to which diversity metric is best.
Although studies have examined the relationship

between accuracy and diversity, c.f. literature,4–6 limi-

tations of these studies include that only a small part of

the possible classification domain was considered. By

selecting different classification thresholds for each

individual classifier in an MCS, it is possible to look

at a much wider range of the classification domain. We

introduce an alternate scoring technique that allows

selection of individual classification thresholds to gen-

erate a classification surface instead of just a single
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classification curve. Through employing the alternative
scoring technique, we find that the relationship between
diversity and accuracy in ensembles is ambiguous,
despite there is a statistically significant relationship
between accuracy and diversity when using academic
data sets, classification algorithms, and ensemble tech-
niques. The alternate scoring technique allows us to
create and evaluate a large number of MCSs, from
which we analyze with linear correlation, least squares
regression, as well as accuracy-based and diversity-
based ensemble selection algorithms to uncover a pos-
sible relationship between accuracy and diversity.

This paper is organized as follows: the next section
presents a review of fusion methods and diversity met-
rics. The subsequent section discusses underlying
theory along with the proposed scoring method.
Application results, from using academic datasets, are
then presented. The concluding remarks are discussed
in the last section.

Background

Prior research

Numerous studies have attempted to show a relation-
ship between the diversity measures and the perfor-
mance of an MCS.3–16 Some studies have had some
success in showing this relationship; however, they
used diversity measures inherently correlated with
accuracy. However, there have been no successes with
the more “pure” measures of diversity.

Aksela and Laaksonen4 studied classifier selection
using a number of diversity metrics and fusion techni-
ques and state that diversity metrics that disregard clas-
sifier correctness are not optimal for selection purposes.
However, diversity metrics that take classifier correctness
into account are “cheating’’ by really making the mea-
sure about accuracy instead of diversity. In essence, it is
desirable for the diversity of the errors to be high, but the
agreement on the correct outputs should also be high.4

This idea of diversity being important but not at the
cost of accuracy is echoed in other research as well.
Brown and Kuncheva6 decomposed their diversity
into “good” and “bad” diversity measures where
increasing good diversity reduces error and increasing
bad diversity increases error. However, they only did so
for one fusion method and loss function combination;
a separate decomposition must be performed for every
combination of loss function and fusion method.6

Brown and Kuncheva6 also did not provide a way to
use the good/bad diversity decomposition for building
classifier ensembles. Canuto et al.7performed a study
on ensemble selection with both hybrid (different
types of classifiers) and non-hybrid (all classifiers are
the same type) ensembles. They determined that

classifier selection does have an impact on an ensem-
ble’s accuracy and diversity but they did not show any
link between accuracy and diversity. They also show
that hybrid ensembles provide the most diversity, this
is one reason we use hybrid ensembles in our research.
Gacquer et al.8 proposed a genetic algorithm for ensem-
ble selection that performs well with a specified
accuracy-diversity trade off of 80/20, indicating that
diversity must be of at least some use for selecting
ensembles that generalize well over a population.
However, they mentioned that this may not be true
for small data sets, and it may not be true for all large
data sets, either. Hadjitodorov et al.9 looked at cluster
ensembles which is a unsupervised learning technique,
but still offer valid insight. They claim that accuracy
peaks somewhere around medium diversity, and very
high or very low diversity ensembles are a poor choice.

Alternatively, Kuncheva10 stated that while no rela-
tionship between diversity and accuracy has been con-
clusively proven, it is may still be a useful idea in
creating ensemble selection heuristics. Kuncheva and
Whitaker3 noted that the diversity metrics tend to clus-
ter with themselves indicating that there is some agreed
upon idea of diversity, but stated that using diversity
for enhancing the design of ensembles is still an open
question. Ruta and Gabrys11 showed a correlation
between one measure of accuracy, majority voting
error, and two diversity metrics, the pairwise double-
fault measure and the non-pairwise fault majority mea-
sure. The non-pairwise fault majority measure of diver-
sity was designed specifically for majority voting
fusion, and thus is expected to show a relationship
with majority voting error.11

Shipp and Kuncheva12 considered a large number
of diversity metrics and fusion methods but did not find
a correlation between ensemble accuracy and diversity.
Windeatt2 proposed a diversity metric that is measured
across classes and not classifiers; he showed it to be
correlated with the base classifier’s accuracy but it did
not appear to be correlated with the accuracy of the
MCS as a whole. While some of the studies claim a
correlation between accuracy and a proposed diversity
metric, all of the studies fall short of conclusively prov-
ing a link between diversity and accuracy. Part of the
problem stems from the fact that there is no formal
definition of diversity.

With the current state of research in this area exam-
ined, one area that has not been researched at all is the
relationship between accuracy and diversity over the
classifier threshold domain space. All previous studies
focused on the correlation between the classification
accuracy at a fixed classification threshold, i.e. for a
two class problem with a decision threshold h ¼ 0:5,
the class with posterior probability greater than 0.5 is
the winning class. In this paper, the relationship
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between diversity and accuracy is explored as the clas-

sification thresholds are varied over their full range, not

just h ¼ 0:5.

Classifier fusion

While it is possible to classify observations with a single

classifier, greater accuracy may achieved by creating

multiple classifiers and combining the results.17

Combining multiple classifiers creates an MCS.
One of the most common structures is parallel com-

bination, conceptualized in Figure 1, which we refer to

as the standard method to contrast with our alternate

method described later. The standard method is certain-

ly not the only possible structure, and many other pos-

sibilities exist for combining classifiers. Fundamentally,

all combination rules within the parallel structure fall

into three different levels; an abstract level which only

requires class labels as outputs, a rank level which

requires a ranked list of class outputs, and finally a mea-

surement level which requires class probabilities.11

Majority voting

Majority voting is the simplest abstract level fusion

method. It involves selecting the most commonly

assigned class as the final assigned class. If there is a

case where no class gets more than one vote, the final

assignment is given to the individual classifier with the

best accuracy.1 There are other possible voting meth-

ods than just the simple majority described above, c.f.,1

but these are not used in our research.

Measurement level fusion

Measurement level fusion requires more information

than abstract level fusion and possibly performs

better due to the additional information over abstract

level fusion methods. Measurement level fusion

schemes require fuzzy measures on the interval [0, 1]

as the classifier outputs. These fuzzy measures are

treated as class probabilities or one of the other meas-

ures of evidence: possibility, necessity, belief, or plau-

sibility. There are a wide range of measurement level

fusion schemes, only some of the most popular are

discussed below. The following symbol conventions

are used with measurement level fusion:

• ljðxÞ – the support given by the MCS to class j for

an observation x.
• dt; jðxÞ – the support given by the individual classifier

t to class j for an observation x.
• T – the number of classifiers in the MCS

Generalized mean

The generalized mean fusion method encompasses many

commonly used fusion methods. The formula for a gen-

eralized mean fusion is1

ljðx; aÞ ¼
1

T

XT
t¼1

dt; jðxÞa
 !1=a

(1)

The choice of a determines the behavior of the rule.

If a ¼ 1, we obtain the mean rule,1 also called the basic

ensemble model (BEM).18 If a ¼ �1 then we obtain

the minimum rule

ljðxÞ ¼ mint¼1...T dt; jðxÞ
� �

(2)

and similarly, a ¼ 1 then we obtain the minimum rule,1

ljðxÞ ¼ maxt¼1...T dt; jðxÞ
� �

(3)

Product rule

The product rule multiplies the support given by each

classifier and if the posterior probabilities are correctly

estimated then the product rule gives the best estimate

of the overall class probabilities.1 However, if one clas-

sifier gives very low support to a class, it effectively

removes the chance of that class being selected

ljðxÞ ¼
1

T

YT
t¼1

dt; jðxÞ (4)

Generalized ensemble

The generalized ensemble model (GEM) is a general-

ized model of the mean rule, also called the BEM.18

At its core, GEM is a weighted average of the support

given by each classifier

ljðxÞ ¼
XT
t¼1

atdt; j (5)

Classifier 1

Classifier 2

Classifier T

Fusion Threshold

Figure 1. Conceptualization of the standard method.
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The alphas are selected in a way that minimizes the
mean squared error of the MCS. This is done by cal-
culating the misfit function, mi xð Þ, for each classifier

miðxÞ ¼ fðxÞ � fiðxÞ (6)

where f xð Þ is the truth and fi xð Þ is the output of clas-
sifier i. The correlation matrix between the misfit func-
tions of all the classifiers i and j is then constructed,
with individual entries

Cij ¼ E miðxÞmjðxÞ
� � (7)

The weights, ai, are calculated using the entries in
the correlation matrix

ai ¼
RjC

�1
ij

RkRjC
�1
ij

(8)

Perrone and Cooper18 state that weights calculated
using equation (8) creates the linear combination of
classifier outputs that minimizes the MSE. GEM is
proven to be more accurate than the best individual
classifier and also more accurate than using BEM for
fusing classifier outputs.

Diversity metrics

As discussed in the introduction, researchers do not
agree on an exact definition of diversity or a definitive
diversity metric. However, as mentioned by Polikar,1

an effort must be made to make the component classi-
fiers of an MCS as diverse as possible to ensure an
efficient MCS. In the sections below, the most
common measures of diversity are discussed, as well
as how to use them to create a diverse set of classifiers.
The challenge we face with current diversity measures is
that the goal of linking diversity to accuracy is ham-
pered by the fact that there is not a one to one mapping
between diversity and accuracy. For each diversity
metric discussed below, an example is provided to dem-
onstrate how different sets of classifier outputs may
have the same diversity but vastly different accuracies.

Diversity is easy to understand qualitatively, but dif-
ficult to rigorously quantify. There are many different
measures that have been proposed to measure diversity.
Some of the most popular metrics are discussed below.
Most diversity metrics are designed for pairwise com-
parisons of classifiers. There are a few global diversity
measures that can handle more than two classifiers
such as Entropy and Kohavi–Wolpert Variance. A
common approach is to compare multiple classifiers
using pairwise diversity metrics by computing the
diversity of every pairwise combination and averaging

these results. In the pairwise diversity metrics, the con-

vention used is the letters a, b, c, d represent fractions

of instances as shown in Table 1.

Correlation

One of the most commonly used diversity metrics is the

correlation between two classifiers, qi; j.
3 Maximum

diversity is obtained when qi; j ¼ 0. Correlation is cal-

culated as

qi; j ¼
ad� bcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ bÞðcþ dÞðaþ cÞðbþ d Þp ; 0 � qi; j � 1

(9)

Two identical classifiers that produce identical labels

have q ¼ 1 and fusing their outputs using BEM will give

an MCS that has an accuracy equal to the accuracy of

the individual classifiers. Another set of identical classi-

fiers will also have q ¼ 1, but if the accuracy of the

individual classifiers in this new set does not equal the

accuracy of the previously mentioned classifiers then

the two MCSs will not have the same accuracy.

Yule’s Q

Yule’s Q statistic, Qi; j is another commonly used diver-

sity metric, which takes on positive values if both clas-

sifiers tend to correctly classify the same instances, and

negative values if both classifiers tend to incorrectly

classify the same instances.2 Maximum diversity is

achieved at Qi; j ¼ 0. Yule’s Q is calculated as:

Qi; j ¼ ad� bc

adþ bc
(10)

Two different MCSs can have the same Yule’s Q

statistic as long as the products ad and bc remain the

same. For example, if one MCS has a ¼ 0.85%, b ¼
0.05%, c ¼ 0.05, and d ¼ 0.05 and the other classifier

has the same values except a and d have swapped

values so a ¼ 0.05 and b ¼ 0.05 then both MCSs will

have the same Yule’s Q statistic but the first MCS will

be very strong and the second MCS will be very weak.

Table 1. Reference for pairwise diversity metrics, from
ChoiChaand Tappert.19

Classifier j

is correct

Classifier j

is incorrect

Classifier i is correct a b

Classifier i is incorrect c d

190 Journal of Algorithms & Computational Technology 12(3)



Disagreement

Disagreement, Di; j, is the probability that classifiers

will disagree, and is calculated as3

Di; j ¼ bþ c (11)

Maximum diversity is achieved when Di; j ¼ 1. Two

different MCSs can have the same disagreement but

different accuracies as long as the sum bþ c remain

the same. Similar to Yule’s Q statistic, if the values a

and d swap values, one MCS will be strong, while the

other MCS will be weak even though they have the

same disagreement.

Double fault

Double fault, DFi; j is the probability that both classi-

fiers will misclassify an observation, and is equal to d3

DFi; j ¼ d (12)

Maximum diversity is achieved when DFi; j ¼ 0: Two

MCSs will have the same double fault value as long as

they have equal values d. One MCS may have 99%

“double correctness” and 1% double-faults, while

another MCS may have 99% “single faults” and 1%

double-faults. The former MCS is far more robust than

the latter MCS despite them having the same double-

fault values.

Entropy

Entropy, E, operates under the assumption that diver-

sity is highest if half of the classifiers are correct and

half of the classifiers are wrong. Diversity is highest

when E ¼ 1 and lowest when E ¼ 0. Entropy is calcu-

lated as1

E ¼ 1

N

XN
i¼1

1

T� T=2½ �minðfi; ðT� fiÞÞ (13)

where fi is the number of classifiers that misclassified

the observation xi, therefore T� fið Þ is the number of

classifiers that correctly classified observation x, and N

is the number of observations in the data set. These

definitions will also be used in the formula for

Kohavi–Wolpert variance, discussed below. If one

MCS always has three correct classifiers and two incor-

rect classifiers and the second MCS always has two

correct classifiers but three incorrect classifiers then

they will have the same entropy values but different

accuracies.

Kohavi–Wolpert variance

Kohavi–Wolpert variance is similar to the disagree-
ment measure but can be calculated with more than
two classifiers. Diversity is maximized when Kohavi–
Wolpert variance is high. Kohavi–Wolpert variance is
calculated as3

KW ¼ 1

NT 2

XN
i¼1

fiðT� fiÞ (14)

Kuncheva has proven that Kohavi–Wolpert vari-
ance of an MCS is related to the average of all pairwise
disagreement.3 Kohavi–Wolpert variance shares the
same weaknesses as the entropy measure.

Methodology

Theory

Ruta and Gabrys11 claim the difference between
abstract level fusion techniques and measurement level
fusion techniques is the information used by each tech-
nique, but there is one other difference that is important
to this research. With an abstract level fusion method
such as Majority Voting, class labels are given by each
individual classifier then fused into a single label.
Because class labels are given before the fusion takes
place, each individual classifier can have its own decision
threshold independent of the other classifiers. With a
measurement level fusion method such as Mean
Fusion, the measurements are fused and then a single
label is made. Because there is only one label made (and
it comes after fusion), there is only one decision thresh-
old for the entire MCS. Although the measurement level
fusion techniques make use of more information (fuzzy
measures vs. binary labels), they lose degrees of freedom
in that they cannot apply decision thresholds to individ-
ual classifiers. The following section proposes an alter-
nate scoring technique that attempts to keep the
increased information of the fuzzy measures required
for measurement level fusion but allows each classifier
output to be transformed independently.

Alternative scoring technique

The proposed alternate scoring technique, conceptual-
ized in Figure 2, transforms class probabilities into
scores restricted to the interval [0, 1] by selection of a
classification threshold, h.

The alternative scoring technique procedure takes clas-
sifier t’s output probability of an observation belonging
to class 1 d�t;1, and re-scores it to d�t;0 and d�t;1: The score
not only captures the predicted class for an exemplar but
also the relative distance of the original classifier score to

Butler et al. 191



the selected classification threshold

d�t;0 ¼ max 0;
h� dt;1

h

� �
d�t;1 ¼ max 0;

dt;1 � h
h

� � (15)

For an individual classifier, an assignment to class 0
would occur if d�t;0 > d�t;1, and an assignment to class 1
would occur if d�t;0 � d�t;1. A pictorial view of two
examples is shown in Figure 3, once where dt;1 > h;
and once where dt;1 < h. The alternate scoring tech-
nique will be applied to the classifier outputs prior to
performing fusion, as opposed to the standard method
which applies thresholds after performing fusion. The
benefit of this is that it allows fusion methods employ-
ing the alternate scoring technique to look at many
additional threshold combinations and explore a
wider range of possible diversity and accuracy combi-
nations. By allowing for individual classification
thresholds, we can explore a greater range of diversity.
To compare the procedural flow of the two methods,
one can contrast Figures 1 and 2. Because the scores all
fall on the same interval, we can perform the same
fusion techniques on them as we could on class prob-
abilities. We expect the performance of creating

ensembles using this alternate scoring technique to per-
form similarly to ensembles created using class proba-
bilities. Mean fusion of ensemble alternate scores
produces classification accuracy equal to mean fusion
when all h ¼ 0:5: A graphical comparison of the bene-
fits of the alternate scoring technique is shown in
Figure 3. Figure 4 shows an ensemble of two classifiers,
with each point on this surface representing a single
threshold combination, the height of the surface repre-
sents the accuracy. The alternate scoring technique can
explore this entire domain, allowing a more in-depth
look at the relationship between accuracy and diversity.

Experiment

The primary goal of this research is to discover if a
relationship between ensemble accuracy and diversity
exists.

Example academic datasets

In order to avoid data-driven results and to examine
the relationship between accuracy and diversity across
a wide spectrum of problem characteristics, 14 data sets
were obtained from the UCI Machine Learning
Repository.20 The selected data sets: Balance Scale,21

Breast Cancer Wisconsin,22 BUPA Liver Disorders23

Credit Approval,24 Glass,25 Haberman’s Survival,26

Fisher’s Iris,27 Mammographic Masses,28

Parkinson’s,29 Pima Indians Diabetes,30 Spambase,31

SPECTF,32 Transfusion,33 and Wisconsin Diagnostic
Breast Cancer.34 These datasets have between 3 and
58 features, tens to thousands of observations, and
benchmark accuracy values between 65% and 95%.
All data sets have two classes or have been coerced
into two class data sets by grouping similar classes
until there are two distinct classes.

Classification algorithms

Six classifiers were employed to examine diversity and
accuracy in ensembles:

• Quadratic discriminant analysis (QDA)

10

10

Q = 0.4

dt,1 = 0.75

Q = 0.6

dt,1 = 0.25

(a)

(b)

Figure 3. Graphical representation of proposed alternative
scoring technique: (a) Using the alternate scoring technique,
support for class 1 (d*t,1) is 0.35/0.6¼ 0.58, support for class 0
(d*t,0) is 0 since dt,1>H. (b) A second example gives a support
for class 0, (d*t,0) 0.45/0.6¼ 0.75, support for class 1 (d*t,1) is 0
since dt,1<H.

Figure 4. Sample accuracy surface over a range of thresholds.

Classifier 1

Classifier 2

Classifier T

Fusion

Threshold 1

Threshold 2

Threshold T

Figure 2. Conceptualization of proposed alternative scoring
technique.
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• k-Nearest Neighbors (kNN)
• Feed Forward Neural Network (FFNN)
• Radial Basis Function (RBF)
• Probabilistic Neural Network (PNN)
• Support Vector Machines (SVM).

Classifier settings and background were as follows:

1. QDA was considered, consistent with Wu et al.,35 if
a dataset was rank deficient then LDA, consistent
with, Wu et al.35 and Bihl et al.36 was used.

2. kNN was employed consistent with Fukunaga and
Narendra,37 using the e1071 package38 and default
options.

3. FFNN was implemented per MeyerDimitriadou
et al.39 with one hidden layer with three nodes (used
throughout), with a “softmax” (log-linear model).

4. RBF was implemented per Chen et al.40 and
DemuthBeale and Hagan,41 with mean squared
error goal of 0.0, spread¼ 1.0, max neurons equal
to the number of input vectors, and 25 neurons
added between displays.

5. PNNs were considered, per literature,42–44 with a
radial basis function spread of 0.1

6. SVMs used the e1071 package was used, c.f.,38 with
a linear kernel and default e1071 options.

For algorithms with tunable architecture settings,
e.g. kNN, FFNN, RBF, PNNs, and SVMs, perfor-
mance gains would logically be possible by selecting
settings for each dataset. However, the authors have
aimed for repeatability, consistent with the study in
Liu and Zaidi,45 in this study by using global settings
which are likely overall suboptimal.

Experiment description

An area not examined in prior research and provided
for by our alternate scoring technique is the relation-
ship between accuracy and diversity over the entire
domain of individual classifier thresholds. Most prior
research has only investigated ensemble performance at
single classification thresholds (typically h ¼ 0:5). In
the few studies where the thresholds were varied, only
ROC curves of single classifier accuracy and MCS
accuracy are presented. The ensembles we construct
vary the classification threshold independently for
each classifier and employ our proposed alternate scor-
ing technique. Each unique combination of component
classifiers and threshold settings produces a unique
MCS whose accuracy and diversity may be examined.
Another way to think of this experiment is as a full
factorial design with the factors and levels as given in
Table 2. This creates an experiment with 69,138,720
points. To evaluate the created ensembles, a function

was created that takes as input the test and validation

class probabilities from three classifiers, three individ-
ual classification thresholds as well as the truth. Using
this information, the function performs the alternate

scoring technique, calculates the diversity metrics, per-
forms the fusion techniques, and returns the perfor-

mance metrics of the fused ensembles. This function
can be thought of as a wrapper that takes an ensemble
and returns the desired performance metric, accuracy,

and the desired diversity metrics; Correlation, Yule’s
Q, Disagreement, Double Fault, Entropy, and

Kohavi–Wolpert Variance.

f

test; validate;

class : 1; class : 2; class : 3;

h1; h2; h3; truth

¼ acc; q;Q;D;DF;E;KW

0BBBBB@

1CCCCCA (16)

In our experiments, every possible ensemble of three
classifiers was evaluated at every threshold from 0.05 to

0.95 with threshold step sizes of 0.05. The diversity
metrics and ensemble performances were saved in a

database and used in the analysis performed.

Looking for relationships

There are a number of different ways to look for a

relationship between accuracy and diversity with the
wealth of data produced by our experimental design.

One preprocessing step taken for all procedures was to
map the diversity metrics to the interval [0, 1] where 0 is
minimum diversity and 1 is maximum diversity. This

mapping facilitates comparisons between accuracy and

Table 2. Experiment factor/level description.

Factor # Levels Notes

Data set 14 Previously mentioned data

sets from UCI Machine

Learning Repository

Fusion method 6 Maj. Vote, BEM, GEM,

Product, Min, Max

Diversity metric 6 Correlation, Yule’s Q,

Disagreement, Double

Fault, Entropy, Kohavi-

Wolpert Variance

Classifiers 20 Out of six different classifiers

(QDA, kNN, FFNN, RBF,

PNN, and SVM), select 3 to

make an ensemble

Thresholds 6859 19 thresholds (0.05 to 0.95 by

0.05) for each of the three

classifiers in the ensemble

BEM: basic ensemble model; GEM: generalized ensemble model.
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diversity and allows their relative affects to be com-
pared directly. Some diversity metrics already meet
this criteria, such as disagreement and entropy. The
remaining of the diversity metrics are mapped in the
following manner

q� ¼ 1� jqj
Q� ¼ 1� jQj

DF� ¼ 1� jDFj
KW� ¼ 3 � KW

(17)

Correlations

The first logical step to uncovering a relationship
between diversity and accuracy is to determine if there
is a linear correlation between the diversity metrics col-
lected and the ensemble accuracies. The correlation
between test set diversity and test set accuracies are
examined for within set correlation, and the correlation
between test set diversity and validation set accuracies
are examined for between set correlation.

Regression

Another possible way to uncover a relationship
between diversity and accuracy is through linear regres-
sion. If there is a relation between diversity and accu-
racy then the validation set accuracy may be able to be
predicted by test set diversity (which would be very
useful in ensemble building). It is probable that test
set accuracy is the main predictor of validation set
accuracy and that diversity may only explain some of
the residual error. To determine if this is the case, four
regressions are performed on each data set- one with
diversity as the only regressor, one with accuracy as
the only regressor, one with both diversity and accura-
cy as regressors, and one with diversity and accuracy
as regressors including their interaction. In each regres-
sion, the accuracy from the validation set is used as the
dependent variable and all of the independent variables
come from the test set. This ensures that the regressions
show the actual predictive power of the independent
variables and does not show spurious correlation
within the test set. The regression results are examined
to determine the effect of test set diversity and accuracy
on validation accuracy. To account for the effects of
the diversity metric used, the data set, the ensemble
combination, and the fusion technique used, dummy
variables are encoded. These dummy variables are
included as main effects to allow for a change in the
regression intercept, and are also interacted with testing
accuracy, AccTST, and diversity, Div, to allow for the
coefficients for accuracy and diversity to change based

on the ensemble’s properties (diversity metric, data set,
and fusion technique). A regression of validation set
accuracy with test set accuracy and diversity as the
regressors without dummy variables is shown below

dAccval ¼ b0 þ b1AccTST þ b2Div (18)

This regression does not take into account the diver-
sity metric, data set, and fusion technique in use. The
full regression with dummy variables is

dAccval ¼ b0 þ b1AccTST þ b2Divþ b3D1 þ b4D2 þ b5D3

þ b13AccTSTD1 þ b14AccTSTD2 þ b15AccTSTD3

þ b23DivD1 þ b24DivD2 þ b25DivD3

(19)

where D1 is the vector of dummy variables associated
with which diversity metric is used, D2 is the vector of
dummy variables associated with the data set the
ensemble comes from, and D3 is the vector of dummy
variables associated with the fusion technique used. D1

could be [00000] which would indicate the first diversity
metric being used (correlation), a vector of [10000]
would indicate the second diversity metric (Yule’s Q),
[01000] would indicate the third diversity metric being
used (double-fault), etc. The other dummy variable
vectors for data set and fusion technique are arranged
similarly. The b0j s and b0ijs associated with dummy
variables are a vector as well. This full regression

with dummy variables not only allows for the change
of intercept and coefficients depending on the dummy
variables and their interactions, it also allows for test-
ing the statistical significance of the dummy variables
and the information they are associated with.

Ensemble selection

To examine the utility of diversity to determine classi-
fier membership in an ensemble, three ensemble selec-
tion schemes are used on the test set and compared
against the most accurate ensemble and threshold com-
bination in each validation set. The first scheme selects
the ensemble with the highest ensemble test accuracy.
The second scheme selects the ensemble with the three
classifiers with the highest individual test accuracy.

The third scheme selects the ensemble with the highest
test diversity. These schemes are performed with each
fusion type and their validation set accuracy is com-
pared to the best ensemble’s validation accuracy as
determined by the oracle. These comparisons will be
placed in percentages for relative comparison across
fusion techniques, diversity measures, and data sets.
If diversity is a useful metric to select classifiers for
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an ensemble then the selection schemes that use diver-

sity should compare favorably against the selection

schemes that use accuracy.

Results

In our analysis, we evaluate the performance of the

alternate scoring technique and ensure that it did

allow us to look at a greater range of diversity. Next,

we show the linear correlation between accuracy and the

different diversity measures and the relative effects of

accuracy versus diversity using regression techniques.

Finally, we demonstrate the utility of selecting MCS

membership using diversity as the primary criteria per-

forms against using accuracy as the primary criteria. The

experimental results first establish that the alternate

scoring technique does provide ensemble selection over

a wider range of diversity. Next, the correlation between

accuracy and the examined diversity measures is exam-

ined. Following that outcome, the results from the

regressions and the utility of using test accuracy and

diversity to predict ensemble performance with valida-

tion data are presented.

Alternative scoring technique

The alternate scoring technique in general did not pro-

vide higher MCS accuracy but did allow examination

of a greater range of diversity. For three of the fusion

techniques: BEM, GEM, and Product Rule (denoted

PRO in the tables), the alternate scoring technique was

able to achieve a higher level of accuracy. With the two

remaining fusion techniques, MIN and MAX, the

alternate fusion technique did not achieve a very high

level of accuracy. This is attributed to the manner in

which the alternate scoring technique forces one of the

scores to become zero which can greatly affect the

behavior of these statistics. Table 3 shows a compari-

son of the alternate scoring technique’s maximum and

average performance for each fusion technique applied,

averaged across all data sets. It is apparent the alter-

nate scoring technique has the potential to perform as

well as the standard method but loses some accuracy in

the “tails” as the accuracy of the alternate scoring tech-

nique averaged across the range of classification thresh-

olds is lower than the standard method. While we are

pleased that the alternate scoring technique showed a

potential improvement in “tuning” some ensemble

techniques for better performance, the actual perfor-

mance of alternate scoring technique is not of interest

for this study. The primary reason for applying this

technique is to allow us to examine a greater range of

classification threshold combinations and a greater

range of diversity. This focus on achieving greater

diversity is why we feel that the lower average perfor-

mance of the alternate scoring technique is acceptable.

Diversity increase

Using the alternate scoring technique allowed the

exploration of ensembles over a wider range of diver-

sity. The expectation was that this greater range of

diversity achieved would provide greater insight into

the relationship between the accuracy and diversity of

an MCS. As shown in Table 4 the alternate scoring

technique achieves a higher range of diversity for

every diversity metric. The diversity ranges are aver-

aged across all data sets in Table 4. The use of the

alternate scoring technique increased the diversity for

every data set and all diversity metrics.

Ensemble combinations

The results of the experiment are described in Table 2.

Correlations

Similar to Kuncheva,10 we begin our exploration of the

relationship between diversity and accuracy by exam-

ining the correlation coefficient between the two meas-

ures. For each diversity metric and fusion method, we

calculated the Pearson’s r coefficient between the test

diversity and test accuracy to determine if there was

any within set correlation. The Pearson’s r coefficient

between the test diversity and validation accuracy was

also examined to determine if there was any between

Table 3. Comparison of standard method to alternative scoring
technique-achieved accuracy.

Fusion Max-Std Max-Alt Avg-STD Avg-Alt

BEM 0.871 0.874 0.811 0.762

GEM 0.867 0.872 0.802 0.755

PRO 0.864 0.867 0.750 0.738

MIN 0.864 0.637 0.750 0.574

MAX 0.869 0.579 0.808 0.474

BEM: basic ensemble model; GEM: generalized ensemble model; PRO:

product.

Table 4. Comparison of standard method to alternative scoring
technique-achieved diversity range.

Metric Range-Std Range-Alt

Correlation 0.924 0.967

Yule’s Q 0.955 0.982

Double-fault 0.408 0.424

Disagreement 0.549 0.653

Entropy 0.823 0.979

KW Variance 0.549 0.653
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set correlation that could possibly be exploited for
ensemble selection. The correlation aggregated by
diversity metric is perhaps the most informative, and
is presented in Table 5.

The correlation for all diversity metrics is small, and
for most of the metrics, the sign is opposite what the
conventional wisdom states. The conventional wisdom
says that higher diversity should lead to higher accura-
cy and therefore have a positive correlation, but most
of the correlation coefficients observed are negative.
This result is supported, however, by Kuncheva10

where she shows how for most of the diversity range
there is a negative correlation with accuracy as shown
in Figure 5, but once diversity exceeds a certain (fairly
high) threshold, the relationship reverses to a positive
correlation.

We believe that these results do not show anything
new or novel; however, they serve to illustrate some
common sense concepts about diversity. The more
accurate a group of classifiers are, the less opportunity
there is for diversity to exist. At the most extreme case
if all the classifiers are 100% accurate then the ensem-
ble will have zero diversity. Similarly, if all the classi-
fiers are completely wrong then zero diversity will exist
for all measures except for measures such as double-
fault that only measure “half” the picture of diversity.
We mentioned in the ‘Diversity metrics’ section, how

each of the diversity measures we examined can pro-
duce multiple accuracy values for the same diversity
value. Therefore, the results we observed are expected,
there cannot be a one-to-one relationship between
diversity and accuracy so no measure of correlation,
linear or non-linear, will be able to show anything
but a general trend. With regard to the double-fault
measure, recall that double-fault measures the proba-
bility that both classifiers will misclassify an observa-
tion. We then changed to using the diversity score of
DF � ¼ 1� DFj j so this now captures the probability
that at least one classifier will correctly classify an
observation. It should be clear then that this measure
will have a positive correlation with accuracy.

Regression results

Regression analysis was performed to determine if a
relationship exists between accuracy and diversity and
can be used for ensemble selection. With this goal in
mind, we use ensemble validation set accuracy as the
response and metrics from the test set as the regressors.
This process emulates a real-world application of pick-
ing an ensemble based on test set performance, with the
validation set as new observations that are classified
after an ensemble is selected. We performed three regres-
sions; using test set accuracy as the only regressor, using
test set diversity as the only regressor, and using both
test set accuracy and diversity as regressors. Dummy
variables were coded to allow for differences between
data sets, fusion techniques, as well as the different
diversity metrics. The primary focus was the coefficients
related to accuracy and diversity, which gave insight on
the relationship between accuracy and diversity. The
results of the regressions are presented in Table 6,
including the coefficients we were interested in as well
as two measures of prediction performance (consistent
with KutnerNachtsheim et al.46), the coefficient of deter-
mination (R2) and root mean square error (RMSE).
With over 69 million data points, practically any non-
zero number will be statistically significant, c.f.,47–50 thus
statistical significance of the coefficients was not
considered.

Readily apparent is that while diversity may be used
as a selection criteria, diversity as the only regressor has
the lowest R2 and highest RMSE of the regressors
examined. While an R2 of 0.729 certainly indicates
that diversity does offer some explanatory power for
validation accuracy, it is outweighed by the much
greater explanatory power of test set accuracy.

When both accuracy and diversity are included the
linear model, the R2 is increased only slightly, indicat-
ing that diversity does not provide much explanatory
power beyond what accuracy already provides. Since
all of the regressors are bounded on the same interval

Table 5. Correlations by diversity metric.

Metric Range-Std Range-Alt

Correlation 0.023 �0.035

Yule’s Q 0.352 0.238

Double-Fault �0.106 �0.124

Disagreement �0.106 �0.124

Entropy �0.106 �0.124

KW Variance 0.001 �0.042

Figure 5. A typical accuracy-diversity scatterplot. Reprinted
from Kuncheva.10
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[0, 1], their coefficients can be directly compared to

look at the effect of accuracy and each diversity

metric. It is apparent that test set accuracy has a far

greater impact on the validation set accuracy than any

of the diversity metrics, indicating that even a large

change in test diversity can only affect a small change

in validation set accuracy. One observation to note is

that of the diversity measures examined, the double-

fault metric initially appears to be the best in terms

of explanatory power. We believe this is again due to

the fact that double-fault is more of a secondary mea-

sure of accuracy than it is a measure of diversity.

As evidence of this, the coefficient for double-fault is

relatively large compared to the other diversity meas-

ures when accuracy is not included in the regression,

but when accuracy is included in the regression, the

coefficient for the double-fault metric decreases to a

level comparable to the other diversity measures.

Ensemble selection results

As a result of creating every possible ensemble combi-

nation, it was possible to determine which one of the

possible ensembles was optimal for classifying each val-

idation set. For each data set and fusion technique,

there is an ensemble that delivers the maximum possi-

ble accuracy that can be obtained by choosing the very

best combination of classifiers classification thresholds.

We call these best possible ensembles “oracles” because

that is the ensemble that an all-knowing oracle would

select if it desired maximum performance. In our

analysis, ensembles were selected based on results
from the test set and the performance those ensembles
achieved on the validation set was compared to the best
ensemble selected by the oracle. Each selected ensem-
ble’s validation accuracy was compared to the oracle
validation accuracy as a percentage

% Achieved ¼ Val: Acc: of given ensemble

Oracle Val: Acc:
(20)

The selection criteria used were ensemble test accura-
cy, individual classifier accuracy, and all six test diversity
metrics. The percent performance that each selection
criteria achieved, aggregated by fusion method, is
shown in Table 7. In table 7, the best selection techni-
ques based on accuracy and the best selection techniques
based on the diversity measure are shown in bold.

As shown in Table 7, selecting ensembles based on
accuracy achieves the highest performance for all fusion
techniques, while selecting ensembles based on diversity
gives lower performance. In fact, the lowest performing
accuracy selection technique is never beaten (and is only
tied once) by the highest performing diversity selection
technique regardless of the fusion technique used. The
double-fault diversity metric performed the best out of
all the diversity metrics, but this is somewhat expected
because of the inherent link between accuracy and the
double-fault metric. This analysis shows that, even with
an expanded range of diversity, test set accuracy should
be the primary criteria for selecting ensembles. If there
are two ensembles that tie in accuracy criteria, diversity

Table 6. Regression coefficientsþ results.

Model Acc Corr Yule’s Q DF Disag Entropy KW R2 RMSE

Accuracy only 0.987 N/A N/A N/A N/A N/A N/A 0.932 0.0404

Diversity only N/A 0.043 0.045 0.223 �0.026 0.013 �0.026 0.729 0.0841

Accuracyþ diversity 0.983 �0.005 �0.002 �0.008 �0.004 �0.001 �0.004 0.933 0.0402

RMSE: root mean square error.

Table 7. Percent achieved by fusion technique.

Accuracy Diversity

Fusion

technique Ensemble Individual Corr Yule’s Q DF Disag Entropy KW

BEM 94 95 90 90 93 91 91 91

GEM 93 93 87 89 91 86 86 86

PRO 95 93 78 80 78 66 66 66

MIN 95 93 78 80 78 66 66 66

MAX 95 95 90 88 91 91 91 91

MVOTE 93 95 86 86 93 83 83 83

BEM: basic ensemble model; GEM: generalized ensemble model; PRO: product.
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may be useful as a secondary criteria to break the tie,

this will be investigated in further research.

Conclusions

This research presented an alternate scoring technique

that allowed a wider range of diversity to be reached

when creating MCSs. It demonstrated that there is not

a one-to-one relationship between diversity and accura-

cy. Among the diversity measures examined, we single

out the double fault metric as appearing to be the best

measure, but this is likely due to its inherent link to

accuracy and not due to it being a good measure of
diversity. We have shown that validation accuracy is

related to diversity but is greatly outweighed by the rela-

tionship between test set accuracy and validation accu-

racy. With our alternate scoring technique allowing us a

wider range of ensembles to examine, we confirm that

test set accuracy is still the best way to select ensembles.
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